JP6337398B2 - 複合容器の製造方法、及び複合容器 - Google Patents

複合容器の製造方法、及び複合容器 Download PDF

Info

Publication number
JP6337398B2
JP6337398B2 JP2014235755A JP2014235755A JP6337398B2 JP 6337398 B2 JP6337398 B2 JP 6337398B2 JP 2014235755 A JP2014235755 A JP 2014235755A JP 2014235755 A JP2014235755 A JP 2014235755A JP 6337398 B2 JP6337398 B2 JP 6337398B2
Authority
JP
Japan
Prior art keywords
winding
angle
liner
fiber
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014235755A
Other languages
English (en)
Other versions
JP2016097561A (ja
Inventor
愛 蓑田
愛 蓑田
佐島 隆生
隆生 佐島
大介 田淵
大介 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Eneos Corp
Original Assignee
Kyushu University NUC
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, JXTG Nippon Oil and Energy Corp filed Critical Kyushu University NUC
Priority to JP2014235755A priority Critical patent/JP6337398B2/ja
Publication of JP2016097561A publication Critical patent/JP2016097561A/ja
Application granted granted Critical
Publication of JP6337398B2 publication Critical patent/JP6337398B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、複合容器の製造方法、及び複合容器に関する。
従来、例えば特許文献1に記載されているように、強化層を備えた複合容器を製造する製造方法が知られている。このような製造方法では、ライナの中心軸線周りに複数設けられる給糸部から繊維束を供給してライナに巻き付けることによって、ライナの外周側に強化層を形成する。
再表2010−125651号公報
上述のように複数の給糸部を用いて繊維束をライナに巻き付ける製造方法を採用することで複合容器の製造時間を短縮することができる。このように、複数の給糸部を用いて複合容器を製造する製造方法において、使用する繊維束の量に対する複合容器の強度を向上することが求められていた。
本発明は、このような課題を解決するためになされたものであり、使用する繊維束の量に対する複合容器の強度を向上できる複合容器の製造方法及び複合容器を提供することを目的とする。
上記課題を解決するため、本発明に係る複合容器の製造方法は、円筒状の胴部及び胴部の両端側に形成されるドーム部を有するライナに対して、ライナの中心軸線周りに複数設けられる給糸部から繊維束を供給して巻き付け、ライナの外周側に強化層を形成する複合容器の製造方法であって、複数の給糸部がライナに対して繊維束を供給しながら、ライナが複数の給糸部に対して中心軸線周りに相対的に回転すると共に、ライナが複数の給糸部に対して軸方向に相対的に移動して、ライナに繊維束を巻き付けて強化層を形成する強化層形成工程を有し、強化層形成工程は、軸方向における繊維束の巻き付け位置の変化に従って、ライナに対する繊維束の巻き付け角度を変化させる第1の巻き付け工程を含む。
本発明に係る複合容器の製造方法において、ライナに繊維束を巻き付けて強化層を形成する強化層形成工程は、軸方向における繊維束の巻き付け位置の変化に従って、ライナに対する繊維束の巻き付け角度を変化させる第1の巻き付け工程を含む。このように、軸方向における繊維束の巻き付け位置の変化に従って、巻き付け角度を変化させることにより、巻き付け角度の条件の調整を行い易くなることで、強化層の強度特性の調整を行い易くなる。以上より、使用する繊維束の量に対する複合容器の強度を向上できる。
また、本発明に係る複合容器の製造方法において、強化層形成工程は、軸方向における繊維束の巻き付け位置の変化によらず、巻き付け角度を第1の角度で一定とする第2の巻き付け工程と、軸方向における繊維束の巻き付け位置の変化によらず、巻き付け角度を第1の角度よりも大きい第2の角度で一定とする第3の巻き付け工程と、を更に含み、第1の巻き付け工程は、第2の巻き付け工程と第3の巻き付け工程との間で実行され、第1の巻き付け工程では、繊維束の巻き付けの進行に伴い、第1の角度及び第2の角度の何れか一方側から他方側へ巻き付け角度を遷移させてよい。ここで、従来は、第2の巻き付け工程から第3の巻き付け工程へ移行する際、または第3の巻き付け工程から第2の巻き付け工程へ移行する際、巻き付け角度を変更するために繊維束の掛け替え作業が必要となっていた。しかしながら複数の給糸部から繊維束を供給する構造であり、各給糸部のそれぞれについて繊維束の掛け替え作業を行わなくてはならないため、掛け替え作業が非常に煩雑となっていた。これに対して、本発明に係る複合容器の製造方法では、第2の巻き付け工程によって形成される繊維層と第3の巻き付け工程によって形成される繊維層との間では、巻き付け角度に差が生じるが、それらの間に第1の巻き付け工程にて巻き付け角度を遷移させることで遷移層を形成することができる。従って、第3の巻き付け工程から第1の巻き付け工程を介して第2の巻き付け工程へ移行する場合、第1の巻き付け工程が終了して第2の巻き付け工程を開始する時には繊維束の巻き付け角度が既に第1の角度となっている。従って、繊維束の掛け替え作業を行うことなく第2の巻き付け工程を実行することができる。あるいは、第2の巻き付け工程から第1の巻き付け工程を介して第3の巻き付け工程へ移行する場合、第1の巻き付け工程が終了して第3の巻き付け工程を開始する時には繊維束の巻き付け角度が既に第2の角度となっている。従って、繊維束の掛け替え作業を行うことなく第3の巻き付け工程を実行することができる。以上より、第1の巻き付け工程を実行することで繊維束の掛け替え作業を省略することができ、低コスト化を図ることが可能となる。
また、本発明に係る複合容器の製造方法において、第1の巻き付け工程は、巻き付け位置がライナを軸方向に一往復する間に完了してよい。これによって、使用する繊維束の量に対する複合容器の強度を向上できる。
また、本発明に係る複合容器の製造方法において、第1の巻き付け工程では、巻き付け角度が大きい程、巻き付け位置の変化に対する巻き付け角度の変化率が大きくてよい。これによって、ライナの軸方向における中央位置に強度の極大点を発生させるように強化層を形成することができる。これによって、使用する繊維束の量に対する複合容器の強度を向上できる。
本発明に係る複合容器は、上述の複合容器の製造方法によって製造される。この複合容器によれば、使用する繊維束の量に対する強度を向上できる。
本発明によれば、使用する繊維束の量に対する複合容器の強度を向上できる。
本発明の実施形態に係る複合容器の製造方法により製造される複合容器を示す一部断面図である。 複合容器の製造装置の構成を示す概略図である。 巻き付け角度を説明するための模式図である。 第1の巻き付け工程における、軸方向における繊維束の巻き付け位置と巻き付け角度の関係の一例を示すグラフである。 第1の巻き付け工程における、軸方向における繊維束の巻き付け位置と巻き付け角度の関係の一例を示すグラフである。 実施例及び比較例における各繊維層の巻き付け角度の条件を示す表である。 ライナの軸方向の位置と強度比との関係を表したグラフである。 実施例及び比較例における、繊維束の使用量あたりの設計圧を示すグラフである。 実施例及び比較例におけるバースト試験の結果を示すグラフである。
以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、以下の説明において同一又は相当部分には同一符号を付し、重複する説明を省略する。
図1は、本発明の実施形態に係る複合容器の製造方法により製造される複合容器を示す一部断面図である。図1に示すように、複合容器1は、例えば水素や天然ガス等の燃料ガスを高圧で貯蔵するための容器である。この複合容器1は、例えば、全長が2〜4m、直径が400〜600mm程度に設定され、使用時には、20〜90MPa程度の圧力に耐えることが可能とされている。複合容器1は、その用途が限定されるものではなく、種々の用途で用いることができる。また、複合容器1は、据置き型として用いられてもよく、移動体に搭載されて用いられてもよい。
この複合容器1は、円筒状のライナ2と、ライナ2の外面側(外周面側)を覆うように設けられた強化層3と、を備えている。ライナ2は、軸方向に延びる円筒状の胴部2a、及び胴部2aの両端側に形成されるドーム部2bを有している。ドーム部2bは、先端へ向かうに従って径が縮小する。当該ドーム部2bの先端には、口金4が取り付けられている。
ライナ2の材料は特に限定されるものではないが、用途によっては、樹脂製又は金属製が選択される。樹脂製のライナ2としては、高密度ポリエチレン等の熱可塑性樹脂を回転成形やブロー成形にて容器形状に形成したものに、金属製の口金4を付けたものが挙げられる。金属製のライナ2としては、例えば、アルミニウム合金製や鋼鉄製等からなるパイプ形状や板形状をスピニング加工等にて容器形状に形成したものに、口金4の形状を形成したものが挙げられる。
強化層3は、ライナ2の外面側に熱硬化性樹脂が含浸された繊維束10(図2参照)を巻き付け、当該繊維束10を硬化炉で加熱し硬化させることによって形成される。熱硬化性樹脂の種類としては、フェノール樹脂、尿素樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、エポキシ樹脂、メラミン樹脂又はアリル樹脂等が挙げられるが、これらに限定されるものではない。なお、ライナ2に巻き付ける繊維束10として、予め熱硬化性樹脂が含浸された繊維束(トウプリプレグ)を用いてもよい。あるいは、ライナ2に巻き付ける前段階で繊維束10に熱硬化性樹脂を付着させる方式(レジンバス法)を用いてもよい。
また、繊維束10としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、ポリエチレン繊維、スチール繊維、ザイロン繊維又はビニロン繊維等を用いることができ、ここでは、高強度で高弾性率且つ軽量な炭素繊維を用いている。また、本実施形態の繊維束10の繊維数(フィラメント)は、特に制限されるものではないが、1000〜50000フィラメント、好ましくは3000〜30000フィラメントの範囲とされ、ここでは、24000フィラメントとされている。
次に、図2を参照して、複合容器1の製造方法について説明する。図2は、複合容器1の製造装置100の構成を示す概略図である。製造装置100は、シャフト102を介してライナ2を支持する支持部101と、複数の給糸部104を有する給糸ヘッド103と、を備える。シャフト102は、ライナ2の軸方向に沿って延びると共に両側の口金4を介してライナ2内を貫通している。シャフト102の両端部はそれぞれ支持部101で支持されている。給糸部104は、ライナ2の外周側において、ライナ2の中心軸線CL周りに複数設けられる。複数の給糸部104は、中心軸線CL周りに一定角度で配置されており、ライナ2に対して同時に繊維束10を供給することができる。給糸ヘッド103は、ライナ2を外周側から取り囲むように環状に形成され、複数の給糸部104を支持している。
製造装置100は、ライナ2を複数の給糸部104に対して中心軸線CL周りに相対的に回転させる。本実施形態では、複数の給糸部104の中心軸線CL周りの位置を固定し、支持部101がシャフト102を介してライナ2を中心軸線CL周りに回転させている。なお、製造装置100は、ライナ2の中心軸線CL周りの位置を固定し、複数の給糸部104を中心軸線CL周りに回転させてもよい。あるいは、製造装置100は、ライナ2と複数の給糸部104の両方を中心軸線CL周りに回転させてもよい。なお、複数の給糸部104を回転させる場合、例えば給糸ヘッド103に各給糸部104を回転させる機構を設けてよく、各給糸部104と共に給糸ヘッド103自体が回転する機構を設けてもよい。
また、製造装置100は、ライナ2を複数の給糸部104に対して軸方向に相対的に移動させる。なお、ここでの「軸方向」とは、製造装置100の支持部101で支持された状態におけるライナ2の中心軸線CLが延びる方向である。本実施形態では、ライナ2の軸方向の位置を固定し、複数の給糸部104を軸方向に移動させる。複数の給糸部104は、ライナ2に対して、軸方向に往復移動することができる。複数の給糸部104を移動させるための機構は特に限定されず、例えば、給糸ヘッド103を軸方向に沿って往復移動可能な駆動機構を設けてよい。なお、製造装置100は、複数の給糸部104の軸方向における位置を固定し、ライナ2を軸方向に移動させてもよい。あるいは、製造装置100は、複数の給糸部104とライナ2の両方を軸方向に移動させてもよい。なお、ライナ2を軸方向に移動させる場合、例えば、ライナ2及びシャフト102と共に支持部101自体が軸方向に移動する駆動機構を設けてよく、支持部101に対してシャフト102及びライナ2が軸方向に移動する駆動機構を設けてもよい。
上述のような製造装置100を用いた複合容器1の製造方法について説明する。複合容器1を製造する際、ライナ2を準備し、当該ライナ2を製造装置100のシャフト102及び支持部101で支持する。また、複数の給糸部104から供給される繊維束10をライナ2の外周面に対して巻き付けることができるように、給糸部104からの繊維束10をライナ2の所定の位置に固定する。例えば、図2に示すように口金4に繊維束10を固定してよい。次に、複数の給糸部104がライナ2に対して繊維束10を供給しながら、ライナ2が複数の給糸部104に対して中心軸線CL周りに相対的に回転すると共に、ライナ2が複数の給糸部104に対して軸方向に相対的に移動して、ライナ2に繊維束10を巻き付けて強化層3を形成する強化層形成工程が実行される。なお、ライナ2に繊維束10を巻き付けた後、巻き付けられた繊維束10を加熱して繊維束10に含浸された熱硬化樹脂を硬化させることによって、強化層3が完成する。繊維束10の加熱は、ライナ2に対する繊維束10の巻き付けが完了した後に、ライナ2を製造装置100から取り外して加熱炉へ移動させ、当該加熱炉で加熱を行うことによって実行されてよい。あるいは、製造装置100でライナ2に対して繊維束10を巻き付けると同時に所定の加熱手段(例えば、ヒータの熱をライナ2の外周側から供給する構成、あるいはライナ2の内部に熱風等の加熱媒体を供給する構成などを採用してよい)で加熱を行い、熱硬化性樹脂を順次硬化させてもよい。
強化層形成工程では、複数の給糸部104から供給されてライナ2へ巻き付けられている繊維束10の巻き付け位置が、ライナ2に対して軸方向に繰り返し往復移動する。これによって、強化層3は、複数の繊維束層によって構成される。製造装置100は、所定の繊維層を形成する際、他の繊維層と巻き付け角度θを異なる角度に設定して繊維束10の巻き付けを行ってよい。ここで、図3に示すように、巻き付け角度θとは、繊維束10の巻き付け時の、繊維束10とライナ表面の接点を通る線であって中心軸線CLと平行な線と、その接点での繊維束10とがなす角度、と定義される。巻き付け角度θは、ライナ2の複数の給糸部104に対する相対的な回転数と、ライナ2の複数の給糸部104に対する軸方向の相対的な速度との関係によって設定される。
次に、強化層形成工程における繊維束10の巻き付け角度θの設定方法について説明する。ただし、以下の説明では、ライナ2のうち、胴部2aに繊維束10を巻き付ける時における巻き付け角度θについて言及しているものとする。ドーム部2bの巻き付け角度については任意で設定してよい。本実施形態において、強化層形成工程は、軸方向における繊維束10の巻き付け位置の変化に従って、ライナ2に対する繊維束10の巻き付け角度θを変化させる第1の巻き付け工程と、軸方向における繊維束10の巻き付け位置の変化によらず、巻き付け角度θを第1の角度α1(図3(a)を参照)で一定とする第2の巻き付け工程と、軸方向における繊維束10の巻き付け位置の変化によらず、巻き付け角度θを第1の角度α1より大きい第2の角度α2(図3(b)を参照)で一定とする第3の巻き付け工程と、を含んでいる。強化層形成工程では、第1〜第3の巻き付け工程の順序及び回数が適宜設定される。
第2の巻き付け工程では、巻き付け角度θを小さい角度である第1の角度α1で一定に維持した状態で、軸方向に沿ってライナ2にヘリカル巻を行う。小さい第1の角度α1でヘリカル巻を行うことで、主に複合容器1の軸方向における強度を確保することができる。第1の角度α1は特に限定されないが、10〜50°に設定してよい。なお、説明のため、巻き付け角度θを第1の角度α1で一定にして形成された繊維層を「第1の繊維層」と称する場合がある。第3の巻き付け工程では、巻き付け角度θを大きい角度である第2の角度α2で一定に維持した状態で、軸方向に沿ってライナ2へヘリカル巻を行う。大きい第2の角度α2でヘリカル巻を行うことで、主に複合容器1のフープ方向における強度を確保することができる。第2の角度α2は特に限定されないが、40〜85°に設定してよい。なお、説明のため、巻き付け角度θを第2の角度α2で一定にして形成された繊維層を「第2の繊維層」と称する場合がある。
本実施形態において、第1の巻き付け工程は、第2の巻き付け工程と第3の巻き付け工程との間で実行される工程であり、繊維束10の巻き付けの進行に伴って、第1の角度α1及び第2の角度α2の何れか一方側から他方側へ巻き付け角度θを遷移させるために実行される工程である。なお、説明のため、軸方向の位置によって巻き付け角度θを変化させる第1の巻き付け工程で形成された繊維層を「遷移層」と称する。
第2の巻き付け工程から第1の巻き付け工程を介して第3の巻き付け工程へ移行する場合、例えば、図4(a)及び図5(a)に示すように、第1の巻き付け工程では、軸方向におけるライナ2の少なくとも一部において、繊維束10の巻き付けの進行に伴って、巻き付け角度θが増加する。ただし、軸方向におけるライナ2の一部では、巻き付け角度θが一定になってよい。あるいは、ライナ2の胴部2aにおける全域について、繊維束10の巻き付けの進行に伴って巻き付け角度θが増加してもよい。なお、この場合、ライナ2の胴部2aのうち、繊維束10の巻き付けの進行に伴って巻き付け角度θが減少する部分は(図4(a)及び図5(a)のように)無いことが好ましいが、一部分で減少してもよい。なお、第1の巻き付け工程における巻き付け開始時の巻き付け角度θ(以下、「開始角度」と称する)は、第1の角度α1と同一角度であってもよいが、異なる角度であってもよい。また、第1の巻き付け工程における巻き付け終了時の巻き付け角度θ(以下、「終了角度」と称する)は、第2の角度α2と同一角度であってもよいが、異なる角度であってもよい。
第3の巻き付け工程から第1の巻き付け工程を介して第2の巻き付け工程へ移行する場合、例えば、図4(b)及び図5(b)に示すように、第1の巻き付け工程では、軸方向におけるライナ2の少なくとも一部において、繊維束10の巻き付けの進行に伴って、巻き付け角度θが減少する。ただし、軸方向におけるライナ2の一部では、巻き付け角度θが一定になってよい。あるいは、ライナ2の胴部2aにおける全域について、繊維束10の巻き付けの進行に伴って巻き付け角度θが減少してもよい。なお、この場合、ライナ2の胴部2aのうち、繊維束10の巻き付けの進行に伴って巻き付け角度θが増加する部分は(図4(a)及び図5(a)のように)無いことが好ましいが、一部分で増加してもよい。なお、第1の巻き付け工程における開始角度は、第2の角度α2と同一角度であってもよいが、異なる角度であってもよい。また、第1の巻き付け工程における終了角度は、第1の角度α1と同一角度であってもよいが、異なる角度であってもよい。
第1の巻き付け工程は、図4に示すように、巻き付け位置がライナ2を軸方向に一往復する間に完了してよい。図4に示す例では、ライナ2の胴部2aにおける一方の端部EA(図2参照)から第1の巻き付け工程が開始され、他方の端部EBで巻き付け位置の進行方向が反転し、再び巻き付け位置が一方の端部EAに至ることで、第1の巻き付け工程が終了する。なお、端部EA,EBの外側ではドーム部2bに対する巻き付けが行われている。あるいは、第1の巻き付け工程は、巻き付け位置がライナ2を軸方向に二回以上往復する間に完了してよい。図5に示す例では、巻き付け位置がライナ2を二往復することで、第1の巻き付け工程が完了している。
また、第1の巻き付け工程では、巻き付け角度θが大きい程、巻き付け位置の変化に対する巻き付け角度θの変化率が大きい。すなわち、第1の巻き付け工程では、巻き付け角度θが小さい程、巻き付け位置の変化に対する巻き付け角度θの変化率が小さい。この場合、図4及び図5のように、横軸に軸方向における巻き付け位置を設定し、縦軸に巻き付け角度θを設定した場合のグラフは、下側へ凸となるように湾曲する曲線となり、変化率が大きいほど湾曲が大きくなり、変化率が小さいほど湾曲が小さくなる。例えば、図4(a)及び図5(a)に示すように、巻き付け角度θが増加するように第1の巻き付け工程を実行する場合、巻き付け開始後、角度増加の開始直後は巻き付け角度θの変化率は小さく、巻き付けが進行するに従って徐々に巻き付け角度θの変化率が大きくなる。また、図4(b)及び図5(b)に示すように、巻き付け角度θが減少するように第1の巻き付け工程を実行する場合、巻き付け開始後、角度減少の開始直後は巻き付け角度θの変化率は大きく、巻き付けが進行するに従って徐々に巻き付け角度θの変化率が小さくなる。ただし、往復動の反転位置付近などで変化率を一時的に小さくする場合など、一時的に上述の関係を満たさない部分があってもよい。
次に、本発明の実施形態に係る複合容器1の製造方法の作用・効果について説明する。
本実施形態に係る複合容器1の製造方法において、ライナ2に繊維束10を巻き付けて強化層3を形成する強化層形成工程は、軸方向における繊維束10の巻き付け位置の変化に従って、ライナ2に対する繊維束10の巻き付け角度θを変化させる第1の巻き付け工程を含む。このように、軸方向における繊維束10の巻き付け位置の変化に従って、巻き付け角度θの条件の調整を行い易くなることで、強化層の強度特性の調整を行い易くなる。以上より、使用する繊維束10の量に対する複合容器の強度を向上できる。例えば、本実施形態に係る複合容器1の製造方法を採用することによって、巻き付けた繊維束10の無駄(すなわち、強度確保に対する寄与が少ない繊維束)を抑制して、複合容器1の強度発現率や繊維束10の使用効率等を向上することができる。
本実施形態に係る複合容器1の製造方法によれば、軸方向における繊維束10の巻き付け位置の変化に従って、巻き付け角度θを変化させる第1の巻き付け工程を有しているため、(例えば、巻き付け角度θを一定として巻き付けを行う巻き付け工程のみを有する製造方法に比べて)巻き付け角度θの条件の調整を実行し易くなる。従って、本実施形態に係る複合容器1の製造方法を採用することで、巻き付け角度θの変化の態様を調整することで、以下のように複合容器1の強度特性を調整することが容易となる。例えば、第1の巻き付け工程においては、複合容器1の強化層3の強度分布が、ライナ2の軸方向における中央位置に対して略左右対称となるように、巻き付け角度θの条件を設定することが好ましい。また、第1の巻き付け工程においては、複合容器1のうちライナ2の胴部2aに対応する部分におけるフープ方向(周方向)の強度が、軸方向における位置によって異なるように、巻き付け角度θの条件を設定することが好ましい。また、第1の巻き付け工程においては、複合容器1のうちライナ2の胴部2aの軸方向における中央部にて、フープ方向の強度に極大点が発生するように(例えば図7(b)参照)、巻き付け角度θの条件を設定することが好ましい。
また、本実施形態に係る複合容器1の製造方法において、強化層形成工程は、軸方向における繊維束10の巻き付け位置の変化によらず、巻き付け角度θを第1の角度α1で一定とする第2の巻き付け工程と、軸方向における繊維束10の巻き付け位置の変化によらず、巻き付け角度θを第1の角度α1よりも大きい第2の角度α2で一定とする第3の巻き付け工程と、を更に含む。また、第1の巻き付け工程は、第2の巻き付け工程と第3の巻き付け工程との間で実行される。第1の巻き付け工程では、繊維束10の巻き付けの進行に従い、第1の角度α1及び第2の角度α2の何れか一方側から他方側へ巻き付け角度θを遷移させてよい。ここで、従来は、第2の巻き付け工程から第3の巻き付け工程へ移行する際、または第3の巻き付け工程から第2の巻き付け工程へ移行する際、巻き付け角度を変更するために繊維束10の掛け替え作業が必要となっていた。しかしながら複数の給糸部104から繊維束10を供給する構造であるため、各給糸部104のそれぞれについて繊維束10の掛け替え作業を行わなくてはならないため、掛け替え作業が非常に煩雑となっていた。これに対して、本実施形態に係る複合容器1の製造方法では、第2の巻き付け工程によって形成される第1の繊維層と第3の巻き付け工程によって形成される第2の繊維層との間では、巻き付け角度に差が生じるが、それらの間に第1の巻き付け工程にて巻き付け角度を遷移させることで遷移層を形成することができる。従って、第3の巻き付け工程から第1の巻き付け工程を介して第2の巻き付け工程へ移行する場合、第1の巻き付け工程が終了して第2の巻き付け工程を開始する時には繊維束10の巻き付け角度θが既に第1の角度α1となっている。従って、繊維束10の掛け替え作業を行うことなく第2の巻き付け工程を実行することができる。あるいは、第2の巻き付け工程から第1の巻き付け工程を介して第3の巻き付け工程へ移行する場合、第1の巻き付け工程が終了して第3の巻き付け工程を開始する時には繊維束10の巻き付け角度θが既に第2の角度α2となっている。従って、繊維束10の掛け替え作業を行うことなく第3の巻き付け工程を実行することができる。以上より、第1の巻き付け工程を実行することで繊維束10の掛け替え作業を省略することができ、低コスト化を図ることが可能となる。
また、本実施形態に係る複合容器1の製造方法において、第1の巻き付け工程は、巻き付け位置がライナ2を軸方向に一往復する間に完了してよい。これによって、往復回数が低減されることにより繊維束10の無駄を減らすことができるため、使用する繊維束10の量に対する複合容器1の強度を向上できる。
また、本実施形態に係る複合容器1の製造方法において、第1の巻き付け工程では、巻き付け角度θが大きい程、巻き付け位置の変化に対する巻き付け角度θの変化率が大きくてよい。巻き付け角度をθとしたとき、複合容器1の周方向強度と軸方向強度はそれぞれsinθ及びcosθの係数となる。従って、上述のように巻き付け角度θの軸方向の位置における変化率を適切に変えることによって、ライナ2の軸方向における中央位置に強度の極大点を発生させるように強化層3を形成することができる。ライナ2の中央位置に強度の極大点を発生させるように強化層3を形成した場合、強度分布のグラフは、例えば図7(b)の二点鎖線で示すようにW字型を描く。例えば巻き付け角θの変化率が一定であると、複合容器1の胴部2aの両端付近の強度が最大となることで、複合容器1の中央部との強度の差が大きくなる場合がある。一方、W字型の強度分布では複合容器1の中央部の強度が最大となる(または極大点を有することとなる)ため、ライナ2の軸方向において、強度の最大値と最小値との間の差を小さくすることができる(例えば、図7(a)の細い実線や破線で示す強度分布のものに比して)ため、強度の弱い部分にて破壊が起きることを抑制できる。これによって、使用する繊維束10の量に対する複合容器の強度を向上できる。
本発明に係る複合容器1は、上述の複合容器1の製造方法によって製造される。この複合容器1によれば、使用する繊維束10の量に対する強度を向上できる。
本発明は、上述の実施形態に限定されるものではない。
例えば、上述の実施形態では、第1の巻き付け工程は、第2の巻き付け工程と第3の巻き付け工程との間で実行され、第1の巻き付け工程では、第1の角度α1及び第2の角度α2の何れか一方側から他方側へ巻き付け角度θを遷移させる遷移層を形成する工程であった。ただし、第1の巻き付け工程は、第2の巻き付け工程と第3の巻き付け工程との間で実行されなくともよい。また、強化層形成工程においては、少なくとも第1の巻き付け工程を有していればよく、第2の巻き付け工程及び第3の巻き付け工程の一方又は両方を省略してもよい。また、第1の巻き付け工程は、軸方向における繊維束10の巻き付け位置の変化に従って、ライナ2に対する繊維束10の巻き付け角度θを変化させるものであればよく、上述の実施形態で例示したような(例えば図4や図5)変化の態様に限定されない。なお、強化層形成工程は、第1〜第2の巻き付け工程以外の巻き付け工程を含んでもよい。すなわち、巻き付け角度θを第1の角度α1及び第2の角度α2以外の角度で一定にして繊維層を形成する工程を追加してもよい。
以下に実施例を説明する。ただし、本発明はこれらの例によって何ら限定されるものではない。
[実施例1]
実施例1に係る複合容器を製造するために、全長504mm、胴部の全長343mm、胴部の外径160mm、肉厚2mmの7.5Lのアルミニウム合金製のライナを準備した。また、繊維束として、炭素繊維T800SC(東レ(株)製)の24000フィラメントに樹脂を含浸させ、樹脂含有率29%のトウプリプレグを用いた。製造装置として、給糸部を周方向に一定角度で48個有するものを用いた(すなわち、給糸数が48本)。また、積層一往復で30〜60秒の速度とし、張力を30Nとした。
また、各繊維層における巻き付け角度θの条件を図6において「実施例1」に示す条件に設定した。ここでは、巻き付け角度θを第1の角度α1(=14.5°)で一定にして、巻き付け位置をライナの一端と他端との間で一往復させることによって形成された繊維層を「第1の繊維層」と称する。巻き付け角度θを第2の角度α2(=73.6°)で一定にして、巻き付け位置をライナの一端と他端との間で一往復させることによって形成された繊維層を「第2の繊維層」と称する。また、第1の繊維層から第2の繊維層へ向かって巻き付け角度θが増加するように変化させることによって形成された繊維層を「遷移層A」と称する。また、第2の繊維層から第1の繊維層へ向かって巻き付け角度θが減少するように変化させることによって形成された繊維層を「遷移層B」と称する。
実施例1では、遷移層Aを形成するための巻き付け角度θの制御プログラムとして、図5(a)に示すものを用いた。図5(a)に示す制御プログラムでは、遷移開始位置(胴部の一方の端部EA)での巻き付け角度θは、第1の角度α1と同様に14.5°に設定され、遷移終了位置(二往復後の端部EA)での巻き付け角度θは、第2の角度α2と同様に73.6°に設定される。図5(a)に示す制御プログラムでは、巻き付け角度θの小さい一往復目においては、小さい変化率で徐々に巻き付け角度θが増加し、二往復目において端部EAから端部EBへ向かう区間にて、大きな変化率で巻き付け角度αが増加している。二往復目において端部EBから端部EAへ向かう区間では、進行方向の折り返し後、直ちに終了角度である73.6°に達している。また、遷移層Bを形成するための巻き付け角度θの制御プログラムとして、図5(b)に示すものを用いた。図5(b)に示す制御プログラムでは、遷移開始位置(胴部の一方の端部EA)での巻き付け角度θは、第2の角度α2と同様に73.6°に設定され、遷移終了位置(二往復後の端部EA)での巻き付け角度θは、第1の角度α1と同様に14.5°に設定される。図5(b)に示す制御プログラムでは、巻き付け角度θの大きい一往復目においては、開始直後に一定角度とした後、大きな変化率で巻き付け角度θが減少し、二往復目において端部EAから端部EBへ向かう区間にて、小さな変化率で徐々に巻き付け角度αが減少している。
実施例1では、図6において「実施例1」で示すように、1,2層目が第1の繊維層、3層目が第2の繊維層、4層目が遷移層B、5層目が第1の繊維層、6層目が遷移層A、7層目が第2の繊維層、8,9層目が第1の繊維層であった。当該条件にて繊維層を形成した後、硬化炉で加熱を行い熱硬化性樹脂を硬化させ、強化層を完成させた。このとき、設計圧は141.2MPaであった。
[実施例2]
各繊維層における巻き付け角度θの条件を図6において「実施例2」に示す条件に設定し、遷移層Aを形成するための巻き付け角度θの制御プログラムとして、図4(a)に示すものを用い、遷移層Bを形成するための巻き付け角度θの制御プログラムとして、図4(b)に示すものを用いた点以外は、実施例1と同様の条件を採用した。
図4(a)に示す制御プログラムでは、遷移開始位置(胴部の一方の端部EA)での巻き付け角度θは、第1の角度α1と同様に14.5°に設定され、遷移終了位置(一往復後の端部EA)での巻き付け角度θは、第2の角度α2と同様に73.6°に設定される。図4(a)に示す制御プログラムでは、端部EAから端部EBへ向かう区間では、小さい変化率で徐々に巻き付け角度θが増加し、端部EBから端部EAへ向かう区間では、大きな変化率巻き付け角度θが増加する。端部EBから端部EAへ向かう区間では、進行方向の折り返し後、終了角度である73.6°に達した後は、一定角度で巻き付けが行われる。図4(b)に示す制御プログラムでは、遷移開始位置(胴部の一方の端部EA)での巻き付け角度θは、第2の角度α2と同様に73.6°に設定され、遷移終了位置(一往復後の端部EA)での巻き付け角度θは、第1の角度α1よりも大きい角度である20°に設定される。これによって、繊維終了位置付近において繊維束にすべりが生じることを防止できる。また、第1の角度α1との間で大きな差はないため、問題を生じることなく第1の繊維層の形成に移行できる。図4(b)に示す制御プログラムでは、巻き付け角度θの大きい端部EAから端部EBへ向かう区間では、開始直後に一定角度とした後、大きな変化率で巻き付け角度θが減少し、端部EBから端部EAへ向かう区間では、小さな変化率で徐々に巻き付け角度αが減少している。
[比較例1]
繊維層の構成として、図6において「比較例1」に示す条件に設定した点以外は、実施例1と同様の条件とした。実施例1では、図6において「比較例1」で示すように、1,2層目が第1の繊維層、3層目が第2の繊維層、4層目が第1の繊維層、5層目が第2の繊維層、6,7層目が第1の繊維層であった。比較例1では、設計圧は112.2MPaであった。
[比較例2]
実施例1とは異なり、一本の繊維束を巻き付ける単給糸による繊維束の巻き付けを行った。また、繊維層の構造として、図6において「比較例2」に示す条件を採用した。1層目がフープ巻(巻き付け角度θが略90°)による繊維層、2層目が巻き付け角度θを15.3°とした繊維層、3層目が巻き付け角度θを18.1°とした繊維層、4層目が巻き付け角度θを15.3°とした繊維層、5層目が巻き付け角度θを83.6°とした繊維層、6層目が巻き付け角度θを15.3°とした繊維層、7層目が巻き付け角度θを18.1°とした繊維層、8層目が巻き付け角度θを14.8°とした繊維層、9層目がフープ巻による繊維層、であった。比較例1では、設計圧は102.7MPaであった。
[試験結果]
ライナの軸方向の位置と強度比との関係を表したグラフを図7に示す。縦軸は、複合容器の設計圧力に対する複合容器の強化層の強度比である。図7(a)に示すように、実施例1及び比較例1では軸方向の両端側におけるフープ方向の強度比が中央付近より大きくなった。一方、図7(b)に示すように、実施例2では、軸方向の両端側でのフープ方向の強度が高くなり、両端から中央側へ向かうに従って強度が低下し、ライナの中央部付近においてフープ方向の強度に極大点が発生した。このように、実施例2によれば、ライナの中央部付近におけるフープ方向の強度を高くできることが理解される。
次に、実施例及び比較例における、繊維束の使用量あたりの設計圧を図8に示す。図8に示すように、実施例2では繊維束の使用量あたりの設計圧が高く、単給糸による巻き付けによって製造された比較例2と同程度となった。また、実施例1は、少なくとも繊維層を有さない比較例1よりも繊維束の使用量あたりの設計圧が高くなった。
次に、実施例及び比較例におけるバースト試験の結果を図9に示す。バースト試験では、水圧による破壊圧力の測定を実施した。図9(a)は各実施例及び比較例における強度発現率を示す。強度発現率は、「バースト圧/設計圧」で求められる。図9(a)に示すように、実施例2の強度発現率が最も高くなった。また、図9(b)は各実施例及び比較例における使用効率を示す。使用効率は、「バースト圧/繊維束の使用量」で求められる。図9(b)に示すように、実施例2の使用効率が最も高くなった。また、実施例1の使用効率は、少なくとも比較例1よりも高くなった。
1…複合容器、2…ライナ、3…強化層、4…口金、10…繊維束、100…製造システム。

Claims (5)

  1. 円筒状の胴部及び前記胴部の両端側に形成されるドーム部を有するライナに対して、前記ライナの中心軸線周りに複数設けられる給糸部から繊維束を供給して巻き付け、前記ライナの外周側に強化層を形成する複合容器の製造方法であって、
    前記複数の給糸部が前記ライナに対して前記繊維束を供給しながら、前記ライナが前記複数の給糸部に対して前記中心軸線周りに相対的に回転すると共に、前記ライナが前記複数の給糸部に対して軸方向に相対的に移動して、前記ライナに前記繊維束を巻き付けて前記強化層を形成する強化層形成工程を有し、
    前記強化層形成工程は、前記軸方向における前記繊維束の巻き付け位置の変化に従って、前記ライナの胴部に対する前記繊維束の巻き付け角度を変化させる第1の巻き付け工程を含み、
    前記第1の巻き付け工程では、前記巻き付け位置の変化に従って前記巻き付け角度が所望の値に変化するように設定された制御プログラムに基づいて、前記ライナに対する前記繊維束の巻き付けを制御する、複合容器の製造方法。
  2. 前記強化層は、複数の繊維層によって構成され、
    前記強化層形成工程は、
    前記軸方向における前記繊維束の巻き付け位置の変化によらず、前記巻き付け角度を第1の角度で一定として、第1の繊維層を形成する、第2の巻き付け工程と、
    前記軸方向における前記繊維束の巻き付け位置の変化によらず、前記巻き付け角度を前記第1の角度よりも大きい第2の角度で一定として、前記第1の繊維層とは異なる繊維層である第2の繊維層を形成する、第3の巻き付け工程と、を更に含み、
    前記第1の巻き付け工程は、前記第2の巻き付け工程と前記第3の巻き付け工程との間で実行され、
    前記第1の巻き付け工程では、前記繊維束の巻き付けの進行に従い、前記第1の角度及び前記第2の角度の何れか一方側から他方側へ前記巻き付け角度を遷移させることで、前記第1の繊維層及び前記第2の繊維層とは異なる繊維層であって、前記第1の繊維層と前記第2の繊維層との間に配置される遷移層を形成する、請求項1に記載の複合容器の製造方法。
  3. 前記第1の巻き付け工程は、前記巻き付け位置が前記ライナを軸方向に一往復する間に完了する、請求項1又は2に記載の複合容器の製造方法。
  4. 前記第1の巻き付け工程では、前記巻き付け角度が大きい程、前記巻き付け位置の変化に対する前記巻き付け角度の変化率が大きい、請求項1〜3の何れか一項に記載の複合容器の製造方法。
  5. 円筒状の胴部及び前記胴部の両端側に形成されるドーム部を有するライナに対して、前記ライナの中心軸線周りに複数設けられる給糸部から繊維束を供給して巻き付け、前記ライナの外周側に強化層を形成する複合容器の製造方法であって、
    前記複数の給糸部が前記ライナに対して前記繊維束を供給しながら、前記ライナが前記複数の給糸部に対して前記中心軸線周りに相対的に回転すると共に、前記ライナが前記複数の給糸部に対して軸方向に相対的に移動して、前記ライナに前記繊維束を巻き付けて前記強化層を形成する強化層形成工程を有し、
    前記強化層形成工程は、前記軸方向における前記繊維束の巻き付け位置の変化に従って、前記ライナに対する前記繊維束の巻き付け角度を変化させる第1の巻き付け工程を含み、
    前記強化層は、複数の繊維層によって構成され、
    前記強化層形成工程は、
    前記軸方向における前記繊維束の巻き付け位置の変化によらず、前記巻き付け角度を第1の角度で一定として、第1の繊維層を形成する、第2の巻き付け工程と、
    前記軸方向における前記繊維束の巻き付け位置の変化によらず、前記巻き付け角度を前記第1の角度よりも大きい第2の角度で一定として、前記第1の繊維層とは異なる繊維層である第2の繊維層を形成する、第3の巻き付け工程と、を更に含み、
    前記第1の巻き付け工程は、前記第2の巻き付け工程と前記第3の巻き付け工程との間で実行され、
    前記第1の巻き付け工程では、前記繊維束の巻き付けの進行に従い、前記第1の角度及び前記第2の角度の何れか一方側から他方側へ前記巻き付け角度を遷移させることで、前記第1の繊維層及び前記第2の繊維層とは異なる繊維層であって、前記第1の繊維層と前記第2の繊維層との間に配置される遷移層を形成する、複合容器の製造方法。
JP2014235755A 2014-11-20 2014-11-20 複合容器の製造方法、及び複合容器 Active JP6337398B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014235755A JP6337398B2 (ja) 2014-11-20 2014-11-20 複合容器の製造方法、及び複合容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014235755A JP6337398B2 (ja) 2014-11-20 2014-11-20 複合容器の製造方法、及び複合容器

Publications (2)

Publication Number Publication Date
JP2016097561A JP2016097561A (ja) 2016-05-30
JP6337398B2 true JP6337398B2 (ja) 2018-06-06

Family

ID=56075855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014235755A Active JP6337398B2 (ja) 2014-11-20 2014-11-20 複合容器の製造方法、及び複合容器

Country Status (1)

Country Link
JP (1) JP6337398B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101846733B1 (ko) 2016-11-07 2018-04-06 현대자동차주식회사 섬유강화 복합재 압력 용기 및 그 제조 방법
JP6922830B2 (ja) * 2018-04-27 2021-08-18 トヨタ自動車株式会社 高圧タンクの製造方法
KR102452872B1 (ko) * 2021-06-07 2022-10-12 일진하이솔루스 주식회사 필라멘트 와인딩 방법 및 이에 따라 제조된 압력용기
CN113478791B (zh) * 2021-07-16 2022-07-29 合肥工业大学 一种编织气瓶的制备方法及其编织气瓶
CN115355439B (zh) * 2022-09-20 2024-04-30 北京天海氢能装备有限公司 一种车用高压气瓶的铺层方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3296116B2 (ja) * 1994-10-04 2002-06-24 東レ株式会社 Frp筒体およびその製造方法
JP5067533B2 (ja) * 2007-02-15 2012-11-07 村田機械株式会社 フィラメントワインディング装置
JP4403522B2 (ja) * 2007-11-16 2010-01-27 村田機械株式会社 フィラメントワインディング装置
WO2010125651A1 (ja) * 2009-04-28 2010-11-04 トヨタ自動車株式会社 フィラメントワインディング装置およびフィラメントワインディング方法
JP2011102009A (ja) * 2009-11-11 2011-05-26 Murata Machinery Ltd フィラメントワインディング装置
KR101485443B1 (ko) * 2010-09-27 2015-01-23 무라다기카이가부시끼가이샤 필라멘트 와인딩 장치
US8967521B2 (en) * 2010-09-27 2015-03-03 Murata Machinery, Ltd. Filament winding device

Also Published As

Publication number Publication date
JP2016097561A (ja) 2016-05-30

Similar Documents

Publication Publication Date Title
JP6337398B2 (ja) 複合容器の製造方法、及び複合容器
JP5531040B2 (ja) 高圧ガスタンクの製造方法
JP5238577B2 (ja) 複合容器及び複合容器の製造方法
EP2418414B1 (en) Tank and manufacturing method thereof
JP6018119B2 (ja) タンクの製造方法、ヘリカル巻き装置、及び、フィラメントワインディング装置
JP6099039B2 (ja) 複合容器の製造方法
CN102211405A (zh) 轻质高压复合材料气瓶成型工艺
JP2005113958A (ja) 耐圧容器製造方法
JP5993342B2 (ja) 複合容器の製造方法、及び複合容器の製造システム
US20160339650A1 (en) Manufacturing method of tank and tank manufacturing apparatus
JP2011179638A (ja) 高圧タンクの製造装置並びに製造方法
JPWO2020026795A1 (ja) Frp製管状体及びfrp製管状体の製造方法
JP5257736B2 (ja) タンクの製造方法及びタンクの製造設備
JP6081860B2 (ja) 複合容器、複合容器の製造方法、及び複合容器の製造システム
JP2010249147A (ja) Frpタンク及びその製造方法
JP2020142418A (ja) 圧力容器の製造方法及び圧力容器
JP2014218033A (ja) 複合容器の製造方法、及び複合容器の製造システム
JP5937546B2 (ja) フィラメントワインディング装置
JP2020020420A (ja) タンクの製造方法
JP5993341B2 (ja) 複合容器の製造方法、及び複合容器の製造システム
JP2005113963A (ja) 耐圧容器製造方法
JP2013064430A (ja) 高圧ガスタンクの製造装置と製造方法
JP2013103395A (ja) 高圧ガスタンクの製造方法と製造装置
JP2008307791A (ja) Frp容器の製造方法
JP2014080999A (ja) タンクの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180420

R150 Certificate of patent or registration of utility model

Ref document number: 6337398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250