JP6337351B2 - Estimating the value of marbling - Google Patents

Estimating the value of marbling Download PDF

Info

Publication number
JP6337351B2
JP6337351B2 JP2014155568A JP2014155568A JP6337351B2 JP 6337351 B2 JP6337351 B2 JP 6337351B2 JP 2014155568 A JP2014155568 A JP 2014155568A JP 2014155568 A JP2014155568 A JP 2014155568A JP 6337351 B2 JP6337351 B2 JP 6337351B2
Authority
JP
Japan
Prior art keywords
value
muscle
longest
marbling
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014155568A
Other languages
Japanese (ja)
Other versions
JP2016032434A (en
Inventor
福田 修
修 福田
大介 橋元
大介 橋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Nagasaki Prefectural Government
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Nagasaki Prefectural Government filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014155568A priority Critical patent/JP6337351B2/en
Publication of JP2016032434A publication Critical patent/JP2016032434A/en
Application granted granted Critical
Publication of JP6337351B2 publication Critical patent/JP6337351B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

本発明は、生体牛の第6〜7肋骨切開面胸最長筋における脂肪交雑値を推定する方法に関する。   The present invention relates to a method for estimating a cross-breeding value in the 6-7th rib incision plane longest muscle of a living cow.

従来、消費者に牛の部分肉を供給すべく、流通段階では牛の枝肉の取引がなされている。   Traditionally, beef carcasses are traded at the distribution stage in order to supply consumers with partial beef.

この枝肉の価格は、同枝肉の歩留等級や肉質等級で決定される格付けに基づき、セリによって決められている。   The price of this carcass is determined by Seri based on the rating determined by the yield grade and meat quality grade of the carcass.

従って、生産者側の視点に立てば、より多くの利益を得るためにも、格付けが極めて重要であると言える。   Therefore, from the producer's point of view, rating is extremely important in order to obtain more profits.

格付けを決定する上で参照される肉質等級のうち、サシの入り具合、すなわち脂肪交雑は重要な要素の一つである。   Of the meat quality grades that are referred to in determining the rating, the condition of the sashimi, that is, the marbling is one of the important factors.

この脂肪交雑は、畜試式牛脂肪交雑基準の標準模型を基に、左半丸第6〜7肋骨切開面(リブロース部切開面)を格付員が目視し、脂肪交雑値(BMS No.: Beef Marbling Standard Number)として12段階で評価される。なお、以下の説明において、格付時に格付員が評価した脂肪交雑値を格付時脂肪交雑値とも言う。   This marbling is based on the standard model of livestock cattle mating standards, and the rating members visually inspect the left half circle 6th-7th rib incision plane (ribloose section incision plane), and the marbling value (BMS No .: Beef Marbling Standard Number). In the following description, the marbling value evaluated by the rating personnel at the time of rating is also referred to as the marbling value at the time of rating.

勿論、肉質の引き締まり具合や色合い、脂肪の色合いなど他の要素もあるが、格付員による良好な格付けを得るためには、この格付時脂肪交雑値が高いほど好ましい。   Of course, there are other factors such as the firmness of the meat quality, the hue, and the hue of fat, but in order to obtain a good rating by the rating personnel, the higher the value of the fat cross at the time of rating, the better.

ところで、肉牛は生後約3年弱の生育期間を経て食肉に加工されるが、その間、生産者は、飼料代や管理代など諸経費を負担しなければならない。   By the way, beef cattle are processed into meat after a growth period of about 3 years after birth, but during that time, producers must bear various expenses such as feed and management.

しかし、肉質は個体毎に異なるため、中には時間を掛けて肥育したものの、負担した諸経費や利益に見合う十分な格付けが得られないおそれもある。   However, since the meat quality varies from individual to individual, although it has been fattened over time, there may be a risk that it may not be possible to obtain a sufficient rating that matches the overheads and profits incurred.

このような肉牛は、比較的早い段階で肥育を止め、食肉加工に供することで、利益バランスを改善することが可能となる。   Such beef cattle can improve the profit balance by stopping fattening at a relatively early stage and using it for meat processing.

また一方で、良好な肉質を有する個体は、飼料等を吟味しながら十分に肥育させることで、高い格付けを得ることも可能となる。   On the other hand, individuals having good meat quality can also obtain a high rating by sufficiently fattening while examining feed and the like.

すなわち、生産者による生体牛の飼育段階において、生体牛の状態で格付時脂肪交雑値が推定できれば、流通調整に資することができる。   That is, in the breeding stage of live cattle by the producer, if the marbling value at the time of rating can be estimated in the state of live cattle, it can contribute to distribution adjustment.

しかしながら、脂肪交雑値の格付けは、生体牛の屠畜後、枝肉の状態となってから行われるものであって、飼育中にその肉質を生体牛の外観から推定するのは困難であった。   However, the rating of the marbling value is carried out after the live cattle have been slaughtered and after the carcass has been brought into a state of carcass, and it has been difficult to estimate the meat quality from the appearance of the live cattle during breeding.

そこで近年、生体牛の状態で脂肪交雑値を推定する方法として、超音波画像診断装置を利用した脂肪交雑度合いの事前検査方法が提案されている(例えば、特許文献1参照。)。   Therefore, in recent years, as a method for estimating a marbling value in the state of a living cow, a prior examination method for the degree of marbling using an ultrasonic diagnostic imaging apparatus has been proposed (see, for example, Patent Document 1).

このような超音波画像診断装置を用いて事前検査を行うことで、脂肪交雑値の推定を行うことができる。   By performing a preliminary examination using such an ultrasonic diagnostic imaging apparatus, it is possible to estimate a marbling value.

特開2008−054817号公報JP 2008-054817 A

しかしながら、上記従来の脂肪交雑値の推定方法では、高価な超音波画像診断装置を必須としており、手軽な方法とは言い難いという問題があった。   However, the conventional method for estimating the value of a marbling value requires an expensive ultrasonic diagnostic imaging apparatus, which is difficult to say.

また、得られた超音波画像から脂肪交雑度合いを判読するためには、ある程度熟練を要するという問題もある。   In addition, there is a problem that skill is required to some extent in order to interpret the degree of fat hybridization from the obtained ultrasonic image.

また、別の方法として、生体牛の第6〜7肋骨切開面胸最長筋にバイオプシー等を施して生体組織診断を行うという方法も考えられるが、当該部位は枝肉加工後に格付員によって目視検査が行われる部位であり、侵襲を加えたくないという要望もある。   As another method, a biopsy or the like may be performed by applying biopsy or the like to the 6th-7th rib incision plane longest muscle of a live cattle, but this part is visually inspected by a rating member after carcass processing. There is also a demand that it is a site to be performed and does not want to be invaded.

本発明は、斯かる事情に鑑みてなされたものであって、生体牛の第6〜7胸椎部における胸最長筋に侵襲を加えることなく、安価且つ手軽に生体牛の第6〜7肋骨切開面胸最長筋における脂肪交雑値を比較的容易に推定する方法を提供する。   The present invention has been made in view of such circumstances, and the sixth to seventh rib incisions of a living cow are inexpensively and easily performed without invading the longest breast muscle in the sixth to seventh thoracic vertebrae of the living cow. Provided is a method for estimating a cross-breeding value in the longest muscle of the surface chest relatively easily.

上記従来の課題を解決するために、本発明に係る脂肪交雑値の推定方法では、(1)第6〜7胸椎部における胸最長筋を侵襲することなく、生体牛の第6〜7肋骨切開面胸最長筋における脂肪交雑値を推定する方法であって、生体牛の第10〜11胸椎部の胸最長筋に所定の周波数で交番電流を通電して、同第10〜11胸椎部の胸最長筋における生体電気インピーダンス値の測定を行うインピーダンス測定工程と、等価回路モデルに基いて、前記インピーダンス測定工程にて得られた前記生体電気インピーダンス値から細胞内抵抗値を算出する細胞内抵抗算出工程と、細胞内抵抗値−脂肪交雑値相関式に前記細胞内抵抗算出工程にて得られた細胞内抵抗値を代入し、第6〜7肋骨切開面胸最長筋における推定脂肪交雑値を算出する脂肪交雑値推定工程と、を有することとした。   In order to solve the above-described conventional problems, in the method for estimating a cross value according to the present invention, (1) the sixth to seventh rib incisions of a living cow without invading the longest chest muscle in the sixth to seventh thoracic vertebrae A method for estimating the value of fat crossing in the longest muscle of the surface chest, wherein an alternating current is applied to the longest chest muscle of the 10th to 11th thoracic vertebrae of a living cow at a predetermined frequency, and the chest of the 10th to 11th thoracic vertebrae An impedance measurement step for measuring a bioelectrical impedance value in the longest muscle, and an intracellular resistance calculation step for calculating an intracellular resistance value from the bioelectrical impedance value obtained in the impedance measuring step based on an equivalent circuit model And substituting the intracellular resistance value obtained in the intracellular resistance calculation step into the intracellular resistance value-fat cross value correlation equation, and calculating an estimated fat cross value in the 6th to 7th rib incision plane longest breast muscle Marbling value estimation process , It was decided to have a.

また、本発明に係る脂肪交雑値の推定方法では、以下の点にも特徴を有する。
(2)前記生体電気インピーダンス値の測定は、所定の周波数で交番電流を供給する電流供給装置に接続された一対の電流通電電極と、電圧計に接続された一対の電圧測定電極とを生体牛の第10〜11胸椎部の胸最長筋に穿刺して4電極法により行うこと。
(3)前記等価回路モデルは、Haydenの電気的等価回路モデルであること。
(4)前記所定の周波数は、10k〜100kHzであること。
(5)前記細胞内抵抗値−脂肪交雑値相関式は、下記式(I)で示されること。

Figure 0006337351
(6)前記細胞内抵抗値は、前記第10〜11胸椎部の胸最長筋における単位断面積あたりの細胞内抵抗値であること。 In addition, the method for estimating a marbling value according to the present invention is also characterized by the following points.
(2) The bioelectrical impedance value is measured using a pair of current conducting electrodes connected to a current supply device that supplies an alternating current at a predetermined frequency and a pair of voltage measuring electrodes connected to a voltmeter. Puncture the longest muscle of the 10th to 11th thoracic vertebrae by the 4-electrode method
(3) The equivalent circuit model is Hayden's electrical equivalent circuit model.
(4) The predetermined frequency is 10k to 100kHz.
(5) The intracellular resistance value-fat cross value correlation equation is represented by the following equation (I).
Figure 0006337351
(6) The intracellular resistance value is an intracellular resistance value per unit cross-sectional area in the longest breast muscle of the 10th to 11th thoracic vertebrae.

本発明に係る脂肪交雑値の推定方法によれば、第6〜7胸椎部における胸最長筋を侵襲することなく、生体牛の第6〜7肋骨切開面胸最長筋における脂肪交雑値を推定する方法であって、生体牛の第10〜11胸椎部の胸最長筋に所定の周波数で交番電流を通電して、同第10〜11胸椎部の胸最長筋における生体電気インピーダンス値の測定を行うインピーダンス測定工程と、等価回路モデルに基いて、前記インピーダンス測定工程にて得られた前記生体電気インピーダンス値から細胞内抵抗値を算出する細胞内抵抗算出工程と、細胞内抵抗値−脂肪交雑値相関式に前記細胞内抵抗算出工程にて得られた細胞内抵抗値を代入し、第6〜7肋骨切開面胸最長筋における推定脂肪交雑値を算出する脂肪交雑値推定工程と、を有することとしたため、生体牛の第6〜7胸椎部における胸最長筋に侵襲を加えることなく、安価且つ手軽に生体牛の第6〜7肋骨切開面胸最長筋における脂肪交雑値を比較的容易に推定することができる。   According to the method for estimating a marbling value according to the present invention, the marbling value in the longest muscle of the sixth to seventh rib incision plane of a living cow is estimated without invading the longest muscle of the sixth to seventh thoracic vertebrae. In this method, an alternating current is applied to the longest thoracic muscle of the 10th to 11th thoracic vertebrae of a living cattle at a predetermined frequency, and the bioelectrical impedance value of the longest thoracic muscle of the 10th to 11th thoracic vertebra is measured. An impedance measurement step, an intracellular resistance calculation step for calculating an intracellular resistance value from the bioelectric impedance value obtained in the impedance measurement step based on an equivalent circuit model, and an intracellular resistance value-fat cross value correlation Substituting the intracellular resistance value obtained in the intracellular resistance calculation step into the formula and calculating an estimated fat cross value in the longest muscle of the sixth to seventh rib incision planes; and Live cattle Without adding invasive breast longissimus in the 6-7 thoracic part, it can be relatively easily estimated marbling value in the 6-7 rib facet longissimus muscle inexpensive and easily cattle.

また、本発明に係る脂肪交雑値の推定方法では、前記生体電気インピーダンス値の測定は、所定の周波数で交番電流を供給する電流供給装置に接続された一対の電流通電電極と、電圧計に接続された一対の電圧測定電極とを生体牛の第10〜11胸椎部の胸最長筋に穿刺して4電極法により行うこととすれば、より正確な脂肪交雑値の推定を行うことができる。   Further, in the method of estimating a fat cross value according to the present invention, the measurement of the bioelectrical impedance value is connected to a pair of current conducting electrodes connected to a current supply device that supplies an alternating current at a predetermined frequency and a voltmeter. If the paired voltage measuring electrodes are punctured into the thoracic longest muscles of the 10th to 11th thoracic vertebrae of a living cow and performed by the four-electrode method, it is possible to estimate a more accurate fat cross value.

また、前記等価回路モデルは、Haydenの電気的等価回路モデルであることとすれば、比較的単純な等価モデルにて生体牛の筋肉組織に即した脂肪交雑値の推定を行うことができる。   Further, if the equivalent circuit model is Hayden's electrical equivalent circuit model, it is possible to estimate a marbling value in accordance with the muscle tissue of a living cow using a relatively simple equivalent model.

また、前記所定の周波数は、10k〜100kHzであることとすれば、より正確に脂肪交雑値の推定を行うことができる。   Further, if the predetermined frequency is 10 k to 100 kHz, it is possible to estimate the marbling value more accurately.

また、前記細胞内抵抗値−脂肪交雑値相関式は、下記式( I )で示されるものを用いることで、個体差も包含した比較的正確な脂肪交雑値を推定することができる。

Figure 0006337351
In addition, by using the intracellular resistance value-fat cross value correlation equation represented by the following formula (I), it is possible to estimate a relatively accurate cross value including individual differences.
Figure 0006337351

また、前記細胞内抵抗値は、前記第10〜11胸椎部の胸最長筋における単位断面積あたりの細胞内抵抗値であることとすれば、さらに正確な脂肪交雑値の推定を行うことができる。   Further, if the intracellular resistance value is an intracellular resistance value per unit cross-sectional area in the longest breast muscle of the 10th to 11th thoracic vertebrae, it is possible to estimate a more accurate marbling value. .

等価回路モデルを示した説明図である。It is explanatory drawing which showed the equivalent circuit model. 生体電気インピーダンスの測定状態を示した説明図である。It is explanatory drawing which showed the measurement state of bioelectrical impedance. 細胞外抵抗値と格付時脂肪交雑値、リブロース部粗脂肪含量、サーロイン部粗脂肪含量との関係を示した説明図である。It is explanatory drawing which showed the relationship between an extracellular resistance value, the value at the time of classification, a ribulose part crude fat content, and a sirloin part crude fat content. 細胞内抵抗値と格付時脂肪交雑値、リブロース部粗脂肪含量、サーロイン部粗脂肪含量との関係を示した説明図である。It is explanatory drawing which showed the relationship between an intracellular resistance value and the value at the time of classification, a ribulose part crude fat content, and a sirloin part crude fat content. 細胞膜容量値と格付時脂肪交雑値、リブロース部粗脂肪含量、サーロイン部粗脂肪含量との関係を示した説明図である。It is explanatory drawing which showed the relationship between a cell membrane capacity | capacitance value, the value at the time of classification, a ribulose part crude fat content, and a sirloin part crude fat content. 脂肪交雑値の推定結果を示した説明図である。It is explanatory drawing which showed the estimation result of the marbling value.

本発明は、第6〜7胸椎部における胸最長筋を侵襲することなく、生体牛の第6〜7肋骨切開面胸最長筋における脂肪交雑値を推定する方法を提供するものである。なお、以下の説明において、本実施形態に係る脂肪交雑の推定方法にて推定された格付時に評価されるであろう脂肪交雑値を推定脂肪交雑値ともいう。   The present invention provides a method for estimating the value of the fat cross in the longest muscle of the sixth to seventh rib incision plane of a living cow without invading the longest chest muscle of the sixth to seventh thoracic vertebrae. In the following description, the marbling value that will be evaluated at the time of the rating estimated by the marbling estimation method according to the present embodiment is also referred to as an estimated marbling value.

ここで、第6〜7肋骨切開面とは、枝肉における所謂リブロースに相当する部位であり、前述の通り格付員による格付けの目視検査対象部位である。   Here, the sixth to seventh rib incision planes are portions corresponding to so-called ribulose in the carcass, and are the portions to be visually inspected by the rating members as described above.

そして、本実施形態に係る脂肪交雑値の推定方法に特徴的には、生体牛の第10〜11胸椎部の胸最長筋(所謂、サーロイン部)におけるインピーダンス値を用いて推定することで、第6〜7胸椎部における胸最長筋を侵襲することなく、生体牛の第6〜7肋骨切開面胸最長筋における脂肪交雑値を推定するようにしている。   And, characteristically in the estimation method of the marbling value according to the present embodiment, the estimation is performed by using the impedance value in the longest breast muscle (so-called sirloin portion) of the 10th to 11th thoracic vertebrae of the living cow. Without invading the longest thoracic muscle in the 6-7 thoracic vertebra, the cross-bred value in the 6-7th rib incision plane longest muscle of the living cow is estimated.

具体的には、本実施形態に係る脂肪交雑値の推定方法では、インピーダンス測定工程と、細胞内抵抗算出工程と、脂肪交雑値推定工程と、を有することとしている。   Specifically, the method for estimating a marbling value according to the present embodiment includes an impedance measurement step, an intracellular resistance calculation step, and a marbling value estimation step.

インピーダンス測定工程は、生体牛の第10〜11胸椎部の胸最長筋に所定の周波数で交番電流を通電して、同第10〜11胸椎部の胸最長筋における生体電気インピーダンス値の測定を行う工程である。   In the impedance measurement step, an alternating current is applied to the longest thoracic muscle of the 10th to 11th thoracic vertebrae of a living cow at a predetermined frequency, and the bioelectrical impedance value of the longest thoracic muscle of the 10th to 11th thoracic vertebra is measured. It is a process.

このインピーダンス測定工程における測定方法は、特に限定されるものではないが、例えば、所定の周波数で交番電流を供給する電流供給装置に接続された一対の電流通電電極と、電圧計に接続された一対の電圧測定電極とを生体牛の第10〜11胸椎部の胸最長筋に穿刺して4電極法(4端子法)により行うことができる。4電極法にてインピーダンス測定工程を行うことにより、可及的正確に第10〜11胸椎部の胸最長筋における生体電気インピーダンス値を得ることができる。   The measurement method in this impedance measurement step is not particularly limited. For example, a pair of current conducting electrodes connected to a current supply device that supplies an alternating current at a predetermined frequency and a pair connected to a voltmeter The voltage measurement electrode can be punctured into the longest breast muscle of the 10th to 11th thoracic vertebrae of a living cattle by the 4-electrode method (4-terminal method). By performing the impedance measurement step by the four-electrode method, the bioelectrical impedance value in the longest breast muscle of the 10th to 11th thoracic vertebrae can be obtained as accurately as possible.

また、交番電流の周波数は、後述の細胞内抵抗算出工程にて適切な抵抗値を算出可能な周波数であれば特に限定されるものではないが、例えば、10k〜100kHzとすることができる。   Further, the frequency of the alternating current is not particularly limited as long as it is a frequency at which an appropriate resistance value can be calculated in an intracellular resistance calculation step described later, and can be set to, for example, 10 k to 100 kHz.

細胞内抵抗算出工程は、第10〜11胸椎部の胸最長筋における組織の細胞内抵抗を算出する工程であり、具体的には、等価回路モデルに基いて、前記インピーダンス測定工程にて得られた前記生体電気インピーダンス値から細胞内抵抗値を算出する。   The intracellular resistance calculation step is a step of calculating the intracellular resistance of the tissue in the longest thoracic muscle of the 10th to 11th thoracic vertebrae, and specifically, obtained in the impedance measurement step based on an equivalent circuit model. The intracellular resistance value is calculated from the bioelectric impedance value.

等価回路モデルは、第10〜11胸椎部の胸最長筋における組織の電気的な等価回路モデルであれば特に限定されるものではないが、例えば、図1に示すようなHaydenの電気的等価回路モデルを採用することができる。   The equivalent circuit model is not particularly limited as long as it is an electrical equivalent circuit model of tissue in the longest breast muscle of the 10th to 11th thoracic vertebrae. For example, Hayden's electrical equivalent circuit as shown in FIG. A model can be adopted.

また、細胞内抵抗値の算出にあたっては、第10〜11胸椎部の胸最長筋における単位断面積あたりの細胞内抵抗値を求めるようにしても良い。この単位断面積あたりの細胞内抵抗値は、第10〜11胸椎部の胸最長筋の断面積を求めることで算出することができる。なお、第10〜11胸椎部の胸最長筋の断面積を求める方法としては、例えば、超音波や放射線等を用いた断層画像診断装置等を利用することができる。   In calculating the intracellular resistance value, the intracellular resistance value per unit cross-sectional area in the longest breast muscle of the 10th to 11th thoracic vertebrae may be obtained. The intracellular resistance value per unit cross-sectional area can be calculated by obtaining the cross-sectional area of the longest breast muscle of the 10th to 11th thoracic vertebrae. As a method for obtaining the cross-sectional area of the longest thoracic muscle of the 10th to 11th thoracic vertebrae, for example, a tomographic image diagnosis apparatus using ultrasonic waves or radiation can be used.

このようにして求められた第10〜11胸椎部の胸最長筋の断面積に基づいて算出した単位断面積あたりの細胞内抵抗値にて後述の脂肪交雑推定工程を行うことにより、第10〜11胸椎部の胸最長筋の断面積の個体差を緩衝して脂肪交雑値の推定を行うことができる。   By performing the later-described marbling estimation step with the intracellular resistance value per unit cross-sectional area calculated based on the cross-sectional area of the longest breast muscle of the 10th to 11th thoracic vertebrae thus determined, 11 It is possible to estimate the cross-breeding value by buffering individual differences in the cross-sectional area of the longest chest muscle of the thoracic vertebra.

脂肪交雑値推定工程は、細胞内抵抗値−脂肪交雑値相関式に前記細胞内抵抗算出工程にて得られた細胞内抵抗値を代入し、第6〜7肋骨切開面胸最長筋における推定脂肪交雑値を算出する工程である。   In the marbling value estimation step, the intracellular resistance value obtained in the intracellular resistance calculation step is substituted into the intracellular resistance value-marbling value correlation equation, and the estimated fat in the longest muscle of the sixth to seventh rib incision plane chest This is a step of calculating a cross value.

この細胞内抵抗値−脂肪交雑値相関式は、この脂肪交雑値推定工程を行うにあたり、予め作成された式である。細胞内抵抗値−脂肪交雑値相関式は、経験則に基づいて作成された経験式であってもよく、所定の理論に基づいて作成された近似式であっても良い。   This intracellular resistance value-fat cross value correlation formula is a formula prepared in advance when performing this cross value estimation step. The intracellular resistance value-fat cross value correlation formula may be an empirical formula created based on an empirical rule, or an approximate formula created based on a predetermined theory.

例えば、細胞内抵抗値−脂肪交雑値相関式を経験式とする場合には、生体牛の細胞内抵抗値と、同生体牛が屠畜され枝肉となった際に格付員によって評定された格付時脂肪交雑値とのデータを複数の個体について蓄積し、例えば最小二乗法等によって作成することができる。   For example, when the intracellular resistance value-fat cross value correlation equation is used as an empirical formula, the intracellular resistance value of a live cattle and the rating evaluated by a rating member when the live cattle are slaughtered to become carcass Data with the time crossing value can be accumulated for a plurality of individuals and can be created by, for example, the least square method.

また、このような細胞内抵抗値−脂肪交雑値相関式の一例として、例えば、x軸を細胞内抵抗値、y軸を脂肪交雑値とし、下記式( I )にて示される式を細胞内抵抗値−脂肪交雑値相関式として用いることもできる。

Figure 0006337351
Further, as an example of such an intracellular resistance value-crossbreeding value correlation equation, for example, the x-axis is the intracellular resistance value, the y-axis is the crossbreeding value, and the formula represented by the following formula (I) is It can also be used as a resistance value-fat cross value correlation equation.
Figure 0006337351

この式( I )を細胞内抵抗値−脂肪交雑値相関式として用いることで、生体牛の個体差に比較的左右されることなく、格付時脂肪交雑値に近い推定脂肪交雑値を算出することができる。   By using this formula (I) as an intracellular resistance value-fat cross value correlation equation, it is possible to calculate an estimated fat cross value that is close to the value at the time of rating without being relatively influenced by individual differences in live cattle. Can do.

このように、本実施形態に係る脂肪交雑値の推定方法によれば、生体牛の第6〜7胸椎部における胸最長筋に侵襲を加えることなく、安価且つ手軽に生体牛の第6〜7肋骨切開面胸最長筋における脂肪交雑値を比較的容易に推定する方法を提供することができる。   As described above, according to the method of estimating the cross-breeding value according to the present embodiment, the 6th to 7th of the living cow can be inexpensively and easily performed without invading the longest breast muscle in the 6th to 7th thoracic vertebrae of the living cow. It is possible to provide a method for relatively easily estimating the value of fat crossing in the longest muscle of the rib incision plane.

また、記細胞内抵抗値−脂肪交雑値相関式は、被験対象となる生体牛の前記第10〜11胸椎部の胸最長筋における断面積の個体差を緩衝すべく前記断面積を説明変数として備える式としても良い。このような式とすることにより、前記断面積の個体差に由来する格付時脂肪交雑値と推定脂肪交雑値との誤差を小さくすることができる。   In addition, the intracellular resistance value-fat cross value correlation equation is obtained by using the cross-sectional area as an explanatory variable in order to buffer individual differences in the cross-sectional area of the longest muscle of the 10th to 11th thoracic vertebrae of a living cow to be tested. It is good also as a formula with. By setting it as such an expression, the error of the graded marbling value derived from the individual difference of the cross-sectional area and the estimated marbling value can be reduced.

以下、本実施形態に係る脂肪交雑値の推定方法について、実験データ等を参照しながら更に詳説する。   In the following, the method for estimating a marbling value according to this embodiment will be described in more detail with reference to experimental data and the like.

〔1.脂肪交雑値と相関の高い等価回路モデル構成要素の検討〕
まず、脂肪交雑値の推定を行うにあたり、第10〜11胸椎部の胸最長筋の等価回路モデルとしてのHaydenの電気的等価回路モデルを構成する抵抗やキャパシタ等の要素のうち、いずれの要素の値が最も脂肪交雑値と相関が高いかについて検討を行った。
[1. (Examination of equivalent circuit model components highly correlated with marbling value)
First, in estimating the value of the marbling value, any of the elements such as resistors and capacitors constituting Hayden's electrical equivalent circuit model as the equivalent circuit model of the longest thoracic muscle of the 10th to 11th thoracic vertebrae We examined whether the value was most correlated with the cross-breeding value.

先に図1にて示したように、Haydenの電気的等価回路モデルは、細胞内抵抗(Rin)と細胞膜容量(Cm)とを直列に接続して構成された細胞内モデル回路と、細胞外抵抗(Rex)で構成された細胞外モデル回路とを並列に接続して構成している。   As previously shown in FIG. 1, Hayden's electrical equivalent circuit model includes an intracellular model circuit configured by connecting an intracellular resistance (Rin) and a cell membrane capacitance (Cm) in series, and an extracellular model. An extracellular model circuit composed of resistors (Rex) is connected in parallel.

そこでここでは、この細胞内抵抗(Rin)、細胞膜容量(Cm)、細胞外抵抗(Rex)のうち、いずれの要素が脂肪交雑値と高い相関を有するかについて確認を行った。   Therefore, here, it was confirmed which of the intracellular resistance (Rin), the cell membrane capacity (Cm), and the extracellular resistance (Rex) has a high correlation with the marbling value.

生後3年弱の生体牛39頭に対し、図2に示すインピーダンスメータ10を用いてインピーダンス値の測定を行った。   The impedance value was measured using 39 impedance meters 10 shown in FIG.

インピーダンスメータ10は、所定の周波数で交番電流を供給する電流供給装置11に接続された一対の電流通電端子12,12と、電圧計13に接続された一対の電圧測定端子14,14とを備えており、電流通電端子12には電流通電電極15を、電圧測定端子14には電圧測定電極16をそれぞれ接続可能に構成している。   The impedance meter 10 includes a pair of current conduction terminals 12 and 12 connected to a current supply device 11 that supplies an alternating current at a predetermined frequency, and a pair of voltage measurement terminals 14 and 14 connected to a voltmeter 13. A current conducting electrode 15 is connectable to the current conducting terminal 12, and a voltage measuring electrode 16 is connectable to the voltage measuring terminal 14.

また、インピーダンスメータ10には、インピーダンス値算出部17及び表示部18が備えられている。インピーダンス値算出部17は、電流供給装置11の電流値や電圧計13の電圧値を監視しており、これらの値に基づいて電圧測定端子14,14間のインピーダンス値を算出する。   The impedance meter 10 includes an impedance value calculation unit 17 and a display unit 18. The impedance value calculation unit 17 monitors the current value of the current supply device 11 and the voltage value of the voltmeter 13 and calculates the impedance value between the voltage measurement terminals 14 and 14 based on these values.

また、表示部18はインピーダンス値算出部17に電気的に接続されており、インピーダンス値算出部17にて算出されたインピーダンス値が、この表示部18に表示されるよう構成している。   The display unit 18 is electrically connected to the impedance value calculation unit 17, and the impedance value calculated by the impedance value calculation unit 17 is displayed on the display unit 18.

そして、このインピーダンスメータ10を用いた生体電気インピーダンス値の測定にあたっては、電極針30と導線31とで構成した電流通電電極15をそれぞれ電流通電端子12に接続すると共に、同じく電極針30と導線31とで構成した電圧測定電極16をそれぞれ電圧測定端子14に接続し、生体牛20の表皮21に対し、皮下脂肪22を貫通して第10〜11胸椎部の胸最長筋23に至るまで電流通電電極15及び電圧測定電極16の各電極針30部分を穿刺した。なお、穿刺の際には事前に麻酔を行った。   When measuring the bioelectrical impedance value using the impedance meter 10, the current conducting electrode 15 composed of the electrode needle 30 and the conducting wire 31 is connected to the current conducting terminal 12, and the electrode needle 30 and the conducting wire 31 are also similarly used. Are connected to the voltage measuring terminal 14, and current is passed through the epidermis 21 of the living cow 20 through the subcutaneous fat 22 to the longest breast muscle 23 of the 10th to 11th thoracic vertebrae. Each electrode needle 30 portion of the electrode 15 and the voltage measuring electrode 16 was punctured. Anesthesia was performed prior to puncture.

この状態で電流供給装置11より電流通電電極15を介して胸最長筋23に通電しつつ、インピーダンスメータ10の表示部18に表示されたインピーダンス値を読み取ることで、4電極法によりインピーダンスの測定を行った。   In this state, the impedance is displayed by the four-electrode method by reading the impedance value displayed on the display unit 18 of the impedance meter 10 while energizing the longest chest muscle 23 from the current supply device 11 through the current conducting electrode 15. went.

また、これら39頭の屠畜後に格付員が決定した格付時脂肪交雑値、第6〜7胸椎部における胸最長筋の粗脂肪含有量(以下、リブロース部粗脂肪含量ともいう。)、第10〜11胸椎部の胸最長筋の粗脂肪含有量(以下、サーロイン部粗脂肪含量ともいう。)についてもデータを得た。これらのデータを表にまとめたものを図3〜図5に示す。   Further, the cross-rated fat cross value determined by the rating members after slaughtering these 39 heads, the crude fat content of the longest breast muscle in the 6th to 7th thoracic vertebrae (hereinafter also referred to as ribulose part crude fat content), 10th. Data were also obtained on the crude fat content of the thoracic longest muscle of the -11 thoracic vertebra (hereinafter also referred to as sirloin crude fat content). A summary of these data is shown in FIGS.

図3は、細胞外抵抗値と格付時脂肪交雑値、リブロース部粗脂肪含量、サーロイン部粗脂肪含量との関係を示した説明図であり、図3(a)は横軸が細胞外抵抗値、縦軸が格付時脂肪交雑値としたグラフ、図3(b)は横軸が細胞外抵抗値、縦軸がリブロース部粗脂肪含量としたグラフ、図3(c)は横軸が細胞外抵抗値、縦軸がサーロイン部粗脂肪含量としたグラフである。   FIG. 3 is an explanatory diagram showing the relationship between the extracellular resistance value, the cross-rated fat cross value, the ribulose portion crude fat content, and the sirloin portion crude fat content. FIG. 3 (a) shows the extracellular resistance value on the horizontal axis. FIG. 3B is a graph in which the horizontal axis is the extracellular resistance value, the vertical axis is the ribulose portion crude fat content, and FIG. 3C is the graph in which the horizontal axis is extracellular. A resistance value and a vertical axis | shaft are the graphs which made the sirloin part crude fat content.

図3(a)からも分かるように、細胞外抵抗値と格付時脂肪交雑値との関係は、相関係数rが0.24と低く、またp値が0.1以上であり、推定脂肪交雑値を算出するための実用的な相関式を得るのは困難であることが示された。   As can be seen from FIG. 3 (a), the relationship between the extracellular resistance value and the rated fat cross value is as low as 0.24 in the correlation coefficient r and the p value is 0.1 or more, and the estimated fat cross value is calculated. It was shown that it is difficult to obtain a practical correlation equation for

また、図3(b)及び図3(c)からも分かるように、細胞外抵抗値とリブロース部粗脂肪含量や、細胞外抵抗値とサーロイン部粗脂肪含量との相関も低く、これらの結果を総合すると、細胞外抵抗値は推定脂肪交雑値の算出には不向きであることが示唆された。   Further, as can be seen from FIG. 3 (b) and FIG. 3 (c), the extracellular resistance value and ribulose part crude fat content, and the correlation between the extracellular resistance value and sirloin part crude fat content are also low. In summary, it was suggested that the extracellular resistance value is not suitable for the calculation of the estimated marbling value.

図4は、細胞内抵抗値と格付時脂肪交雑値、リブロース部粗脂肪含量、サーロイン部粗脂肪含量との関係を示した説明図であり、図4(a)は横軸が細胞内抵抗値、縦軸が格付時脂肪交雑値としたグラフ、図4(b)は横軸が細胞内抵抗値、縦軸がリブロース部粗脂肪含量としたグラフ、図4(c)は横軸が細胞内抵抗値、縦軸がサーロイン部粗脂肪含量としたグラフである。   FIG. 4 is an explanatory diagram showing the relationship between the intracellular resistance value and the cross-rated fat cross value, ribulose portion crude fat content, and sirloin portion crude fat content, and FIG. 4 (a) shows the intracellular resistance value on the horizontal axis. FIG. 4B is a graph in which the horizontal axis is the intracellular resistance value, the vertical axis is the ribulose portion crude fat content, and FIG. 4C is the horizontal axis in the cell. A resistance value and a vertical axis | shaft are the graphs which made the sirloin part crude fat content.

図4(a)からも分かるように、細胞内抵抗値と格付時脂肪交雑値との関係は、相関係数rが0.70と比較的高く、またp値が0.01以下であることから、推定脂肪交雑値を算出するための相関式として実用性が高いものと考えられた。また、この細胞内抵抗値と格付時脂肪交雑値との関係における相関式はy=0.06x+3.62で示され、傾き及び切片について標準偏差を加味すると、y=(0.06+a)x+3.62+b(ただし、a=±0.18、b=±1.086)となることが示された。   As can be seen from FIG. 4 (a), the relationship between the intracellular resistance value and the cross-rated fat cross value is a relatively high correlation coefficient r of 0.70 and a p value of 0.01 or less. It was considered that the correlation equation for calculating the cross value was highly practical. In addition, the correlation formula between the relationship between the intracellular resistance value and the value at the time of rating is shown as y = 0.06x + 3.62, and when the standard deviation is added to the slope and intercept, y = (0.06 + a) x + 3.62 It was shown that + b (where a = ± 0.18, b = ± 1.086).

また、細胞内抵抗値は、図4(b)及び図4(c)からも分かるように、リブロース部粗脂肪含量やサーロイン部粗脂肪含量との相関も比較的高く、実際に測定する部位である生体牛の第10〜11胸椎部の胸最長筋の粗脂肪含有量や、脂肪交雑値の推定を行う第6〜7肋骨切開面胸最長筋の粗脂肪含有量を良好に反映する要素であることが示唆された。   In addition, as can be seen from FIG. 4B and FIG. 4C, the intracellular resistance value has a relatively high correlation with the ribulose portion crude fat content and the sirloin portion crude fat content. This element reflects the crude fat content of the longest muscle of the 10th to 11th thoracic vertebrae of a living cattle and the fat content of the longest muscle of the 6th to 7th rib incision plane for estimating the crossbreed value. It was suggested that there is.

図5は、細胞膜容量値と格付時脂肪交雑値、リブロース部粗脂肪含量、サーロイン部粗脂肪含量との関係を示した説明図であり、図5(a)は横軸が細胞膜容量値、縦軸が格付時脂肪交雑値としたグラフ、図5(b)は横軸が細胞膜容量値、縦軸がリブロース部粗脂肪含量としたグラフ、図5(c)は横軸が細胞膜容量値、縦軸がサーロイン部粗脂肪含量としたグラフである。   FIG. 5 is an explanatory diagram showing the relationship between the cell membrane capacity value and the cross-gradation fat cross value, ribulose portion crude fat content, and sirloin portion crude fat content. In FIG. The graph shows the cross-fat value at the time of rating, FIG. 5 (b) shows the cell membrane capacity value on the horizontal axis, the graph shows the ribulose portion crude fat content, and FIG. 5 (c) shows the cell membrane capacity value on the horizontal axis. The axis is a graph showing the sirloin portion crude fat content.

図5(a)からも分かるように、細胞膜容量値と格付時脂肪交雑値との関係は、相関係数rが0.12と低く、またp値が0.1以上であり、推定脂肪交雑値を算出するための実用的な相関式を得るのは困難であることが示された。   As can be seen from FIG. 5 (a), the relationship between the cell membrane capacity value and the rated fat cross value is such that the correlation coefficient r is as low as 0.12 and the p value is 0.1 or more, and the estimated fat cross value is calculated. It was shown that it is difficult to obtain a practical correlation equation for

また、細胞膜容量値は、図5(c)を参照すると、サーロイン部粗脂肪含量との相関は比較的高く、実際に測定する部位である生体牛の第10〜11胸椎部の胸最長筋の粗脂肪含有量については比較的良好に反映する要素であることが示されたものの、推定の対象部位であるリブロース部の粗脂肪含量との相関は低く、これらの結果を総合すると、細胞膜容量値は推定脂肪交雑値の算出には不向きであることが示唆された。   In addition, with reference to FIG. 5 (c), the cell membrane capacitance value has a relatively high correlation with the sirloin portion fat content, and the longest breast muscle of the 10th to 11th thoracic vertebrae of the living cow which is the actual measurement site. Although it has been shown that the crude fat content is a relatively good factor, it has a low correlation with the crude fat content of the ribulose part, which is the target site for estimation. This suggests that it is not suitable for the calculation of estimated marbling values.

このように、図3〜図5に示した結果から、細胞内抵抗値が要素として最も適していることが示された。従って、本実施形態に係る脂肪交雑値の推定方法では、推定脂肪交雑値を算出するにあたり、細胞内抵抗値−脂肪交雑値相関式を用いることとした。   As described above, the results shown in FIGS. 3 to 5 indicate that the intracellular resistance value is most suitable as an element. Therefore, in the method for estimating a marbling value according to the present embodiment, an intracellular resistance value-marbling value correlation equation is used in calculating the estimated marbling value.

〔2.本実施形態に係る脂肪交雑値の推定方法を用いた脂肪交雑値の推定〕
次に、上述の図4(b)に示した結果より得られた下記式( I )を細胞内抵抗値−脂肪交雑値相関式として、脂肪交雑値の推定を行った。
[2. Estimating Marbling Value Using the Method for Estimating Marbling Value According to the Present Embodiment]
Next, the marbling value was estimated using the following formula (I) obtained from the result shown in FIG. 4 (b) as an intracellular resistance value-marbling value correlation equation.

具体的には、月齢31〜33ヶ月の生体牛6頭に対し、第10〜11胸椎部の胸最長筋に周波数1〜1000kHz(1.00k,1.15k,1.33k,1.53k,1.76k,2.02k,2.33k,2.68k,3.09k,3.56k,4.10k,4.72k,5.43k,6.25k,7.20k,8.29k,9.54k,10.99k,12.65k,14.56k,16.77k,19.31k,22.23k,25.60k,29.47k,33.93k,39.07k,44.98k,51.79k,59.64k,68.66k,79.06k,91.03k,104.80k,120.70k,138.90k,160.00k,184.20k,212.10k,244.20k,281.20k,323.70k,372.80k,429.20k,494.20k,596.00k,655.10k,754.30k,868.50kおよび1000.00kの50点)の交番電流を通電して、同第10〜11胸椎部の胸最長筋における生体電気インピーダンス値を測定することでインピーダンス測定工程を行った。なお、生体電気インピーダンス値の測定は、図2にて示した装置を用い、生体牛の第10〜11胸椎部の胸最長筋に穿刺して4電極法により行った。   Specifically, for 6 live cows aged 31 to 33 months, the frequency of 1 to 1000 kHz (1.00k, 1.15k, 1.33k, 1.53k, 1.76k, 2.02) is applied to the longest muscle of the 10th to 11th thoracic vertebrae. k, 2.33k, 2.68k, 3.09k, 3.56k, 4.10k, 4.72k, 5.43k, 6.25k, 7.20k, 8.29k, 9.54k, 10.99k, 12.65k, 14.56k, 16.77k, 19.31k, 22.23k, 25.60k, 29.47k, 33.93k, 39.07k, 44.98k, 51.79k, 59.64k, 68.66k, 79.06k, 91.03k, 104.80k, 120.70k, 138.90k, 160.00k, 184.20k, 212.10k , 244.20k, 281.20k, 323.70k, 372.80k, 429.20k, 494.20k, 596.00k, 655.10k, 754.30k, 868.50k, and 1000.00k), 50% alternating current), The impedance measurement process was performed by measuring the bioelectrical impedance value in the longest muscle of the thoracic vertebra. The bioelectrical impedance value was measured by the 4-electrode method using the apparatus shown in FIG. 2 and puncturing the longest muscle of the 10th to 11th thoracic vertebrae of a living cow.

また併せて、超音波画像診断装置を用い、各生体牛の第10〜11胸椎部の胸最長筋の断面積を求めた。   In addition, a cross-sectional area of the longest muscle of the 10th to 11th thoracic vertebrae of each living cow was obtained using an ultrasonic diagnostic imaging apparatus.

次いで、等価回路モデルとしてのHaydenの電気的等価回路モデルに基いて、前記インピーダンス測定工程にて得られた前記生体電気インピーダンス値から細胞内抵抗値を算出し細胞内抵抗算出工程を行った。   Next, based on Hayden's electrical equivalent circuit model as an equivalent circuit model, an intracellular resistance value was calculated from the bioelectrical impedance value obtained in the impedance measurement step, and an intracellular resistance calculation step was performed.

細胞内抵抗値の算出は、超音波画像診断装置にて得られた生体牛の第10〜11胸椎部の胸最長筋の断面積を加味しない細胞内抵抗値と、断面積を加味した細胞内抵抗値とについて算出した。   The calculation of the intracellular resistance value is based on the intracellular resistance value not taking into account the cross-sectional area of the longest thoracic muscle of the 10th to 11th thoracic vertebrae of the living cow obtained by the ultrasonic imaging apparatus and the intracellular area taking into account the cross-sectional area. The resistance value was calculated.

次に、細胞内抵抗値−脂肪交雑値相関式として下記式( I )を用い、前記細胞内抵抗算出工程にて得られた細胞内抵抗値(断面積を加味しないもの)を代入し、第6〜7肋骨切開面胸最長筋における推定脂肪交雑値を算出して脂肪交雑値推定工程を行った。なお、ここでは、細胞内抵抗値−脂肪交雑値相関式で得られた値の小数点以下を切り捨てることで推定脂肪交雑値とした。

Figure 0006337351
Next, the following formula (I) is used as an intracellular resistance value-fat cross value correlation equation, and the intracellular resistance value (not including the cross-sectional area) obtained in the intracellular resistance calculation step is substituted, The estimated cross-breeding value in the 6-7 rib incision plane longest chest muscle was calculated, and the cross-breeding value estimating step was performed. Here, the estimated cross-bred value was obtained by rounding down the decimal point of the value obtained by the intracellular resistance value-cross-bred value correlation equation.
Figure 0006337351

また、断面積を加味した細胞内抵抗値に関しては、細胞内抵抗値−脂肪交雑値相関式より得られた値と、超音波画像診断装置にて得られた生体牛の第10〜11胸椎部の胸最長筋の断面積とを説明変数として、新たな推定脂肪交雑値を従属変数として、重回帰モデルを構築することにより、推定脂肪交雑値の算出を行った。   In addition, regarding the intracellular resistance value in consideration of the cross-sectional area, the value obtained from the intracellular resistance value-fat cross value correlation equation and the 10th to 11th thoracic vertebrae of the living cow obtained by the ultrasonic diagnostic imaging apparatus The estimated cross-breeding value was calculated by constructing a multiple regression model with the cross-sectional area of the longest chest muscle of each other as the explanatory variable and the new estimated cross-breeding value as the dependent variable.

このようにして得られた結果を図6に示す。図6からも分かるように、断面積を考慮しない場合であっても、実際の格付時脂肪交雑値との誤差が平均で2.333程度の値で精度良く脂肪交雑値の推定を行うことができた。   The results obtained in this way are shown in FIG. As can be seen from FIG. 6, even when the cross-sectional area is not taken into account, it was possible to accurately estimate the marbling value with an average error of about 2.333 from the marching value at the time of rating. .

また、断面積を考慮した場合は、実際の格付時脂肪交雑値との誤差がなく、断面積を考慮しない場合に比して、さらに精度良く脂肪交雑値の推定を行うことができた。   In addition, when the cross-sectional area was taken into account, there was no error from the actual cross-rated fat cross value, and the cross-cross value could be estimated more accurately than when the cross-sectional area was not taken into account.

このように、本実施形態に係る脂肪交雑値の推定方法によれば、第6〜7胸椎部における胸最長筋を侵襲することなく、生体牛の第6〜7肋骨切開面胸最長筋における脂肪交雑値を推定する方法であって、生体牛の第10〜11胸椎部の胸最長筋に所定の周波数で交番電流を通電して、同第10〜11胸椎部の胸最長筋における生体電気インピーダンス値の測定を行うインピーダンス測定工程と、等価回路モデルに基いて、前記インピーダンス測定工程にて得られた前記生体電気インピーダンス値から細胞内抵抗値を算出する細胞内抵抗算出工程と、細胞内抵抗値−脂肪交雑値相関式に前記細胞内抵抗算出工程にて得られた細胞内抵抗値を代入し、第6〜7肋骨切開面胸最長筋における推定脂肪交雑値を算出する脂肪交雑値推定工程と、を有することとしたため、生体牛の第6〜7胸椎部における胸最長筋に侵襲を加えることなく、安価且つ手軽に生体牛の第6〜7肋骨切開面胸最長筋における脂肪交雑値を比較的容易に推定する方法を提供することができる。   As described above, according to the method of estimating a cross-bred value according to the present embodiment, fat in the longest thoracic muscle of the sixth to seventh rib incision planes of a living cow without invading the longest thoracic muscle in the sixth to seventh thoracic vertebrae. A method for estimating a cross value, wherein an alternating current is passed through a long-term thoracic muscle of the 10th to 11th thoracic vertebrae of a living cow with a predetermined frequency, and a bioelectrical impedance in the longest thoracic muscle of the 10th to 11th thoracic vertebrae An impedance measurement step for measuring the value, an intracellular resistance calculation step for calculating an intracellular resistance value from the bioelectrical impedance value obtained in the impedance measurement step based on an equivalent circuit model, and an intracellular resistance value -Substituting the intracellular resistance value obtained in the intracellular resistance calculation step into the interbreeding value correlation equation, and calculating an estimated fat crossing value in the longest muscle of the sixth to seventh rib incision planes; Having Therefore, it is possible to relatively easily estimate the value of fat crossing in the longest muscle of the 6th-7th rib incision plane of the live cow without invading the longest muscle of the 6th-7th thoracic vertebrae of the live cow. A method can be provided.

最後に、上述した各実施の形態の説明は本発明の一例であり、本発明は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。   Finally, the description of each embodiment described above is an example of the present invention, and the present invention is not limited to the above-described embodiment. For this reason, it is a matter of course that various modifications can be made in accordance with the design and the like as long as they do not depart from the technical idea according to the present invention other than the embodiments described above.

例えば、本実施形態に係る脂肪交雑の推定方法は、飼育中の生体牛に対して1回だけ行うようにしても良く、また、間欠的に数回行うことで脂肪交雑の経時変化を確認するようにしても良い。   For example, the method for estimating a marbling according to the present embodiment may be performed only once for a live cattle that is being bred, and by confirming the time course of the marbling by performing several times intermittently. You may do it.

また、インピーダンス値の測定にあたっては、通電に際しいずれの生体牛に対しても所定の周波数で行うようにしても良く、また、周波数を変調させつつ測定対象となる個体に適した周波数を決定し、個体別に異なる周波数にて測定を行うようにしても良い。   In addition, when measuring the impedance value, it may be performed at a predetermined frequency for any live cattle when energized, and the frequency suitable for the individual to be measured is determined while modulating the frequency, Measurement may be performed at different frequencies for each individual.

10 インピーダンスメータ
11 電流供給装置
15 電流通電電極
16 電圧測定電極
17 インピーダンス値算出部
18 表示部
20 生体牛
23 胸最長筋
30 電極針
DESCRIPTION OF SYMBOLS 10 Impedance meter 11 Current supply apparatus 15 Current supply electrode 16 Voltage measurement electrode 17 Impedance value calculation part 18 Display part 20 Live cattle 23 Chest longest muscle 30 Electrode needle

Claims (6)

第6〜7胸椎部における胸最長筋を侵襲することなく、生体牛の第6〜7肋骨切開面胸最長筋における脂肪交雑値を推定する方法であって、
生体牛の第10〜11胸椎部の胸最長筋に所定の周波数で交番電流を通電して、同第10〜11胸椎部の胸最長筋における生体電気インピーダンス値の測定を行うインピーダンス測定工程と、
等価回路モデルに基いて、前記インピーダンス測定工程にて得られた前記生体電気インピーダンス値から細胞内抵抗値を算出する細胞内抵抗算出工程と、
細胞内抵抗値−脂肪交雑値相関式に前記細胞内抵抗算出工程にて得られた細胞内抵抗値を代入し、第6〜7肋骨切開面胸最長筋における推定脂肪交雑値を算出する脂肪交雑値推定工程と、
を有することを特徴とする脂肪交雑値の推定方法。
A method for estimating a cross-breeding value in the 6-7th rib incision plane longest muscle of a living cow without invading the longest breast muscle in the 6th-7th thoracic vertebrae,
An impedance measurement step of conducting a bioelectrical impedance value in the longest chest muscle of the 10th to 11th thoracic vertebrae by passing an alternating current at a predetermined frequency to the longest chest muscle of the 10th to 11th thoracic vertebrae of a living cow,
Based on an equivalent circuit model, an intracellular resistance calculation step for calculating an intracellular resistance value from the bioelectric impedance value obtained in the impedance measurement step;
Substituting the intracellular resistance value obtained in the intracellular resistance calculation step into the intracellular resistance value-fat cross value correlation equation, and calculating the estimated fat cross value in the 6-7th rib incision plane longest muscle A value estimation process;
A method for estimating a marbling value, comprising:
前記生体電気インピーダンス値の測定は、所定の周波数で交番電流を供給する電流供給装置に接続された一対の電流通電電極と、電圧計に接続された一対の電圧測定電極とを生体牛の第10〜11胸椎部の胸最長筋に穿刺して4電極法により行うことを特徴とする請求項1に記載の脂肪交雑値の推定方法。   The bioelectrical impedance value is measured using a pair of current conducting electrodes connected to a current supply device that supplies an alternating current at a predetermined frequency, and a pair of voltage measuring electrodes connected to a voltmeter. The method of estimating a marbling value according to claim 1, wherein the maximal thoracic muscle of the ˜11 thoracic vertebra is punctured by a four-electrode method. 前記等価回路モデルは、Haydenの電気的等価回路モデルであることを特徴とする請求項1又は請求項2に記載の脂肪交雑値の推定方法。   3. The method of estimating a marbling value according to claim 1, wherein the equivalent circuit model is Hayden's electrical equivalent circuit model. 前記所定の周波数は、10k〜100kHzであることを特徴とする請求項1〜3いずれか1項に記載の脂肪交雑値の推定方法。   The said predetermined frequency is 10-100kHz, The estimation method of the marbling value of any one of Claims 1-3 characterized by the above-mentioned. 前記細胞内抵抗値−脂肪交雑値相関式は、下記式(I)で示されることを特徴とする請求項1〜4いずれか1項に記載の脂肪交雑値の推定方法。
Figure 0006337351
The method for estimating a marbling value according to any one of claims 1 to 4, wherein the intracellular resistance value-marbling value correlation formula is represented by the following formula (I).
Figure 0006337351
前記細胞内抵抗値は、前記第10〜11胸椎部の胸最長筋における単位断面積あたりの細胞内抵抗値であることを特徴とする請求項1〜5いずれか1項に記載の脂肪交雑値の推定方法。   6. The interbreathing value according to claim 1, wherein the intracellular resistance value is an intracellular resistance value per unit cross-sectional area in the longest breast muscle of the 10th to 11th thoracic vertebrae. Estimation method.
JP2014155568A 2014-07-30 2014-07-30 Estimating the value of marbling Expired - Fee Related JP6337351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014155568A JP6337351B2 (en) 2014-07-30 2014-07-30 Estimating the value of marbling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014155568A JP6337351B2 (en) 2014-07-30 2014-07-30 Estimating the value of marbling

Publications (2)

Publication Number Publication Date
JP2016032434A JP2016032434A (en) 2016-03-10
JP6337351B2 true JP6337351B2 (en) 2018-06-06

Family

ID=55451694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014155568A Expired - Fee Related JP6337351B2 (en) 2014-07-30 2014-07-30 Estimating the value of marbling

Country Status (1)

Country Link
JP (1) JP6337351B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112220472B (en) * 2020-09-25 2023-09-15 重庆大学 Chest cavity electrical impedance noninvasive detection method based on cross four-electrode method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264249A (en) * 2000-03-16 2001-09-26 Kochi Prefecture Fleshy substance estimation method by near-infrared spectroanalysis and its application
JP4840952B2 (en) * 2000-09-19 2011-12-21 株式会社フィジオン Bioelectrical impedance measurement method and measurement device, and health guideline management advice device using the measurement device
JP3774120B2 (en) * 2001-03-02 2006-05-10 株式会社イシダ Livestock management system
JP4122427B2 (en) * 2003-02-26 2008-07-23 独立行政法人放射線医学総合研究所 Biopsy method and apparatus for meat quality of livestock for meat
JP2008054817A (en) * 2006-08-30 2008-03-13 Nagasaki Prefecture Meat determination method for live farm animal using ultrasonic diagnostic apparatus
AU2010336012B2 (en) * 2009-12-21 2015-11-05 Impedimed Limited Analysing impedance measurements

Also Published As

Publication number Publication date
JP2016032434A (en) 2016-03-10

Similar Documents

Publication Publication Date Title
Lubura et al. Non-invasive quantification of white and brown adipose tissues and liver fat content by computed tomography in mice
Fowler et al. Validation of the in vivo measurement of adipose tissue by magnetic resonance imaging of lean and obese pigs
US20080224716A1 (en) Method and System For Determining Freshness and Palatability and Assessing Organ Vitality
Prieto et al. Predicting beef cuts composition, fatty acids and meat quality characteristics by spiral computed tomography
Slósarz et al. Artificial neural network analysis of ultrasound image for the estimation of intramuscular fat content in lamb muscle
US20080306402A1 (en) Method and system for determining vitality, healing and condition of tissue or organ for surgery
López-Campos et al. Rapid and non-destructive determination of lean fat and bone content in beef using dual energy X-ray absorptiometry
Carabús et al. Imaging technologies to study the composition of live pigs: A review
Kongsro et al. Virtual dissection of lamb carcasses using computer tomography (CT) and its correlation to manual dissection
Thériault et al. Accuracy of real-time ultrasound measurements of total tissue, fat, and muscle depths at different measuring sites in lamb
JP6337351B2 (en) Estimating the value of marbling
Woolley et al. Tissue resistivities and current pathways and their importance in pre‐slaughter stunning of chickens
Bosworth et al. Evaluation of bioelectric impedance to predict carcass yield, carcass composition, and fillet composition in farm‐raised catfish
Hua et al. Correlation between age and the parameters of medial epiphysis and metaphysis of the clavicle using CT volume rendering images
Silva et al. Sheep carcass composition estimated from Longissimus thoracis et lumborum muscle volume measured by in vivo real-time ultrasonography
Schäff et al. Evaluation of electrical broad bandwidth impedance spectroscopy as a tool for body composition measurement in cows in comparison with body measurements and the deuterium oxide dilution method
US11464478B2 (en) Method and system of assessing or analyzing muscle characteristics including strength and tenderness using ultrasound
Clelland et al. Prediction of intramuscular fat content and shear force in Texel lamb loins using combinations of different X-ray computed tomography (CT) scanning techniques
Silva et al. Application of bioelectrical impedance analysis in prediction of light kid carcass and muscle chemical composition
Dell’Osa et al. Electrical impedance to easily discover undeclared freeze-thaw cycles in slaughtered bovine meat
Moro et al. Prediction of physical characteristics of the lamb carcass using in vivo bioimpedance analysis
Akdag et al. Prediction of carcass composition by ultrasonic measurement and the effect of region and age on ultrasonic measurements
Marchello et al. Predicting live and carcass lean using bioelectrical impedance technology in pigs
Andrássy-Baka et al. Non-invasive body composition measurement of broiler chickens between 4–18 weeks of age by computer tomography
Harrison et al. Associations among computed tomographic measures of bone and muscle quality and biomechanical measures of tibiotarsal bone quality in laying hens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180417

R150 Certificate of patent or registration of utility model

Ref document number: 6337351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees