JP6336128B2 - New antioxidant - Google Patents

New antioxidant Download PDF

Info

Publication number
JP6336128B2
JP6336128B2 JP2016565860A JP2016565860A JP6336128B2 JP 6336128 B2 JP6336128 B2 JP 6336128B2 JP 2016565860 A JP2016565860 A JP 2016565860A JP 2016565860 A JP2016565860 A JP 2016565860A JP 6336128 B2 JP6336128 B2 JP 6336128B2
Authority
JP
Japan
Prior art keywords
formula
antioxidant
spectrum
substance
antioxidants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016565860A
Other languages
Japanese (ja)
Other versions
JPWO2016103530A1 (en
Inventor
吉永 一浩
一浩 吉永
宮崎 直人
直人 宮崎
Original Assignee
株式会社サナス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サナス filed Critical 株式会社サナス
Publication of JPWO2016103530A1 publication Critical patent/JPWO2016103530A1/en
Application granted granted Critical
Publication of JP6336128B2 publication Critical patent/JP6336128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/12Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
    • C07D493/14Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3481Organic compounds containing oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • A61K8/498Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom having 6-membered rings or their condensed derivatives, e.g. coumarin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • A61K2800/522Antioxidants; Radical scavengers

Description

本発明は新規化合物およびそれからなる抗酸化剤に関するものである。 The present invention relates to an antioxidant consisting of Re novel compounds States.

一般的な抗酸化剤(ラジカル消去剤)は自らが酸化されることにより、相手方の酸化を抑制する。抗酸化剤は酸化防止剤とも呼ばれ、食品や化粧品、医薬品、化学工業品などに幅広く産業的に利用されている。代表的な抗酸化剤としてはアスコルビン酸、ビタミンE、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、エリソルビン酸ナトリウム、カテキン、クロロゲン酸などが挙げられる。食品工業における抗酸化剤の用途は脂質の劣化防止、酸化酵素による食品色調の変化の防止などである。また、抗酸化性はヒトの健康維持にも関連しており、ヒトの体内で発生する活性酸素を消去する働きがある。活性酸素は老化や発ガンなど多くの疾病の原因物質と考えられていることからヒトの健康維持に対しても抗酸化剤は有効であり、抗酸化剤を含有している食品が注目されている。化粧品分野では過酸化脂質が皮膚の柔軟性や弾力性を失いしわの原因であると考えられている。この過酸化脂質の生成には活性酸素が関与していることから、しわの防止目的などで化粧品に抗酸化剤が使用されている。その他の工業分野でも塗料の色調の安定化、高分子合成時のラジカル制御、金属のサビ防止、ゴム・プラスチックの劣化防止など、身の回りの幅広い分野で抗酸化剤が使用されている。食品はヒトに口から摂取され、化粧品は直接にヒトの肌に塗布されることから、これらの用途で使用される抗酸化剤は当然に安全・安心な素材であることが要求される。また、その他の用途でも製造された製品がヒトに接する機会が多い、例えばプリンターのインクに使用された抗酸化剤はヒトの肌に触れる機会が多く、また、印刷物が間違って口の中に入る危険性を否定できない。プラスチック類では、それが食器として食品に接したり、ボールペンやパソコンのキーボードとしてヒトに接したりすることが当然起こりうる。このように抗酸化剤が使用された製品は我々の身近なところで利用されており、これら抗酸化剤にはヒトや環境に対して安全・安心な素材であることが求められる。   A general antioxidant (radical scavenger) suppresses the other party's oxidation by being oxidized. Antioxidants are also called antioxidants and are widely used industrially in food, cosmetics, pharmaceuticals, chemical industrial products, and the like. Typical antioxidants include ascorbic acid, vitamin E, dibutylhydroxytoluene, butylhydroxyanisole, sodium erythorbate, catechin, chlorogenic acid and the like. Antioxidants are used in the food industry to prevent lipid degradation and prevent changes in food color due to oxidase. Antioxidant activity is also related to maintaining human health, and has the function of eliminating active oxygen generated in the human body. Since active oxygen is considered to be a causative agent for many diseases such as aging and carcinogenesis, antioxidants are effective for maintaining human health, and foods containing antioxidants are attracting attention. Yes. In the cosmetic field, lipid peroxide is considered to cause wrinkles due to loss of skin flexibility and elasticity. Since active oxygen is involved in the production of lipid peroxide, antioxidants are used in cosmetics for the purpose of preventing wrinkles. In other industrial fields, antioxidants are used in a wide range of areas around us, such as stabilization of paint color, radical control during polymer synthesis, prevention of metal rust, and prevention of rubber and plastic deterioration. Since food is ingested by humans and cosmetics are directly applied to human skin, the antioxidants used in these applications are naturally required to be safe and secure materials. In addition, products manufactured for other purposes have more opportunities to come into contact with humans, for example, the antioxidants used in printer inks have more opportunities to touch human skin, and the printed matter enters the mouth by mistake. The danger cannot be denied. In plastics, it can naturally come into contact with food as tableware, or contact with humans as a ballpoint pen or keyboard of a personal computer. Products that use antioxidants are used in our immediate surroundings, and these antioxidants are required to be safe and secure materials for humans and the environment.

一方、これらの製造工程や製品と環境との関係を考えると、製造工程からは廃棄物が排出されるが、この廃棄物に原料として使用された抗酸化剤が含まれることが予想される。また、製造された製品が何かの誤りで環境中に排出されることも予想される。このような状況を想定した場合、これらの製品の製造に使用される抗酸化剤は環境に対する毒性が無く、微生物に容易に分解される物質であることが望まれる。また、物質生産の原料は石油ではなく植物起源など再生可能な原料へと近年変化している現状がある。このような観点から抗酸化剤も再生可能な原料から製造されるのが望ましく、さらにはその原料が食品であることが安全の観点から重要視される。   On the other hand, considering the relationship between these manufacturing processes and products and the environment, waste is discharged from the manufacturing process, and it is expected that the antioxidant used as a raw material is included in this waste. It is also expected that the manufactured product will be discharged into the environment due to some error. Assuming such a situation, it is desirable that the antioxidant used in the manufacture of these products is a substance that is not toxic to the environment and is easily degraded by microorganisms. In addition, the raw materials for material production have recently changed to renewable materials such as plant sources instead of petroleum. From this point of view, it is desirable that the antioxidant is also produced from a renewable raw material, and further, it is important from the viewpoint of safety that the raw material is a food.

澱粉から合成される天然の抗酸化剤としては1,5−D−アンヒドロフルクトース(1,5−AF)が知られている(非特許文献1参照)。1,5−AFは澱粉やグリコーゲンなどのα‐1、4−グルカンをα‐1、4−グルカンリアーゼで分解することにより製造でき、この1,5−AFは食品保存の抗酸化剤としての使用できることが知られている(特許文献1参照)。また、1,5−AFは抗菌性を示すことが知られており(特許文献2参照)、さらにこの1,5−AFを加熱することでその抗菌性が高まることも知られている(特許文献3参照)。さらに、1,5−AF水溶液を加熱することでアスコピロンP(APP)が合成されることも報告されており(非特許文献2参照)、このAPPも抗酸化性、抗菌性を示し食品保存に有効な化合物であり、そのそれらの活性はいずれも1,5−AFより強いことが知られている(非特許文献2参照)。このようなことから、1,5−AFの加熱による抗菌性及び抗酸化性の向上と、1,5−AFの加熱でアスコピロンPが生成することとは何らかの関連性を有しているものと推察される。また、1,5−AFを強アルカリ環境にするとアスコピロンP、アスコピロンMなどを経由して最終的にサッカリン酸へと変化することも報告されている(非特許文献3参照)。   As a natural antioxidant synthesized from starch, 1,5-D-anhydrofructose (1,5-AF) is known (see Non-Patent Document 1). 1,5-AF can be produced by degrading α-1,4-glucan such as starch and glycogen with α-1,4-glucan lyase, and this 1,5-AF is used as an antioxidant for food preservation. It is known that it can be used (refer patent document 1). In addition, 1,5-AF is known to exhibit antibacterial properties (see Patent Document 2), and it is also known that heating the 1,5-AF increases its antibacterial properties (patents). Reference 3). Furthermore, it has also been reported that ascopilone P (APP) is synthesized by heating an aqueous 1,5-AF solution (see Non-Patent Document 2), and this APP also exhibits antioxidant and antibacterial properties for food preservation. These compounds are effective compounds, and their activities are all known to be stronger than 1,5-AF (see Non-Patent Document 2). Therefore, there is some relationship between the improvement of antibacterial and antioxidant properties by heating 1,5-AF and the formation of ascopyrone P by heating 1,5-AF. Inferred. It has also been reported that when 1,5-AF is made into a strongly alkaline environment, it finally changes to saccharic acid via ascopirone P, ascopilone M and the like (see Non-Patent Document 3).

特開2005−133102号公報JP 2005-133102 A 特開2002−128791号公報JP 2002-128791 A WO01/056408WO01 / 056408

Journal of Applied Glycoscience,VOL.46No.4,pp.439−444(1999)Journal of Applied Glycoscience, VOL. 46No. 4, pp. 439-444 (1999) Journal of Applied Glycoscience,VOL.52,Page,pp.287−291,(2005)Journal of Applied Glycoscience, VOL. 52, Page, pp. 287-291, (2005) Studies on the Degradation of Some Pentose and of 1、5−Anhdro−D−Frucotose,The Product of the Starch−Degrading Enzyme a−1,4−Glucan Lyase“Phd Thesis,The Swedish University of Agricultural Sciences,Sweden,page 1−34,1995)Studies on the Degradation of Some Pentose and of 1,5-Anhdro-D-Frucotose, The Product of the Starch-Degrading Enzyme a-1,4-Glucan Lyase "Phd Thesis, The Swedish University of Agricultural Sciences, Sweden, page 1 -34, 1995)

このような背景の中、本発明の目的とするところは再生可能な食品に由来する抗酸化剤として有用な新規化合物およびそれからなる抗酸化剤を提供することにある。
本発明の他の目的は安全で安心な新規化合物およびそれからなる抗酸化剤を提供することにある。
Against this backdrop, it is an object of the present invention is to provide an antioxidant consisting of Re novel compounds useful States as an antioxidant derived from a renewable food.
Another object of the present invention is to provide an antioxidant consisting of Re safe and secure novel compounds States.

本発明によれば、本発明の上記目的および利点は、第1に、下記式(I)   According to the present invention, the above objects and advantages of the present invention are as follows.

Figure 0006336128
Figure 0006336128

で示される基本骨格を有する下記式(II)で表される新規化合物が後述する式(III)で表わされる化合物として提供されることによって達成される。 Novel compound represented by the following following formula (II) in that having a basic skeleton represented is achieved by being provided as a compound represented by the formula (III) to be described later.

Figure 0006336128
Figure 0006336128

本発明によれば、本発明の上記目的および利点は、第に、本発明の新規化合物からなる抗酸化剤により達成される。 According to the present invention, the above objects and advantages of the present invention, the second, more is achieved antioxidants formed of the novel compound of the present invention.

さらに、本発明の上記目的および利点は、第に、1,5−アンヒドロフルクトースを含有する粉末を100℃以上で加熱することを特徴とする上記式(II)で示される化合物が後述する式(III)で表わされる化合物として製造される製造方法によって達成される。 Further, the above objects and advantages of the present invention, the third, the compound represented by the formula (II), which comprises heating a powder containing 1,5 anhydrofructose at 100 ° C. or more below This is achieved by a production method produced as a compound represented by the formula (III) .

本発明の化合物は澱粉を原料として調製できる新規な化合物であり、優れた抗酸化作用を有する。   The compound of the present invention is a novel compound that can be prepared using starch as a raw material, and has an excellent antioxidant action.

式(II)で示される化合物の13CNMRスペクトルである。It is a 13 CNMR spectrum of a compound shown by a formula (II). 式(II)で示される化合物のHSQCスペクトルである。It is an HSQC spectrum of a compound shown by a formula (II). 式(II)で示される化合物のHSQCスペクトルである。It is an HSQC spectrum of a compound shown by a formula (II). 式(II)で示される化合物のHNMRスペクトルである。 1 is a 1 HNMR spectrum of a compound represented by formula (II). 式(II)で示される化合物のHNMRスペクトルである。 1 is a 1 HNMR spectrum of a compound represented by formula (II). 式(II)で示される化合物のHNMRスペクトルである。 1 is a 1 HNMR spectrum of a compound represented by formula (II). 式(II)で示される化合物のCOSYスペクトルである。It is a COSY spectrum of a compound shown by a formula (II). 式(II)で示される化合物のCOSY相関である。It is a COSY correlation of the compound shown by Formula (II). 式(II)で示される化合物のHMBCスペクトルである。It is a HMBC spectrum of a compound shown by a formula (II). 式(II)で示される化合物のHMBCスペクトルである。It is a HMBC spectrum of a compound shown by a formula (II). 式(II)で示される化合物のHMBCスペクトルである。It is a HMBC spectrum of a compound shown by a formula (II). 式(II)で示される化合物のHMBCスペクトルである。It is a HMBC spectrum of a compound shown by a formula (II). 式(II)で示される化合物のHMBC相関である。3 is an HMBC correlation of a compound represented by formula (II). 式(II)で示される化合物のNOESYスペクトルである。It is a NOESY spectrum of a compound shown by a formula (II). 式(II)で示される化合物のNOESYスペクトルである。It is a NOESY spectrum of a compound shown by a formula (II). 式(II)で示される化合物のFT−1Rスペクトルである。It is a FT-1R spectrum of a compound shown by a formula (II).

(1)1,5−AFから新規抗酸化剤の調製
上記式(II)で示される新規化合物を以後、物質Xと表記する。1,5−AF凍結乾燥粉末は既報の論文(Journal of Applied Glycoscience,VOL.46No.4,pp.439−444(1999)参照)に従って調製した。調製した1,5−AF凍結乾燥粉末の純度は示差屈折計を検出器とする高速液体クロマトグラフィーで調べた。分離カラムには三菱化学MCI GEL CK08Sを用い溶離液には水を使いカラム温度は40℃、流速1ml/分で、試料は水で溶解し糖度計の読み値がBx0.8とし室温で一夜放置した後に試料100μLを高速液体クロマトグラフに注入し分析した。得られたクロマトグラムは単純面積百分率で解析した。その結果、この試料の純度は97.0%であった。次に1,5−AF凍結乾燥粉末1gを100ml容ガラスビーカーに計り取り上部をアルミホイルで覆い100℃以上、好ましくは100〜300℃の温度、具体的には120℃に設定した加圧滅菌器に入れ加熱した。加熱開始時の温度が27℃で120℃に到達するまでに25分間、その後120℃で60分間、120℃から60℃まで40分間加熱した。加熱後の試料を加熱殺菌器から取り出し−25℃の冷凍庫で保管した。加熱後それに9mlの精製水を加え、物質Xを含む分離原液とした。この分離原液の分析は、それに精製水を加え希釈し高速液体クロマトグラフィーで分析した(分析条件、分離カラム:三菱化学MCI GEL CK08S:スチレンとジビニルベンゼンとの架橋度8%の共重合体であり且つナトリウムが結合したスルホン基をイオン交換基とする強酸性イオン交換樹脂を充填剤、カラム温度:40℃)この条件で示差屈折計による検出で標準のマルトースの保持時間が9.2分、グルコースが11.3分であるときに、物質Xの保持時間が17.4分であった。またフォトダイオードアレイ検出器で物質Xを検出すると294nm付近に吸収のピークを示した。この物質Xの精製は分離原液をこの高速液体クロマトグラフィーに供し保持時間17.4分の成分を回収し、回収後にすぐに最終濃度1mMになるようにエチレンジアミン四酢酸を加え、その後、屈折率計の読み値がBx10になるまで濃縮し、再度、高速液体クロマトグラフィーで目的画分を分離し、すぐに凍結し、その後、凍結乾燥し物質Xの白色粉末を得た。
次に、様々な分析によるこの物質Xの固有物性を示す。
(1) Preparation of novel antioxidant from 1,5-AF The novel compound represented by the above formula (II) is hereinafter referred to as substance X. The 1,5-AF lyophilized powder was prepared according to a published paper (see Journal of Applied Glycoscience, VOL. 46 No. 4, pp. 439-444 (1999)). The purity of the prepared 1,5-AF lyophilized powder was examined by high performance liquid chromatography using a differential refractometer as a detector. The separation column is Mitsubishi Chemical MCI GEL CK08S, and water is used as the eluent. The column temperature is 40 ° C., the flow rate is 1 ml / min, the sample is dissolved in water and the saccharimeter reading is Bx0.8 and left at room temperature overnight. Thereafter, 100 μL of the sample was injected into a high performance liquid chromatograph and analyzed. The obtained chromatogram was analyzed by simple area percentage. As a result, the purity of this sample was 97.0%. Next, 1 g of 1,5-AF freeze-dried powder was weighed into a 100 ml glass beaker, and the upper part was covered with aluminum foil, and the temperature was 100 ° C or higher, preferably 100 to 300 ° C, specifically 120 ° C. Heated in a vessel. It was heated for 25 minutes until the temperature at the start of heating reached 120 ° C. at 27 ° C., then heated at 120 ° C. for 60 minutes and from 120 ° C. to 60 ° C. for 40 minutes. The heated sample was taken out from the heat sterilizer and stored in a -25 ° C freezer. After heating, 9 ml of purified water was added thereto to obtain a separation stock solution containing the substance X. The separation stock solution was analyzed by adding purified water and diluting it, and analyzing by high performance liquid chromatography (analysis conditions, separation column: Mitsubishi Chemical MCI GEL CK08S: copolymer of styrene and divinylbenzene having a crosslinking degree of 8%. In addition, a strongly acidic ion exchange resin having a sulfone group bonded with sodium as an ion exchange group is used as a filler, column temperature: 40 ° C.) Under this condition, the retention time of standard maltose is 9.2 minutes as detected by a differential refractometer, glucose Was 11.3 minutes, the retention time of substance X was 17.4 minutes. Further, when the substance X was detected with a photodiode array detector, an absorption peak was observed at around 294 nm. For the purification of this substance X, the separated stock solution is subjected to this high performance liquid chromatography, the components having a retention time of 17.4 minutes are recovered, and immediately after recovery, ethylenediaminetetraacetic acid is added to a final concentration of 1 mM. Was concentrated to Bx10, and the desired fraction was again separated by high performance liquid chromatography, immediately frozen, and then freeze-dried to obtain a white powder of substance X.
Next, the intrinsic physical properties of this substance X by various analyzes are shown.

(2)核磁気共鳴(NMR)測定
物質Xの凍結乾燥粉末約8mgを採取し、重水650μLに溶解し二次元NMR(Correlated SpectroscopyY:COSY,Nuclear Overhauser Enhancement and Exchange SpectroscopyY:NOESY,Heteronuclear Single Quantum Correlation:HSQC,Heteronuclear Multiple Bond Correlation:HMBC)を行った。HNMRにおける化学シフトの内部標準物質として[2,2,3,3−d4]sodium3−3−(trimethylsilyl)propanoate(以下、TSP−d4)を少量加えた。
NMRは下記表1に記載の測定条件で行った。
(2) Nuclear magnetic resonance (NMR) measurement About 8 mg of freeze-dried powder of substance X was collected, dissolved in 650 μL of heavy water, and two-dimensional NMR (Correlated Spectroscopy Y: COSY, Nuclear Overhauler Enhancing Element and Exchange Spectral NOS: HSQC, Heteronuclear Multiple Bond Correlation (HMBC). A small amount of [2,2,3,3-d4] sodium-3- (trimethylsilyl) propanoate (hereinafter TSP-d4) was added as an internal standard substance for chemical shift in 1 HNMR.
NMR was performed under the measurement conditions described in Table 1 below.

Figure 0006336128
Figure 0006336128

HNMR,13CNMR及びHSQC測定の結果として、図1に13CNMRスペクトルを示した。低磁場側(化学シフト値の大きい方)から順にシグナルについてA〜Lまでの番号をつけた、図2、図3にHSQCスペクトルを示した。HSQCスペクトルから、直接結合する13C−Hのペアーを確定した。図4から図6にHNMRスペクトルを示した。Hシグナルには、直接結合する13Cシグナルに小文字で記載した。結果を下記表2にまとめて示した。 As a result of 1 HNMR, 13 CNMR and HSQC measurement, a 13 CNMR spectrum is shown in FIG. HSQC spectra are shown in FIGS. 2 and 3 in which numbers from A to L are assigned to the signals in order from the low magnetic field side (the one with the larger chemical shift value). From the HSQC spectrum, 13 C- 1 H pairs that bind directly were determined. 4 to 6 show 1 HNMR spectra. The 1 H signal is written in lower case for the 13 C signal that binds directly. The results are summarized in Table 2 below.

Figure 0006336128
Figure 0006336128

(3)COSY、HMBC測定
図7にCOSYスペクトルを示した。その結果、メチレン同士の相関を除くと、図8に示す相関が観測された。
図9から図12にHMBCスペクトルを示した。HMBCスペクトルを解析は図13に示すように上記式(II)の構造を支持する結果であった。表3に観測された相関をまとめた。
(3) COSY, HMBC measurement The COSY spectrum was shown in FIG. As a result, when the correlation between methylenes was removed, the correlation shown in FIG. 8 was observed.
9 to 12 show HMBC spectra. The analysis of the HMBC spectrum was a result supporting the structure of the above formula (II) as shown in FIG. Table 3 summarizes the observed correlations.

Figure 0006336128
Figure 0006336128

(4)NOESY測定
NOESYスペクトルを図14及び図15に示す。
(4) NOESY Measurement The NOESY spectrum is shown in FIGS.

(5)精密質量測定及びMS/MS測定
試料の測定前にトリフルオロ酢酸ナトリウム標準液(TFANa標準溶液)の測定を実施して質量軸の公正を行った。試料は0.24mgを水5μLに溶解し、下記表4に示す条件で精密質量測定を実施した。
(5) Accurate mass measurement and MS / MS measurement Before the measurement of the sample, a sodium trifluoroacetate standard solution (TFANa standard solution) was measured to make the mass axis fair. As a sample, 0.24 mg was dissolved in 5 μL of water, and accurate mass measurement was performed under the conditions shown in Table 4 below.

Figure 0006336128
Figure 0006336128

精密質量を測定した結果、m/z271.0643、m/z289.0952、m/z306.1160、m/z311.0758、m/z599.1436といったイオンが検出された。この実測値(m/z599.1436以外)と分子式C12H16O8の理論値を比較したところ、下記表5に示すようにm/z289.0952、m/z306.1160、m/z311.0758の3つについては理論値との差が−2.3mDaから3.4mDaであり、m/z271.0643は理論値との差が−16.9mDaであった。   As a result of measuring the accurate mass, ions such as m / z 271.0643, m / z 289.0952, m / z 306.1160, m / z 311.0758, and m / z 599.1436 were detected. When this measured value (other than m / z 599.1436) was compared with the theoretical value of molecular formula C12H16O8, as shown in Table 5 below, three of m / z 289.0952, m / z 306.1160, and m / z 311.0758 were obtained. The difference from the theoretical value was −2.3 mDa to 3.4 mDa, and m / z 271.0643 was the difference from the theoretical value −16.9 mDa.

Figure 0006336128
Figure 0006336128

ESI−MS/MS測定はイオンの強度が強かったm/z271及びm/z311をプリカーサイオンとして行った。この結果、下記表6のプロダクトイオンが観測された。   In the ESI-MS / MS measurement, m / z 271 and m / z 311 having high ion intensity were used as precursor ions. As a result, the product ions shown in Table 6 below were observed.

Figure 0006336128
Figure 0006336128

(6)FT−IR測定
試料1.16mgを秤量後、KBr200.4mgとめのう乳鉢で混合し、ディスクを形成し下記表7の条件で測定した。
(6) FT-IR measurement After weighing 1.16 mg of the sample, KBr 200.4 mg was mixed with an agate mortar to form a disk and measured under the conditions shown in Table 7 below.

Figure 0006336128
Figure 0006336128

FT−IRスペクトルを図16に示した。主な吸収帯については以下に帰属した。
3423.3cm−1:O−H伸縮振動
2932.4〜2888.3cm−1:C−H伸縮振動
1663.1〜1620.8cm−1:C=O伸縮振動(カルボニル由来)
1448.1〜1368.5cm−1:C−H変角振動
1182.0〜1082.8cm−1:C−O−C(エーテル由来)伸縮振動
以上の解析結果から、下記式(II)の構造式が明らかとなった。
組成式はC12O8H16 ,分子量は288である。
The FT-IR spectrum is shown in FIG. The main absorption bands are attributed to the following.
3423.3 cm −1 : OH stretching vibration 2932.4 to 2888.3 cm −1 : C—H stretching vibration 1663.1 to 1620.8 cm −1 : C═O stretching vibration (derived from carbonyl)
1448.1 to 1368.5 cm −1 : C—H deformation vibration 1182.0 to 1082.8 cm −1 : C—O—C (ether-derived) stretching vibration From the above analysis results, the structure of the following formula (II) The formula became clear.
The composition formula is C12O8H16 and the molecular weight is 288.

Figure 0006336128
Figure 0006336128

立体構造の考察(NOESY測定など)
立体構造を考察するために、結合定数及びNOESYスペクトルについて解析した。
下記式(III)に示すように各炭素をAからLとした場合、Fに結合するヒドロキシメチル基はエカトリアルに、Gに結合する水酸基はアキシャルに、Dに結合する水酸基はエカトリアルに、また、BCAKEからなる環は他の二つの環に対してかなり立った状態にあると推測された。
Consideration of 3D structure (NOESY measurement, etc.)
In order to consider the three-dimensional structure, the binding constant and NOESY spectrum were analyzed.
When each carbon is changed from A to L as shown in the following formula (III), the hydroxymethyl group bonded to F is equatorial, the hydroxyl group bonded to G is axial, the hydroxyl group bonded to D is equatorial, It was speculated that the ring consisting of BCAKE was quite upright with respect to the other two rings.

Figure 0006336128
Figure 0006336128

(8)抗酸化活性測定
前記の方法で調製した物質Xの抗酸化性を調べるために、ポリフェノールオキシダーゼ阻害活性を求めた。阻害活性の測定は次の方法で行った。
100mMのリン酸(KH2PO4)−水酸化カリウム緩衝液(pH 6.5)を2ml、水0.2ml、酵素液0.5ml(Laccase 0.2mg/ml SIGMA:from Rhus vernificera 120U/mg)を混合し30℃で1分加温した。それに、Syringaldazin(0.216mM、メタノールで溶解)を0.3ml加え、再度30℃で放置し酵素反応させ、10分後、530nmの吸光度を測定した。酵素の阻害反応では水の代わりに評価する試料を入れ、未添加時の酵素活性を比較することでの阻害活性を求めた。阻害活性は酵素活性を50%阻害するときの阻害剤の濃度(質量/体積)で求め、抗酸化活性はアスコルビン酸の活性を100とした時の相対活性で示した。
その結果、物質Xの阻害活性を濃度比で表すとアスコルビン酸を100とすると33であり、アスコルビン酸よりはアスコルビン酸に匹敵するような強い抗酸化剤であることが分った。
物質Xの基本骨格は構造式(I)のように示される。この構造名をネオサナス(Neosunus)と命名した。
(8) Antioxidant activity measurement Polyphenol oxidase inhibitory activity was calculated | required in order to investigate the antioxidant property of the substance X prepared by the said method. Inhibitory activity was measured by the following method.
2 ml of 100 mM phosphoric acid (KH2PO4) -potassium hydroxide buffer (pH 6.5), 0.2 ml of water, 0.5 ml of enzyme solution (Laccase 0.2 mg / ml SIGMA: from Rhus vernicicera 120 U / mg) And heated at 30 ° C. for 1 minute. To this, 0.3 ml of Syringaldazin (0.216 mM, dissolved in methanol) was added and allowed to stand again at 30 ° C. for enzyme reaction, and after 10 minutes, the absorbance at 530 nm was measured. In the inhibition reaction of the enzyme, a sample to be evaluated was put in place of water, and the inhibition activity was determined by comparing the enzyme activity when not added. The inhibitory activity was determined by the concentration (mass / volume) of the inhibitor when the enzyme activity was inhibited by 50%, and the antioxidant activity was represented by the relative activity when the activity of ascorbic acid was 100.
As a result, the inhibitory activity of the substance X was expressed as a concentration ratio, which was 33 when ascorbic acid was 100, and was found to be a strong antioxidant comparable to ascorbic acid rather than ascorbic acid.
The basic skeleton of substance X is shown as structural formula (I). This structure name was named Neosanus.

Figure 0006336128
Figure 0006336128

基本骨格は上記に示すとおりであり、この基本骨格から新規物質Xは6,10−ヒドロキシ−8−ヒドロキシメチルネオサナス(6,10-hydroxy−8−hydroxymethylneosunus)である。   The basic skeleton is as described above, and from this basic skeleton, the novel substance X is 6,10-hydroxy-8-hydroxymethyl neosanus (6,10-hydroxy-8-hydroxymethyleosanus).

Claims (3)

下記式(III)
Figure 0006336128
で示される化合物。
Formula (III) below
Figure 0006336128
A compound represented by
請求項1に記載の化合物からなる抗酸化剤。 An antioxidant comprising the compound according to claim 1. 1,5−アンヒドロフルクトースを含有する粉末を100℃以上で加熱することを特徴とする上記請求項1に記載の式(III)で示される化合物の製造方法。
The method for producing a compound represented by the formula (III) according to claim 1, wherein the powder containing 1,5-anhydrofructose is heated at 100 ° C or higher.
JP2016565860A 2014-12-26 2014-12-26 New antioxidant Active JP6336128B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084769 WO2016103530A1 (en) 2014-12-26 2014-12-26 Novel antioxidant

Publications (2)

Publication Number Publication Date
JPWO2016103530A1 JPWO2016103530A1 (en) 2017-10-05
JP6336128B2 true JP6336128B2 (en) 2018-06-06

Family

ID=56149610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016565860A Active JP6336128B2 (en) 2014-12-26 2014-12-26 New antioxidant

Country Status (2)

Country Link
JP (1) JP6336128B2 (en)
WO (1) WO2016103530A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038107A2 (en) * 2001-10-31 2003-05-08 Danisco A/S Process for the production of ascopyrone p
US7517981B2 (en) * 2003-11-20 2009-04-14 Nihon Starch Co., Ltd. Efficient production method of ascopyrone P
JP2008056574A (en) * 2006-08-29 2008-03-13 Nihon Starch Co Ltd Method for producing crystalline ascopyrone p

Also Published As

Publication number Publication date
JPWO2016103530A1 (en) 2017-10-05
WO2016103530A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
Garrido et al. Optimizing the extraction process of natural antioxidants from chardonnay grape marc using microwave-assisted extraction
Ye et al. Box–Behnken design for extraction optimization, characterization and in vitro antioxidant activity of Cicer arietinum L. hull polysaccharides
Mishra et al. Non-targeted metabolomics and scavenging activity of reactive oxygen species reveal the potential of Salicornia brachiata as a functional food
Zhang et al. Extraction, characterization and antioxidant activity of polysaccharides of spent mushroom compost of Ganoderma lucidum
Du et al. Chemical analysis and antioxidant activity of polysaccharides extracted from Inonotus obliquus sclerotia
Čanadanović-Brunet et al. Antioxidant and antimicrobial activities of beet root pomace extracts.
Sureram et al. Directed biosynthesis through biohalogenation of secondary metabolites of the marine-derived fungus Aspergillus unguis
Nataraj et al. Antioxidant, anti-tumour, and anticoagulant activities of polysaccharide from Calocybe indica (APK2)
JP6570186B2 (en) Glyceryl glucoside-containing composition and method for producing the same
Chen et al. Oxidative conversion of B-to A-type procyanidin trimer: Evidence for quinone methide mechanism
Mwangi et al. Isolation, identification and radical scavenging activity of phlorotannin derivatives from brown algae, Ecklonia maxima: An experimental and theoretical study
JP6336128B2 (en) New antioxidant
Jumpathong et al. Stemphol galactoside, a new stemphol derivative isolated from the tropical endophytic fungus Gaeumannomyces amomi
EP1690859B1 (en) Method of efficiently producing Ascopyrone P
CN102495169A (en) Purifying and analyzing identification method for anti-oxidative peptide after controlled-enzymatic hydrolysis of laver
Hayakawa et al. Reaction of astaxanthin with peroxynitrite
Kungsuwan et al. Enhancing Bioactivity and Conjugation in Green Coffee Bean (Coffea arabica) Extract through Cold Plasma Treatment: Insights into Antioxidant Activity and Phenolic–Protein Conjugates
CN104356380B (en) Epsilon-polylysine-vitamin e succinate amide complex and preparation method thereof and application
Lomba et al. Thermophysical characterization of choline chloride: Resorcinol and its mixtures with water
Wakimoto et al. Labile natural products
Jiang et al. Analysis of purified oligomeric proanthocyanidins from larix gmelinii bark and the study of physiological activity of the purified product
Zheng et al. Glioperazine B, as a new antimicrobial agent against Staphylococcus aureus, and glioperazine C: Two new dioxopiperazines from bionectra byssicola
EP1288289B1 (en) Novel saccharide, process for preparation of the same and use thereof
JP2007274981A (en) Inclusion complex and bacteriostatic agent for food comprising the same
Djunaidi et al. THE EFFECT OF FUNCTIONAL GROUP IN POLYEUGENOL FOR UREA, CREATININE AND VITAMIN B12 TRANSPORT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180501

R150 Certificate of patent or registration of utility model

Ref document number: 6336128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250