JP6332933B2 - Manufacturing method of light emitting unit - Google Patents

Manufacturing method of light emitting unit Download PDF

Info

Publication number
JP6332933B2
JP6332933B2 JP2013206741A JP2013206741A JP6332933B2 JP 6332933 B2 JP6332933 B2 JP 6332933B2 JP 2013206741 A JP2013206741 A JP 2013206741A JP 2013206741 A JP2013206741 A JP 2013206741A JP 6332933 B2 JP6332933 B2 JP 6332933B2
Authority
JP
Japan
Prior art keywords
light emitting
base material
circuit board
printed circuit
emitting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013206741A
Other languages
Japanese (ja)
Other versions
JP2015072749A5 (en
JP2015072749A (en
Inventor
広幸 大重
広幸 大重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Lighting Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013206741A priority Critical patent/JP6332933B2/en
Publication of JP2015072749A publication Critical patent/JP2015072749A/en
Publication of JP2015072749A5 publication Critical patent/JP2015072749A5/ja
Application granted granted Critical
Publication of JP6332933B2 publication Critical patent/JP6332933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、光ユニットの製造方法に関する。 The present invention relates to a method for producing a light emission unit.

従来より、発光ユニットを備えた照明ランプとしてLEDランプがある。LEDランプとして例えば直管形LEDランプは、プリント基板としてリジット基板(堅い基板)が用いられており、リジット基板に発光素子(LED)が実装されて構成された発光部を、シリコン樹脂に代表される接着部材でアルミ製などのヒートシンク(放熱部)に貼合し、これをガラス製やプラスチック製の筒状の外管に内包する製品が主流であった。   Conventionally, there is an LED lamp as an illumination lamp provided with a light emitting unit. As an LED lamp, for example, a straight tube type LED lamp uses a rigid substrate (hard substrate) as a printed circuit board, and a light emitting portion configured by mounting a light emitting element (LED) on a rigid substrate is represented by silicon resin. The mainstream is a product that is bonded to a heat sink (heat radiating part) made of aluminum or the like with an adhesive member that is encapsulated in a cylindrical outer tube made of glass or plastic.

しかしながら、接着剤として用いられるシリコン樹脂は硬化(固化)に時間を要し、製造タクトに影響を与える。   However, the silicone resin used as an adhesive requires time for curing (solidification), and affects the manufacturing tact.

このため、接着剤を用いずに複数の板バネを使用して発光部のリジッド基板を放熱部に固定するようにした照明ランプがある(例えば、特許文献1参照)。   For this reason, there is an illumination lamp in which a rigid substrate of a light emitting unit is fixed to a heat radiating unit using a plurality of leaf springs without using an adhesive (see, for example, Patent Document 1).

特開2012−221900号公報(第9頁、第10頁、図6参照。)JP 2012-221900 A (refer to page 9, page 10, and FIG. 6)

近年、LEDランプには直管形LEDランプの長尺化に対応可能な技術が求められている。しかし、リジッド基板を用いる限りは、直管形LEDランプ特有の長尺化に対応することが困難であり、且つ、外形寸法に応じた反りが発生する問題も抱えている。   In recent years, there has been a demand for technology capable of coping with the lengthening of straight tube LED lamps. However, as long as the rigid substrate is used, it is difficult to cope with the lengthening characteristic of the straight tube LED lamp, and there is also a problem that warpage occurs according to the external dimensions.

この問題を解消するには、リジッド基板に代えてFPC(フレキシブルプリント基板)を用いることが有効と考えられる。しかし、従来FPCに使用されてきたポリイミドなどの材料は、伸縮性が不足しており、接着剤による貼合では皺や歪み、浮き(剥離)などが発生し、製造品質が下がることが課題として残る。また、放熱部からのFPCの剥離を防止するためには、シリコン樹脂などの接着部材が硬化(固化)するまでの間、完全に全面を押さえている必要がある。つまり、シリコン樹脂は常温で硬化する素材であるため、硬化するまでに時間を要し、組立効率が低いといった課題もある。このように、リジッド基板に代えてFPCを用いれば長尺化が可能になるものではなく、それ故、リジッド基板を用いた場合の課題(反り、変形、接着後のめくれ等)や、FPCを用いた場合の課題(皺等)の両方を解決できる技術が求められている。   In order to solve this problem, it is considered effective to use an FPC (flexible printed circuit board) instead of the rigid board. However, materials such as polyimide that have been used for conventional FPCs are insufficiently stretchable, and bonding with adhesives causes wrinkles, distortion, float (peeling), etc. Remain. Further, in order to prevent the FPC from peeling from the heat radiating portion, it is necessary to completely hold the entire surface until an adhesive member such as silicon resin is cured (solidified). That is, since silicon resin is a material that cures at room temperature, it takes time to cure and there is a problem that assembly efficiency is low. As described above, if an FPC is used instead of a rigid substrate, it is not possible to increase the length. Therefore, there are problems when using a rigid substrate (warping, deformation, turning after bonding, etc.) There is a need for a technology that can solve both of the problems (such as defects) when used.

接着剤を用いた貼合による皺や歪み、剥離を解決するには、例えば接着部材の肉厚化などが考えられるが、発熱するLED素子の放熱経路を遮断してしまい、LED素子のジャンクション温度が上昇してLED素子の性能低下を招くなどの不都合が生じる可能性がある。また、接着部材の肉厚化などにより部材のコストが上がる。   In order to solve wrinkles, distortion, and peeling caused by bonding using an adhesive, for example, thickening of an adhesive member can be considered, but the heat dissipation path of the LED element that generates heat is blocked, and the junction temperature of the LED element There is a possibility that inconveniences such as a decrease in the performance of the LED element may occur. Further, the cost of the member increases due to the thickening of the adhesive member.

特許文献1には、接着剤を用いずに複数の板バネを使用して発光部のリジッド基板を放熱部に固定する技術が開示されているが、この技術はあくまでもリジッド基板を対象としたものであり、FPCには適用できない。また、特許文献1では、複数の板バネを使用して固定しているため、部品点数が多くなり、また、各板バネを固定するための固定工程が必要となり、製造工程数が増え、コスト高を招くという問題があった。   Patent Document 1 discloses a technique for fixing a rigid substrate of a light emitting unit to a heat radiating unit using a plurality of leaf springs without using an adhesive, but this technology is intended only for a rigid substrate. And cannot be applied to FPC. Moreover, in patent document 1, since it fixes using several leaf | plate springs, the number of parts increases, the fixing process for fixing each leaf | plate spring is needed, the number of manufacturing processes increases, cost is increased. There was a problem of incurring high.

本発明はこのような点に鑑みなされたもので、部品点数の削減による材料費の低減及び製造工程の簡素化による製造タクトの短縮が可能で、また、皺や歪み、浮き(剥離)などを抑制できて高品質な光ユニットの製造方法を提供することを目的とする。 The present invention has been made in view of the above points, and can reduce material costs by reducing the number of parts, shorten manufacturing tact by simplifying the manufacturing process, and eliminate wrinkles, distortion, floating (peeling), etc. It can be suppressed and to provide a method for producing a high-quality light emission unit.

本発明に係る発光ユニットの製造方法は、プリント基板に発光素子が実装されて構成された発光部と、発光部から放出される熱を発光部以外の対象に伝達する放熱部と、発光部と放熱部とを接合する接合部とを備え、接合部は、プリント基板を構成する基材自身の放熱部との接触面により構成され、発光部の発光に伴う発光部自身及び放熱部の少なくとも一方の最高到達温度より高く且つ発光素子のプリント基板への実装温度より低いガラス転移温度を有する樹脂素材を含んでおり、プリント基板を構成する基材の発光素子側の表面は、発光素子の発光天面を覆わないように反射部材で覆われている発光ユニットの製造方法であって、プリント基板の基材に発光素子を実装して発光部を組立てる工程と、組立てられた発光部を、プリント基板の基材が放熱部に接触するようにして載置する工程と、組立てられた発光部を放熱部に載置した状態で、基材のガラス転移温度以上の温度で加熱する工程と、加熱する工程の後に行われ、全体を冷却する工程と、冷却する工程の後に行われ、プリント基板を構成する基材の発光素子側の表面に、発光素子の発光天面を覆わないように反射部材を塗布する工程とを有するものである。 A light emitting unit manufacturing method according to the present invention includes a light emitting unit configured by mounting a light emitting element on a printed circuit board, a heat radiating unit that transmits heat released from the light emitting unit to an object other than the light emitting unit, and a light emitting unit. A joining portion that joins the heat radiating portion, and the joining portion is configured by a contact surface with the heat radiating portion of the base material itself constituting the printed circuit board, and at least one of the light emitting portion itself and the heat radiating portion accompanying light emission of the light emitting portion The surface of the base material constituting the printed circuit board on the light emitting element side is a light emitting element of the light emitting element, and includes a resin material having a glass transition temperature higher than the highest temperature of the light emitting element and lower than the mounting temperature of the light emitting element on the printed circuit board. the method for manufacturing a light emitting unit that is covered by the reflecting member so as not to cover the surface, a step of assembling the light-emitting portion by mounting the light emitting element to the base material of the printed circuit board, a light emitting portion which is assembled, the printed circuit board A step of the substrate is placed so as to contact with the heat radiating portion, while placing the light-emitting portion that is assembled to the heat radiating portion, and heating at a temperature above the glass transition temperature of the substrate, the step of heating The reflective member is applied to the surface of the base material constituting the printed circuit board on the light emitting element side so as not to cover the light emitting top surface of the light emitting element. And a process of performing.

本発明によれば、シリコン樹脂などの接着部材を使用しないことによる材料費の低減、照明ランプの製造工程の簡素化による製造タクトの短縮が可能で、また、プリント基板を構成する基材自身が接合部となることにより接合強度が高く、製造品質を向上できる。   According to the present invention, it is possible to reduce the material cost by not using an adhesive member such as silicon resin, shorten the manufacturing tact by simplifying the manufacturing process of the illumination lamp, and the base material itself constituting the printed circuit board can be reduced. By becoming a joint part, joint strength is high and manufacturing quality can be improved.

本発明の実施の形態1に係る照明ランプの主要部の構成を示す図である。It is a figure which shows the structure of the principal part of the illumination lamp which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る照明ランプの要部の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the principal part of the illumination lamp which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る照明ランプの主要部の構成を示す図である。It is a figure which shows the structure of the principal part of the illumination lamp which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る照明ランプの主要部の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the principal part of the illumination lamp which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る照明ランプの主要部の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the principal part of the illumination lamp which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る照明ランプの主要部の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the principal part of the illumination lamp which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る照明ランプの主要部の構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the principal part of the illumination lamp which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る照明装置の構成を示す斜視図である。It is a perspective view which shows the structure of the illuminating device which concerns on Embodiment 7 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る照明ランプの主要部の構成を示す図である。図1(a)は斜視模式図であり、図1(b)は図1(a)の断面模式図である。図1及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a main part of the illumination lamp according to Embodiment 1 of the present invention. FIG. 1A is a schematic perspective view, and FIG. 1B is a schematic cross-sectional view of FIG. In FIG. 1 and the drawings to be described later, the same reference numerals denote the same or corresponding parts, which are common throughout the entire specification. Furthermore, the forms of the constituent elements appearing in the entire specification are merely examples and are not limited to these descriptions.

実施の形態1における照明ランプ(直管型LEDランプ)1は、発光ユニット10と、発光ユニット10を内包するガラス製又はプラスチック製の筒状の外管60とを有している。そして、外管60の一方の端部60Aにはアース口金70の嵌合部73が嵌合され、他方の端部60Bには給電口金80の嵌合部83が嵌合されており、外管60の両端が塞がれた構成となっている。   The illumination lamp (straight tube type LED lamp) 1 in the first embodiment includes a light emitting unit 10 and a cylindrical outer tube 60 made of glass or plastic that encloses the light emitting unit 10. A fitting portion 73 of the ground cap 70 is fitted to one end 60A of the outer tube 60, and a fitting portion 83 of the power supply cap 80 is fitted to the other end 60B. Both ends of 60 are closed.

アース口金70は、有底筒状の口金筐体71と、口金筐体71の底部から外方に向かって突出するアース端子72とを備えている。また、給電口金80は、有底筒状の口金筐体81と、口金筐体81の底部から外方に向かって突出する一対の給電端子82とを備えている。   The ground base 70 includes a bottomed cylindrical base casing 71 and a ground terminal 72 projecting outward from the bottom of the base casing 71. The power supply base 80 includes a bottomed cylindrical base case 81 and a pair of power supply terminals 82 protruding outward from the bottom of the base case 81.

発光ユニット10は、発光素子としてのLED30がFPC40に実装されて構成された発光部20と、発光部20が載置され、発光部20の熱を放熱する放熱部50とを有している。   The light emitting unit 10 includes a light emitting unit 20 configured by mounting an LED 30 as a light emitting element on an FPC 40, and a heat radiating unit 50 on which the light emitting unit 20 is mounted and radiates heat from the light emitting unit 20.

FPC40は、プラスチックやポリマーなどの樹脂素材で構成されたフィルム状の基材(ベースフィルム)41と、基材41上に形成された配線パターンである銅箔42とを有している。基材41を構成する樹脂素材は電気絶縁性を有する絶縁体であり、基材41は接合部11により放熱部50に接合されている。   The FPC 40 includes a film-like base material (base film) 41 made of a resin material such as plastic or polymer, and a copper foil 42 that is a wiring pattern formed on the base material 41. The resin material constituting the base material 41 is an insulator having electrical insulation, and the base material 41 is joined to the heat dissipation part 50 by the joint part 11.

放熱部50は、アルミ製のヒートシンクであり、シリコン樹脂などでガラス製又はプラスチック製の外管60と接着されており、発光部20(の主にLED30)から発生する熱を照明ランプ1の外部へ伝達する。   The heat radiating unit 50 is an aluminum heat sink, which is bonded to a glass or plastic outer tube 60 with silicon resin or the like, and generates heat generated from the light emitting unit 20 (mainly the LED 30) to the outside of the illumination lamp 1. To communicate.

なお、図1(b)は模式図であり、縮尺や寸法などを規定しているものではない。実際の基材41は、50μm以上、5mm以下の板厚寸法(以下、厚寸という)を有する。また、銅箔42は数十μm以下程度の厚寸で構成する。   In addition, FIG.1 (b) is a schematic diagram and does not prescribe | regulate a scale, a dimension, etc. The actual base material 41 has a plate thickness dimension (hereinafter referred to as a thickness dimension) of 50 μm or more and 5 mm or less. Further, the copper foil 42 is formed with a thickness of about several tens of μm or less.

基材41には安価なプラスチック系の材料を用いることができ、また、ガラス転移温度Tgが以下の条件(1)、(2)を満足する範囲のものを使用する。
(1)発光部20の発光に伴う発光部20自身及び放熱部50の最高到達温度T1より高いこと
(2)発光部20におけるLED30を含む構成要素(部品)のFPC40への実装温度よりも低いこと
An inexpensive plastic material can be used for the base material 41, and a material whose glass transition temperature Tg satisfies the following conditions (1) and (2) is used.
(1) It is higher than the highest temperature T1 of the light emitting unit 20 itself and the heat radiating unit 50 due to the light emission of the light emitting unit 20 (2) It is lower than the mounting temperature of the components (components) including the LED 30 in the light emitting unit 20 on the FPC 40 about

通常点灯時の、発光部20及び放熱部50の少なくとも一方の最高到達温度T1は、概ね90℃程度である。また、例えばLED30を銅箔42に実装する際に用いる半田の溶融温度T2は、概ね180℃〜250℃程度である。よって、基材41にはガラス転移温度Tgが略110℃〜略220℃の範囲のものを使用する。具体的には例えば、基材41は熱伝導フィラを含有したプラスチックで構成される。基材41に上記のガラス転移温度Tgのものを使用する理由については後述する。   The highest temperature T1 of at least one of the light emitting unit 20 and the heat radiating unit 50 during normal lighting is approximately 90 ° C. For example, the melting temperature T2 of the solder used when mounting the LED 30 on the copper foil 42 is about 180 ° C. to 250 ° C. Therefore, the substrate 41 having a glass transition temperature Tg in the range of about 110 ° C. to about 220 ° C. is used. Specifically, for example, the base material 41 is made of a plastic containing a heat conductive filler. The reason why the substrate 41 having the above glass transition temperature Tg is used will be described later.

以上のように構成された照明ランプ1は、照明ランプ1外からの電力が給電端子82を介して発光部20に給電され、発光部20が点灯する。   In the illumination lamp 1 configured as described above, power from outside the illumination lamp 1 is supplied to the light emitting unit 20 via the power supply terminal 82, and the light emitting unit 20 is lit.

次に、本実施の形態1の特徴について説明する。
本実施の形態1は、発光部20を構成するFPC40の基材41が放熱部50に対してシリコン樹脂などの接着部材を用いることなく、直接、接合されている点を特徴としている。つまり、基材41を構成する樹脂素材自身、つまり基材41の放熱部50との接触面自身が接着剤として機能して接合部11を構成している。このように、基材41自身が接着剤として機能することで、皺や歪み、浮き(剥離)を抑えた固定が可能であり、製造品質の向上を図ることが可能である。また、接着剤が不要であるため、材料費の低減が可能である。
Next, features of the first embodiment will be described.
The first embodiment is characterized in that the base material 41 of the FPC 40 constituting the light emitting unit 20 is directly joined to the heat radiating unit 50 without using an adhesive member such as silicon resin. That is, the resin material itself constituting the base material 41, that is, the contact surface itself of the base material 41 with the heat radiating portion 50 functions as an adhesive to constitute the joint portion 11. As described above, the base material 41 itself functions as an adhesive, so that fixing with suppressing wrinkles, distortion, and floating (peeling) is possible, and it is possible to improve manufacturing quality. In addition, since no adhesive is required, the material cost can be reduced.

次に、基材(ベースフィルム)41に、ガラス転移温度Tgが略110℃〜略220℃のものを使用する理由について説明する。その理由には照明ランプ1の製造工程が関わるため、ここで、照明ランプ1の要部の製造工程について説明する。   Next, the reason for using a substrate (base film) 41 having a glass transition temperature Tg of approximately 110 ° C. to approximately 220 ° C. will be described. Since the reason involves the manufacturing process of the illumination lamp 1, the manufacturing process of the main part of the illumination lamp 1 will be described here.

図2は、本発明の実施の形態1に係る照明ランプの要部の製造工程を示すフローチャートである。
(S1)まず、発光部20の組立てを行う。すなわちLED30をFPC40の銅箔42に実装する。この実装方法には、以下の2つの方法を採用できる。
(1)接続部材(図示しない)を用いて実装する方法
接続部材としては、半田、導電ペースト、ACF(異方性導電フィルム)、ACP(異方性導電ペースト)、金属バンプ、などを用いる。
(2)接続部材を用いずに(最もシンプルな構成で)実装する方法
例えば、圧接工法、超音波接合工法、溶接工法、など。
FIG. 2 is a flowchart showing a manufacturing process of the main part of the illumination lamp according to Embodiment 1 of the present invention.
(S1) First, the light emitting unit 20 is assembled. That is, the LED 30 is mounted on the copper foil 42 of the FPC 40. The following two methods can be adopted as this mounting method.
(1) Method of mounting using connection member (not shown) As the connection member, solder, conductive paste, ACF (anisotropic conductive film), ACP (anisotropic conductive paste), metal bump, or the like is used.
(2) Method of mounting without using a connection member (with the simplest configuration) For example, a pressure welding method, an ultrasonic bonding method, a welding method, or the like.

(S2)次に、組立てられた発光部20を、FPC40の基材41部分が放熱部50(外管60内に接着された放熱部50)に接触するように放熱部50上に載置する。 (S2) Next, the assembled light emitting unit 20 is placed on the heat radiating unit 50 so that the base 41 portion of the FPC 40 is in contact with the heat radiating unit 50 (the heat radiating unit 50 bonded in the outer tube 60). .

(S3)上記(S2)の状態で、基材41のガラス転移温度Tg以上の温度(例えば250℃)のリフロー炉に通し、基材41を放熱部50になじみ接合させる。 (S3) In the state of (S2), the base material 41 is passed through a reflow furnace having a temperature equal to or higher than the glass transition temperature Tg of the base material 41 (for example, 250 ° C.), and the base material 41 is joined to the heat radiating part 50.

(S4)全体を冷却する。 (S4) The whole is cooled.

照明ランプ1を製造するにあたり、以上のように基材41のガラス転移温度Tg以上の温度にして加熱して基材41を放熱部50に接合するため、ガラス転移温度Tgが上記S1の実装温度よりも高いと、S3の工程で例えば実装部分の半田が溶けてしまう。このため、基材41には、実装温度よりも低いガラス転移温度のものを使用する。なお、上記S1の実装温度よりも低いとしたが、この実装温度は、LED30を含む構成要素(部品)の耐熱値(温度)や融点より低い温度であることはもちろんである。   In manufacturing the illumination lamp 1, the glass transition temperature Tg is heated to a temperature equal to or higher than the glass transition temperature Tg of the base material 41 to join the base material 41 to the heat radiating portion 50 as described above. If it is higher than this, for example, solder in the mounting portion will melt in the step S3. For this reason, the base material 41 has a glass transition temperature lower than the mounting temperature. Although the mounting temperature is lower than the mounting temperature of S1, the mounting temperature is naturally lower than the heat resistance value (temperature) and melting point of the component (component) including the LED 30.

また、基材41のガラス転移温度Tgが通常点灯時の最高到達温度T1以下であると、照明ランプ1の点灯中に基材41が軟化して基材41と放熱部50とが剥離する可能性がある。よって、基材41のガラス転移温度Tgを最高到達温度T1より高い温度としている。   In addition, when the glass transition temperature Tg of the base material 41 is equal to or lower than the maximum temperature T1 at the time of normal lighting, the base material 41 can be softened during the lighting of the illumination lamp 1 and the base material 41 and the heat radiation part 50 can be separated. There is sex. Therefore, the glass transition temperature Tg of the base material 41 is set to a temperature higher than the maximum attained temperature T1.

以上説明したように、本実施の形態1によれば、FPC40の基材41として発光ユニット10の最高到達温度T1より高く、発光部20におけるLED30を含む構成要素(部品)のFPC40への実装温度よりも低いガラス転移温度の樹脂材料を用い、基材41自身を接着剤として放熱部50に接合するようにした。これにより、基材41を放熱部50となじみ接合できて高い接合強度(剥離強度)とすることができ、硬化(固化)後は剥離が生じることもない。よって、皺や歪み、浮き(剥離)などを抑制できる。   As described above, according to the first embodiment, the mounting temperature of the component (component) including the LED 30 in the light emitting unit 20 on the FPC 40 that is higher than the highest temperature T1 of the light emitting unit 10 as the base material 41 of the FPC 40. A resin material having a lower glass transition temperature was used, and the base material 41 itself was bonded to the heat radiating portion 50 as an adhesive. As a result, the base material 41 can be joined to the heat radiating portion 50 to have a high bonding strength (peeling strength), and no peeling occurs after curing (solidification). Therefore, wrinkles, distortion, floating (peeling), and the like can be suppressed.

また、接着部材の塗布工程が不要で、例えば、250℃程度のリフロー炉を通すだけでよいため、製造工程の簡素化による製造タクトの短縮を可能となる。   Moreover, since the application | coating process of an adhesive member is unnecessary and it only needs to pass the reflow furnace of about 250 degreeC, for example, it becomes possible to shorten manufacturing tact by simplification of a manufacturing process.

また、LED30を実装するフィルム状の基材41そのものが、接着部材の機能を有し、これと別に接着部材を用いる必要がないため、接着層が無いことによる薄寸化が可能で、更に、放熱のボトルネックになることもない。   In addition, the film-like base material 41 itself on which the LED 30 is mounted has the function of an adhesive member, and it is not necessary to use an adhesive member separately. It does not become a bottleneck for heat dissipation.

なお、ガラス転移温度Tgが例えばポリイミドなどと比較して低いので、例えば再度リフロー炉に通すと基材41が軟化するが、LED30のジャンクション温度が実使用環境で100℃以下になるように照明ランプ1全体の放熱構成を設計しておけば、剥離することはない。   Since the glass transition temperature Tg is lower than, for example, polyimide, the base material 41 is softened when the glass transition temperature Tg is again passed through, for example, a reflow furnace, but the illumination lamp is set so that the junction temperature of the LED 30 is 100 ° C. or lower in the actual use environment. If the entire heat dissipation structure is designed, it will not peel off.

以上より、材料費の低減、照明ランプ1の製造工程の簡素化による製造品質の向上と製造タクトの短縮を達成できる発光ユニット10、照明ランプ1を得ることができる。   As described above, it is possible to obtain the light emitting unit 10 and the illumination lamp 1 that can achieve improvement in production quality and shortening of production tact by reducing material costs and simplifying the production process of the illumination lamp 1.

なお、ここでは、発光素子が実装されるプリント基板としてFPCを例に挙げたが、プリント基板はFPCに限られたものではなく、リジッド基板でもよい。また、プリント基板の配線パターンを形成する金属は、上述したように銅に限られたものではなく、アルミでもよい。要は、プラスチックやポリマーなどの樹脂素材であって、最高到達温度T1より高く、発光部20におけるLED30を含む構成要素(部品)のプリント基板への実装温度よりも低いガラス転移温度の樹脂材料で構成された基材に、配線パターンとなる金属膜が形成された構成であればよい。この点は、後述の実施の形態においても同様である。   Here, an FPC is taken as an example of a printed circuit board on which a light emitting element is mounted, but the printed circuit board is not limited to the FPC, and may be a rigid circuit board. The metal forming the wiring pattern of the printed board is not limited to copper as described above, and may be aluminum. In short, it is a resin material such as plastic or polymer, which has a glass transition temperature higher than the highest temperature T1 and lower than the mounting temperature of the components (components) including the LEDs 30 in the light emitting section 20 on the printed circuit board. What is necessary is just the structure by which the metal film used as a wiring pattern was formed in the comprised base material. This also applies to the embodiments described later.

実施の形態2.
基材41は樹脂素材で構成されているため、その特性上、接合の対象となる面は必ずしも平坦な面である必要はなく、曲面や、凸凹を有する面であっても良い。よって、実施の形態2では、基材41を外管60の内面に直接的に接合した構成としたものである。
Embodiment 2. FIG.
Since the base material 41 is made of a resin material, the surface to be joined is not necessarily a flat surface due to its characteristics, and may be a curved surface or a surface having irregularities. Therefore, in the second embodiment, the base material 41 is directly joined to the inner surface of the outer tube 60.

図3は、本発明の実施の形態2に係る照明ランプの主要部の構成を示す図である。図3(a)は斜視模式図であり、図3(b)は図3(a)の断面模式図である。以下、実施の形態2が実施の形態1と異なる部分を中心に説明する。なお、銅箔42は配線パターンであるが、図3(a)では詳細には示しておらず、簡略化して示している。また、実施の形態1と同様の構成部分について適用される変形例は、本実施の形態2についても同様に適用される。この点は後述の実施の形態においても同様である。   FIG. 3 is a diagram showing a configuration of a main part of the illumination lamp according to Embodiment 2 of the present invention. 3A is a schematic perspective view, and FIG. 3B is a schematic cross-sectional view of FIG. In the following, the second embodiment will be described focusing on the differences from the first embodiment. The copper foil 42 is a wiring pattern, but is not shown in detail in FIG. Further, the modification applied to the same components as those in the first embodiment is similarly applied to the second embodiment. This also applies to embodiments described later.

実施の形態2の照明ランプ1aの発光ユニット10aでは、FPC40aの基材(ベースフィルム)41aを外管60で構成された放熱部50aに直接的に接合し、発光部20a(の主にLED30)から発生する熱を照明ランプ1aの外管60から外部へ、より直接的に伝達する。   In the light emitting unit 10a of the illumination lamp 1a according to the second embodiment, the base material (base film) 41a of the FPC 40a is directly joined to the heat radiating part 50a formed by the outer tube 60, and the light emitting part 20a (mainly the LED 30). The heat generated from the lamp is more directly transmitted from the outer tube 60 of the illumination lamp 1a to the outside.

放熱部50aとなる外管60aは上述したようにガラス製やプラスチック製であるが、このような材質に対しても、実施の形態1と同様の工程にてFPC40aの基材41aを放熱部50aに強固に接合できる。すなわち、実施の形態2の製造工程は、図2に示した実施の形態1のS2において、FPC40aを外管60の放熱部50aに載置する点が実施の形態1と異なるが、それ以外は、実施の形態1と同様の方法でFPC40aの基材41aを放熱部50aに接合でき、接合部11aが構成されている。   As described above, the outer tube 60a serving as the heat radiating portion 50a is made of glass or plastic. However, even for such a material, the base 41a of the FPC 40a is attached to the heat radiating portion 50a in the same process as in the first embodiment. Can be joined firmly. That is, the manufacturing process of the second embodiment is different from the first embodiment in that the FPC 40a is placed on the heat radiating portion 50a of the outer tube 60 in S2 of the first embodiment shown in FIG. The base material 41a of the FPC 40a can be joined to the heat dissipating part 50a by the same method as in the first embodiment, and the joining part 11a is configured.

なお、基材41aは実施の形態1の基材41に比べて厚寸を厚くしているが、50μm以上、5mm以下の厚寸である点は実施の形態1と同様である。   The substrate 41a is thicker than the substrate 41 of the first embodiment, but is the same as the first embodiment in that the substrate 41a has a thickness of 50 μm or more and 5 mm or less.

以上説明したように、本実施の形態2によれば、実施の形態1と同様の効果が得られると共に、外管60とは別途設けられていたアルミ製の放熱部50が不要となるため、実施の形態1に比べて更にコスト低減が可能であり、また、実施の形態1に比べて効果的な放熱ができる。   As described above, according to the second embodiment, the same effects as those of the first embodiment can be obtained, and the aluminum heat dissipating part 50 provided separately from the outer tube 60 is not necessary. The cost can be further reduced as compared with the first embodiment, and more effective heat dissipation can be achieved as compared with the first embodiment.

実施の形態3.
実施の形態3は、光の利用率の低下を抑制するための反射部材を設けた照明ランプに関するものである。
Embodiment 3 FIG.
Embodiment 3 relates to an illumination lamp provided with a reflecting member for suppressing a decrease in the utilization factor of light.

図4は、本発明の実施の形態3に係る照明ランプの主要部の構成を示す断面模式図である。以下、実施の形態3が実施の形態1と異なる部分を中心に説明する。
実施の形態3における照明ランプ1bの発光ユニット10bは、図1に示した実施の形態1の照明ランプ1において銅箔42が形成された状態の基材41のLED設置側の表面に、全反射の特性を有する反射部材12をLED30の発光天面を覆わないように更に配置した構成を有する。なお、ここでいう「全反射の特性」とは完全な全反射に限らず、略全反射の様相を得られる特性を有していればよい。なお、図4には、基材41の側面及び放熱部50のLED設置側表面も反射部材12で覆った構成を示しているが、少なくとも基材41のLED設置側表面が反射部材12で覆われていればよい。
FIG. 4 is a schematic cross-sectional view showing the configuration of the main part of the illumination lamp according to Embodiment 3 of the present invention. In the following, the third embodiment will be described focusing on the differences from the first embodiment.
The light emitting unit 10b of the illumination lamp 1b in the third embodiment is totally reflected on the surface on the LED installation side of the base material 41 in the state in which the copper foil 42 is formed in the illumination lamp 1 of the first embodiment shown in FIG. The reflective member 12 having the above characteristics is further arranged so as not to cover the light emitting top surface of the LED 30. Here, the “total reflection characteristic” is not limited to complete total reflection, but may have a characteristic capable of obtaining a substantially total reflection aspect. 4 shows a configuration in which the side surface of the base material 41 and the LED installation side surface of the heat radiating unit 50 are also covered with the reflection member 12, but at least the LED installation side surface of the base material 41 is covered with the reflection member 12. It only has to be broken.

LED30から出射された光は外管60から外方へと出射されるが、一部は外管60で反射又は拡散される。外管60で反射又は拡散された光が基材41、銅箔42、放熱部50などに吸収されると、光の利用率が低下する。また、基材41は、一般にプラスチックやポリマーなどの樹脂素材からなる熱や光に晒されることによる変色が発生することがある。よって、反射部材12を配置することで、光の利用率の低下及び基材の変色を抑制できる。   The light emitted from the LED 30 is emitted outward from the outer tube 60, but part of the light is reflected or diffused by the outer tube 60. When the light reflected or diffused by the outer tube 60 is absorbed by the base material 41, the copper foil 42, the heat radiating portion 50, etc., the light utilization rate is lowered. Further, the base material 41 may be discolored by being exposed to heat or light generally made of a resin material such as plastic or polymer. Therefore, by disposing the reflecting member 12, it is possible to suppress a decrease in light utilization rate and discoloration of the base material.

反射部材12としては、高反射フィラーを含有した樹脂材料や、白色のレジストコーティングなどが用いられ、これを塗布することにより設置する。   As the reflecting member 12, a resin material containing a highly reflective filler, a white resist coating, or the like is used, and is installed by applying this.

以上説明したように、本実施の形態3によれば、実施の形態1と同様の効果が得られると共に以下の効果が得られる。すなわち、光を吸収する構成要素(基材41、銅箔42、放熱部50など)の表面に反射部材12を施して光の利用率を向上させる(点線矢印)ことで、光の利用率の低下を改善でき、また、基材41の変色を抑制できる。   As described above, according to the third embodiment, the same effects as those of the first embodiment can be obtained and the following effects can be obtained. That is, the light utilization rate is improved by applying the reflecting member 12 to the surface of the component that absorbs light (base material 41, copper foil 42, heat radiation part 50, etc.) (dotted line arrow). Decrease can be improved, and discoloration of the substrate 41 can be suppressed.

実施の形態4.
実施の形態4は、図3に示した実施の形態2と実施の形態3の特徴(反射部材)を組み合わせた実施の形態に相当するものである。
Embodiment 4 FIG.
The fourth embodiment corresponds to an embodiment in which the features (reflective members) of the second embodiment and the third embodiment shown in FIG. 3 are combined.

図5は、本発明の実施の形態4に係る照明ランプの主要部の構成を示す断面模式図である。以下、実施の形態4が実施の形態2と異なる部分を中心に説明する。
実施の形態4における照明ランプ1cの発光ユニット10cは、図3に示した実施の形態2の照明ランプ1aにおいて銅箔42が形成された状態の基材41aのLED設置側の表面に、略全反射の特性を有する反射部材12cをLED30の発光天面を覆わないように更に配置した構成を有する。図5には、基材41aの側面及び放熱部50aのLED設置側表面も反射部材12cで覆われた構成を示しているが、少なくとも基材41aのLED設置側表面が反射部材12cで覆われていればよい。
FIG. 5 is a schematic cross-sectional view showing the configuration of the main part of the illumination lamp according to Embodiment 4 of the present invention. Hereinafter, the difference between the fourth embodiment and the second embodiment will be mainly described.
The light emitting unit 10c of the illumination lamp 1c according to the fourth embodiment is substantially entirely on the surface on the LED installation side of the base material 41a in the state where the copper foil 42 is formed in the illumination lamp 1a according to the second embodiment shown in FIG. The reflection member 12c having the reflection characteristic is further arranged so as not to cover the light emitting top surface of the LED 30. 5 shows a configuration in which the side surface of the base material 41a and the LED installation side surface of the heat radiating portion 50a are also covered with the reflection member 12c, but at least the LED installation side surface of the base material 41a is covered with the reflection member 12c. It only has to be.

反射部材12cは、実施の形態3と同様に高反射フィラーを含有した樹脂材料や、白色のレジストコーティングなどが用いられ、これを、塗布することにより設置する。   As in the third embodiment, the reflecting member 12c is made of a resin material containing a highly reflective filler, a white resist coating, or the like, and is installed by applying it.

このように構成された実施の形態4は、実施の形態2と同様の効果が得られると共に、以下の効果が得られる。すなわち、光を吸収する構成要素(基材41a、銅箔42、放熱部50aなど)の表面に反射部材12cを施して光の利用率を向上させる(点線矢印)ことで、光の利用率の低下を改善でき、また、基材41aの変色を抑制できる。   The fourth embodiment configured as described above can obtain the same effects as those of the second embodiment and the following effects. That is, by applying the reflecting member 12c to the surface of the component that absorbs light (the base material 41a, the copper foil 42, the heat radiating portion 50a, etc.) to improve the light utilization rate (dotted arrow), Reduction can be improved and discoloration of the base material 41a can be suppressed.

実施の形態5.
上記各実施の形態では外管60を筒状に構成していたが、外管60は筒状に限定されるものではない。実施の形態5は、筒状以外の外管60の構成に関するものである。
Embodiment 5. FIG.
In each of the above embodiments, the outer tube 60 is configured in a cylindrical shape, but the outer tube 60 is not limited to a cylindrical shape. The fifth embodiment relates to the configuration of the outer tube 60 other than the tubular shape.

図6は、本発明の実施の形態5に係る照明ランプの主要部の構成を示す断面模式図である。以下、実施の形態5が図1に示した実施の形態1と異なる部分を中心に説明する。   FIG. 6 is a schematic cross-sectional view showing the configuration of the main part of the illumination lamp according to Embodiment 5 of the present invention. In the following, the fifth embodiment will be described focusing on the differences from the first embodiment shown in FIG.

実施の形態5における照明ランプ1dは、上記各実施の形態1〜4において筒状に構成していた外管60に代えて、外周面の一部を管軸方向に切り欠いて断面C字状に構成された外管60dを用いている。また、実施の形態5における発光ユニット10dは、外管60dにおいて切り欠かれた部分を補うように大型化した放熱部50dを有しており、放熱部50dが外管60dと接合されて全体として外型をここでは円形状に構成している。外管60dと放熱部50dとの接合方法は特に限定するものではなく任意の方法を採用できる。   The illumination lamp 1d according to the fifth embodiment replaces the outer tube 60 configured in the cylindrical shape in each of the first to fourth embodiments, and cuts a part of the outer peripheral surface in the tube axis direction so as to have a C-shaped cross section. The outer tube 60d configured as described above is used. Further, the light emitting unit 10d in the fifth embodiment has a heat radiating portion 50d that is enlarged to compensate for the notched portion of the outer tube 60d, and the heat radiating portion 50d is joined to the outer tube 60d as a whole. Here, the outer mold is formed in a circular shape. The joining method of the outer tube 60d and the heat radiating part 50d is not particularly limited, and any method can be adopted.

このように構成された実施の形態5は、上記各実施の形態1〜4の効果が得られると共に、放熱部50dを大きく構成できるため、放熱量を増加させることができる。   In the fifth embodiment configured as described above, the effects of the first to fourth embodiments described above can be obtained, and the heat radiating portion 50d can be configured larger, so that the heat radiation amount can be increased.

実施の形態6.
実施の形態6は、図6に示した実施の形態5の構成に更に反射部材を設けたものである。
Embodiment 6 FIG.
In the sixth embodiment, a reflecting member is further provided in the configuration of the fifth embodiment shown in FIG.

図7は、本発明の実施の形態6に係る照明ランプの主要部の構成を示す断面模式図である。以下、実施の形態6が図6に示した実施の形態5と異なる部分を中心に説明する。
実施の形態6における照明ランプ1eの発光ユニット10eは、銅箔42が形成された状態の基材41のLED設置側の表面に、LED30の発光天面を覆わないように略全反射の特性を有する反射部材12を更に配置した構成を有する。
FIG. 7 is a schematic cross-sectional view showing the configuration of the main part of the illumination lamp according to Embodiment 6 of the present invention. Hereinafter, the difference between the sixth embodiment and the fifth embodiment shown in FIG. 6 will be mainly described.
The light emitting unit 10e of the illumination lamp 1e according to the sixth embodiment has a substantially total reflection characteristic so that the light emitting top surface of the LED 30 is not covered on the surface of the base member 41 on which the copper foil 42 is formed on the LED installation side. It has a configuration in which the reflective member 12 having the same is further arranged.

このように構成された実施の形態6は、実施の形態5と同様の効果が得られると共に、以下の効果が得られる。すなわち、光を吸収する構成要素(基材41、銅箔42、放熱部50dなど)の表面に反射部材12を施して光の利用率を向上させる(点線矢印)ことで、光の利用率の低下を改善でき、また、基材41の変色を抑制できる。   The sixth embodiment configured as described above can obtain the same effects as those of the fifth embodiment and the following effects. That is, the light utilization factor is improved by applying the reflecting member 12 to the surface of the component that absorbs light (the base material 41, the copper foil 42, the heat radiating part 50d, etc.) (dotted arrow). Decrease can be improved, and discoloration of the substrate 41 can be suppressed.

なお、上記各実施の形態では、直管形LEDランプを例示して説明しているが、本発明は直管形LEDランプに限られたものではなく、ミニクリプトン形、ハロゲン形、HID形を含む電球形LEDランプにも適用可能である。   In each of the above embodiments, a straight tube type LED lamp is described as an example. However, the present invention is not limited to a straight tube type LED lamp, and a mini krypton type, a halogen type, and an HID type are used. It is applicable also to the bulb-type LED lamp which contains it.

また、上記各実施の形態では、発光部20の発光素子としてLEDを用いた構成を説明したが、発光部20の発光素子はLEDに限られたものではなく、レーザーダイオード、有機ELなどを用いてもよいし、光を発するものであれば、これら以外のものを用いてもよい。   Moreover, although each said embodiment demonstrated the structure which used LED as the light emitting element of the light emission part 20, the light emitting element of the light emission part 20 is not restricted to LED, A laser diode, organic EL, etc. are used. As long as it emits light, things other than these may be used.

また、図2のフローチャートに記載していないが、照明ランプの仕様(発光ユニットの仕様)に応じて、実施の形態3、4、6に示す反射部材を配置(塗布)する場合には、反射部材を配置する工程をステップS4の後に追加すればよい。   Although not described in the flowchart of FIG. 2, when the reflecting member shown in Embodiments 3, 4, and 6 is disposed (applied) according to the specifications of the illumination lamp (the specifications of the light emitting unit), the reflection is performed. What is necessary is just to add the process of arrange | positioning a member after step S4.

実施の形態7.
実施の形態7は照明装置に関するものである。
Embodiment 7 FIG.
Embodiment 7 relates to a lighting device.

図8は、本発明の実施の形態7に係る照明装置の構成を示す斜視図である。
照明装置100は、本体101と、本体101に取り付けられ、照明ランプを保持する一対のソケット102と、一対のソケット102に取り付けられる照明ランプとを備えている。照明ランプには、上記実施の形態1〜6の照明ランプ1、1a、1b、1c、1d、1eを適用することができる。
FIG. 8 is a perspective view showing a configuration of a lighting apparatus according to Embodiment 7 of the present invention.
The illumination device 100 includes a main body 101, a pair of sockets 102 attached to the main body 101 and holding the illumination lamps, and an illumination lamp attached to the pair of sockets 102. The illumination lamps 1, 1a, 1b, 1c, 1d, and 1e of the first to sixth embodiments can be applied to the illumination lamp.

なお、上記実施の形態1〜7では、プリント基板がFPCであるとして説明したが、上述したようにプリント基板はFPCに限らず、リジッド基板でもよい。つまり、上記実施の形態1〜7で説明した技術を採用することにより、プリント基板がFPC及びリジッド基板のどちらであっても、直管形LEDランプの長尺化に伴う、反り、変形、接着後のめくれ、皺等の改善を図ることができる。   In the first to seventh embodiments, the printed circuit board is described as an FPC. However, as described above, the printed circuit board is not limited to the FPC and may be a rigid circuit board. In other words, by adopting the techniques described in the above first to seventh embodiments, even if the printed circuit board is either an FPC or a rigid circuit board, the warp, deformation, and adhesion associated with the lengthening of the straight tube LED lamp. It is possible to improve after turn and wrinkle.

1 照明ランプ、1a 照明ランプ、1b 照明ランプ、1c 照明ランプ、1d 照明ランプ、1e 照明ランプ、10 発光ユニット、10a 発光ユニット、10b 発光ユニット、10c 発光ユニット、10d 発光ユニット、10e 発光ユニット、11 接合部、11a 接合部、12 反射部材、12c 反射部材、20 発光部、20a 発光部、30 LED 40 FPC、40a FPC、41 基材、41a 基材、42 銅箔、50 放熱部、50a 放熱部、50d 放熱部、60 外管、60A 端部、60B 端部、60a 外管、60d 外管、70 アース口金、71 口金筐体、72 アース端子、73 嵌合部、80 給電口金、81 口金筐体、82 給電端子、83 嵌合部、100 照明装置、101 本体、102 ソケット。   DESCRIPTION OF SYMBOLS 1 Illumination lamp, 1a illumination lamp, 1b illumination lamp, 1c illumination lamp, 1d illumination lamp, 1e illumination lamp, 10 light emission unit, 10a light emission unit, 10b light emission unit, 10c light emission unit, 10d light emission unit, 10e light emission unit, 11 joining Part, 11a joint part, 12 reflective member, 12c reflective member, 20 light emitting part, 20a light emitting part, 30 LED 40 FPC, 40a FPC, 41 base material, 41a base material, 42 copper foil, 50 heat radiation part, 50a heat radiation part, 50d heat radiating part, 60 outer tube, 60A end, 60B end, 60a outer tube, 60d outer tube, 70 earth base, 71 base case, 72 ground terminal, 73 fitting part, 80 power supply base, 81 base case 82 Power supply terminal 83 Fitting part 100 Lighting device 101 Body 102 Ket.

Claims (3)

プリント基板に発光素子が実装されて構成された発光部と、
前記発光部から放出される熱を前記発光部以外の対象に伝達する放熱部と、
前記発光部と前記放熱部とを接合する接合部と
を備え、
前記接合部は、
前記プリント基板を構成する基材自身の前記放熱部との接触面により構成され、前記発光部の発光に伴う前記発光部自身及び前記放熱部の少なくとも一方の最高到達温度より高く且つ前記発光素子の前記プリント基板への実装温度より低いガラス転移温度を有する樹脂素材を含んでおり、
前記プリント基板を構成する前記基材の前記発光素子側の表面は、前記発光素子の発光天面を覆わないように反射部材で覆われている発光ユニットの製造方法であって、
前記プリント基板の前記基材に前記発光素子を実装して前記発光部を組立てる工程と、
組立てられた前記発光部を、前記プリント基板の前記基材が前記放熱部に接触するようにして載置する工程と、
組立てられた前記発光部を前記放熱部に載置した状態で、前記基材のガラス転移温度以上の温度で加熱する工程と、
前記加熱する工程の後に行われ、全体を冷却する工程と、
前記冷却する工程の後に行われ、前記プリント基板を構成する前記基材の前記発光素子側の表面に、前記発光素子の前記発光天面を覆わないように前記反射部材を塗布する工程と、
を有する
発光ユニットの製造方法。
A light emitting unit configured by mounting a light emitting element on a printed circuit board;
A heat dissipating part for transferring heat released from the light emitting part to a target other than the light emitting part;
A joining part for joining the light emitting part and the heat radiating part;
With
The joint is
It is constituted by a contact surface of the base material itself that constitutes the printed circuit board with the heat radiating part, and is higher than the highest temperature reached by at least one of the light emitting part itself and the heat radiating part accompanying light emission of the light emitting part, and Including a resin material having a glass transition temperature lower than the mounting temperature on the printed circuit board;
The surface of the base material constituting the printed circuit board on the light emitting element side is a method for manufacturing a light emitting unit covered with a reflective member so as not to cover the light emitting top surface of the light emitting element ,
Mounting the light emitting element on the base of the printed circuit board and assembling the light emitting unit;
Placing the assembled light emitting unit such that the base material of the printed circuit board is in contact with the heat radiating unit; and
In a state where the assembled light emitting part is placed on the heat radiating part, heating at a temperature equal to or higher than the glass transition temperature of the base material;
Performed after the heating step, cooling the whole, and
Applying the reflective member so as not to cover the light emitting top surface of the light emitting element on the light emitting element side surface of the base material constituting the printed circuit board, which is performed after the cooling step;
A method for manufacturing a light emitting unit having
前記プリント基板は、FPC又はリジッド基板である
請求項記載の発光ユニットの製造方法。
The printed circuit board manufacturing method of the light-emitting unit according to claim 1 wherein the FPC or rigid substrate.
前記プリント基板の配線パターンを形成する金属は銅又はアルミである
請求項1又は2記載の発光ユニットの製造方法。
The method for manufacturing a light emitting unit according to claim 1 or 2, wherein the metal forming the wiring pattern of the printed board is copper or aluminum.
JP2013206741A 2013-10-01 2013-10-01 Manufacturing method of light emitting unit Active JP6332933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013206741A JP6332933B2 (en) 2013-10-01 2013-10-01 Manufacturing method of light emitting unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013206741A JP6332933B2 (en) 2013-10-01 2013-10-01 Manufacturing method of light emitting unit

Publications (3)

Publication Number Publication Date
JP2015072749A JP2015072749A (en) 2015-04-16
JP2015072749A5 JP2015072749A5 (en) 2016-11-10
JP6332933B2 true JP6332933B2 (en) 2018-05-30

Family

ID=53015011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013206741A Active JP6332933B2 (en) 2013-10-01 2013-10-01 Manufacturing method of light emitting unit

Country Status (1)

Country Link
JP (1) JP6332933B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858204B2 (en) * 2007-02-08 2012-01-18 ソニー株式会社 Backlight device and display device
KR100872696B1 (en) * 2007-04-16 2008-12-10 엘지이노텍 주식회사 Lighting device and display apparatus using thereof
KR100957218B1 (en) * 2007-12-27 2010-05-11 삼성전기주식회사 light emitting diode unit
JP2011014890A (en) * 2009-06-02 2011-01-20 Mitsubishi Chemicals Corp Metal substrate and light source device
JP2011249534A (en) * 2010-05-26 2011-12-08 Daisho Denshi Co Ltd Flexible wiring board, light-emitting module, manufacturing method of light-emitting module, and manufacturing method of flexible wiring board
JP5530321B2 (en) * 2010-09-21 2014-06-25 パナソニック株式会社 Lamp and lighting device
TWI445465B (en) * 2010-10-29 2014-07-11 Toshiba Lighting & Technology Light emitting module and lighting equipment
JP5683922B2 (en) * 2010-12-02 2015-03-11 パナソニックIpマネジメント株式会社 Lamp, lighting device, and method of manufacturing lamp
JP5777894B2 (en) * 2011-01-18 2015-09-09 ローム株式会社 LED lamp and manufacturing method of LED lamp
JP5817140B2 (en) * 2011-02-21 2015-11-18 昭和電工株式会社 Method of joining metal member and resin member
JP5805558B2 (en) * 2012-03-01 2015-11-04 三菱電機照明株式会社 LED lighting device

Also Published As

Publication number Publication date
JP2015072749A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
US9303855B2 (en) Light emitting module having heat conductive substrate
US7963674B2 (en) Light emitting diode package having flexible PCT directly connected to light source
US20160281946A1 (en) Led support with reception surface and electrical connection by wire-bonding
KR20150009600A (en) Thermal trim for a luminaire
JP4981600B2 (en) lighting equipment
JP4943943B2 (en) Vehicle lamp using LED lighting device
JP2020004688A (en) Lighting fixture unit and vehicular lighting fixture and lighting fixture unit manufacturing method
JP2008042162A (en) Method of manufacturing circuit board having heat radiating function
JP2008042120A (en) Heat conducting substrate, manufacturing method thereof, and electronic apparatus employing the same
JP4469308B2 (en) LED lighting device
JP2009212367A (en) Semiconductor light-emitting device
US10458603B2 (en) Tubular lighting assembly with elastic elongated substrate and method of manufacturing a tubular lighting assembly with elastic elongated substrate
JP2006066725A (en) Semiconductor device equipped with heat dissipation structure, and its assembly method
JP6332933B2 (en) Manufacturing method of light emitting unit
US11432401B2 (en) Electronic assembly and automotive luminous device
JP2010003946A (en) Package of light emitting element, and manufacturing method of light emitting element
US10825975B2 (en) Semiconductor light-emitting device having gap between thermally-conductive film and metal core and method for producing same
KR101785654B1 (en) LED Lighting Device and Method of manufacturing thereof
JP2008235493A (en) Light-emitting element storage package
JP5956499B2 (en) Light source device and display device including the light source device
JP2009301795A (en) Lighting device and method of manufacturing lighting device
JP5582633B2 (en) LED lighting device
JP2005038870A (en) Light emitting diode lamp
TWI448646B (en) Manufacturing method for lamp heat-dissipation structure and manufacturing method for lamp assembly
JP2005294292A (en) Light emitting device and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180424

R150 Certificate of patent or registration of utility model

Ref document number: 6332933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250