JP6327181B2 - High silicon steel sheet - Google Patents

High silicon steel sheet Download PDF

Info

Publication number
JP6327181B2
JP6327181B2 JP2015050630A JP2015050630A JP6327181B2 JP 6327181 B2 JP6327181 B2 JP 6327181B2 JP 2015050630 A JP2015050630 A JP 2015050630A JP 2015050630 A JP2015050630 A JP 2015050630A JP 6327181 B2 JP6327181 B2 JP 6327181B2
Authority
JP
Japan
Prior art keywords
less
silicon steel
high silicon
steel sheet
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015050630A
Other languages
Japanese (ja)
Other versions
JP2016169423A (en
Inventor
尾田 善彦
善彦 尾田
多津彦 平谷
多津彦 平谷
勝司 笠井
勝司 笠井
智幸 大久保
智幸 大久保
中西 匡
匡 中西
宏章 中島
宏章 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015050630A priority Critical patent/JP6327181B2/en
Publication of JP2016169423A publication Critical patent/JP2016169423A/en
Application granted granted Critical
Publication of JP6327181B2 publication Critical patent/JP6327181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、トランスやモータの鉄心材料等に使用される高けい素鋼板に関するものである。   The present invention relates to a high silicon steel sheet used for a core material of a transformer or a motor.

けい素鋼板は優れた磁気特性を有するため、トランスやモータの鉄心材料等に広く使用されている。そして、けい素鋼板の鉄損は、Si添加量が増加するほど低下するため、磁気特性(鉄損)の点から高けい素鋼板を用いることが好ましい。   Silicon steel plates have excellent magnetic properties, and are therefore widely used for transformers and motor core materials. And since the iron loss of a silicon steel plate falls, so that Si addition amount increases, it is preferable to use a high silicon steel plate from the point of a magnetic characteristic (iron loss).

高けい素鋼板をトランスやモータ等の部品として使用する場合、打ち抜き加工が必要となる。しかし、高けい素鋼板は脆性であるため打ち抜き加工による割れが生じ易く、このため、その加工は特許文献1に示されるように温間加工で行うか、或いは、加工条件、例えば、金型のクリアランスを厳密に管理して行う必要がある。   When a high silicon steel plate is used as a component such as a transformer or a motor, punching is required. However, since the high silicon steel sheet is brittle, it is likely to be cracked by punching. For this reason, the processing is performed by warm processing as shown in Patent Document 1, or processing conditions such as a mold It is necessary to manage the clearance strictly.

特開昭62−263827号公報Japanese Patent Laid-Open No. 62-263827

しかしながら、温間加工を行うためには加熱設備を備えたプレス機が必要になり、また、熱膨張を考慮した金型設計が必要であるため、高精度の高価な金型が不可欠となる。   However, in order to perform warm processing, a press machine equipped with heating equipment is required, and a mold design that takes thermal expansion into consideration is necessary. Therefore, a highly accurate and expensive mold is indispensable.

また、室温で加工する場合にはクリアランスを通常の電磁鋼板よりも非常に狭く管理すれば打ち抜き可能であるが、その場合、金型の損耗が激しく、チッピング等が起こりやすいという問題がある。また、打ち抜きに伴いクリアランスも広くなるため、金型の交換頻度が高くなるという問題がある。   Further, when machining at room temperature, punching can be performed if the clearance is controlled to be much narrower than that of a normal electromagnetic steel sheet, but in this case, there is a problem that die wear is severe and chipping is likely to occur. In addition, since the clearance becomes wider as the punching is performed, there is a problem in that the replacement frequency of the mold is increased.

本発明はかかる課題を解決し、打ち抜き加工性および磁気特性に優れた高けい素鋼板を提供することを目的とする。   An object of the present invention is to solve such problems and to provide a high silicon steel sheet excellent in punching workability and magnetic properties.

本発明者らは高けい素鋼板の打ち抜き時の割れを防止する手段について鋭意検討した。その結果、結晶粒界に偏析する元素中の酸素濃度、すなわち、結晶粒界の酸素濃度(以下、結晶粒界の酸素量と称することもある)を制御するともに、粒界偏析型元素であるSe、好ましくはさらにSbの量を規定することにより良好な打ち抜き加工性が得られることを見出し、本発明を完成するに至った。   The present inventors diligently studied a means for preventing cracking during punching of a high silicon steel sheet. As a result, the oxygen concentration in the element segregating at the crystal grain boundary, that is, the oxygen concentration at the crystal grain boundary (hereinafter sometimes referred to as the oxygen amount of the crystal grain boundary) is controlled, and the element is a grain boundary segregation element. It has been found that good punching workability can be obtained by regulating the amount of Se, preferably Sb, and the present invention has been completed.

本発明は以上の知見に基づいてなされたものであり、以下を要旨とするものである。
[1]mass%で、Si:5.0%以上7.0%以下、C:0.01%以下、Mn:0.01%以上1.0%以下、Al:0.1%以下、O:0.01%以下、P:0.020%以下、S:0.010%以下、Se:0.008%以下を含み、残部Feおよび不可避不純物からなり、結晶粒界の酸素濃度(結晶粒界に偏析する元素中の酸素濃度)が30at%以下である高けい素鋼板。
[2]mass%で、さらに、Sb:0.0005%以上0.008%以下を含有する上記[1]に記載の高けい素鋼板。
なお、本明細書において、鋼の成分を示す%は特に断りのない限りmass%である。
This invention is made | formed based on the above knowledge, and makes the following a summary.
[1] In mass%, Si: 5.0% to 7.0%, C: 0.01% or less, Mn: 0.01% to 1.0%, Al: 0.1% or less, O : 0.01% or less, P: 0.020% or less, S: 0.010% or less, Se: 0.008% or less, the balance being Fe and inevitable impurities, the oxygen concentration at the grain boundary (crystal grain A high silicon steel sheet having an oxygen concentration in the element segregating in the boundary of 30 at% or less.
[2] The high silicon steel sheet according to the above [1], further containing mass% and Sb: 0.0005% or more and 0.008% or less.
In addition, in this specification,% which shows the component of steel is mass% unless there is particular notice.

本発明によれば、打ち抜き加工性および磁気特性に優れた高けい素鋼板を提供することができる。高精度の高価な金型を必要とせず、金型の損耗が激しく、チッピング等が起こりやすいという問題も解決される。したがって、本発明の鋼板は、トランスやモータの鉄心材料として好適に用いることができる。   ADVANTAGE OF THE INVENTION According to this invention, the high silicon steel plate excellent in stamping workability and a magnetic characteristic can be provided. The problem that high-precision and expensive molds are not required, the molds are severely worn, and chipping is likely to occur. Therefore, the steel plate of the present invention can be suitably used as a core material for transformers and motors.

結晶粒界の酸素量と割れ個数との関係を示す図である。It is a figure which shows the relationship between the oxygen amount of a crystal grain boundary, and the number of cracks. Se量と割れ個数との関係を示す図である。It is a figure which shows the relationship between Se amount and the number of cracks.

以下、本発明を詳細に説明する。
本発明を実験結果に基づいて詳細に説明する。
Hereinafter, the present invention will be described in detail.
The present invention will be described in detail based on experimental results.

最初に、打ち抜き時の割れに及ぼす結晶粒界の酸素量の影響を調査するため、以下の実験を行った。C:0.0018%、Si:3.0%、Mn:0.24%、P:0.01%、Al:0.001%、S:0.0015%、O:0.0021%とした鋼をラボ溶解し、熱間圧延により板厚1.6mmとした。引き続き、この熱延板に980℃×30sの熱延板焼鈍を施し、酸洗後、板厚0.10mmまで冷間圧延し、四塩化珪素のガス中で1200℃×5minの仕上焼鈍を行い、仕上焼鈍後のSi濃度を6.5%とした。なお、結晶粒界の酸素濃度を変化させるため、仕上焼鈍時の露点を0℃〜−40℃の範囲で変化させた。以上により得られた高けい素鋼板に対して、50mm×30mmの矩形サンプルに室温で打ち抜き加工を施し、割れと各高けい素鋼板の結晶粒界の酸素量との関係を調査した。各鋼板の打ち抜き加工性は剪断面を倍率50倍の顕微鏡で検査し、割れの発生個数で評価した。結晶粒界の酸素量は、オージェ電子分光装置を用いた。この装置による測定では、真空度を10−7Pa以下に保った真空容器中において試料を破壊させ、大気に汚染されていない清浄な粒界破面を観察しながらオージェ電子を分光するものであり、これにより清浄な粒界破面における元素の分析が可能である。以上により得られた結果を図1に示す。図1より結晶粒界の酸素量を30at%以下とすることにより、打ち抜き時の割れ発生は大きく減少することがわかる。 First, the following experiment was conducted in order to investigate the influence of the amount of oxygen at the grain boundaries on the cracking at the time of punching. C: 0.0021%, Si: 3.0%, Mn: 0.24%, P: 0.01%, Al: 0.001%, S: 0.0015%, O: 0.0021% The steel was melted in the laboratory and the thickness was 1.6 mm by hot rolling. Subsequently, this hot-rolled sheet was subjected to hot-rolled sheet annealing at 980 ° C. × 30 s, pickled, cold-rolled to a sheet thickness of 0.10 mm, and subjected to finish annealing at 1200 ° C. × 5 min in silicon tetrachloride gas. The Si concentration after finish annealing was set to 6.5%. In addition, in order to change the oxygen concentration of a crystal grain boundary, the dew point at the time of finish annealing was changed in the range of 0 degreeC--40 degreeC. The high silicon steel sheet obtained as described above was punched into a 50 mm × 30 mm rectangular sample at room temperature, and the relationship between the cracks and the amount of oxygen at the grain boundaries of each high silicon steel sheet was investigated. The punchability of each steel plate was evaluated by examining the sheared surface with a microscope with a magnification of 50 times and the number of cracks generated. An Auger electron spectrometer was used for the amount of oxygen at the grain boundaries. In this measurement, the sample is broken in a vacuum vessel maintained at a vacuum level of 10 −7 Pa or less, and Auger electrons are dispersed while observing a clean grain boundary fracture surface that is not contaminated by the atmosphere. This makes it possible to analyze elements at a clean grain boundary fracture surface. The results obtained as described above are shown in FIG. From FIG. 1, it can be seen that the occurrence of cracks at the time of punching is greatly reduced by setting the amount of oxygen at the grain boundaries to 30 at% or less.

この原因を調査するため、打ち抜き時に割れた破面を観察したところ、結晶粒界の酸素量が低い材料では粒内割れが多く見られたが、結晶粒界の酸素量が高い材料では粒界割れが多く認められた。このことから、結晶粒界の酸素量が高くなると粒界強度が低下し、粒界割れが起こりやすくなり、打ち抜き時に割れが発生しやすくなったものと考えられる。
以上より、本発明では、結晶粒界の酸素濃度(結晶粒界の酸素量)は30at%以下とする。好ましくは10at%以下である。なお、結晶粒界の酸素濃度(結晶粒界の粒界酸素量)は、最終の熱処理として真空度を調整した真空熱処理を行うか、仕上焼鈍時の焼鈍温度に対して、露点を厳密に調整することにより制御することができる。
In order to investigate this cause, the fracture surface that was cracked at the time of punching was observed, and many intragranular cracks were observed in the material with a low amount of oxygen at the crystal grain boundary. Many cracks were observed. From this, it is considered that when the oxygen content at the crystal grain boundary is increased, the grain boundary strength is decreased, cracking at the grain boundary is likely to occur, and cracking is likely to occur at the time of punching.
As described above, in the present invention, the oxygen concentration at the crystal grain boundary (the oxygen amount at the crystal grain boundary) is set to 30 at% or less. Preferably it is 10 at% or less. Note that the oxygen concentration at the grain boundaries (grain boundary oxygen content) is adjusted by adjusting the dew point with respect to the annealing temperature at the time of finish annealing by performing vacuum heat treatment with the degree of vacuum adjusted as the final heat treatment. Can be controlled.

次に、高けい素鋼板の製造安定性を調査するため、実機にて、C:0.0033%、Si:3.0%、Mn:0.19%、P:0.01%、Al=0.001%、S:0.0020%、O=0.0025%とした鋼を10チャージ溶解し、熱間圧延により板厚1.6mmとした。引き続き、この熱延板に980℃×30sの熱延板焼鈍を施し、酸洗後、板厚0.10mmまで冷間圧延し、四塩化珪素のガス中で1200℃×5minの仕上焼鈍を行い、仕上焼鈍後のSi濃度を6.5%とした。ここで露点は−40℃とした。以上により得られた高けい素鋼板に対して、50mm×30mmの矩形サンプルに室温で打ち抜き加工を施し、割れの発生を調査した。また、結晶粒界の酸化量をオージェ電子分光法にて測定した。その結果、結晶粒界の酸化量は10at%と低かったものの、打ち抜き時に割れるサンプルが認められた。割れた原因を調査するため、破面のオージェ分析を行ったところ、粒界にSeが認められ、鋼板の成分分析を行ったところ、Seが100ppmと高く含まれていることが明らかとなった。通常のけい素鋼板ではこの程度のSeの混入は打ち抜き加工性を劣化させることはないが、高けい素鋼板は非常に脆いため、極微量のSeの粒界偏析が打ち抜き時の割れを発生させたものと考えられる。   Next, in order to investigate the manufacturing stability of the high silicon steel sheet, C: 0.0033%, Si: 3.0%, Mn: 0.19%, P: 0.01%, Al = Steel having 0.001%, S: 0.0020%, and O = 0.0025% was melted by 10 charges, and hot rolled to a plate thickness of 1.6 mm. Subsequently, this hot-rolled sheet was subjected to hot-rolled sheet annealing at 980 ° C. × 30 s, pickled, cold-rolled to a sheet thickness of 0.10 mm, and subjected to finish annealing at 1200 ° C. × 5 min in silicon tetrachloride gas. The Si concentration after finish annealing was set to 6.5%. Here, the dew point was −40 ° C. The high silicon steel sheet obtained as described above was punched into a rectangular sample of 50 mm × 30 mm at room temperature, and the occurrence of cracks was investigated. Further, the amount of oxidation at the grain boundaries was measured by Auger electron spectroscopy. As a result, although the amount of oxidation at the crystal grain boundary was as low as 10 at%, a sample that cracked during punching was observed. In order to investigate the cause of the crack, Auger analysis of the fracture surface revealed that Se was observed at the grain boundaries, and analysis of the components of the steel sheet revealed that Se was contained as high as 100 ppm. . In normal silicon steel sheets, this level of Se contamination does not degrade punchability, but high silicon steel sheets are extremely brittle, so a very small amount of Se grain boundary segregation causes cracking during punching. It is thought that.

次に、Seが打ち抜き加工性に及ぼす影響を調査するため、実験室にて、C:0.0022%、Si:3.3%、Mn:0.22%、P:0.01%、Al:0.001%、S:0.0023%、O:0.0025%、Seをtr.〜0.012%とした鋼を溶解し、熱間圧延により板厚1.6mmとした。引き続きこの熱延板に980℃×30sの熱延板焼鈍を施し、酸洗後、板厚0.10mmまで冷間圧延し、四塩化珪素のガス中で1200℃×5minの仕上焼鈍を行い、仕上焼鈍後のSi濃度を6.5%とした。ここで露点は−40℃とした。以上により得られた高けい素鋼板に対して、50mm×30mmの矩形サンプルに室温で打ち抜き加工を施し、割れの発生を調査した。なお、割れの測定方法は図1の場合と同様である。   Next, in order to investigate the effect of Se on punching workability, C: 0.0022%, Si: 3.3%, Mn: 0.22%, P: 0.01%, Al : 0.001%, S: 0.0023%, O: 0.0025%, steel with Se of tr. To 0.012% was melted, and the thickness was 1.6 mm by hot rolling. Subsequently, this hot-rolled sheet was subjected to hot-rolled sheet annealing at 980 ° C. × 30 s, pickled, cold-rolled to a thickness of 0.10 mm, and subjected to finish annealing at 1200 ° C. × 5 min in a gas of silicon tetrachloride, The Si concentration after finish annealing was set to 6.5%. Here, the dew point was −40 ° C. The high silicon steel sheet obtained as described above was punched into a rectangular sample of 50 mm × 30 mm at room temperature, and the occurrence of cracks was investigated. In addition, the measuring method of a crack is the same as that of the case of FIG.

図2にSe量と割れ個数との関係を示す。図2より、Seが0.008%を超えると割れの発生頻度が高くなることがわかる。以上より、Seは打ち抜き時の割れ防止の観点からは少ない方が好ましく、本発明においては0.008%以下とする。   FIG. 2 shows the relationship between the Se amount and the number of cracks. From FIG. 2, it can be seen that when Se exceeds 0.008%, the occurrence frequency of cracks increases. From the above, it is preferable that Se is less from the viewpoint of preventing cracking at the time of punching, and in the present invention, it is 0.008% or less.

次に、本発明の高けい素鋼板の成分組成について説明する。   Next, the component composition of the high silicon steel sheet of the present invention will be described.

Si:5.0%以上7.0%以下
Siが5.0%未満では固有抵抗が低く、優れた高周波鉄損が得られない。一方、Siが7.0%を超えると飽和磁化が著しく低下する。このため、Siは5.0%以上7.0%以下とする。
Si: 5.0% to 7.0%
If Si is less than 5.0%, the specific resistance is low and an excellent high-frequency iron loss cannot be obtained. On the other hand, when Si exceeds 7.0%, the saturation magnetization is remarkably lowered. For this reason, Si is made 5.0% or more and 7.0% or less.

C:0.01%以下
Cは0.01%超えになると磁気時効により鉄損が増加するため、Cは0.01%以下とする。
C: 0.01% or less
If C exceeds 0.01%, iron loss increases due to magnetic aging, so C is 0.01% or less.

Mn:0.01%以上1.0%以下
Mnは加工性を改善するため0.01%以上必要である。一方、1.0%を超えると飽和磁化が低下する。このため、Mnは0.01%以上1.0%以下とする。
Mn: 0.01% or more and 1.0% or less
Mn is required to be 0.01% or more in order to improve workability. On the other hand, if it exceeds 1.0%, the saturation magnetization decreases. For this reason, Mn is made 0.01% or more and 1.0% or less.

Al:0.1%以下
Alは0.1%を超えると微細なAlNとして析出して磁気特性を劣化させる。このため、Alは0.1%以下とする。
Al: 0.1% or less
When Al exceeds 0.1%, it precipitates as fine AlN and deteriorates the magnetic properties. For this reason, Al is made 0.1% or less.

O:0.01%以下
Oは0.01%を超えると高けい素鋼板の加工性を劣化させる。このため、Oは0.01%以下とする。なお、ここで規定するOは、粒内および粒界を含む全体のO量である。
O: 0.01% or less When O exceeds 0.01%, the workability of the high silicon steel sheet deteriorates. For this reason, O is made 0.01% or less. In addition, O prescribed | regulated here is the total amount of O including the inside of a grain and a grain boundary.

P:0.020%以下
Pは0.020%を超えると材料が脆くなり打ち抜きが困難となる。このため、Pは0.020%以下とする。
P: 0.020% or less
If P exceeds 0.020%, the material becomes brittle and punching becomes difficult. For this reason, P is made 0.020% or less.

S:0.010%以下
Se同様に粒界偏析型の元素である。0.010%を超えると割れ発生頻度が高くなる。このため、Sは0.010%以下とする。
S: 0.010% or less
Like Se, it is a grain boundary segregation type element. If it exceeds 0.010%, the frequency of occurrence of cracks increases. For this reason, S is made 0.010% or less.

Se:0.008%以下
本発明において重要な要件である。図2に示す結果および上記により、Seは0.008%以下とする。好ましくは0.004%以下である。
Se: 0.008% or less This is an important requirement in the present invention. Based on the results shown in FIG. 2 and the above, Se is made 0.008% or less. Preferably it is 0.004% or less.

残部はFeおよび不可避不純物からなる。   The balance consists of Fe and inevitable impurities.

Sb:0.0005%以上0.008%以下(好適条件)
Sbは窒化防止による鉄損低減および集合組織制御による高磁束密度化の点から添加することが有効である。これらの効果を得るため、添加する場合は、0.0005%以上とする。一方、Sbも結晶粒界に偏析しやすい元素である。打ち抜き時の割れ防止の観点から、添加する場合は、0.008%以下とする。
Sb: 0.0005% to 0.008% (preferred conditions)
It is effective to add Sb from the viewpoint of reducing iron loss by preventing nitriding and increasing the magnetic flux density by texture control. In order to acquire these effects, when adding, it is made into 0.0005% or more. On the other hand, Sb is an element that easily segregates at the grain boundaries. From the viewpoint of preventing cracking during punching, when added, the content is made 0.008% or less.

次に、本発明の高けい素鋼板の製造方法について説明する。
本発明の高けい素鋼板の製造方法は、例えば、転炉、電気炉等公知の溶解炉で鋼を溶製し、あるいはさらに取鍋精錬、真空精錬等の二次精錬を経て上述した本発明の成分組成を有する鋼とし、連続鋳造法あるいは造塊−分塊圧延法で鋼片(スラブ)とし、その後、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上げ焼鈍、酸洗等の各工程を経て製造することができる。上記冷間圧延は、1回または中間焼鈍を挟む2回以上の冷間圧延としてもよく、また、冷間圧延、仕上げ焼鈍、酸洗の各工程は、繰り返して行ってもよい。さらに、熱延板焼鈍は省略してもよい。また、高けい素鋼板の製造プロセスは圧延法、急冷凝固法、浸珪法のいずれでも構わない。
Next, the manufacturing method of the high silicon steel plate of this invention is demonstrated.
The manufacturing method of the high silicon steel sheet of the present invention includes, for example, the present invention described above after melting steel in a known melting furnace such as a converter and an electric furnace, or further through secondary refining such as ladle refining and vacuum refining. Steel slab by continuous casting method or ingot-bundling rolling method, then hot rolling, hot rolled sheet annealing, pickling, cold rolling, finish annealing, pickling It can manufacture through each process of these. The cold rolling may be performed once or two or more cold rollings with intermediate annealing interposed therebetween, and the steps of cold rolling, finish annealing, and pickling may be repeated. Furthermore, the hot-rolled sheet annealing may be omitted. The manufacturing process of the high silicon steel plate may be any of a rolling method, a rapid solidification method, and a siliconization method.

なお、対象とする高けい素鋼板は無方向性電磁鋼板、方向性電磁鋼板のいずれもでも構わない。   The target high silicon steel plate may be a non-oriented electrical steel plate or a directional electrical steel plate.

以下、本発明を実施例により詳細に説明する。
表1に示す成分からなる鋼をラボ溶解し、熱間圧延により板厚1.6mmとした。なお、表1において、Siは仕上焼鈍後の含有量を記しており、ラボ溶解時にはいずれの鋼もSi:3%であった。引き続きこの熱延板に980℃×30sの熱延板焼鈍を施し、酸洗後、板厚0.10mmまで冷間圧延し、四塩化珪素のガス中で1200℃×10minの仕上焼鈍を行った。結晶粒界の酸素濃度を変化させるため、仕上焼鈍時の露点を0℃〜−40℃の範囲で変化させた。以上により得られた高けい素鋼板に対して、50mm×30mmの矩形サンプルに室温で打ち抜き加工を施した。ここで金型のクリアランスは板厚に対して5%とした。
上記により得られた各高けい素鋼板のサンプルに対して、結晶粒界の酸素濃度(結晶粒界の酸素量)を測定し、打ち抜き加工性と磁気特性を調査した。
各鋼板の打ち抜き加工性は剪断面を倍率50倍の顕微鏡で検査し、割れの発生個数で評価した。6個以下を良好、3個以下をさらに良好とした。
磁気特性は、JIS C2550に準拠する方法(エプスタイン試験方法)により、鉄損(W1/10k)と磁束密度(B50)を測定した。
結晶粒界の酸素濃度は、オージェ電子分光装置を用い、真空度を10−7Pa以下に保った真空容器中において試料を破壊させ、結晶粒界の酸素濃度を測定した。
Hereinafter, the present invention will be described in detail with reference to examples.
Steel having the components shown in Table 1 was melted in the laboratory, and the thickness was 1.6 mm by hot rolling. In Table 1, Si indicates the content after finish annealing, and all the steels were Si: 3% at the time of laboratory melting. Subsequently, this hot-rolled sheet was subjected to hot-rolled sheet annealing at 980 ° C. × 30 s, pickled, cold-rolled to a sheet thickness of 0.10 mm, and subjected to finish annealing at 1200 ° C. × 10 min in a silicon tetrachloride gas. . In order to change the oxygen concentration of the crystal grain boundary, the dew point during finish annealing was changed in the range of 0 ° C to -40 ° C. The high silicon steel sheet obtained as described above was punched at room temperature on a 50 mm × 30 mm rectangular sample. Here, the mold clearance was 5% of the plate thickness.
For each of the high silicon steel plate samples obtained as described above, the oxygen concentration at the grain boundaries (the amount of oxygen at the grain boundaries) was measured, and the punching workability and magnetic properties were investigated.
The punchability of each steel plate was evaluated by examining the sheared surface with a microscope with a magnification of 50 times and the number of cracks generated. Six or less were good and three or less were further good.
For the magnetic properties, iron loss (W1 / 10k) and magnetic flux density (B50) were measured by a method based on JIS C2550 (Epstein test method).
The oxygen concentration at the crystal grain boundary was measured by using an Auger electron spectrometer to break the sample in a vacuum vessel maintained at a vacuum degree of 10 −7 Pa or less and measuring the oxygen concentration at the crystal grain boundary.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

Figure 0006327181
Figure 0006327181

表1によれば、本発明条件を満足する高けい素鋼板(本発明例)は、磁気特性に優れる上、打ち抜き時の割れを防止することができる。一方、比較例は、打ち抜き加工性か磁気特性のいずれかが劣っている。   According to Table 1, the high silicon steel sheet (example of the present invention) that satisfies the conditions of the present invention is excellent in magnetic properties and can prevent cracking during punching. On the other hand, the comparative example is inferior in either punching workability or magnetic properties.

Claims (2)

mass%で、Si:5.0%以上7.0%以下、C:0.0038%以下、Mn:0.18%以上1.0%以下、Al:0.002%以下、O:0.01%以下、P:0.020%以下、S:0.010%以下、Se:0.0007%以上0.008%以下を含み、残部Feおよび不可避不純物からなり、結晶粒界の酸素濃度(結晶粒界に偏析する元素中の酸素濃度)が30at%以下である高けい素鋼板。 In mass%, Si: 5.0% or more and 7.0% or less, C: 0.0038 % or less, Mn: 0.18 % or more and 1.0% or less, Al: 0.002 % or less, O: 0.00 . 01% or less, P: 0.020% or less, S: 0.010% or less, Se: 0.0007% or more and 0.008% or less, the balance being Fe and unavoidable impurities, A high silicon steel sheet having an oxygen concentration in elements segregating at grain boundaries of 30 at% or less. mass%で、さらに、Sb:0.0005%以上0.008%以下を含有する請求項
1に記載の高けい素鋼板。
The high silicon steel sheet according to claim 1, further comprising Sb: 0.0005% or more and 0.008% or less in mass%.
JP2015050630A 2015-03-13 2015-03-13 High silicon steel sheet Active JP6327181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050630A JP6327181B2 (en) 2015-03-13 2015-03-13 High silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050630A JP6327181B2 (en) 2015-03-13 2015-03-13 High silicon steel sheet

Publications (2)

Publication Number Publication Date
JP2016169423A JP2016169423A (en) 2016-09-23
JP6327181B2 true JP6327181B2 (en) 2018-05-23

Family

ID=56983235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050630A Active JP6327181B2 (en) 2015-03-13 2015-03-13 High silicon steel sheet

Country Status (1)

Country Link
JP (1) JP6327181B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2992966C (en) 2015-09-17 2020-04-28 Jfe Steel Corporation High-silicon steel sheet and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2956406B2 (en) * 1993-01-25 1999-10-04 日本鋼管株式会社 High silicon magnetic steel sheet with excellent workability
JP2956399B2 (en) * 1992-12-08 1999-10-04 日本鋼管株式会社 High silicon magnetic steel sheet with excellent workability
JP2856011B2 (en) * 1992-12-22 1999-02-10 日本鋼管株式会社 High silicon steel sheet with excellent room temperature workability
JP5533958B2 (en) * 2012-08-21 2014-06-25 Jfeスチール株式会社 Non-oriented electrical steel sheet with low iron loss degradation by punching
JP6123234B2 (en) * 2012-11-02 2017-05-10 Jfeスチール株式会社 Electrical steel sheet

Also Published As

Publication number Publication date
JP2016169423A (en) 2016-09-23

Similar Documents

Publication Publication Date Title
JP6123960B1 (en) High silicon steel sheet and manufacturing method thereof
EP3575431B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
EP2960345B1 (en) Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
KR101570017B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
JP6801740B2 (en) Hot-rolled steel sheet for grain-oriented electrical steel sheet and its manufacturing method
KR101699194B1 (en) Hot-rolled steel sheet for producing non-oriented electrical steel sheet and method of producing same
KR101593346B1 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2011047045A (en) Grain-oriented magnetic steel sheet
JP7222445B1 (en) Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP5939190B2 (en) Electrical steel sheet
JP6327181B2 (en) High silicon steel sheet
JP6048282B2 (en) Electrical steel sheet
JP6233374B2 (en) High silicon steel sheet
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JP2009209428A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with remarkably high magnetic flux density
EP3947755B1 (en) Iron-silicon material suitable for medium frequency applications
JP2012102344A (en) Grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250