JP6327175B2 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP6327175B2
JP6327175B2 JP2015032617A JP2015032617A JP6327175B2 JP 6327175 B2 JP6327175 B2 JP 6327175B2 JP 2015032617 A JP2015032617 A JP 2015032617A JP 2015032617 A JP2015032617 A JP 2015032617A JP 6327175 B2 JP6327175 B2 JP 6327175B2
Authority
JP
Japan
Prior art keywords
battery
voltage
battery cell
charge amount
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015032617A
Other languages
Japanese (ja)
Other versions
JP2016158317A (en
Inventor
智樹 山根
智樹 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015032617A priority Critical patent/JP6327175B2/en
Publication of JP2016158317A publication Critical patent/JP2016158317A/en
Application granted granted Critical
Publication of JP6327175B2 publication Critical patent/JP6327175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

直列接続された複数の電池を備えた蓄電装置に関する。   The present invention relates to a power storage device including a plurality of batteries connected in series.

近年、電気自動車やスマートグリッドなどの登場により、高電池容量、高出力な電池が求められている。このような電池は複数のセルを直列に接続することで高電圧化することが可能である。   In recent years, with the advent of electric vehicles and smart grids, batteries with high battery capacity and high output have been demanded. Such a battery can be increased in voltage by connecting a plurality of cells in series.

複数の電池セルが直列に接続されてなる組電池を備える蓄電装置において、各電池セルの性能を最大限発揮できるようにするために、各電池セル間の電圧のズレを修正するセル電圧バランス技術が知られている。具体的には、たとえば、各電池セルに抵抗を接続して基準に定めた電池セルに合わせて他の電池セルを放電させることによって組電池内の電圧バランスを合わせる方法が知られている。   Cell voltage balance technology that corrects voltage deviation between battery cells in order to maximize the performance of each battery cell in a power storage device including an assembled battery in which a plurality of battery cells are connected in series It has been known. Specifically, for example, a method of matching the voltage balance in the assembled battery by connecting a resistance to each battery cell and discharging other battery cells in accordance with the battery cell determined as a reference is known.

例えば、特許文献1に記載の先行技術では、各電池の内部抵抗の大きさによって充電開始電圧を変更することで上限電圧を超えることによる劣化を抑制する技術が開示されている。   For example, the prior art described in Patent Document 1 discloses a technique for suppressing deterioration due to exceeding the upper limit voltage by changing the charging start voltage depending on the magnitude of the internal resistance of each battery.

また、特許文献2に記載の先行技術では、基準に定めた電池セルと各電池セルとの電池容量差に応じてバランス目標電圧値を算出し、算出されたバランス目標電圧値に各電池セルの電圧を調整する。バランス目標電圧値は、組電池の充電終了時の残充電容量と放電終了時の残放電容量とが略一致するように算出される。これにより、充電時および放電時のいずれにおいても、最も性能の低い電池の能力を最大限に発揮するように電池間での電圧のばらつきを抑制する技術が開示されている。   Moreover, in the prior art described in Patent Document 2, a balance target voltage value is calculated according to the battery capacity difference between the battery cell defined as a reference and each battery cell, and the calculated balance target voltage value is calculated for each battery cell. Adjust the voltage. The balance target voltage value is calculated so that the remaining charge capacity at the end of charging of the assembled battery and the remaining discharge capacity at the end of discharging substantially coincide. As a result, a technique is disclosed that suppresses voltage variations between batteries so as to maximize the performance of the battery with the lowest performance, both during charging and discharging.

特開2009−232659公報JP 2009-232659 A 特開2013−169055公報JP 2013-169055 A

しかしながら、特許文献1に記載の先行技術は、長期間使用することで生じる抵抗のばらつきのため大電流での充電時に劣化することを抑制できるものの、充放電可能な電池容量にばらつきが生じるため電池の容量を最大限に発揮することができないという課題を有する。
特許文献2に記載の先行技術は、電池容量が最も小さい電池の性能を最大限に発揮するように電圧を制御しているものの、大電流の充放電時には上限及び下限の電圧を超えることで劣化させないため、または上位のシステムによる上限及び下限の電圧の制限により入出力特性が低下するため、いまだ改善の余地を残している。
However, although the prior art described in Patent Document 1 can suppress deterioration during charging with a large current due to variations in resistance caused by long-term use, the battery capacity varies due to variations in chargeable / dischargeable battery capacity. There is a problem that the capacity of can not be maximized.
Although the prior art described in Patent Document 2 controls the voltage so as to maximize the performance of the battery having the smallest battery capacity, it deteriorates by exceeding the upper and lower limit voltages when charging and discharging a large current. Since the input / output characteristics are degraded due to the limitation of the upper limit voltage and the lower limit voltage by the upper system, there is still room for improvement.

本発明は、上記課題を解決するためになされたものであり、その主たる目的は、直列接続された複数の電池を備えた蓄電装置において、電池容量が最も小さい電池の充放電可能な電池容量を維持したまま蓄電装置の入出力特性を制御することにより、電池作製時だけでなく、長期間使用した際でも入力と出力のバランスを最適化することを可能とすることにある。   The present invention has been made in order to solve the above-mentioned problems, and its main object is to provide a battery capacity capable of charging / discharging the battery with the smallest battery capacity in a power storage device including a plurality of batteries connected in series. By controlling the input / output characteristics of the power storage device while maintaining it, it is possible to optimize the balance between input and output not only during battery production but also when used for a long period of time.

本発明は、直列接続された複数の電池を備えた蓄電装置において、前記複数の電池は第一電池と第二電池とを含み、前記第一電池の電池容量が前記第二電池の電池容量よりも大きく、前記第一電池の充電量に対する電圧の傾きが前記第二電池の充電量に対する電圧の傾きよりも大きいことを特徴とする。   The present invention provides a power storage device including a plurality of batteries connected in series, wherein the plurality of batteries include a first battery and a second battery, and the battery capacity of the first battery is greater than the battery capacity of the second battery. And the slope of the voltage with respect to the charge amount of the first battery is larger than the slope of the voltage with respect to the charge amount of the second battery.

上記構成によれば、蓄電装置では複数の電池が直列接続されており、この複数の電池には第一電池と第二電池が含まれている。第一電池の電池容量は第二電池の電池容量よりも大きく、また第一電池の充電量に対する電圧の傾きは第二電池の充電量に対する電圧の傾きよりも大きい。   According to the above configuration, a plurality of batteries are connected in series in the power storage device, and the plurality of batteries include the first battery and the second battery. The battery capacity of the first battery is larger than the battery capacity of the second battery, and the slope of the voltage with respect to the charge amount of the first battery is larger than the slope of the voltage with respect to the charge amount of the second battery.

このような構成を取らず、従来のように全ての電池の電池容量が略一致し、且つ充電量に対する電圧の傾きが一様に小さい電池のみで構成すると、一つまたは複数の電池を充電または放電することにより、電圧を変化させてシステムが許容する上限または下限電圧を超えることを抑制することができる。しかし、充電量に対する電圧の傾きが一様に小さいので、入出力特性の向上と比較した充電及び放電可能な電池容量の低下は、充電量に対する電圧の傾きが一様に大きい電池構成と比較して大きくなる。一方で従来のようにすべての電池の電池容量が略一致し、且つ充電量に対する電圧の傾きが一様に大きい場合は、充放電による電圧変化が大きく、入出力できる充電状態の幅は狭いものとなる。これに対して、上記構成にある第一電池のように、第二電池の電池容量よりも大きい電池容量を持ち、且つ充電量に対する電圧の傾きが第二電池の傾きよりも大きい電池を含むことで、第一電池の充電量を制御することにより第二電池の容量を低下させることなく電圧を制御し、ひいてはシステムの上限及び下限の電圧に制約される入出力特性を制御することが可能となる。特に、充電時の上限電圧と放電時の下限電圧の制約が偏っている場合や充電または放電時の抵抗増加が偏っている場合に効果が高い。この構成はすべての電池の容量を大きくした場合と比較して、体格、重量、材料コストで優れている。   If the battery capacity of all the batteries is substantially the same as in the prior art and the battery has only a small slope of the voltage with respect to the charge amount without using such a configuration, one or more batteries can be charged or By discharging, it is possible to suppress exceeding the upper limit or lower limit voltage allowed by the system by changing the voltage. However, since the slope of the voltage with respect to the charge amount is uniformly small, the decrease in the battery capacity that can be charged and discharged compared with the improvement of the input / output characteristics is compared with the battery configuration in which the slope of the voltage with respect to the charge amount is uniformly large. Become bigger. On the other hand, when the battery capacities of all the batteries are substantially the same as in the past and the slope of the voltage with respect to the charge amount is uniformly large, the voltage change due to charging / discharging is large, and the width of the charge state that can be input and output is narrow It becomes. On the other hand, like the first battery having the above-described configuration, the battery has a battery capacity larger than the battery capacity of the second battery, and includes a battery whose voltage gradient with respect to the charge amount is larger than that of the second battery. By controlling the charge amount of the first battery, it is possible to control the voltage without reducing the capacity of the second battery, and thus to control the input / output characteristics constrained by the upper and lower system voltages. Become. In particular, the effect is high when the upper limit voltage during charging and the lower limit voltage during discharging are biased, or when the resistance increase during charging or discharging is biased. This configuration is superior in terms of physique, weight, and material cost compared to the case where the capacity of all batteries is increased.

一実施形態にかかるシステム構成図である。It is a system configuration figure concerning one embodiment. 一実施形態にかかる電池セルの入出力特性を示す図である。It is a figure which shows the input / output characteristic of the battery cell concerning one Embodiment. 比較例にかかる電池セルの充電量に対する電圧を示す図である。It is a figure which shows the voltage with respect to the charge amount of the battery cell concerning a comparative example. 一実施形態にかかる電池セルの充電量に対する電圧を示す図である。It is a figure which shows the voltage with respect to the charge amount of the battery cell concerning one Embodiment. 一実施形態と比較例との入出力電力の比を比較した表である。It is the table | surface which compared ratio of the input-output electric power of one Embodiment and a comparative example. 電池セルの劣化後の入出力特性を示した図である。It is the figure which showed the input / output characteristic after deterioration of a battery cell.

以下、本発明にかかる蓄電装置を、車両の補機用バッテリに適用した一実施形態について、図面を参照しつつ説明する。   Hereinafter, an embodiment in which a power storage device according to the present invention is applied to an auxiliary battery for a vehicle will be described with reference to the drawings.

図1に示すように、組電池10は、車両に搭載される補機等の電源となる。組電池10は、「単位電池」としての電池セル(単電池)の直列接続体であり、その端子電圧は、補機の駆動に適した所定の電圧(例えば12V)となる。本実施形態では、組電池10を構成する電池セルの数を三つとしている。本実施形態では、以降、これら電池セルのそれぞれを第i電池セルCi(i=1〜3)と称すこととする。なお、図2に示すように、第一電池セルC1(第一電池の該当)の電池容量は他の第二電池セルC2(第二電池に該当)又は第三電池セルC3(第二電池に該当)の電池容量の略2倍に相当している。また第一電池セルC1の充電量に対する電圧の傾きは、電池セルC2,C3の充電量に対する電圧の傾きよりも大きいものとする。ちなみに、本実施形態では、電池セルとしてリチウムイオン2次電池を用いている。   As shown in FIG. 1, the assembled battery 10 serves as a power source for auxiliary machines and the like mounted on the vehicle. The assembled battery 10 is a series connection body of battery cells (unit cells) as “unit batteries”, and the terminal voltage thereof is a predetermined voltage (for example, 12 V) suitable for driving the auxiliary machine. In the present embodiment, the number of battery cells constituting the assembled battery 10 is three. In the present embodiment, each of these battery cells is hereinafter referred to as i-th battery cell Ci (i = 1 to 3). In addition, as shown in FIG. 2, the battery capacity of the first battery cell C1 (corresponding to the first battery) is the other second battery cell C2 (corresponding to the second battery) or the third battery cell C3 (corresponding to the second battery). This corresponds to approximately twice the battery capacity. In addition, the slope of the voltage with respect to the charge amount of the first battery cell C1 is greater than the slope of the voltage with respect to the charge amount of the battery cells C2 and C3. Incidentally, in this embodiment, a lithium ion secondary battery is used as the battery cell.

第i電池セルCiの正極端子には、信号線L(i+1)が接続され、第i電池セルCiの負極端子には、信号線Liが接続されている。すなわち、信号線L1,L4を除いて、隣接する電池セルのうちの高電位側の電池セルの負極端子側の信号線と低電位側の電池セルの正極端子側の信号線とは共通化されている。   The signal line L (i + 1) is connected to the positive terminal of the i-th battery cell Ci, and the signal line Li is connected to the negative terminal of the i-th battery cell Ci. That is, except for the signal lines L1 and L4, the signal line on the negative terminal side of the battery cell on the high potential side and the signal line on the positive terminal side of the battery cell on the low potential side among the adjacent battery cells are shared. ing.

第i電池セルCiの端子間電圧は、信号線Li,L(i+1)と、抵抗体及びコンデンサを備えて構成される第iのローパスフィルタRCiとを介して制御回路12(放電深度制御手段)に取り込まれる。ここで、第iのローパスフィルタRCiは、電圧信号に重畳する高周波ノイズを除去し、第i電池セルCiの端子間電圧の検出精度を高めるために設けられている。   The voltage between the terminals of the i-th battery cell Ci is controlled by the control circuit 12 (discharge depth control means) via the signal lines Li, L (i + 1) and the i-th low-pass filter RCi configured to include a resistor and a capacitor. Is taken in. Here, the i-th low-pass filter RCi is provided to remove high-frequency noise superimposed on the voltage signal and increase the detection accuracy of the voltage across the terminals of the i-th battery cell Ci.

第i電池セルCiには、第i電池セルCiに過電圧が印加されることを回避するための第iのツェナーダイオードZDiが並列接続されている。より具体的には、第iのツェナーダイオードZDiのカソードが信号線L(i+1)に接続され、第iのツェナーダイオードZDiのアノードが信号線Liに接続されている。   The i-th battery cell Ci is connected in parallel with an i-th Zener diode ZDi for avoiding an overvoltage being applied to the i-th battery cell Ci. More specifically, the cathode of the i-th Zener diode ZDi is connected to the signal line L (i + 1), and the anode of the i-th Zener diode ZDi is connected to the signal line Li.

第i電池セルCiの両端は、第iのp側スイッチング素子Spiと、第iのn側スイッチング素子Sniとを備えるコンバータ14を介して、コンデンサ16及び電圧センサ24の両端に接続可能とされている。詳しくは、コンデンサ16と電圧センサ24とは並列に接続されており、これらコンデンサ16及び電圧センサ24の一端には、第1の電気経路Lαが接続され、他端には、第2の電気経路Lβが接続されている。また、第i電池セルCiの正極端子と第1の電気経路Lαとを接続する経路には、この経路を開閉する第iのp側スイッチング素子Spiが設けられ、第i電池セルCiの負極端子と第2の電気経路Lβとを接続する経路には、この経路を開閉する第iのn側スイッチング素子Sniが設けられている。   Both ends of the i-th battery cell Ci can be connected to both ends of the capacitor 16 and the voltage sensor 24 via a converter 14 including an i-th p-side switching element Spi and an i-th n-side switching element Sni. Yes. Specifically, the capacitor 16 and the voltage sensor 24 are connected in parallel, the first electric path Lα is connected to one end of the capacitor 16 and the voltage sensor 24, and the second electric path is connected to the other end. Lβ is connected. The path connecting the positive terminal of the i-th battery cell Ci and the first electrical path Lα is provided with an i-th p-side switching element Spi that opens and closes this path, and the negative terminal of the i-th battery cell Ci. And a second electrical path Lβ are provided with an i-th n-side switching element Sni that opens and closes the path.

なお、本実施形態では、これらスイッチング素子Spi,Sniとして、互いにソース同士が短絡された一対のNチャネルMOSFETを用いている。ここで、ソース同士を短絡させたのは、一対のNチャネルMOSFETのオン操作(閉操作)又は開操作(オフ操作)を容易とするための設定である。つまり、NチャネルMOSFETは、ソースに対するゲートの電位であるゲート電圧によってオンオフ操作されるため、ソース同士を短絡させることで、一対のNチャネルMOSFETのソースの電位を同一とすることができ、ひいてはオンオフ操作を単一の開閉操作信号(電圧信号)によって行うことができる。   In the present embodiment, a pair of N-channel MOSFETs whose sources are short-circuited with each other are used as the switching elements Spi and Sni. Here, the sources are short-circuited in order to facilitate the on operation (close operation) or the open operation (off operation) of the pair of N-channel MOSFETs. In other words, since the N-channel MOSFET is turned on / off by the gate voltage that is the gate potential with respect to the source, the potentials of the sources of the pair of N-channel MOSFETs can be made the same by short-circuiting the sources. The operation can be performed by a single opening / closing operation signal (voltage signal).

コンデンサ16の両端のうち第1の電気経路Lαが接続された側には、第1の遮断用スイッチング素子Q1を介してコネクタ18の一端に接続されている。また、コンデンサ16の両端のうち第2の電気経路Lβが接続された側には、第2の遮断用スイッチング素子Q2を介してコネクタ18の他端に接続されている。ここで、コネクタ18は、コンデンサ16の両端の端子間電圧を外部負荷20に対して出力するための出力端子である。コネクタ18には、例えば、他のバッテリや、車載補機(発電機、電装品)等が接続される。なお、本実施形態では、第1の遮断用スイッチング素子Q1及び第2の遮断用スイッチング素子Q2として、第iのp側スイッチング素子Spi及び第iのn側スイッチング素子Sniと同様に、互いにソース同士が短絡された一対のNチャネルMOSFETを用いている。   The side of the capacitor 16 to which the first electrical path Lα is connected is connected to one end of the connector 18 via the first cutoff switching element Q1. The other end of the capacitor 16 is connected to the other end of the connector 18 via the second cutoff switching element Q2 on the side where the second electrical path Lβ is connected. Here, the connector 18 is an output terminal for outputting the voltage across the capacitor 16 to the external load 20. For example, another battery, an in-vehicle auxiliary machine (generator, electrical component), or the like is connected to the connector 18. In the present embodiment, the first cutoff switching element Q1 and the second cutoff switching element Q2 are connected to each other in the same manner as the i-th p-side switching element Spi and the i-th n-side switching element Sni. Is used as a pair of N-channel MOSFETs.

上記制御回路12は、マイクロコンピュータを主体として構成され、第i電池セルCiの端子間電圧を取り込んだり、組電池10全体の電圧を検出する電圧センサ24の検出値を取り込んだり、コンデンサ16からコネクタ18を介して外部負荷20へと流れる負荷電流を検出する電流センサ22の検出値を取り込んだりする。制御回路12は、また、第i電池セルCiに対応する第iの駆動回路DUiを介して第iのp側スイッチング素子Spi及び第iのn側スイッチング素子Sniをオンオフ操作したり、第1の遮断用スイッチング素子Q1及び第2の遮断用スイッチング素子Q2をオンオフ操作したりする。   The control circuit 12 is mainly composed of a microcomputer, and takes in the voltage between the terminals of the i-th battery cell Ci, takes in the detected value of the voltage sensor 24 for detecting the voltage of the assembled battery 10 as a whole, and connects from the capacitor 16 to the connector. The detection value of the current sensor 22 that detects the load current flowing to the external load 20 via 18 is acquired. The control circuit 12 also turns on / off the i-th p-side switching element Spi and the i-th n-side switching element Sni via the i-th drive circuit DUi corresponding to the i-th battery cell Ci, The cutoff switching element Q1 and the second cutoff switching element Q2 are turned on / off.

上記構成を成す蓄電装置100では、電池セル単位で個別に充電処理を実施することができる。例えば第一電池セルC1の充電処理を実施する場合には、第2及び第3のp側スイッチング素子Sp2〜Sp3と第2及び第3のn側スイッチング素子Sn2〜Sn3をオフ操作した状態下で、第1のp側スイッチング素子Sp1及び第1のn側スイッチング素子Sn1をオン操作する。これにより、コンデンサ16、第1の電気経路Lα、第1のp側スイッチング素子Sp1、第一電池セルC1、第1のn側スイッチング素子Sn1及び第2の電気経路Lβを備える閉回路が形成され、コンデンサ16に蓄えられた電気エネルギが放電されて第一電池セルC1が充電される。   In the power storage device 100 configured as described above, the charging process can be performed individually for each battery cell. For example, when the charging process of the first battery cell C1 is performed, the second and third p-side switching elements Sp2 to Sp3 and the second and third n-side switching elements Sn2 to Sn3 are turned off. The first p-side switching element Sp1 and the first n-side switching element Sn1 are turned on. As a result, a closed circuit including the capacitor 16, the first electrical path Lα, the first p-side switching element Sp1, the first battery cell C1, the first n-side switching element Sn1, and the second electrical path Lβ is formed. The electric energy stored in the capacitor 16 is discharged and the first battery cell C1 is charged.

図3は、3つの電池セルの電池容量及び充電量に対する電圧の傾きが互いに等しい場合における充電量に対する電圧の遷移を示している。なお、図3において、「1直列」とは単独の第二(第三)電池セルC2(C3)による充電量に対する電圧を示し、「2直列」とは2つの第二(第三)電池セルC2(C3)が直列に接続された場合の充電量に対する電圧を示し、「3直列」とは3つの第二(第三)電池セルC2(C3)が直列に接続された場合の充電量に対する電圧を示している。   FIG. 3 shows the transition of the voltage with respect to the charge amount when the slopes of the voltages with respect to the battery capacity and the charge amount of the three battery cells are equal to each other. In FIG. 3, “1 series” indicates a voltage with respect to the amount of charge by a single second (third) battery cell C2 (C3), and “2 series” indicates two second (third) battery cells. The voltage with respect to the charge amount when C2 (C3) is connected in series is shown, and “3 series” is the charge amount when three second (third) battery cells C2 (C3) are connected in series. The voltage is shown.

このような構成ではどの第二(第三)電池セルC2(C3)も同じ入出力特性を有しているため、どの第二(第三)電池セルC2(C3)も入出力できる電圧幅は同じ範囲に留まってしまう。このため、一つの第二(第三)電池セルC2(C3)の電圧の変化による組電池10(組電池全体)の電圧への影響は小さく、例えば「3直列」での組電池10の電圧を一つの第二(第三)電池セルC2(C3)の電圧で制御することは困難である。   In such a configuration, since any second (third) battery cell C2 (C3) has the same input / output characteristics, the voltage width at which any second (third) battery cell C2 (C3) can be input / output is It stays in the same range. For this reason, the influence of the voltage of one second (third) battery cell C2 (C3) on the voltage of the assembled battery 10 (the entire assembled battery) is small. For example, the voltage of the assembled battery 10 in “3 series” Is difficult to control with the voltage of one second (third) battery cell C2 (C3).

図4は、本実施形態にかかる電池セルの充電量に対する電圧を示す図である。同図において、「1直列」とは電池セルC2,C3による単独の充電量に対する電圧を示し、「2直列」とは電池セルC2,C3が直列に接続された場合の充電量に対する電圧を示している。「3直列」とは、組電池10全体(電池セルC1〜C3)の充電量に対する電圧を示している。また、図4において、「高電圧」時の「1直列」及び「2直列」の充電量が、「低電圧」時の「1直列」及び「2直列」の充電量よりも多い位置に示されているが、第一電池セルC1の充電量が多い範囲(第二所定範囲)で電池セルC2,C3が使用されることを示している。   FIG. 4 is a diagram illustrating a voltage with respect to a charge amount of the battery cell according to the present embodiment. In the figure, “1 series” indicates the voltage with respect to the single charge amount of the battery cells C2 and C3, and “2 series” indicates the voltage with respect to the charge amount when the battery cells C2 and C3 are connected in series. ing. "3 series" has shown the voltage with respect to the charge amount of the assembled battery 10 whole (battery cell C1-C3). Further, in FIG. 4, the “1 series” and “2 series” charge amounts at the time of “high voltage” are larger than the “1 series” and “2 series” charge amounts at the time of “low voltage”. However, it shows that the battery cells C2 and C3 are used in a range (second predetermined range) in which the charge amount of the first battery cell C1 is large.

本実施形態では、第一電池セルC1の電池容量を電池セルC2,C3の電池容量よりも大きく、充電量に対する電圧の傾きを電池セルC2,C3の充電量に対する電圧の傾きよりも大きく構成している。これにより、第一電池セルC1が有する充電量に依存した電圧変化は電池セルC2,C3が有する充電量に依存した電圧変化よりも大きくなる。ひいては、図4に示すように、第一電池セルC1の電圧の変化による組電池10の電圧への影響は、電池セルC2,C3の電圧の変化による組電池10の電圧への影響よりも大きくなる。したがって、図3では充電量を変化させることで充放電可能な電池容量の低下を許容して電圧を変化させなければならないのに対して、組電池10ではC1の充電量を制御することで電池容量の低下が無く電圧を変化させることができる。   In the present embodiment, the battery capacity of the first battery cell C1 is greater than the battery capacity of the battery cells C2 and C3, and the slope of the voltage with respect to the charge amount is greater than the slope of the voltage with respect to the charge amount of the battery cells C2 and C3. ing. Thereby, the voltage change depending on the charge amount of the first battery cell C1 is larger than the voltage change depending on the charge amount of the battery cells C2 and C3. As a result, as shown in FIG. 4, the influence on the voltage of the assembled battery 10 due to the change in the voltage of the first battery cell C1 is larger than the influence on the voltage of the assembled battery 10 due to the change in the voltage of the battery cells C2 and C3. Become. Therefore, in FIG. 3, it is necessary to change the voltage while changing the charge amount to allow a reduction in the chargeable / dischargeable battery capacity, whereas in the assembled battery 10, the battery is controlled by controlling the charge amount of C <b> 1. The voltage can be changed without a decrease in capacity.

制御回路12による蓄電装置100の電圧の制御を説明する。図4において、第一電池セルC1の充電量が下限寄りの所定範囲、すなわち組電池10の電圧が低電圧となる所定範囲を第一所定範囲として設定し、第一電池セルC1の充電量が上限寄りの所定範囲、すなわち組電池10の電圧が高電圧となる所定範囲を第二所定範囲として設定する。   Control of the voltage of the power storage device 100 by the control circuit 12 will be described. In FIG. 4, a predetermined range in which the charge amount of the first battery cell C1 is close to the lower limit, that is, a predetermined range in which the voltage of the battery pack 10 is low is set as the first predetermined range, and the charge amount of the first battery cell C1 is A predetermined range close to the upper limit, that is, a predetermined range in which the voltage of the assembled battery 10 becomes a high voltage is set as the second predetermined range.

ここで、例えば、現在第一電池セルC1の充電量が第一所定範囲に収まっている状態であり、この状態から第二所定範囲に収める場合を想定する。この場合、第一電池セルC1単独での充電を実施することで第一電池セルC1の放電深度を浅くし、第一電池セルC1の充電量が第二所定範囲に収まるように制御する。これにより、第一電池セルC1の電圧を上昇させることができ、ひいては組電池10(蓄電装置100)の電圧もまた上昇させることができる。   Here, for example, it is assumed that the charge amount of the first battery cell C1 is currently in the first predetermined range, and that the state is within the second predetermined range from this state. In this case, the first battery cell C1 alone is charged to reduce the depth of discharge of the first battery cell C1, and control is performed so that the charge amount of the first battery cell C1 falls within the second predetermined range. Thereby, the voltage of the 1st battery cell C1 can be raised, and by extension, the voltage of the assembled battery 10 (power storage device 100) can also be raised.

一方で、現在第一電池セルC1の充電量が第二所定範囲に収まっている状態であり、この状態から第一所定範囲に収める場合には、以下の制御を実施する。組電池10の充電量が少なくなった状態(例えば第一電池セルC1のSOCが50%、電池セルC2、C3のSOCが0%)で、電池セルC2,C3の充電を実施することで、電池セルC2,C3の放電深度を浅くし、第一電池セルC1の充電は実施しない。この制御により、電池セルC2,C3の充電量に対する第一電池セルC1の充電量を相対的に減少させる。その結果、第一電池セルC1の充電を実施する事無くコネクタ18に接続される車載補機などに電力を供給することになるため、第一電池セルC1のSOCが低下することで電圧もまた低下し、ひいては組電池10の電圧もまた低下することになる。   On the other hand, when the charge amount of the first battery cell C1 is currently within the second predetermined range, and when it is within the first predetermined range from this state, the following control is performed. By charging the battery cells C2 and C3 in a state where the charge amount of the assembled battery 10 is reduced (for example, the SOC of the first battery cell C1 is 50%, the SOC of the battery cells C2 and C3 is 0%), The depth of discharge of the battery cells C2 and C3 is reduced, and the first battery cell C1 is not charged. By this control, the charge amount of the first battery cell C1 is relatively decreased with respect to the charge amounts of the battery cells C2 and C3. As a result, electric power is supplied to the in-vehicle auxiliary equipment connected to the connector 18 without charging the first battery cell C1, so that the voltage of the first battery cell C1 is also reduced due to the decrease in the SOC of the first battery cell C1. As a result, the voltage of the assembled battery 10 also decreases.

なお、蓄電装置100が搭載されたシステムが許容する上限電圧と下限電圧の間に収まるように、上記制御を行ない第一電池セルC1の充電量を調整することで、蓄電装置100の電圧の範囲が制御される。   Note that the voltage range of the power storage device 100 is adjusted by adjusting the amount of charge of the first battery cell C1 by performing the above-described control so as to be within the upper limit voltage and the lower limit voltage allowed by the system in which the power storage device 100 is mounted. Is controlled.

上記構成により、本実施形態に係る蓄電装置100は、以下の効果を奏する。   With the configuration described above, the power storage device 100 according to the present embodiment has the following effects.

・第一電池セルC1のように、電池セルC2,C3の電池容量よりも大きい電池容量を持ち、且つ充電量に対する電圧の傾きが電池セルC2,C3の傾きよりも大きい電池を含むことで、放電深度を制御するなどにより電池容量の大きい第一電池の電圧を制御することで、蓄電装置100の電圧を制御し、ひいては蓄電装置100の入出力特性を制御することが可能となる。   By including a battery having a battery capacity larger than the battery capacity of the battery cells C2 and C3 and having a voltage gradient with respect to the charge amount larger than that of the battery cells C2 and C3, like the first battery cell C1, By controlling the voltage of the first battery having a large battery capacity by controlling the depth of discharge or the like, it is possible to control the voltage of the power storage device 100 and thus to control the input / output characteristics of the power storage device 100.

・制御回路12により第一電池セルC1の放電深度が個別に制御されることで、第一電池セルC1の充電量が第一所定範囲又は第二所定範囲に収まるように制御される。例えば、現在第一電池セルC1の充電量が第一所定範囲に収まっている状態であり、この状態から第二所定範囲に収める場合を想定する。この場合、第一電池セルC1単独での充電が実施されることで第一電池セルC1の放電深度を浅くさせ、第一電池セルC1の充電量が第二所定範囲に収まるように制御される。これにより、第一電池セルC1の電圧を上昇させることができ、ひいては組電池10(蓄電装置100)の電圧もまた上昇させることができる。   The control circuit 12 controls the discharge depth of the first battery cell C1 individually, so that the charge amount of the first battery cell C1 is controlled to be within the first predetermined range or the second predetermined range. For example, it is assumed that the amount of charge of the first battery cell C1 is currently in the first predetermined range, and the state falls within the second predetermined range from this state. In this case, the first battery cell C1 alone is charged to reduce the depth of discharge of the first battery cell C1, and the charge amount of the first battery cell C1 is controlled to fall within the second predetermined range. . Thereby, the voltage of the 1st battery cell C1 can be raised, and by extension, the voltage of the assembled battery 10 (power storage device 100) can also be raised.

・蓄電装置100の電圧が上限電圧と下限電圧との間になるように第一電池セルC1の充電量を変化させる。このため、第一電池セルC1の充電量の変化を通じて蓄電装置100の電圧を上限電圧と下限電圧との間になるように収められ、その範囲内での充放電に対応が可能となる。   -The charge amount of the 1st battery cell C1 is changed so that the voltage of the electrical storage apparatus 100 may become between an upper limit voltage and a lower limit voltage. For this reason, the voltage of the electrical storage device 100 is stored so as to be between the upper limit voltage and the lower limit voltage through a change in the charge amount of the first battery cell C1, and charging / discharging within the range can be handled.

・第一電池セルC1の電池容量が電池セルC2,C3の電池容量に近い場合、第一電池セルC1が有する充電量に依存した電圧変化と電池セルC2,C3のが有する充電量に依存した電圧変化との差異が小さくなる。また、電池セルC2,C3の充電量に対する第一電池セルC1の充電量を相対的に変化させる余地が少なくなる。このため、第一電池セルC1の電圧の変化による蓄電装置100の電圧への影響は大きくなく、第一電池セルC1の電圧の制御のみで蓄電装置100の電圧を制御するのに支障が出る可能性がある。これに対し、本実施形態のように第一電池セルC1の電池容量は電池セルC2,C3の電池容量の略二倍とすることで、第一電池セルC1の入出力できる電圧幅を広くすることができる。これにより、第一電池セルC1の電圧の変化による蓄電装置100の電圧への影響は大きくなり、第一電池セルC1の電圧の制御のみで蓄電装置100の電圧を制御することが可能となる。   When the battery capacity of the first battery cell C1 is close to the battery capacity of the battery cells C2 and C3, it depends on the voltage change depending on the charge amount of the first battery cell C1 and the charge amount of the battery cells C2 and C3. The difference from the voltage change is reduced. In addition, there is less room for changing the charge amount of the first battery cell C1 relative to the charge amounts of the battery cells C2 and C3. For this reason, the change in the voltage of the first battery cell C1 does not significantly affect the voltage of the power storage device 100, and it may be difficult to control the voltage of the power storage device 100 only by controlling the voltage of the first battery cell C1. There is sex. On the other hand, the voltage capacity of the first battery cell C1 can be widened by setting the battery capacity of the first battery cell C1 to approximately twice the battery capacity of the battery cells C2 and C3 as in this embodiment. be able to. Thereby, the influence on the voltage of power storage device 100 due to the change in voltage of first battery cell C1 is increased, and the voltage of power storage device 100 can be controlled only by controlling the voltage of first battery cell C1.

・本来、電池セルC2,C3のように充電量に対する電圧の傾きが小さい電池セルのみで構成された組電池を備える蓄電装置では、充電量に対する電圧の傾きが小さいために組電池全体の電圧に基づく充電量の検出が困難である。しかし、本実施形態のように第一電池セルC1の充電量に対する電圧の傾きを電池セルC2,C3の充電量に対する電圧の傾きよりも大きくすることで、組電池10全体としての充電量に対する電圧の傾きが大きくなり、組電池10全体の電圧に基づく充電量の検出が容易となる。さらに、検出された蓄電装置100の電圧に対応する電池セルC2,C3の充電量を算出することも可能となる。   -Originally, in a power storage device including an assembled battery composed only of battery cells having a small voltage gradient with respect to the charge amount such as battery cells C2 and C3, the voltage of the entire assembled battery is reduced because the voltage gradient with respect to the charge amount is small. It is difficult to detect the amount of charge based on it. However, the voltage with respect to the charge amount of the assembled battery 10 as a whole can be obtained by making the slope of the voltage with respect to the charge amount of the first battery cell C1 larger than the slope of the voltage with respect to the charge amount of the battery cells C2 and C3 as in this embodiment. And the charge amount based on the voltage of the entire assembled battery 10 can be easily detected. Furthermore, it is possible to calculate the charge amounts of the battery cells C2 and C3 corresponding to the detected voltage of the power storage device 100.

・電池容量の大きい第一電池セルC1と電池容量の小さい電池セルC2,C3を直列に接続すると、電池容量が同じ電池セルを直列に接続した組電池と比較して、入出力される電力の調整幅は向上する。その具体例として、図5に記載するように、電池容量の大きい第一電池セルC1と電池容量の小さいC2を直列に接続した場合(実施例1)と、電池容量の小さい第二電池セルC2を二つ直列に接続した場合(比較例)との比較を挙げる。このとき、実施例1では、電池容量の小さい第二電池セルC2のSOC(State of charge:充電状態、即ち、満充電時の充電量に対する実際の充電量の割合)は30%で固定し、第一電池セルC1のSOCを10%から30%に充電した際の電力変化量を検出している。また、比較例では、一方の第二電池セルC2のSOCを30%で固定し、他方の第一電池セルC1のSOCを10%から30%に充電した際の電力変化量を検出している。ここで、図5における出力比とは、充電対象である電池セル(例えば、実施例1では第一電池セルC1が該当)のSOCが10%時に10秒間4V以上の電圧で出力可能な電池セル全体の出力電力と比較して、充電対象である電池セルのSOCが30%時に10秒間4V以上の電圧で出力可能な電池セル全体の出力電力がどれだけ向上したかを表している。また、入力比とは、充電対象である電池セルのSOCが10%時に10秒間7.5V以下の電圧で入力可能な電池セル全体の入力電力と比較して、充電対象である電池セルのSOCが30%時に10秒間7.5V以下の電圧で充電可能な電池セル全体の入力電力がどれだけ向上したかを示している。なお、ここでは、比較を容易にするため、実施例1及び比較例で、入力比を―15%に合わせている。このとき、実施例1の出力比が比較例と比べ向上していることが判明した。   -When the first battery cell C1 having a large battery capacity and the battery cells C2 and C3 having a small battery capacity are connected in series, the input / output power of the battery is smaller than that of an assembled battery in which battery cells having the same battery capacity are connected in series. The adjustment range is improved. As a specific example, as shown in FIG. 5, when the first battery cell C1 having a large battery capacity and C2 having a small battery capacity are connected in series (Example 1), the second battery cell C2 having a small battery capacity is used. The comparison with the case where two are connected in series (comparative example) is given. At this time, in Example 1, the SOC (State of charge) of the second battery cell C2 having a small battery capacity is fixed at 30%. The amount of change in power when the SOC of the first battery cell C1 is charged from 10% to 30% is detected. In the comparative example, the SOC of one second battery cell C2 is fixed at 30%, and the amount of power change when the SOC of the other first battery cell C1 is charged from 10% to 30% is detected. . Here, the output ratio in FIG. 5 is a battery cell that can be output at a voltage of 4 V or more for 10 seconds when the SOC of the battery cell to be charged (for example, the first battery cell C1 in Example 1 is 10%) is 10%. It shows how much the output power of the entire battery cell that can be output at a voltage of 4 V or more for 10 seconds is improved when the SOC of the battery cell to be charged is 30% as compared with the overall output power. The input ratio is the SOC of the battery cell to be charged compared to the input power of the entire battery cell that can be input at a voltage of 7.5 V or less for 10 seconds when the SOC of the battery cell to be charged is 10%. Shows how much the input power of the entire battery cell that can be charged with a voltage of 7.5 V or less for 10 seconds at 30% is improved. Here, in order to facilitate the comparison, the input ratio is set to −15% in the first embodiment and the comparative example. At this time, it was found that the output ratio of Example 1 was improved as compared with the comparative example.

なお、上記実施形態を、以下のように変更して実施することもできる。   In addition, the said embodiment can also be changed and implemented as follows.

・上記実施形態において、電池セルC1〜C3にはリチウムイオン2次電池を適用していた。このことについて、リチウムイオン2次電池に限定されず異なる種類の電池を直列に接続してもよい。なお、直列の順は電池の熱設計、体格、重量を考慮して任意に変更することができる。   -In the said embodiment, the lithium ion secondary battery was applied to battery cell C1-C3. About this, it is not limited to a lithium ion secondary battery, You may connect a different kind of battery in series. Note that the order of series can be arbitrarily changed in consideration of the thermal design, physique, and weight of the battery.

・第一電池セルC1の電池容量は電池セルC2,C3の電池容量の略2倍に相当していた。このことについて、第一電池セルC1の電池容量は電池セルC2,C3の電池容量よりも大きければ、略2倍に限る必要はない。   The battery capacity of the first battery cell C1 was approximately twice the battery capacity of the battery cells C2 and C3. In this regard, if the battery capacity of the first battery cell C1 is larger than the battery capacity of the battery cells C2 and C3, it need not be limited to approximately twice.

・上記実施形態では、電池セルが3つ直列に接続された構成となっていた。このことについて、4つ以上の電池セルで構成されていてもよい。かかる構成によっても、上記実施形態と同様の作用・効果が奏される。   In the above embodiment, three battery cells are connected in series. About this, you may be comprised with four or more battery cells. Even with this configuration, the same operations and effects as in the above-described embodiment can be achieved.

・上記実施形態では、現在第一電池セルC1の充電量が第二所定範囲に収まっている状態であり、この状態から第一所定範囲に収める場合に、電池セルC2,C3の充電を実施し、第一電池セルC1の充電は実施しないこととしていた。このことについて、電池セルを個別に放電させることが可能な回路であるならば、上記制御を実施しない構成を採用することもできる。具体的には、充電量が第二所定範囲に収まっている第一電池セルC1を単独で放電させることで第一電池セルC1の充電量を減少させ、第一所定範囲に収めればよい。   In the above embodiment, the charge amount of the first battery cell C1 is currently in the second predetermined range, and when the charge amount falls within the first predetermined range from this state, the battery cells C2 and C3 are charged. The first battery cell C1 was not charged. In this regard, a configuration in which the above control is not performed can be adopted as long as the circuit can discharge the battery cells individually. Specifically, the charge amount of the first battery cell C1 may be decreased by discharging the first battery cell C1 whose charge amount is within the second predetermined range alone, and may be within the first predetermined range.

・上記実施形態では、制御回路12が第一電池セルC1又は電池セルC2,C3の充電量を増加させる制御を実施することで蓄電装置100の電圧の制御を行なっていた。このことについて、第一電池セルC1の単位時間当たりに自己放電により減少する充電量(以下、放電速度と呼称)が電池セルC2,C3の放電速度よりも大きい場合には、上記制御を実施しない構成を採用することもできる。放電速度は、黒鉛のようなリチウムイオンを挿入する材料と比較して活性炭のように電気二重層を形成して蓄電する材料などを用いることで増加する。このとき、自己放電は電池セルを25℃で約1週間放置した際の電池容量の変化とする。加えて自己放電は電池セル内の局部電池反応等が含まれており、温度、電圧を変化させることで大きさを制御することが可能なため、昇温処理やシステム上限温度、電圧制御等により調整可能である。このような構成では、時間の経過に伴って自己放電が起きると、第一電池セルC1の充電量は電池セルC2,C3の充電量よりも速く減少する。そして、自己放電後に行われる充電により電池セルC2,C3の充電量を自己放電前の値に戻した場合に、第一電池セルC1の充電量は自己放電前の値よりも小さくなっている。ここで、第一電池セルC1の充電量が当初は第二所定範囲に収まっていると、上記のような自己放電と充電とにより、第一電池セルC1の充電量は第二所定範囲から第一所定範囲側へ徐々に移行する。したがって、上記制御を行わなくても、時間の経過と共に蓄電装置100の入出力特性を変更することができる。   In the above embodiment, the control circuit 12 controls the voltage of the power storage device 100 by performing control to increase the charge amount of the first battery cell C1 or the battery cells C2 and C3. In this regard, the above control is not performed when the amount of charge (hereinafter referred to as the discharge rate) decreased by self-discharge per unit time of the first battery cell C1 is larger than the discharge rate of the battery cells C2 and C3. A configuration can also be adopted. The discharge rate is increased by using a material that stores electricity by forming an electric double layer, such as activated carbon, as compared with a material into which lithium ions such as graphite are inserted. At this time, the self-discharge is a change in battery capacity when the battery cell is left at 25 ° C. for about one week. In addition, self-discharge includes local battery reaction in the battery cell, and the size can be controlled by changing the temperature and voltage. It can be adjusted. In such a configuration, when self-discharge occurs over time, the charge amount of the first battery cell C1 decreases faster than the charge amounts of the battery cells C2 and C3. And when the charge amount of battery cell C2, C3 is returned to the value before self-discharge by the charge performed after self-discharge, the charge amount of the 1st battery cell C1 is smaller than the value before self-discharge. Here, when the charge amount of the first battery cell C1 is initially within the second predetermined range, the charge amount of the first battery cell C1 is increased from the second predetermined range by the self-discharge and charging as described above. Gradually shift to one predetermined range side. Therefore, the input / output characteristics of power storage device 100 can be changed over time without performing the above control.

上記別例は、例えば図6に示すように、正極にリン酸鉄リチウムを、負極にグラファイト(黒鉛)を用いた際のように正極充電量の使用領域が劣化とともに上昇する場合、つまり抵抗の大きい正極の低充電領域が劣化とともに使用不可能となり、電池セルの出力抵抗が減少する場合のように入出力の抵抗バランスが偏る場合には、電圧を低下させることで、出力特性は低下するものの、入力特性を向上することでバランスを最適化することができる。   For example, as shown in FIG. 6, the above-mentioned another example is a case where the usage area of the positive electrode charge amount increases with deterioration as in the case where lithium iron phosphate is used for the positive electrode and graphite (graphite) is used for the negative electrode. When the low positive charge area of the large positive electrode becomes unusable due to deterioration and the output resistance of the battery cell is reduced, the output characteristics are reduced by lowering the voltage when the input / output resistance balance is biased. The balance can be optimized by improving the input characteristics.

また上記別例では、電池容量の劣化後の蓄電装置100の電圧は必要な放電容量を確保するために、高い電圧で使用される。このため、劣化後の蓄電装置100の電圧は該蓄電装置100を備えるシステムが許容可能な上限電圧に近づいている。これに対して、上記のように、時間経過に伴う自己放電により第一電池セルC1の充電量が減少することで、蓄電装置100の電圧が低くなる。このように、劣化により使用可能な放電容量を確保するために、高い充電状態で使用する際にも、上記構成を有する事で電圧を低下し入力電力を確保することが可能である。   Moreover, in the said another example, the voltage of the electrical storage apparatus 100 after deterioration of battery capacity is used with a high voltage in order to ensure required discharge capacity. For this reason, the voltage of power storage device 100 after deterioration is approaching an upper limit voltage that can be tolerated by a system including power storage device 100. On the other hand, as described above, the charge amount of the first battery cell C <b> 1 decreases due to self-discharge with time, and thus the voltage of the power storage device 100 decreases. Thus, in order to ensure the discharge capacity which can be used by deterioration, even when using it in a high charge state, it is possible to reduce a voltage and to secure input power by having the said structure.

・上記実施形態では、制御回路12が第一電池セルC1又は電池セルC2,C3の充電量を増加させる制御を実施することで蓄電装置100の電圧の制御を行なっていた。このことについて、第一電池セルC1の放電速度が電池セルC2,C3の放電速度よりも小さい場合には、上記制御を実施しない構成を採用することもできる。このような構成では、時間の経過に伴って自己放電が起きると、第一電池セルC1の充電量は電池セルC2,C3の充電量よりも遅く減少する。そして、自己放電後に行われる充電により電池セルC2,C3の充電量を自己放電前の値に戻した場合に、第一電池セルC1の充電量は自己放電前の値よりも大きくなっている。ここで、第一電池セルC1の充電量が当初は第一所定範囲に収まっていると、上記のような自己放電と充電とにより、第一電池セルC1の充電量は第一所定範囲から第二所定範囲へ徐々に移行する。したがって、上記第一電池セルC1の充電量を変更する制御を行わなくても、時間の経過と共に蓄電装置100の入出力特性を変更することができる。   In the above embodiment, the control circuit 12 controls the voltage of the power storage device 100 by performing control to increase the charge amount of the first battery cell C1 or the battery cells C2 and C3. About this, when the discharge rate of the 1st battery cell C1 is smaller than the discharge rate of battery cell C2, C3, the structure which does not implement the said control is also employable. In such a configuration, when self-discharge occurs over time, the charge amount of the first battery cell C1 decreases later than the charge amounts of the battery cells C2 and C3. And when the charge amount of battery cell C2, C3 is returned to the value before self-discharge by the charge performed after self-discharge, the charge amount of the 1st battery cell C1 is larger than the value before self-discharge. Here, when the charge amount of the first battery cell C1 is initially within the first predetermined range, the charge amount of the first battery cell C1 is increased from the first predetermined range by the self-discharge and the charge as described above. (2) Gradually shift to a predetermined range. Therefore, the input / output characteristics of power storage device 100 can be changed over time without performing control for changing the charge amount of first battery cell C1.

C1…第一電池セル、C2…第二電池セル、C3…第三電池セル、10…組電池、100…蓄電装置。 C1 ... first battery cell, C2 ... second battery cell, C3 ... third battery cell, 10 ... assembled battery, 100 ... power storage device.

Claims (3)

直列接続された複数の電池(C1〜C3)を備えた蓄電装置(10、100)において、
前記複数の電池は第一電池(C1)と第二電池(C2,C3)とを含み、
記第一電池の電池容量が前記第二電池の電池容量よりも大きく、
記第一電池の充電量に対する電圧の傾きが前記第二電池の前記第一電池の充電量に対応する充電量に対する電圧の傾きよりも大きく、
前記第一電池の放電深度を個別に制御することで、前記第一電池の充電量を下限寄りの第一所定範囲又は上限寄りの第二所定範囲に収まるように制御する放電深度制御手段(12)を備えることを特徴とする蓄電装置。
In a power storage device (10, 100) including a plurality of batteries (C1 to C3) connected in series,
The plurality of batteries include a first battery (C1) and a second battery (C2, C3),
Larger than the battery capacity before Symbol first battery cell capacity of the second battery,
Much larger than the slope of the voltage for charging the amount of inclination of a voltage to the pre-Symbol charge amount of the first battery corresponds to the amount of charge of the first battery of the second battery,
By controlling the depth of discharge of the first battery individually, the discharge depth control means (12) controls the charge amount of the first battery so as to be within the first predetermined range near the lower limit or the second predetermined range near the upper limit. ) power storage device, characterized in that it comprises a.
前記蓄電装置の電圧が上限電圧と下限電圧との間になるように前記第一電池の充電量が変化することを特徴とする請求項に記載の蓄電装置。 The power storage device according to claim 1, characterized in that the charge amount of the first battery to be between voltage and upper limit voltage and lower limit voltage of the electric storage device changes. 前記第一電池の電池容量は前記第二電池の電池容量の略二倍であることを特徴とする請求項1または2に記載の蓄電装置。 3. The power storage device according to claim 1, wherein the battery capacity of the first battery is approximately twice the battery capacity of the second battery.
JP2015032617A 2015-02-23 2015-02-23 Power storage device Active JP6327175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015032617A JP6327175B2 (en) 2015-02-23 2015-02-23 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015032617A JP6327175B2 (en) 2015-02-23 2015-02-23 Power storage device

Publications (2)

Publication Number Publication Date
JP2016158317A JP2016158317A (en) 2016-09-01
JP6327175B2 true JP6327175B2 (en) 2018-05-23

Family

ID=56826849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015032617A Active JP6327175B2 (en) 2015-02-23 2015-02-23 Power storage device

Country Status (1)

Country Link
JP (1) JP6327175B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082147B2 (en) * 2002-09-19 2008-04-30 日産自動車株式会社 Assembled battery
JP5250928B2 (en) * 2005-10-24 2013-07-31 日産自動車株式会社 Battery system charge state recovery method
JP2007220658A (en) * 2006-01-18 2007-08-30 Matsushita Electric Ind Co Ltd Packed battery, power supply system, and method of manufacturing packed battery
WO2009147854A1 (en) * 2008-06-04 2009-12-10 パナソニック株式会社 Battery pack
JP2011150876A (en) * 2010-01-21 2011-08-04 Sony Corp Assembled battery and method for controlling the same
JP5673179B2 (en) * 2011-02-11 2015-02-18 株式会社デンソー Assembled battery
WO2013035183A1 (en) * 2011-09-08 2013-03-14 日立ビークルエナジー株式会社 Battery system monitoring device
JP5783051B2 (en) * 2012-01-10 2015-09-24 株式会社デンソー Secondary battery and secondary battery remaining capacity calculation device
JP5754392B2 (en) * 2012-02-13 2015-07-29 トヨタ自動車株式会社 Battery inspection method

Also Published As

Publication number Publication date
JP2016158317A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
KR101664641B1 (en) Discharging device for electricity storage device
JP3389670B2 (en) Series connection circuit of secondary battery
TWI599088B (en) Power storage unit and solar power generation unit
EP3026752A1 (en) Battery pack and method for controlling the same
EP2757610A1 (en) Battery pack including different kinds of cells and power device including the same
JP6145712B2 (en) Secondary battery charging system and method, and battery pack
JP2017133870A (en) Device for detecting abnormal degradation of lithium ion secondary battery and method for detecting abnormal degradation
US10971767B2 (en) Charge voltage controller for energy storage device, energy storage apparatus, battery charger for energy storage device, and charging method for energy storage device
JP2013081357A (en) Control device of secondary battery
US8102155B2 (en) Discharge controller
WO2014148018A1 (en) Secondary-battery charging system and method and battery pack
KR20120140647A (en) Charging method
JP6348219B2 (en) Power control system and method for adjusting the input power limit of a DC-DC voltage converter
US11316352B2 (en) Battery management
JP5822779B2 (en) Power storage system and charge / discharge control method thereof
WO2014122776A1 (en) Apparatus and method for controlling lithium-ion secondary cell
JP5284029B2 (en) Battery pack and method of manufacturing battery pack
JP6271585B2 (en) Electrochemical cell or battery with reduced impedance and method for producing the same
JP6327175B2 (en) Power storage device
JP2012029382A (en) Power storage device and energy balance adjusting method
WO2014104280A1 (en) Control method and control device for secondary battery
JP5718702B2 (en) Balance correction device and power storage system
JP2014183658A (en) Power conversion device
JPH10257684A (en) Charge-discharge control device
CN111052535A (en) Solar power generation/storage unit and solar power generation/storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R151 Written notification of patent or utility model registration

Ref document number: 6327175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250