JP6327053B2 - Porous carbon, production method thereof, and ammonia adsorbent - Google Patents

Porous carbon, production method thereof, and ammonia adsorbent Download PDF

Info

Publication number
JP6327053B2
JP6327053B2 JP2014163419A JP2014163419A JP6327053B2 JP 6327053 B2 JP6327053 B2 JP 6327053B2 JP 2014163419 A JP2014163419 A JP 2014163419A JP 2014163419 A JP2014163419 A JP 2014163419A JP 6327053 B2 JP6327053 B2 JP 6327053B2
Authority
JP
Japan
Prior art keywords
carbon
ammonia
porous
earth metal
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014163419A
Other languages
Japanese (ja)
Other versions
JP2015078110A (en
Inventor
瀬戸山 徳彦
徳彦 瀬戸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2014163419A priority Critical patent/JP6327053B2/en
Publication of JP2015078110A publication Critical patent/JP2015078110A/en
Application granted granted Critical
Publication of JP6327053B2 publication Critical patent/JP6327053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、炭素多孔体、その製法及びアンモニア吸着材に関する。   The present invention relates to a carbon porous body, a production method thereof, and an ammonia adsorbent.

従来より、炭素多孔体は、種々の技術分野で利用されている。具体的には、炭素多孔体は、電気化学キャパシタの電極材料として利用されたり、バイオ燃料電池の酵素電極を担持する材料として利用されたり、キャニスタの吸着材として利用されたり、燃料精製設備の吸着材として利用されたりしている。   Conventionally, carbon porous bodies have been used in various technical fields. Specifically, the carbon porous body is used as an electrode material for an electrochemical capacitor, used as a material for supporting an enzyme electrode of a biofuel cell, used as an adsorbent for a canister, or adsorbed in a fuel purification facility. It is used as a material.

電気化学キャパシタは、電極(正極及び負極)の界面において、電極と電解液中のイオンとの間で電子の授受を伴わない非ファラデー反応、あるいは電子の授受を伴うファラデー反応に起因して発現する容量を利用したキャパシタである。バイオ燃料電池は、通常の燃料電池と同様、負極、正極、電解質及びセパレータを備えており、負極及び正極に酵素を利用するものである。バイオ燃料電池では、負極側で酵素により糖を分解してプロトンと電子を発生させ、そのうちプロトンは電解質を、電子は外部回路を介してそれぞれ正極側に移動し、正極ではプロトンと電子を用いた酸素の還元反応を酵素により進行させて水を生成する。この一連の反応により、バイオ燃料電池から電気エネルギーを取り出すことができる。キャニスタは、炭素多孔体が詰められた缶状の容器であり、自動車に搭載される。キャニスタは、自動車のエンジン停止中は燃料タンクで発生したガソリン蒸気を配管を通じて受け入れて吸着する一方、エンジン作動中は新鮮な空気が通されることにより吸着したガソリン蒸気を放出してエンジンの燃焼室へ供給する。燃料精製設備は、燃料に含まれる不純物を炭素多孔体に吸着させて燃料を精製する。   Electrochemical capacitors are expressed at the interface between electrodes (positive and negative electrodes) due to non-Faraday reactions that do not involve the transfer of electrons between the electrodes and ions in the electrolyte, or Faraday reactions that involve the transfer of electrons. It is a capacitor that uses capacitance. The biofuel cell is provided with a negative electrode, a positive electrode, an electrolyte, and a separator, as in a normal fuel cell, and uses an enzyme for the negative electrode and the positive electrode. In a biofuel cell, an enzyme decomposes sugar on the negative electrode side to generate protons and electrons, of which protons move to the electrolyte and electrons move to the positive electrode side via an external circuit, respectively. The oxygen reduction reaction proceeds with an enzyme to produce water. Through this series of reactions, electric energy can be extracted from the biofuel cell. The canister is a can-like container filled with a carbon porous body, and is mounted on an automobile. The canister accepts and absorbs the gasoline vapor generated in the fuel tank through the pipe when the engine of the automobile is stopped, while releasing the adsorbed gasoline vapor by passing fresh air while the engine is running, and the combustion chamber of the engine To supply. The fuel purification facility purifies the fuel by adsorbing impurities contained in the fuel to the carbon porous body.

これまでに、本発明者は、炭素多孔体として、炭素骨格の一部が窒素原子で置換されたものを開発している(特許文献1)。この炭素多孔体は、平均細孔径が2nm以下のミクロ細孔構造を有している。一方、セルサイズが約0.1μmの低密度の炭素発泡体も知られている(特許文献2)。この炭素発泡体は、レゾルシノールとホルムアルデヒドとの重縮合によって得られるポリマークラスタを共有結合的に架橋してゲルを合成し、そのゲルを超臨界条件で処理してエアロゲルとし、そのエアロゲルを炭素化することによって合成されている。   So far, the present inventor has developed a carbon porous body in which a part of the carbon skeleton is substituted with a nitrogen atom (Patent Document 1). This carbon porous body has a micropore structure with an average pore diameter of 2 nm or less. On the other hand, a low-density carbon foam having a cell size of about 0.1 μm is also known (Patent Document 2). In this carbon foam, a polymer cluster obtained by polycondensation of resorcinol and formaldehyde is covalently crosslinked to synthesize a gel, and the gel is treated under supercritical conditions to form an airgel, and the airgel is carbonized. Is synthesized.

特開2011−051828号公報JP 2011-051828 A 米国特許第4873218号明細書U.S. Pat. No. 4,873,218

ところで、これまで、メソ細孔構造でありながら相対圧力の比較的大きな領域において相対圧力差に対する窒素吸着量差が大きい炭素多孔体は知られておらず、当然、こうした炭素多孔体を容易に製造する方法も知られていなかった。このような炭素多孔体は、特定ガスの脱着材への利用のほか、電気化学キャパシタの電極材料やバイオ燃料電池の酵素電極を担持する材料、キャニスタの吸着材、燃料精製設備の吸着材などへの利用が期待される。   By the way, carbon porous bodies that have a mesopore structure but have a large difference in nitrogen adsorption amount relative to the relative pressure difference in a relatively large region of relative pressure have not been known so far. There was no known way to do it. Such carbon porous materials can be used not only as desorbing materials for specific gases, but also as electrode materials for electrochemical capacitors, materials supporting enzyme electrodes for biofuel cells, canister adsorbents, and adsorbents for fuel purification equipment. Is expected to be used.

本発明はこのような課題を解決するためになされたものであり、メソ細孔構造でありながら相対圧力の比較的大きな領域において相対圧力差に対する窒素吸着量差が大きい炭素多孔体を提供することを主目的とする。   The present invention has been made to solve such problems, and provides a carbon porous body having a large difference in nitrogen adsorption amount relative to a relative pressure difference in a region having a relatively large relative pressure while having a mesopore structure. The main purpose.

上述した目的を達成するために鋭意研究したところ、本発明者らは、テレフタル酸のカルシウム塩を不活性雰囲気中550〜700℃で加熱して炭素と炭酸カルシウムとの複合体を形成し、酸水溶液でその複合体を洗浄して炭酸カルシウムを除去して得られた炭素多孔体が優れた特性を有することを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-mentioned object, the present inventors have heated a calcium salt of terephthalic acid at 550 to 700 ° C. in an inert atmosphere to form a complex of carbon and calcium carbonate. It was found that the carbon porous body obtained by washing the complex with an aqueous solution to remove calcium carbonate has excellent characteristics, and completed the present invention.

本発明の炭素多孔体は、DFT解析による直径2nm以下の細孔容量が0.12mL/g以下、温度77Kでの窒素吸着等温線がIUPAC分類のIV型(メソ細孔を持つことを示す型)に属し、該窒素吸着等温線において相対圧力P/P0が0.5のときの吸着量が0.8g/g以下で且つ相対圧力P/P0が0.9のときの吸着量が1.5g/g以上のものである。 The carbon porous body of the present invention has a pore capacity of 2 nm or less in diameter by DFT analysis of 0.12 mL / g or less, and a nitrogen adsorption isotherm at a temperature of 77 K is a type IUPAC classification IV type (showing mesopores) In the nitrogen adsorption isotherm, the adsorption amount when the relative pressure P / P 0 is 0.5 is 0.8 g / g or less and the adsorption amount when the relative pressure P / P 0 is 0.9 is 1.5 g / g or more.

また、本発明の炭素多孔体の製法は、ベンゼンジカルボン酸のアルカリ土類金属塩を不活性雰囲気中550〜700℃で加熱して炭素とアルカリ土類金属炭酸塩との複合体を形成し、前記炭酸塩を溶解可能な洗浄液で前記複合体を洗浄して前記炭酸塩を除去することにより炭素多孔体を得るものである。   Further, the method for producing a porous carbon body of the present invention comprises heating an alkaline earth metal salt of benzenedicarboxylic acid at 550 to 700 ° C. in an inert atmosphere to form a composite of carbon and alkaline earth metal carbonate, The composite is washed with a washing solution capable of dissolving the carbonate to remove the carbonate to obtain a porous carbon body.

更に、本発明のアンモニア吸着材は、上述した本発明の炭素多孔体を利用したものである。   Furthermore, the ammonia adsorbent of the present invention uses the above-described porous carbon of the present invention.

本発明の炭素多孔体によれば、特定のガスに対してガス圧力を所定範囲で変化させたときのガスの吸脱着量を大きくすることができる。また、本発明の炭素多孔体の製法によれば、こうした炭素多孔体を簡単に得ることができる。更に、本発明のアンモニア吸着材によれば、アンモニアガスに対してガス圧力を所定範囲で変化させたときのアンモニアガス吸脱着量を大きくすることができる。   According to the carbon porous body of the present invention, the gas adsorption / desorption amount when the gas pressure is changed in a predetermined range with respect to a specific gas can be increased. Moreover, according to the manufacturing method of the carbon porous body of this invention, such a carbon porous body can be obtained easily. Furthermore, according to the ammonia adsorbent of the present invention, it is possible to increase the ammonia gas adsorption / desorption amount when the gas pressure is changed in a predetermined range with respect to ammonia gas.

吸着等温線のIUPAC分類のIV型のグラフ。Type IV graph of IUPAC classification of adsorption isotherms. 実施例1〜3及び比較例1,3,4の窒素吸着等温線のグラフ。The graph of the nitrogen adsorption isotherm of Examples 1-3 and Comparative Examples 1,3,4. 実施例1〜3及び比較例1,3,4のアンモニア吸着等温線のグラフ。The graph of the ammonia adsorption isotherm of Examples 1-3 and Comparative Examples 1,3,4. 窒素吸着量差とアンモニア吸着量差との関係を示すグラフ。The graph which shows the relationship between nitrogen adsorption amount difference and ammonia adsorption amount difference. 実施例2,3,6の窒素吸着等温線のグラフ。The graph of the nitrogen adsorption isotherm of Examples 2, 3, and 6.

本発明の炭素多孔体は、DFT解析による直径2nm以下の細孔容量が0.12mL/g以下、好ましくは0.11mL/g以下、温度77Kでの窒素吸着等温線がIUPAC分類のIV型に属し、該窒素吸着等温線において相対圧力P/P0が0.5のときの吸着量が0.8g/g以下で且つ相対圧力P/P0が0.9のときの吸着量が1.5g/g以上のものである。 The carbon porous body of the present invention has a pore capacity of 2 nm or less in diameter by DFT analysis of 0.12 mL / g or less, preferably 0.11 mL / g or less, and a nitrogen adsorption isotherm at a temperature of 77 K is in the IV type of IUPAC classification. In the nitrogen adsorption isotherm, the adsorption amount when the relative pressure P / P 0 is 0.5 is 0.8 g / g or less and the adsorption amount when the relative pressure P / P 0 is 0.9 is 1. 5 g / g or more.

本発明の炭素多孔体は、窒素吸着等温線のIUPAC分類の型がメソ細孔を持つことを示すIV型(図1参照)であり、直径2nm以下の細孔容量が0.12mL/g以下と小さいことから、ほぼメソ細孔から構成されているといえる。また、本発明の炭素多孔体は、窒素吸着等温線において相対圧力P/P0が0.9のときの窒素吸着量から相対圧力P/P0が0.5のときの窒素吸着量を差し引いた値が0.7g/g以上になることから、相対圧力の比較的大きな領域において相対圧力の変化量に対する窒素吸着量の変化量が大きい。そのため、特定のガスに対してガス圧力を所定範囲で変化させたときのガスの吸脱着量を大きくすることができる。 The carbon porous body of the present invention is IV type (see FIG. 1) indicating that the IUPAC classification type of the nitrogen adsorption isotherm has mesopores, and the pore volume of 2 nm or less in diameter is 0.12 mL / g or less. Therefore, it can be said that it is almost composed of mesopores. In the carbon porous body of the present invention, the nitrogen adsorption amount when the relative pressure P / P 0 is 0.5 is subtracted from the nitrogen adsorption amount when the relative pressure P / P 0 is 0.9 in the nitrogen adsorption isotherm. Therefore, the amount of change in the nitrogen adsorption amount relative to the amount of change in the relative pressure is large in a relatively large region of the relative pressure. Therefore, it is possible to increase the gas adsorption / desorption amount when the gas pressure is changed in a predetermined range with respect to a specific gas.

本発明の炭素多孔体は、例えば、BET比表面積が800m2/g以上であるものとしてもよい。このうち、BET比表面積は、1000m2/g以上であることが好ましく、1200m2/g以上であることがより好ましく、1250m2/g以上であることがさらに好ましい。比表面積の大きさが、各種機能特性の向上に相関があるためである。上限は、例えば2630m2/g以下としてもよい。 The carbon porous body of the present invention may have, for example, a BET specific surface area of 800 m 2 / g or more. Among these, the BET specific surface area is preferably 1000 m 2 / g or more, more preferably 1200 m 2 / g or more, and further preferably 1250 m 2 / g or more. This is because the size of the specific surface area correlates with improvements in various functional characteristics. An upper limit is good also as 2630 m < 2 > / g or less, for example.

本発明の炭素多孔体の製法は、ベンゼンジカルボン酸のアルカリ土類金属塩を不活性雰囲気中550〜700℃で加熱して炭素とアルカリ土類金属炭酸塩との複合体を形成し、前記炭酸塩を溶解可能な洗浄液で前記複合体を洗浄して前記炭酸塩を除去することにより炭素多孔体を得るものである。この製法は、上述した本発明の炭素多孔体を得るのに好適である。   In the method for producing a porous carbon body of the present invention, an alkaline earth metal salt of benzenedicarboxylic acid is heated at 550 to 700 ° C. in an inert atmosphere to form a composite of carbon and alkaline earth metal carbonate, The composite is washed with a washing solution capable of dissolving a salt to remove the carbonate to obtain a porous carbon body. This production method is suitable for obtaining the carbon porous body of the present invention described above.

本発明の炭素多孔体の製法において、ベンゼンジカルボン酸としては、例えば、フタル酸(ベンゼン−1,2−ジカルボン酸)、イソフタル酸(ベンゼン−1,3−ジカルボン酸)、テレフタル酸(ベンゼン−1,4−ジカルボン酸)などが挙げられるが、このうちテレフタル酸が好ましい。また、アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウムなどが挙げられるが、このうちカルシウムが好ましい。ベンゼンジカルボン酸のアルカリ土類金属塩は、市販品を購入してもよいし、ベンゼンジカルボン酸とアルカリ土類金属の水酸化物とを水中で混合することにより合成してもよい。その場合、ベンゼンジカルボン酸とアルカリ土類金属の水酸化物とのモル比は、中和反応式に基づく化学量論量だけ用いてもよいし、一方が他方に対して過剰になるように用いてもよい。例えば、モル比は、1.5:1〜1:1.5の範囲に設定すればよい。ベンゼンカルボン酸とアルカリ土類金属の水酸化物とを水中で混合する際には、50〜100℃に加熱してもよい。   In the method for producing a porous carbon body of the present invention, examples of benzenedicarboxylic acid include phthalic acid (benzene-1,2-dicarboxylic acid), isophthalic acid (benzene-1,3-dicarboxylic acid), and terephthalic acid (benzene-1). , 4-dicarboxylic acid), among which terephthalic acid is preferred. Examples of the alkaline earth metal include magnesium, calcium, strontium, barium and the like, among which calcium is preferable. The alkaline earth metal salt of benzenedicarboxylic acid may be purchased commercially, or may be synthesized by mixing benzenedicarboxylic acid and hydroxide of alkaline earth metal in water. In that case, the molar ratio of benzenedicarboxylic acid to alkaline earth metal hydroxide may be used in a stoichiometric amount based on the neutralization reaction formula, or one may be used in excess with respect to the other. May be. For example, the molar ratio may be set in the range of 1.5: 1 to 1: 1.5. When the benzenecarboxylic acid and the alkaline earth metal hydroxide are mixed in water, the mixture may be heated to 50 to 100 ° C.

本発明の炭素多孔体の製法において、不活性雰囲気としては、窒素雰囲気やアルゴン雰囲気などが挙げられる。また、加熱温度は、550〜700℃に設定するのが好ましい。550℃未満では、77Kでの窒素吸着等温線の相対圧力P/P0が0.9のときの窒素吸着量が十分大きくならないため好ましくない。700℃を超えると、炭素多孔体が得られないため好ましくない。加熱後に得られる炭素とアルカリ土類金属炭酸塩との複合体は、層状炭化物の層間にアルカリ土類金属炭酸塩が入り込んだ構造をとっていると推察される。加熱温度での保持時間は、例えば50時間以下としてもよい。このうち、0.5〜20時間が好ましく、1〜10時間がより好ましい。0.5時間以上では、炭素とアルカリ土類金属炭酸塩との複合体の形成が十分に行われる。20時間以下では、BET比表面積の比較的大きな炭素多孔体が得られる。 In the method for producing a porous carbon body of the present invention, examples of the inert atmosphere include a nitrogen atmosphere and an argon atmosphere. The heating temperature is preferably set to 550 to 700 ° C. If it is less than 550 ° C., the nitrogen adsorption amount when the relative pressure P / P 0 of the nitrogen adsorption isotherm at 77 K is 0.9 is not preferable because it is not sufficiently large. If it exceeds 700 ° C., a porous carbon material cannot be obtained, which is not preferable. It is inferred that the composite of carbon and alkaline earth metal carbonate obtained after heating has a structure in which alkaline earth metal carbonate enters between the layers of the layered carbide. The holding time at the heating temperature may be, for example, 50 hours or less. Among these, 0.5 to 20 hours are preferable, and 1 to 10 hours are more preferable. In 0.5 hours or more, the complex of carbon and alkaline earth metal carbonate is sufficiently formed. In 20 hours or less, a carbon porous body having a relatively large BET specific surface area can be obtained.

本発明の炭素多孔体の製法において、アルカリ土類金属炭酸塩を溶解可能な洗浄液としては、例えば、アルカリ土類金属炭酸塩が炭酸カルシウムの場合には水や酸性水溶液を用いることが好ましい。酸性水溶液としては、例えば、塩酸、硝酸、酢酸及びシュウ酸などの水溶液が挙げられる。こうした洗浄を行うことにより、複合体中のアルカリ土類金属炭酸塩が存在していた箇所は空洞になると推察される。   In the method for producing a porous carbon body of the present invention, as the cleaning liquid capable of dissolving the alkaline earth metal carbonate, for example, when the alkaline earth metal carbonate is calcium carbonate, it is preferable to use water or an acidic aqueous solution. Examples of the acidic aqueous solution include aqueous solutions of hydrochloric acid, nitric acid, acetic acid, oxalic acid, and the like. By performing such cleaning, it is presumed that the place where the alkaline earth metal carbonate in the composite was present becomes a cavity.

本発明のアンモニア吸着材は、上述した炭素多孔体からなるものである。このアンモニア吸着材は、アンモニア圧力が390kPaのときのアンモニア吸着量からアンモニア圧力が300kPaのときのアンモニア吸着量を差し引いた値が0.50g/g以上であることが好ましい。こうすれば、アンモニア圧力を調節することにより、多量のアンモニアを吸着させたりそれを放出させたりすることができるからである。   The ammonia adsorbent of the present invention is composed of the above-described porous carbon material. The ammonia adsorbent preferably has a value obtained by subtracting the ammonia adsorption amount when the ammonia pressure is 300 kPa from the ammonia adsorption amount when the ammonia pressure is 390 kPa to 0.50 g / g or more. This is because a large amount of ammonia can be adsorbed or released by adjusting the ammonia pressure.

[実施例1]
(テレフタル酸のカルシウム塩の合成)
テレフタル酸(0.1mol)と水酸化カルシウム(0.1mol)とを水200mL中に加え、80℃の水浴で4時間加熱した。生成したテレフタル酸のカルシウム塩の結晶を濾過して分取し、室温で風乾した。
[Example 1]
(Synthesis of calcium salt of terephthalic acid)
Terephthalic acid (0.1 mol) and calcium hydroxide (0.1 mol) were added to 200 mL of water and heated in an 80 ° C. water bath for 4 hours. The produced crystals of calcium salt of terephthalic acid were collected by filtration and air-dried at room temperature.

(テレフタル酸のカルシウム塩の炭素化)
テレフタル酸のカルシウム塩(4g)を電気管状炉内に配置し、その管状炉内を不活性ガス(流速0.1L/分)でフロー置換した。不活性ガスとしては窒素ガスを用いたが、アルゴンガスを用いてもよい。ガスフローを維持したまま、管状炉温度を設定温度まで1時間かけて昇温した。ここでは、設定温度を550℃にした。昇温完了後、ガスフローを維持したまま、その設定温度で2時間保持し、その後室温まで冷却した。これにより、管状炉内には、炭素と炭酸カルシウムとの複合体が生成した。
(Carbonization of calcium salt of terephthalic acid)
A calcium salt of terephthalic acid (4 g) was placed in an electric tube furnace, and the inside of the tube furnace was flow-replaced with an inert gas (flow rate 0.1 L / min). Nitrogen gas is used as the inert gas, but argon gas may be used. While maintaining the gas flow, the tubular furnace temperature was raised to the set temperature over 1 hour. Here, the set temperature was set to 550 ° C. After completion of the temperature increase, the gas flow was maintained and maintained at the set temperature for 2 hours, and then cooled to room temperature. Thereby, the composite_body | complex of carbon and calcium carbonate produced | generated in the tubular furnace.

(複合体の酸処理)
複合体を管状炉から取り出し、水500mLに分散させた。分散液に2mol/Lの塩酸を50mL添加し、撹拌した。そうしたところ、炭酸カルシウムの分解により発泡が見られた。分散液をろ過後、乾燥して目的とする炭素多孔体を得た(収量約1g)。
(Acid treatment of complex)
The composite was removed from the tubular furnace and dispersed in 500 mL of water. 50 mL of 2 mol / L hydrochloric acid was added to the dispersion and stirred. As a result, foaming was observed due to decomposition of calcium carbonate. The dispersion was filtered and dried to obtain the target carbon porous body (yield: about 1 g).

[実施例2]
テレフタル酸のカルシウム塩の炭素化における管状炉温度の設定温度を600℃にした以外は、実施例1と同様にして炭素多孔体を得た。
[Example 2]
A porous carbon body was obtained in the same manner as in Example 1 except that the temperature setting of the tubular furnace temperature in the carbonization of the calcium salt of terephthalic acid was 600 ° C.

[実施例3]
テレフタル酸のカルシウム塩の炭素化における管状炉温度の設定温度を700℃にした以外は、実施例1と同様にして炭素多孔体を得た。
[Example 3]
A porous carbon body was obtained in the same manner as in Example 1 except that the temperature setting of the tubular furnace temperature in the carbonization of the calcium salt of terephthalic acid was 700 ° C.

[実施例4]
水酸化カルシウム0.1molに対して、テレフタル酸を0.15mol使用した以外は、実施例1と同様にして炭素多孔体を得た。
[Example 4]
A porous carbon material was obtained in the same manner as in Example 1 except that 0.15 mol of terephthalic acid was used with respect to 0.1 mol of calcium hydroxide.

[実施例5]
テレフタル酸0.1molに対して、水酸化カルシウムを0.15mol使用した以外は、実施例1と同様にして炭素多孔体を得た。
[Example 5]
A porous carbon material was obtained in the same manner as in Example 1 except that 0.15 mol of calcium hydroxide was used with respect to 0.1 mol of terephthalic acid.

[実施例6]
テレフタル酸カルシウム塩の炭素化における設定温度(600℃)での保持時間を20時間とした以外は、実施例2と同様にして炭素多孔体を得た。
[Example 6]
A porous carbon material was obtained in the same manner as in Example 2 except that the holding time at the set temperature (600 ° C.) in the carbonization of calcium terephthalate was 20 hours.

[比較例1]
テレフタル酸のカルシウム塩の炭素化における管状炉温度の設定温度を500℃にした以外は、実施例1と同様にして炭素多孔体を得た。
[Comparative Example 1]
A porous carbon body was obtained in the same manner as in Example 1 except that the temperature setting of the tubular furnace temperature in the carbonization of the calcium salt of terephthalic acid was 500 ° C.

[比較例2]
テレフタル酸のカルシウム塩の炭素化における管状炉温度の設定温度を800℃にした以外は、実施例1と同様にして炭素多孔体を得ようとしたが、炭素多孔体は得られなかった。
[Comparative Example 2]
An attempt was made to obtain a porous carbon material in the same manner as in Example 1 except that the setting temperature of the tubular furnace temperature in carbonization of the calcium salt of terephthalic acid was 800 ° C., but no porous carbon material was obtained.

[比較例3]
比較例3の炭素多孔体は、市販の活性炭である商品名メソコール(株式会社キャタラー製)である。
[Comparative Example 3]
The carbon porous body of the comparative example 3 is the brand name mesocol (made by Cataler Co., Ltd.) which is a commercially available activated carbon.

[比較例4]
比較例4の炭素多孔体は、市販の活性炭である商品名ベルファインBG−20−1(エア・ウォーター・ベルパール株式会社製)である。
[Comparative Example 4]
The carbon porous body of Comparative Example 4 is a trade name Bell Fine BG-20-1 (manufactured by Air Water Bell Pearl Co., Ltd.), which is a commercially available activated carbon.

[特性値測定]
実施例1〜5及び比較例1,3,4の各炭素多孔体について、液体窒素温度(77K)における窒素吸着測定から表1に示す特性値を求めた。図2は、実施例1〜3及び比較例1,3,4の77Kでの窒素吸着等温線である。なお、実施例4,5の窒素吸着等温線のグラフは実施例1と概ね同じであったため、図示を省略した。表1中、BET比表面積は、BET解析から算出した。直径2nmの細孔容量は、DFT解析(Density Functional Theory)から算出した。細孔形状は、スリット型の細孔構造であると仮定した。相対圧力P/P0が0.5及び0.9のときの窒素吸着量AN21,AN22の値は窒素吸着等温線のグラフから読み取り、両者の差を窒素吸着量差△AN2(=AN22−AN21)とした。
[Characteristic value measurement]
About each carbon porous body of Examples 1-5 and Comparative Examples 1, 3, and 4, the characteristic value shown in Table 1 was calculated | required from the nitrogen adsorption measurement in liquid nitrogen temperature (77K). FIG. 2 is a nitrogen adsorption isotherm at 77K of Examples 1 to 3 and Comparative Examples 1, 3, and 4. In addition, since the graph of the nitrogen adsorption isotherm of Examples 4 and 5 was substantially the same as that of Example 1, illustration was omitted. In Table 1, the BET specific surface area was calculated from BET analysis. The pore volume with a diameter of 2 nm was calculated from DFT analysis (Density Functional Theory). The pore shape was assumed to be a slit-type pore structure. The values of nitrogen adsorption amounts A N2 1 and A N2 2 when the relative pressure P / P 0 is 0.5 and 0.9 are read from the graph of the nitrogen adsorption isotherm, and the difference between the two is the nitrogen adsorption amount difference ΔA N2 (= A N2 2−A N2 1).

Figure 0006327053
Figure 0006327053

表1から明らかなように、実施例1〜5の炭素多孔体は、BET比表面積が1200m2/g以上と大きく、DFT解析による直径2nm以下の細孔容量が0.12mL/g以下と小さかった。また、図2に示す実施例1〜3の炭素多孔体の窒素吸着等温線は、IUPAC分類のIV型(メソ細孔を持つことを示す型、図1参照)に属するものであった。図示を省略した実施例4,5の炭素多孔体の窒素吸着等温線もこれと同様であった。こうしたことから、実施例1〜5の炭素多孔体は、ほぼメソ細孔から構成されているといえる。 As is clear from Table 1, the carbon porous bodies of Examples 1 to 5 have a large BET specific surface area of 1200 m 2 / g or more, and a pore volume of 2 nm or less in diameter by DFT analysis is as small as 0.12 mL / g or less. It was. Further, the nitrogen adsorption isotherms of the carbon porous materials of Examples 1 to 3 shown in FIG. 2 belonged to the IUPAC classification IV type (type showing mesopores, see FIG. 1). The nitrogen adsorption isotherms of the carbon porous bodies of Examples 4 and 5 (not shown) were the same. For these reasons, it can be said that the carbon porous bodies of Examples 1 to 5 are substantially composed of mesopores.

また、実施例1〜5の炭素多孔体は、窒素吸着等温線において相対圧力P/P0が0.9のときの窒素吸着量AN22が1.5g/g以上、相対圧力P/P0が0.5のときの窒素吸着量AN21が0.8g/g以下であり、窒素吸着量差△AN2の値が0.7g/g以上であった。このことから、実施例1〜5の炭素多孔体は、相対圧力の比較的大きな領域において相対圧力の変化量に対する窒素吸着量の変化量が大きいといえる。そのため、実施例1〜5の炭素多孔体は、特定のガス(例えば窒素など)に対してガス圧力を所定範囲で変化させたときのガスの吸脱着量を大きくすることができる。 Further, in the carbon porous bodies of Examples 1 to 5, the nitrogen adsorption amount A N2 2 when the relative pressure P / P 0 is 0.9 in the nitrogen adsorption isotherm is 1.5 g / g or more, and the relative pressure P / P. The nitrogen adsorption amount A N2 1 when 0 was 0.5 was 0.8 g / g or less, and the value of the nitrogen adsorption amount difference ΔA N2 was 0.7 g / g or more. From this, it can be said that the carbon porous bodies of Examples 1 to 5 have a large change amount of the nitrogen adsorption amount with respect to the change amount of the relative pressure in a relatively large region of the relative pressure. Therefore, the carbon porous bodies of Examples 1 to 5 can increase the gas adsorption / desorption amount when the gas pressure is changed in a predetermined range with respect to a specific gas (for example, nitrogen).

これに対して、比較例1の炭素多孔体は、BET比表面積が1200m2/g未満と小さく、相対圧力P/P0が0.9のときの窒素吸着量AN22が1.02g/gと小さく、窒素吸着量差△AN2の値も0.34g/gと小さかった。また、比較例3,4の炭素多孔体は、窒素吸着量差△AN22が0.09g/g以下と極めて小さかった。このため、比較例1,3,4は、特定ガスに対してガス圧力を所定範囲で変化させたとしても、ガスの吸脱着量を実施例1〜5のように大きくすることができない。 In contrast, the carbon porous body of Comparative Example 1 has a small BET specific surface area of less than 1200 m 2 / g and a nitrogen adsorption amount A N2 2 of 1.02 g / g when the relative pressure P / P 0 is 0.9. The value of nitrogen adsorption amount difference ΔA N2 was as small as 0.34 g / g. Further, in the carbon porous bodies of Comparative Examples 3 and 4, the nitrogen adsorption amount difference ΔA N2 2 was extremely small as 0.09 g / g or less. For this reason, in Comparative Examples 1, 3, and 4, even if the gas pressure is changed within a predetermined range with respect to the specific gas, the gas adsorption / desorption amount cannot be increased as in Examples 1 to 5.

ここで、各炭素多孔体につき、特定ガスとしてアンモニアを用いて、273Kにおける吸着測定を行った。飽和蒸気圧は430kPaであった。アンモニア圧力が390kPaのときのアンモニア吸着量からアンモニア圧力が300kPaのときのアンモニア吸着量を差し引いたアンモニア吸着量差△ANH3を求め、その値を表1に示した。図3は、実施例1〜3及び比較例1,3,4のアンモニア吸着等温線である。実施例4,5のアンモニア吸着等温線は、実施例1と概ね同じであったため、図示を省略した。図4は、窒素吸着量差△AN2とアンモニア吸着量差△ANH3との対応関係を表すグラフである。図4から、窒素吸着量差△AN2とアンモニア吸着量差△ANH3との間には、良好な相関関係があることがわかる。 Here, for each carbon porous body, adsorption measurement at 273 K was performed using ammonia as a specific gas. The saturated vapor pressure was 430 kPa. The ammonia adsorption amount difference ΔA NH3 obtained by subtracting the ammonia adsorption amount when the ammonia pressure was 300 kPa from the ammonia adsorption amount when the ammonia pressure was 390 kPa was determined, and the value is shown in Table 1. FIG. 3 is an ammonia adsorption isotherm of Examples 1 to 3 and Comparative Examples 1, 3, and 4. Since the ammonia adsorption isotherms in Examples 4 and 5 were substantially the same as in Example 1, illustration was omitted. FIG. 4 is a graph showing the correspondence between the nitrogen adsorption amount difference ΔA N2 and the ammonia adsorption amount difference ΔA NH3 . FIG. 4 shows that there is a good correlation between the nitrogen adsorption amount difference ΔA N2 and the ammonia adsorption amount difference ΔA NH3 .

表1に示すように、アンモニア圧力が300−390kPaの範囲において、実施例1〜5では0.50g/g以上という大きなアンモニア吸着量差△ANH3が得られたが、比較例1では0.278g/g、比較例3,4では0.06g/g以下という小さな値しか得られなかった。このことから、実施例1〜5の炭素多孔体を用いた場合、アンモニア圧力を調節することにより、多量のアンモニアを吸着させたりそれを放出させたりすることが可能なことが分かった。 As shown in Table 1, a large ammonia adsorption amount difference ΔA NH3 of 0.50 g / g or more was obtained in Examples 1 to 5 in the range of 300 to 390 kPa of ammonia pressure. In 278 g / g and Comparative Examples 3 and 4, only a small value of 0.06 g / g or less was obtained. From this, when the carbon porous body of Examples 1-5 was used, it turned out that it can adsorb | suck a large amount of ammonia or make it discharge | release by adjusting ammonia pressure.

また、実施例6の炭素多孔体について、実施例1〜5と同様に、液体窒素温度(77K)における窒素吸着測定から特性値を求めた。図5は、実施例6の窒素吸着等温線である。図5には、比較のために実施例2,3の窒素吸着等温線も示した。実施例6において、直径2nm以下の細孔容量は0.10mL/gであり、BET比表面積は1155m2/gであった。また、窒素吸着量AN21は0.61g/gであり、窒素吸着量AN22は1.52g/gであり、窒素吸着量差△AN2は0.91g/gであった。 Moreover, about the carbon porous body of Example 6, the characteristic value was calculated | required from the nitrogen adsorption measurement in liquid nitrogen temperature (77K) similarly to Examples 1-5. FIG. 5 is a nitrogen adsorption isotherm of Example 6. FIG. 5 also shows the nitrogen adsorption isotherms of Examples 2 and 3 for comparison. In Example 6, the pore volume with a diameter of 2 nm or less was 0.10 mL / g, and the BET specific surface area was 1155 m 2 / g. Further, the nitrogen adsorption amount A N2 1 was 0.61 g / g, the nitrogen adsorption amount A N2 2 was 1.52 g / g, and the nitrogen adsorption amount difference ΔA N2 was 0.91 g / g.

上述した結果から明らかなように、実施例6の炭素多孔体は、BET比表面積が1200m2/g未満と実施例1〜5よりは小さかったものの、BET比表面積は800m2/g以上と比較的大きかった。DFT解析による直径2nm以下の細孔容量は、実施例1〜5と同様に、0.12mL/g以下と小さかった。また、図5に示す実施例6の炭素多孔体の窒素吸着等温線は、実施例1〜5と同様に、IUPAC分類のIV型(メソ細孔を持つことを示す型、図1参照)に属するものであった。こうしたことから、実施例6の炭素多孔体は、ほぼメソ細孔から構成されているといえる。 As is clear from the results described above, the porous carbon body of Example 6 had a BET specific surface area of less than 1200 m 2 / g and smaller than Examples 1 to 5, but the BET specific surface area was compared with 800 m 2 / g or more. It was big. The pore volume with a diameter of 2 nm or less by DFT analysis was as small as 0.12 mL / g or less as in Examples 1-5. Further, the nitrogen adsorption isotherm of the porous carbon body of Example 6 shown in FIG. 5 is similar to Examples 1 to 5 in the IUPAC class IV type (type showing mesopores, see FIG. 1). Belonged. From these facts, it can be said that the carbon porous body of Example 6 is substantially composed of mesopores.

また、実施例6の炭素多孔体は、窒素吸着等温線において相対圧力P/P0が0.9のときの窒素吸着量AN22が1.5g/g以上、相対圧力P/P0が0.5のときの窒素吸着量AN21が0.8g/g以下であり、窒素吸着量差△AN2の値が0.7g/g以上であった。このことから、実施例6の炭素多孔体は、相対圧力の比較的大きな領域において相対圧力の変化量に対する窒素吸着量の変化量が大きいといえる。そのため、実施例6の炭素多孔体は、特定のガス(例えば窒素など)に対してガス圧力を所定範囲で変化させたときのガスの吸脱着量を大きくすることができる。 Further, in the carbon porous body of Example 6, the nitrogen adsorption amount A N2 2 when the relative pressure P / P 0 is 0.9 in the nitrogen adsorption isotherm is 1.5 g / g or more, and the relative pressure P / P 0 is The nitrogen adsorption amount A N2 1 at 0.5 was 0.8 g / g or less, and the value of the nitrogen adsorption amount difference ΔA N2 was 0.7 g / g or more. From this, it can be said that the carbon porous body of Example 6 has a large change amount of the nitrogen adsorption amount with respect to the change amount of the relative pressure in a relatively large region of the relative pressure. Therefore, the porous carbon body of Example 6 can increase the gas adsorption / desorption amount when the gas pressure is changed within a predetermined range with respect to a specific gas (for example, nitrogen).

また、実施例6の窒素吸着等温線は、実施例2,3と類似していた。そして、上述したように、窒素吸着量差△AN2とアンモニア吸着量差△ANH3との間には、図4に示すような良好な相関関係があった。このことから、実施例6の炭素多孔体は、実施例2,3の炭素多孔体と類似したアンモニア吸着特性を有し、多量のアンモニアを吸着させたりそれを放出させたりすることが可能であると推察された。 Further, the nitrogen adsorption isotherm of Example 6 was similar to Examples 2 and 3. As described above, there was a good correlation between the nitrogen adsorption amount difference ΔA N2 and the ammonia adsorption amount difference ΔA NH3 as shown in FIG. From this, the carbon porous body of Example 6 has ammonia adsorption characteristics similar to the carbon porous bodies of Examples 2 and 3, and can adsorb a large amount of ammonia or release it. It was guessed.

本発明の炭素多孔体は、例えば、窒素やアンモニアの吸着材として利用可能なほか、電気化学キャパシタの電極材料、バイオ燃料電池の酵素電極を担持する材料、キャニスタの吸着材、燃料精製設備の吸着材などに利用可能である。   The porous carbon of the present invention can be used, for example, as an adsorbent for nitrogen or ammonia, as well as an electrode material for an electrochemical capacitor, a material for supporting an enzyme electrode for a biofuel cell, an adsorbent for a canister, and an adsorption for a fuel purification facility It can be used for materials.

Claims (10)

DFT解析による直径2nm以下の細孔容量が0.12mL/g以下、温度77Kでの窒素吸着等温線がIUPAC分類のIV型に属し、該窒素吸着等温線において相対圧力P/P0が0.5のときの吸着量が0.8g/g以下で且つ相対圧力P/P0が0.9のときの吸着量が1.5g/g以上である、炭素多孔体。 A pore volume with a diameter of 2 nm or less by DFT analysis is 0.12 mL / g or less, a nitrogen adsorption isotherm at a temperature of 77 K belongs to type IV of the IUPAC classification, and the relative pressure P / P 0 is 0 in the nitrogen adsorption isotherm. A porous carbon body having an adsorption amount of 0.8 g / g or less at 5 and an adsorption amount of 1.5 g / g or more when the relative pressure P / P 0 is 0.9. BET比表面積が800m2/g以上である、請求項1に記載の炭素多孔体。 The porous carbon body according to claim 1, wherein the BET specific surface area is 800 m 2 / g or more. BET比表面積が1200m2/g以上である、請求項1又は2に記載の炭素多孔体。 The porous carbon body according to claim 1 or 2, wherein the BET specific surface area is 1200 m 2 / g or more. ベンゼンジカルボン酸のアルカリ土類金属塩を不活性雰囲気中550〜700℃で加熱して炭素とアルカリ土類金属炭酸塩との複合体を形成し、前記炭酸塩を溶解可能な洗浄液で前記複合体を洗浄して前記炭酸塩を除去して炭素多孔体を得る、
炭素多孔体の製法。
An alkaline earth metal salt of benzenedicarboxylic acid is heated at 550 to 700 ° C. in an inert atmosphere to form a complex of carbon and alkaline earth metal carbonate, and the complex is washed with a washing solution capable of dissolving the carbonate. To remove the carbonate to obtain a porous carbon body,
Manufacturing method of carbon porous body.
前記ベンゼンジカルボン酸のアルカリ土類金属塩は、ベンゼンジカルボン酸とアルカリ土類金属の水酸化物とを水中で混合して得られたものである、
請求項4に記載の炭素多孔体の製法。
The alkaline earth metal salt of benzenedicarboxylic acid is obtained by mixing benzenedicarboxylic acid and alkaline earth metal hydroxide in water.
The manufacturing method of the carbon porous body of Claim 4.
前記ベンゼンジカルボン酸と前記アルカリ土類金属の水酸化物とのモル比は、1.5:1〜1:1.5の範囲である、
請求項5に記載の炭素多孔体の製法。
The molar ratio of the benzenedicarboxylic acid to the alkaline earth metal hydroxide ranges from 1.5: 1 to 1: 1.5.
The manufacturing method of the carbon porous body of Claim 5.
前記ベンゼンジカルボン酸のアルカリ土類金属塩は、テレフタル酸のカルシウム塩である、請求項4〜6のいずれか1項に記載の炭素多孔体の製法。   The method for producing a porous carbon body according to any one of claims 4 to 6, wherein the alkaline earth metal salt of benzenedicarboxylic acid is a calcium salt of terephthalic acid. 得られる炭素多孔体は、請求項1に記載の炭素多孔体である、
請求項4〜7のいずれか1項に記載の炭素多孔体の製法。
The obtained carbon porous body is the carbon porous body according to claim 1,
The manufacturing method of the carbon porous body of any one of Claims 4-7.
請求項1〜3のいずれか1項に記載の炭素多孔体からなるアンモニア吸着材。   The ammonia adsorption material which consists of a carbon porous body of any one of Claims 1-3. アンモニア圧力が390kPaのときのアンモニア吸着量からアンモニア圧力が300kPaのときのアンモニア吸着量を差し引いた値が0.50g/g以上である、
請求項9に記載のアンモニア吸着材。
The value obtained by subtracting the ammonia adsorption amount when the ammonia pressure is 300 kPa from the ammonia adsorption amount when the ammonia pressure is 390 kPa is 0.50 g / g or more.
The ammonia adsorbent according to claim 9.
JP2014163419A 2013-09-13 2014-08-11 Porous carbon, production method thereof, and ammonia adsorbent Active JP6327053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014163419A JP6327053B2 (en) 2013-09-13 2014-08-11 Porous carbon, production method thereof, and ammonia adsorbent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013190364 2013-09-13
JP2013190364 2013-09-13
JP2014163419A JP6327053B2 (en) 2013-09-13 2014-08-11 Porous carbon, production method thereof, and ammonia adsorbent

Publications (2)

Publication Number Publication Date
JP2015078110A JP2015078110A (en) 2015-04-23
JP6327053B2 true JP6327053B2 (en) 2018-05-23

Family

ID=53009910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014163419A Active JP6327053B2 (en) 2013-09-13 2014-08-11 Porous carbon, production method thereof, and ammonia adsorbent

Country Status (1)

Country Link
JP (1) JP6327053B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140266A1 (en) * 2015-03-05 2016-09-09 株式会社キャタラー Carbon porous body, method for manufacturing same, ammonia adsorbent, and canister and method for manufacturing same
JP6042922B2 (en) * 2015-03-05 2016-12-14 株式会社豊田中央研究所 Porous carbon, production method thereof, and ammonia adsorbent
JP2017092303A (en) * 2015-11-12 2017-05-25 マツダ株式会社 Active carbon for electrode for high potential capacitor, manufacturing method thereof, and electric double-layer capacitor with the active carbon
JP6656969B2 (en) * 2016-03-22 2020-03-04 太平洋セメント株式会社 Spherical calcium carbonate particles and method for producing the same
JP7153005B2 (en) 2019-11-29 2022-10-13 株式会社豊田中央研究所 MESOPOROUS CARBON, METHOD FOR MANUFACTURING SAME, AND POLYMER FUEL CELL

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2694601B2 (en) * 1994-05-06 1997-12-24 福井県 Utilization method of terephthalic acid in alkaline effluent drainage of polyester fabric
JPH10202096A (en) * 1997-01-26 1998-08-04 Taiyo Eng Kk Trace metal adsorbent and method for removing trace metal in hydrocarbon oil with same
JP3738447B1 (en) * 2004-09-27 2006-01-25 福井県 Dioxin adsorbent
JP4724877B2 (en) * 2005-01-28 2011-07-13 独立行政法人物質・材料研究機構 Carbon porous body, method for producing carbon porous body, adsorbent, and biomolecular device
JP2009173522A (en) * 2007-12-26 2009-08-06 National Institute For Materials Science Mesoporous carbon (cnp-2) and method for producing the same
JP5309596B2 (en) * 2008-02-20 2013-10-09 株式会社豊田中央研究所 Carbon porous body manufacturing method and power storage device
US8114510B2 (en) * 2009-05-20 2012-02-14 The United States Of America As Represented By The United States Department Of Energy Mesoporous carbon materials

Also Published As

Publication number Publication date
JP2015078110A (en) 2015-04-23

Similar Documents

Publication Publication Date Title
Shao et al. Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture
Pan et al. Cation exchanged MOF-derived nitrogen-doped porous carbons for CO 2 capture and supercapacitor electrode materials
JP6327053B2 (en) Porous carbon, production method thereof, and ammonia adsorbent
Talapaneni et al. Chemical blowing approach for ultramicroporous carbon nitride frameworks and their applications in gas and energy storage
Yu et al. Molten salt synthesis of nitrogen-doped porous carbons for hydrogen sulfide adsorptive removal
Lin et al. Ionothermal synthesis of microporous and mesoporous carbon aerogels from fructose as electrode materials for supercapacitors
Zhou et al. A molecular foaming and activation strategy to porous N-doped carbon foams for supercapacitors and CO 2 capture
CN104583120B (en) Activated carbon with high active surface area
JP4576371B2 (en) Activated carbon, its production method and use
JP5835787B2 (en) Microporous carbon material, method for producing microporous carbon material, and hydrogen storage method using microporous carbon material
KR101404484B1 (en) Preparation method of n-doped activated carbons for carbon dioxide capture
JP2014055110A (en) Method for producing microporous carbonaceous material
KR102113719B1 (en) Activated carbon and its manufacturing method
US20170326527A1 (en) Carbon porous body, production method thereof, ammonia adsorbent material, canister, and production method thereof
JP2012507470A5 (en)
JP6042922B2 (en) Porous carbon, production method thereof, and ammonia adsorbent
KR101631180B1 (en) Manufacturing method of active carbon derived from rice husks for hydrogen storage using chemical activation
Chang et al. Cost-efficient strategy for sustainable cross-linked microporous carbon bead with satisfactory CO2 capture capacity
KR101631181B1 (en) Manufacturing method of activated carbon aerogel for carbon dioxide adsorption
Ramadass et al. Copper nanoparticles decorated N-doped mesoporous carbon with bimodal pores for selective gas separation and energy storage applications
JP6483477B2 (en) Method for producing calcium salt and method for producing porous carbon
Wang et al. Effect of chemical activators on polyphosphazene-based hierarchical porous carbons and their good CO2 capture
Wang et al. Enhancing CO2 adsorption performance of porous nitrogen-doped carbon materials derived from ZIFs: Insights into pore structure and surface chemistry
EP3059011B1 (en) Carbon porous body, method for producing the same, and ammonia-adsorbing material
Heo et al. Investigation of carbon dioxide adsorption by nitrogen-doped carbons synthesized from cubic MCM-48 mesoporous silica

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6327053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150