JP6314816B2 - Valve timing adjustment device - Google Patents

Valve timing adjustment device Download PDF

Info

Publication number
JP6314816B2
JP6314816B2 JP2014256567A JP2014256567A JP6314816B2 JP 6314816 B2 JP6314816 B2 JP 6314816B2 JP 2014256567 A JP2014256567 A JP 2014256567A JP 2014256567 A JP2014256567 A JP 2014256567A JP 6314816 B2 JP6314816 B2 JP 6314816B2
Authority
JP
Japan
Prior art keywords
fixing
valve timing
rotator
torque
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014256567A
Other languages
Japanese (ja)
Other versions
JP2016118107A (en
Inventor
基 上濱
基 上濱
ルビシュ フロリアン
ルビシュ フロリアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014256567A priority Critical patent/JP6314816B2/en
Priority to DE102015120170.4A priority patent/DE102015120170B4/en
Publication of JP2016118107A publication Critical patent/JP2016118107A/en
Application granted granted Critical
Publication of JP6314816B2 publication Critical patent/JP6314816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • F01L2001/3522Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear with electromagnetic brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/032Electric motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Vibration Dampers (AREA)

Description

本発明は、内燃機関においてクランク軸からのクランクトルクの伝達によりカム軸が開閉する動弁のバルブタイミングを調整するバルブタイミング調整装置に、関する。   The present invention relates to a valve timing adjusting device that adjusts the valve timing of a valve that opens and closes a camshaft by transmission of crank torque from a crankshaft in an internal combustion engine.

従来、クランク軸とカム軸との間の回転位相を位相調整機構への制御トルクの伝達により調整するバルブタイミング調整装置は、例えば特許文献1に開示されている。   Conventionally, for example, Patent Document 1 discloses a valve timing adjusting device that adjusts the rotational phase between a crankshaft and a camshaft by transmitting control torque to a phase adjusting mechanism.

ここで、特許文献1のバルブタイミング調整装置では、ストッパ機構により位相調整機構を係止することで、回転位相を位相端にて規制している。そのため、回転位相の規制に起因して位相調整機構がロックする事態を抑制すべく、位相調整機構において制御トルクの伝達される入力回転体を当該規制時に空転させている。   Here, in the valve timing adjusting device of Patent Document 1, the rotational phase is regulated at the phase end by locking the phase adjusting mechanism with a stopper mechanism. Therefore, in order to suppress a situation where the phase adjustment mechanism is locked due to the restriction of the rotation phase, the input rotating body to which the control torque is transmitted in the phase adjustment mechanism is idled during the restriction.

特許第5440474号公報Japanese Patent No. 5440474

さて、特許文献1のバルブタイミング調整装置では、回転位相の規制時に入力回転体を空転させることで、当該規制時の衝撃トルクによりストッパ機構や位相調整機構が破損して破損物が内燃機関の耐久性に悪影響を与える事態についても、抑制可能となっている。しかし、そうした入力回転体の空転は、回転位相を規制する度に現出することから、入力回転体の回転状態に従って調整される回転位相にずれが生じることで、内燃機関の燃焼特性に悪影響を与えるという別の問題を招いてしまう。   In the valve timing adjustment device of Patent Document 1, by rotating the input rotating body when the rotational phase is restricted, the stopper mechanism and the phase adjustment mechanism are damaged by the impact torque at the time of restriction, and the damaged object becomes durable in the internal combustion engine. Situations that adversely affect sex can also be suppressed. However, such idling of the input rotator appears every time the rotational phase is regulated, so that a deviation occurs in the rotational phase adjusted according to the rotational state of the input rotator, which adversely affects the combustion characteristics of the internal combustion engine. Invite another problem of giving.

そこで、本発明者らは、制御トルクを出力するトルク出力源の出力回転体に対し、入力回転体を相対変位可能且つトルク伝達可能に中継する可動軸継手機構に着目して、鋭意研究を行ってきた。その結果、回転位相の規制時に発生する衝撃トルクがストッパ機構や位相調整機構を破損させる程度まで過大となった場合には、可動軸継手機構を敢えて優先的に破損させることで、破損物が内燃機関の耐久性に悪影響を与える事態をも抑制可能となることが、判明した。   Therefore, the present inventors have conducted intensive research focusing on a movable shaft coupling mechanism that relays the input rotator so that it can be displaced relative to the output rotator of the torque output source that outputs the control torque. I came. As a result, when the impact torque generated when the rotational phase is regulated becomes excessive to the extent that the stopper mechanism or phase adjustment mechanism is damaged, the movable shaft coupling mechanism is preferentially damaged, so that the damaged object becomes an internal combustion engine. It has been found that the situation that adversely affects the durability of the engine can be suppressed.

本発明は、以上説明した問題に鑑みてなされたものであって、その目的は、機構の破損と回転位相の調整ずれとによる内燃機関への悪影響を抑制するバルブタイミング調整装置を、提供することにある。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a valve timing adjusting device that suppresses adverse effects on an internal combustion engine due to damage to the mechanism and misalignment of the rotational phase. It is in.

上述の課題を解決するために開示された第一発明は、内燃機関においてクランク軸からのクランクトルクの伝達によりカム軸(2)が開閉する動弁のバルブタイミングを調整するバルブタイミング調整装置(1)であって、制御トルクを出力する出力回転体(5)を、有するトルク出力源(3)と、出力回転体から制御トルクの伝達される入力回転体(30)を、有し、入力回転体の回転状態に従ってクランク軸とカム軸との間の回転位相を調整する位相調整機構(8)と、位相調整機構を係止することにより、回転位相を位相端(Pr,Pa)にて規制するストッパ機構(9)と、出力回転体と入力回転体とを相対変位可能且つトルク伝達可能に中継する可動軸継手機構(40)とを、備え、可動軸継手機構は、入力回転体において外部へ向かって開口した固定孔(31)に固定される第一固定部(422)、並びに固定孔の内周側に配置される筒部(420)を、有する第一継手部材(42)と、固定孔の内周側にて筒部を相対摺動可能に径方向へ貫通する貫通部(440)、筒部の内周側にて出力回転体に固定される第二固定部(442)、並びに出力回転体と筒部との間の径方向隙間(426)にて貫通部及び第二固定部よりも強度が低く設定される低強度部(444)を、有する第二継手部材(44)とを、組み合わせて構成され、
貫通部が固定孔との間にあける径方向距離(La)は、筒部において貫通部が貫通している箇所の径方向長さ(Lb)よりも小さく設定されることを特徴とする。
A first invention disclosed in order to solve the above-described problem is a valve timing adjusting device (1) for adjusting a valve timing of a valve that opens and closes a camshaft (2) by transmission of crank torque from a crankshaft in an internal combustion engine. A torque output source (3) having an output rotator (5) for outputting a control torque, and an input rotator (30) to which the control torque is transmitted from the output rotator. The phase adjustment mechanism (8) that adjusts the rotation phase between the crankshaft and the camshaft according to the rotation state of the body and the phase adjustment mechanism are locked to regulate the rotation phase at the phase end (Pr, Pa). And a movable shaft coupling mechanism (40) that relays the output rotator and the input rotator in a relatively displaceable manner and capable of transmitting torque. The movable shaft coupling mechanism is external to the input rotator. What A first joint member (42) having a first fixing part (422) fixed to the fixing hole (31) opened in the past, and a cylinder part (420) arranged on the inner peripheral side of the fixing hole, and a fixing hole A through portion (440) that penetrates the cylindrical portion in the radial direction so as to be relatively slidable on the inner peripheral side, a second fixing portion (442) fixed to the output rotating body on the inner peripheral side of the cylindrical portion, and an output A second joint member (44) having a low-strength portion (444) whose strength is set lower than that of the penetrating portion and the second fixed portion in the radial gap (426) between the rotating body and the cylindrical portion; Is composed of,
A radial distance (La) between the penetration portion and the fixed hole is set to be smaller than a radial length (Lb) of a portion where the penetration portion penetrates in the cylindrical portion.

第一発明の可動軸継手機構によると、入力回転体において第一継手部材の第一固定部が固定される固定孔の内周側では、第一継手部材の筒部に対して第二継手部材の貫通部が相対摺動可能に径方向へと貫通した状態となる。かかる貫通状態下、第二継手部材の第二固定部が筒部の内周側にてトルク出力源の出力回転体に固定されることで、出力回転体と入力回転体とが相対変位可能且つトルク伝達可能に中継されることになる。   According to the movable shaft coupling mechanism of the first invention, on the inner peripheral side of the fixed hole to which the first fixed portion of the first joint member is fixed in the input rotating body, the second joint member with respect to the cylindrical portion of the first joint member It will be in the state which penetrated the radial direction so that relative penetration of the penetration part was possible. Under such a penetrating state, the second fixed portion of the second joint member is fixed to the output rotator of the torque output source on the inner peripheral side of the cylindrical portion, so that the output rotator and the input rotator can be relatively displaced and It is relayed so that torque can be transmitted.

ここで、出力回転体と筒部との間の径方向隙間にて、貫通部及び第二固定部よりも強度の低い低強度部を第二継手部材に設けた第一発明によれば、ストッパ機構により回転位相の規制時に発生する衝撃トルクが過大となっても、低強度部を優先的に破損させ得る。故に、衝撃トルクが過大となるまでは、入力回転体の空転による回転位相のずれを回避して、内燃機関の燃焼特性に悪影響を与える事態を抑制することが、可能である。また、衝撃トルクが過大となった場合には、ストッパ機構や位相調整機構の破損物が内燃機関の耐久性に悪影響を与える事態も、抑制可能となる。   Here, according to the first invention, in the radial gap between the output rotating body and the cylindrical portion, the second joint member is provided with a low strength portion having lower strength than the penetrating portion and the second fixed portion. Even if the impact torque generated when the rotational phase is restricted by the mechanism is excessive, the low strength portion can be preferentially damaged. Therefore, until the impact torque becomes excessive, it is possible to avoid a shift in rotational phase due to idling of the input rotating body, and to suppress a situation that adversely affects the combustion characteristics of the internal combustion engine. In addition, when the impact torque becomes excessive, it is possible to suppress a situation in which a damaged object of the stopper mechanism or the phase adjusting mechanism adversely affects the durability of the internal combustion engine.

しかも、筒部において貫通部が貫通している箇所の径方向長さよりも、貫通部が固定孔との間にあける径方向距離を小さく設定した第一発明によれば、低強度部が破損して貫通部が第二固定部とは分断されたとしても、当該貫通部は筒部における貫通箇所からの離脱を規制され得る。故に、入力回転体において外部へと向かって開口する固定孔からは、破損物としての貫通部が脱出し難くなるので、当該脱出により内燃機関の耐久性に悪影響を与える事態も抑制可能となる。   In addition, according to the first invention in which the radial distance between the through portion and the fixing hole is set smaller than the radial length of the portion where the through portion penetrates in the cylindrical portion, the low strength portion is damaged. Even if the penetrating portion is separated from the second fixing portion, the penetrating portion can be restricted from being detached from the penetrating portion in the cylindrical portion. Therefore, it is difficult for the through portion as a damaged object to escape from the fixed hole that opens toward the outside in the input rotating body. Therefore, it is possible to suppress a situation where the escape adversely affects the durability of the internal combustion engine.

また、上述の課題を解決するために開示された第二発明は、内燃機関においてクランク軸からのクランクトルクの伝達によりカム軸(2)が開閉する動弁のバルブタイミングを調整するバルブタイミング調整装置(1)であって、制御トルクを出力する出力回転体(5)を、有するトルク出力源(3)と、出力回転体から制御トルクの伝達される入力回転体(30)を、有し、入力回転体の回転状態に従ってクランク軸とカム軸との間の回転位相を調整する位相調整機構(8)と、位相調整機構を係止することにより、回転位相を位相端(Pr,Pa)にて規制するストッパ機構(9)と、出力回転体と入力回転体とを相対変位可能且つトルク伝達可能に中継する可動軸継手機構(2040)とを、備え、可動軸継手機構は、入力回転体において外部へ向かって開口した固定孔(31)に固定される第一固定部(422)、並びに固定孔の内周側に配置される筒部(420)を、有する第一継手部材(42)と、固定孔の内周側にて筒部に固定される第二固定部(2442)、筒部の内周側にて出力回転体を相対摺動可能に径方向へ貫通する貫通部(2440)、並びに出力回転体と筒部との間の径方向隙間(426)にて第二固定部及び貫通部よりも強度が低く設定される低強度部(2444)を、有する第二継手部材(2044)とを、組み合わせて構成され、貫通部を径方向に挟む両側には、それぞれ第二固定部が設けられ、各第二固定部と貫通部との間には、それぞれ低強度部が設けられることを特徴とする。   The second invention disclosed in order to solve the above-mentioned problems is a valve timing adjusting device that adjusts the valve timing of a valve that opens and closes the camshaft (2) by transmission of crank torque from the crankshaft in an internal combustion engine. (1) a torque output source (3) having an output rotator (5) for outputting a control torque, and an input rotator (30) to which the control torque is transmitted from the output rotator, The phase adjustment mechanism (8) for adjusting the rotation phase between the crankshaft and the camshaft according to the rotation state of the input rotator, and the phase adjustment mechanism are locked, so that the rotation phase is at the phase end (Pr, Pa). And a movable shaft coupling mechanism (2040) that relays the output rotator and the input rotator in a relatively displaceable manner and capable of transmitting torque. The movable shaft coupling mechanism is an input rotator. In A first joint member (42) having a first fixing part (422) fixed to the fixing hole (31) opened outward and a cylindrical part (420) arranged on the inner peripheral side of the fixing hole. A second fixing portion (2442) fixed to the cylindrical portion on the inner peripheral side of the fixing hole, and a through portion (2440) penetrating the output rotating body in the radial direction so as to be relatively slidable on the inner peripheral side of the cylindrical portion. ), And a second joint member (2444) having a low strength portion (2444) whose strength is set lower than that of the second fixed portion and the penetration portion in the radial gap (426) between the output rotating body and the cylindrical portion ( 2044), a second fixing portion is provided on both sides of the through portion in the radial direction, and a low strength portion is provided between each second fixing portion and the through portion. It is characterized by being able to.

第二発明の可動軸継手機構によると、入力回転体において第一継手部材の第一固定部が固定される固定孔の内周側では、第一継手部材の筒部に対して第二継手部材の第二固定部が固定された状態となる。かかる固定状態下、第二継手部材の貫通部が筒部の内周側にてトルク出力源の出力回転体を相対摺動可能に径方向へと貫通することで、出力回転体と入力回転体とが相対変位可能且つトルク伝達可能に中継されることになる。   According to the movable shaft coupling mechanism of the second invention, on the inner peripheral side of the fixed hole to which the first fixed portion of the first joint member is fixed in the input rotating body, the second joint member with respect to the cylindrical portion of the first joint member The second fixing portion is fixed. Under such a fixed state, the output rotating body and the input rotating body are formed by the through portion of the second joint member penetrating the output rotating body of the torque output source in the radial direction so as to be slidable relative to the inner peripheral side of the cylindrical portion. Are relayed so that relative displacement and torque transmission are possible.

ここで、出力回転体と筒部との間の径方向隙間にて、第二固定部及び貫通部よりも強度の低い低強度部を第二継手部材に設けた第二発明によれば、ストッパ機構により回転位相の規制時に発生する衝撃トルクが過大となっても、低強度部を優先的に破損させ得る。故に、衝撃トルクが過大となるまでは、入力回転体の空転による回転位相のずれを回避して、内燃機関の燃焼特性に悪影響を与える事態を抑制することが、可能である。また、衝撃トルクが過大となった場合には、ストッパ機構や位相調整機構の破損物が内燃機関の耐久性に悪影響を与える事態も、抑制可能である。   Here, according to the second invention, in the radial gap between the output rotating body and the cylindrical portion, the second joint member is provided with a low strength portion having lower strength than the second fixing portion and the through portion. Even if the impact torque generated when the rotational phase is restricted by the mechanism is excessive, the low strength portion can be preferentially damaged. Therefore, until the impact torque becomes excessive, it is possible to avoid a shift in rotational phase due to idling of the input rotating body, and to suppress a situation that adversely affects the combustion characteristics of the internal combustion engine. In addition, when the impact torque becomes excessive, it is possible to suppress a situation in which a damaged object of the stopper mechanism or the phase adjusting mechanism adversely affects the durability of the internal combustion engine.

しかも、貫通部を径方向に挟む両側にそれぞれ第二固定部を設けて、それら各第二固定部と貫通部との間にそれぞれ低強度部を設けた第二発明によれば、低強度部が破損して貫通部が第二固定部とは分断されたとしても、当該貫通部は出力回転体における貫通箇所からの離脱を規制され得る。故に、入力回転体において外部へと向かって開口する固定孔からは、破損物としての貫通部が脱出し難くなるので、当該脱出により内燃機関の耐久性に悪影響を与える事態も抑制可能となる。   Moreover, according to the second invention, the second fixing portion is provided on both sides of the through portion in the radial direction, and the low strength portion is provided between each of the second fixing portion and the through portion. Even if the penetrating portion is broken and the second fixing portion is divided, the penetrating portion can be prevented from being separated from the penetrating portion in the output rotating body. Therefore, it is difficult for the through portion as a damaged object to escape from the fixed hole that opens toward the outside in the input rotating body. Therefore, it is possible to suppress a situation where the escape adversely affects the durability of the internal combustion engine.

第一実施形態によるバルブタイミング調整装置を示す図であって、図2のI−I線断面図である。It is a figure which shows the valve timing adjustment apparatus by 1st embodiment, Comprising: It is the II sectional view taken on the line of FIG. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG. 図1のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 図3とは異なる作動状態を示す断面図である。It is sectional drawing which shows the operation state different from FIG. 図2,6のV−V線断面図である。It is the VV sectional view taken on the line of FIG. 図5のVI−VI線断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 5. 図6のVII−VII線断面図である。It is the VII-VII sectional view taken on the line of FIG. 第一実施形態によるバルブタイミング調整装置の作用効果を説明するための断面図である。It is sectional drawing for demonstrating the effect of the valve timing adjustment apparatus by 1st embodiment. 第二実施形態によるバルブタイミング調整装置を図5に対応して示す断面図であって、図10のIX−IX線断面図である。It is sectional drawing which shows the valve timing adjustment apparatus by 2nd embodiment corresponding to FIG. 5, Comprising: It is the IX-IX sectional view taken on the line of FIG. 図9のX−X線断面図である。FIG. 10 is a sectional view taken along line XX in FIG. 9. 図10のXI−XI線断面図である。It is the XI-XI sectional view taken on the line of FIG. 第二実施形態によるバルブタイミング調整装置の作用効果を説明するための断面図である。It is sectional drawing for demonstrating the effect of the valve timing adjustment apparatus by 2nd embodiment. 図6の変形例を示す拡大断面図である。It is an expanded sectional view which shows the modification of FIG. 図6の変形例を示す拡大断面図である。It is an expanded sectional view which shows the modification of FIG. 図6の変形例を示す拡大断面図である。It is an expanded sectional view which shows the modification of FIG. 図7の変形例を示す拡大断面図である。It is an expanded sectional view which shows the modification of FIG.

以下、本発明の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合せることができる。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. In addition, the overlapping description may be abbreviate | omitted by attaching | subjecting the same code | symbol to the corresponding component in each embodiment. When only a part of the configuration is described in each embodiment, the configuration of the other embodiment described above can be applied to the other part of the configuration. In addition, not only combinations of configurations explicitly described in the description of each embodiment, but also the configurations of a plurality of embodiments can be partially combined even if they are not explicitly specified unless there is a problem with the combination. .

(第一実施形態)
本発明の第一実施形態によるバルブタイミング調整装置1は、図1に示すように、車両において内燃機関のクランク軸(図示しない)からカム軸2へクランクトルクを伝達する伝達系に、設置されている。ここでカム軸2は、内燃機関の「動弁」のうち吸気弁(図示しない)をクランクトルクの伝達により開閉するシャフトであり、装置1は、当該吸気弁のバルブタイミングを調整する。
(First embodiment)
As shown in FIG. 1, the valve timing adjusting device 1 according to the first embodiment of the present invention is installed in a transmission system that transmits crank torque from a crankshaft (not shown) of an internal combustion engine to a camshaft 2 in a vehicle. Yes. Here, the camshaft 2 is a shaft that opens and closes an intake valve (not shown) of the “valve” of the internal combustion engine by transmission of crank torque, and the device 1 adjusts the valve timing of the intake valve.

(基本構成)
以下、装置1の基本構成を説明する。装置1は、電動モータ3、制御系6及び機構系7を備えている。
(Basic configuration)
Hereinafter, the basic configuration of the apparatus 1 will be described. The apparatus 1 includes an electric motor 3, a control system 6, and a mechanism system 7.

「トルク出力源」としての電動モータ3は、例えばブラシレスモータ等であり、モータケース4及びモータ軸5を有している。中空状のモータケース4は、内燃機関において例えばチェーンケース等の固定節に固定される。「出力回転体」としての円柱状のモータ軸5は、モータケース4により正逆回転自在に支持されている。   The electric motor 3 as a “torque output source” is, for example, a brushless motor or the like, and includes a motor case 4 and a motor shaft 5. The hollow motor case 4 is fixed to a fixed node such as a chain case in an internal combustion engine. A cylindrical motor shaft 5 as an “output rotator” is supported by a motor case 4 so as to be rotatable forward and backward.

制御系6は、駆動ドライバ及びその制御用マイクロコンピュータ等から構成されている。制御系6は、モータケース4の外部及び/又は内部に配置され、電動モータ3と電気的に接続されている。制御系6は、電動モータ3への通電を制御することで、モータ軸5を回転駆動する。かかる回転駆動によりモータ軸5からは、制御トルクが出力される。   The control system 6 includes a drive driver and its control microcomputer. The control system 6 is disposed outside and / or inside the motor case 4 and is electrically connected to the electric motor 3. The control system 6 drives the motor shaft 5 to rotate by controlling energization to the electric motor 3. A control torque is output from the motor shaft 5 by this rotational drive.

図1〜3に示すように機構系7は、位相調整機構8及びストッパ機構9等から構成されている。位相調整機構8は、駆動回転体10、従動回転体20、遊星キャリア30、可動軸継手機構40及び遊星歯車50を有している。   As shown in FIGS. 1 to 3, the mechanism system 7 includes a phase adjustment mechanism 8 and a stopper mechanism 9. The phase adjustment mechanism 8 includes a drive rotator 10, a driven rotator 20, a planet carrier 30, a movable shaft coupling mechanism 40, and a planetary gear 50.

中空状の駆動回転体10は、位相調整機構8の他の構成要素20,30,50を内部に収容している。駆動回転体10は、歯車部材11を伝達部材13及びカバー部材14間に介装した状態にて、それらの部材11,13,14を同軸上に螺子止めしてなる。図1,2に示すように円環板状の歯車部材11は、歯底円の内周側に歯先円を定めた駆動側内歯車部12を、周壁部により形成している。   The hollow drive rotator 10 accommodates the other components 20, 30, 50 of the phase adjusting mechanism 8 therein. The drive rotator 10 is formed by screwing the members 11, 13, 14 coaxially with the gear member 11 interposed between the transmission member 13 and the cover member 14. As shown in FIGS. 1 and 2, the annular plate-like gear member 11 has a drive-side internal gear portion 12 having a tooth tip circle defined on the inner peripheral side of the root circle by a peripheral wall portion.

図1,3に示すように円筒状の伝達部材13は、周方向に等間隔をあけた箇所から外周側へと突出する複数のスプロケット歯18を、周壁部により形成している。伝達部材13は、それらスプロケット歯18とクランク軸の複数の歯との間にてタイミングチェーンが掛け渡されることで、クランク軸と連繋する。かかる連繋形態下、クランク軸のクランクトルクがタイミングチェーンを通じて伝達部材13に伝達されると、駆動回転体10は、クランク軸と連動して周方向の一方(図3の時計方向)へと回転する。   As shown in FIGS. 1 and 3, the cylindrical transmission member 13 is formed with a plurality of sprocket teeth 18 projecting from a circumferentially spaced portion to the outer peripheral side by a peripheral wall portion. The transmission member 13 is linked to the crankshaft by the timing chain being spanned between the sprocket teeth 18 and the plurality of teeth of the crankshaft. When the crankshaft torque of the crankshaft is transmitted to the transmission member 13 through the timing chain under such a connection form, the drive rotator 10 rotates in one of the circumferential directions (clockwise in FIG. 3) in conjunction with the crankshaft. .

有底円筒状の従動回転体20は、伝達部材13の内周側に同軸上に嵌合している。従動回転体20は、カム軸2に同軸上に連結される連結部22を、底壁部により形成している。かかる連結形態の従動回転体20は、カム軸2と連動して駆動回転体10と同一の周方向(図3の時計方向)に回転しつつ、当該駆動回転体10に対しては遅角方向Dr及び進角方向Daのいずれにも相対回転可能となっている。   The bottomed cylindrical driven rotor 20 is coaxially fitted to the inner peripheral side of the transmission member 13. The driven rotor 20 has a connecting portion 22 that is coaxially connected to the camshaft 2 formed by a bottom wall portion. The driven rotating body 20 in such a connection form rotates in the same circumferential direction as the driving rotating body 10 (clockwise in FIG. 3) in conjunction with the camshaft 2 while being retarded with respect to the driving rotating body 10. Relative rotation is possible both in Dr and in the advance direction Da.

従動回転体20は、歯底円の内周側に歯先円を定めた従動側内歯車部24を、周壁部により形成している。従動側内歯車部24の歯数は、駆動側内歯車部12の歯数よりも少なく設定されている。従動側内歯車部24は、駆動側内歯車部12に対して軸方向のカム軸2側へとずれている。   The driven rotator 20 includes a peripheral wall portion that forms a driven-side internal gear portion 24 having a tooth tip circle on the inner peripheral side of the root circle. The number of teeth of the driven side internal gear portion 24 is set to be smaller than the number of teeth of the drive side internal gear portion 12. The driven side internal gear portion 24 is displaced toward the cam shaft 2 in the axial direction with respect to the drive side internal gear portion 12.

図1〜3に示すように部分偏心円筒状の遊星キャリア30は、伝達部材13及び従動回転体20の内周側からカバー部材14の内周側に跨って、配置されている。「入力回転体」としての遊星キャリア30は、周壁部のうち回転体10,20及びモータ軸5と同軸上の内周面により、固定孔31を形成している。遊星キャリア30において円筒孔状の固定孔31は、カム軸2側では駆動回転体10の内部へ向かって開口していると共に、カム軸2と反対側では同回転体10の外部へ向かって開口している。固定孔31は、可動軸継手機構40によりモータ軸5に対して中継されている。かかる中継形態によりモータ軸5から制御トルクが伝達される遊星キャリア30は、当該モータ軸5と一体となって周方向に正逆回転しつつ、駆動側内歯車部12に対しては遅角方向Dr及び進角方向Daのいずれにも相対回転可能となっている。   As shown in FIGS. 1 to 3, the partially eccentric cylindrical planetary carrier 30 is arranged across the inner peripheral side of the cover member 14 from the inner peripheral side of the transmission member 13 and the driven rotor 20. The planet carrier 30 as the “input rotator” has a fixed hole 31 formed by an inner peripheral surface coaxial with the rotators 10 and 20 and the motor shaft 5 in the peripheral wall portion. In the planetary carrier 30, a cylindrical fixing hole 31 opens toward the inside of the drive rotator 10 on the camshaft 2 side, and opens toward the outside of the rotator 10 on the side opposite to the camshaft 2. doing. The fixed hole 31 is relayed to the motor shaft 5 by the movable shaft coupling mechanism 40. The planetary carrier 30 to which the control torque is transmitted from the motor shaft 5 in such a relay form rotates in the forward and reverse directions in the circumferential direction integrally with the motor shaft 5 and is retarded with respect to the drive side internal gear portion 12. Relative rotation is possible both in Dr and in the advance direction Da.

遊星キャリア30はさらに、周壁部のうち回転体10,20及びモータ軸5とは偏心する外周面により、支持面34を形成している。遊星キャリア30において円筒面状の支持面34は、遊星ベアリング35を介すことで、遊星歯車50の内周側に同軸上に嵌合している。かかる嵌合形態の遊星歯車50は、支持面34により支持されることで、駆動側内歯車部12に対する遊星キャリア30の相対回転に応じて遊星運動可能となっている。ここで遊星運動とは、遊星歯車50の中心線まわりに自転しつつ、モータ軸5及び遊星キャリア30の正逆回転方向へ公転する運動をいう。   The planet carrier 30 further forms a support surface 34 by an outer peripheral surface that is eccentric from the rotating bodies 10 and 20 and the motor shaft 5 in the peripheral wall portion. In the planetary carrier 30, the cylindrical support surface 34 is coaxially fitted to the inner peripheral side of the planetary gear 50 through a planetary bearing 35. The planetary gear 50 in such a fitting form is supported by the support surface 34, so that the planetary gear 50 can move in accordance with the relative rotation of the planetary carrier 30 with respect to the drive-side internal gear portion 12. Here, the planetary motion refers to a motion that revolves around the center line of the planetary gear 50 and revolves in the forward and reverse rotation directions of the motor shaft 5 and the planetary carrier 30.

段付円筒状の遊星歯車50は、歯底円の外周側に歯先円を定めた駆動側外歯車部52及び従動側外歯車部54を、周壁部により形成している。駆動側外歯車部52及び従動側外歯車部54の歯数は、それぞれ駆動側内歯車部12及び従動側内歯車部24の歯数よりも同数ずつ少なくなるように、設定されている。駆動側外歯車部52は、歯車部材11の内周側に偏心して配置され、駆動側内歯車部12と遊星運動可能に噛合している。従動側外歯車部54は、駆動側外歯車部52に対して軸方向のカム軸2側へとずれている。従動側外歯車部54は、従動回転体20のうち周壁部の内周側に偏心して配置され、従動側内歯車部24と遊星運動可能に噛合している。   In the stepped cylindrical planetary gear 50, a driving-side external gear portion 52 and a driven-side external gear portion 54, each having a tooth tip circle on the outer peripheral side of the root circle, are formed by a peripheral wall portion. The number of teeth of the driving side external gear portion 52 and the driven side external gear portion 54 is set to be smaller by the same number than the number of teeth of the driving side internal gear portion 12 and the driven side internal gear portion 24, respectively. The drive side external gear part 52 is eccentrically arranged on the inner peripheral side of the gear member 11 and meshes with the drive side internal gear part 12 so as to be capable of planetary movement. The driven-side external gear portion 54 is displaced toward the cam shaft 2 in the axial direction with respect to the drive-side external gear portion 52. The driven-side external gear portion 54 is eccentrically arranged on the inner peripheral side of the peripheral wall portion of the driven rotating body 20, and meshes with the driven-side internal gear portion 24 so as to be capable of planetary motion.

以上の構成により回転体10,20間を歯車連繋した差動歯車機構としての位相調整機構8は、モータ軸5から制御トルクの伝達される遊星キャリア30の回転状態に従って、クランク軸とカム軸2の間の回転位相(以下、単に「回転位相」という)を調整する。かかる回転位相の調整の結果、内燃機関の運転状況に適合するバルブタイミング調整が実現される。   The phase adjusting mechanism 8 serving as a differential gear mechanism in which the rotating bodies 10 and 20 are gear-coupled with each other according to the above configuration, the crankshaft and the camshaft 2 according to the rotation state of the planet carrier 30 to which the control torque is transmitted from the motor shaft 5 Rotational phase (hereinafter, simply referred to as “rotational phase”) is adjusted. As a result of the adjustment of the rotational phase, valve timing adjustment suitable for the operation state of the internal combustion engine is realized.

具体的には、モータ軸5と共に遊星キャリア30が駆動回転体10と同速に正回転するときには、当該遊星キャリア30が駆動側内歯車部12に対して相対回転しない。その結果、遊星歯車50が遊星運動せずに回転体10,20と連れ回りするので、回転位相が実質的に不変となって、バルブタイミングが保持調整される。一方、モータ軸5と共に遊星キャリア30が駆動回転体10よりも低速に正回転する又は逆回転するときには、当該遊星キャリア30が駆動側内歯車部12に対する遅角方向Drへ相対回転する。その結果、遊星歯車50が遊星運動して従動回転体20が駆動回転体10に対する遅角方向Drへ相対回転するので、回転位相が遅角変化して、バルブタイミングが遅角調整される。また一方、モータ軸5と共に遊星キャリア30が駆動回転体10よりも高速に正回転するときには、当該遊星キャリア30が駆動側内歯車部12に対する進角方向Daへ相対回転する。その結果、遊星歯車50が遊星運動して従動回転体20が駆動回転体10に対する進角方向Daへ相対回転するので、回転位相が進角変化して、バルブタイミングが進角調整される。   Specifically, when the planetary carrier 30 rotates together with the motor shaft 5 at the same speed as the drive rotator 10, the planetary carrier 30 does not rotate relative to the drive-side internal gear portion 12. As a result, the planetary gear 50 rotates with the rotating bodies 10 and 20 without planetary motion, so that the rotational phase becomes substantially unchanged and the valve timing is maintained and adjusted. On the other hand, when the planetary carrier 30 rotates together with the motor shaft 5 at a lower speed than the driving rotator 10 or reversely rotates, the planetary carrier 30 rotates relative to the driving-side internal gear portion 12 in the retard angle direction Dr. As a result, the planetary gear 50 moves in a planetary motion and the driven rotator 20 rotates relative to the driving rotator 10 in the retarding direction Dr. Therefore, the rotational phase changes by a retarded angle, and the valve timing is adjusted. On the other hand, when the planetary carrier 30 rotates forward with the motor shaft 5 at a higher speed than the drive rotator 10, the planetary carrier 30 rotates relative to the drive side internal gear portion 12 in the advance direction Da. As a result, the planetary gear 50 moves in a planetary motion and the driven rotator 20 rotates relative to the drive rotator 10 in the advance direction Da, so that the rotation phase changes and the valve timing is adjusted.

このような位相調整機構8に対して、図1,3に示すようにストッパ機構9は、ストッパ溝62及びストッパ突起64を有している。   In contrast to such a phase adjustment mechanism 8, the stopper mechanism 9 has a stopper groove 62 and a stopper protrusion 64 as shown in FIGS.

ストッパ溝62は、駆動回転体10において伝達部材13の内周側へ向かって開口している。ストッパ溝62は、周方向に沿って円弧溝状に延伸している。ストッパ溝62において遅角方向Drの端面は、最遅角ストッパ面62rを形成している。ストッパ溝62において進角方向Daの端面は、最進角ストッパ面62aを形成している。ストッパ突起64は、従動回転体20において周壁部から外周側へ向かって突出している。ストッパ突起64は、ストッパ溝62内に突入した状態にて、回転体10,20の周方向両側に揺動可能となっている。   The stopper groove 62 is opened toward the inner peripheral side of the transmission member 13 in the drive rotator 10. The stopper groove 62 extends in an arcuate groove shape along the circumferential direction. In the stopper groove 62, the end surface in the retarding direction Dr forms the most retarded stopper surface 62r. An end face in the advance angle direction Da in the stopper groove 62 forms a most advanced stop face 62a. The stopper protrusion 64 protrudes from the peripheral wall portion toward the outer peripheral side in the driven rotor 20. The stopper projection 64 can swing on both sides in the circumferential direction of the rotating bodies 10 and 20 in a state of entering the stopper groove 62.

図3に示すように最遅角ストッパ面62rは、ストッパ溝62内にて遅角方向Drへと揺動したストッパ突起64を係止することで、駆動回転体10に対する従動回転体20の遅角方向Drへの相対回転を止める。これにより回転位相の変化は、遅角方向Drの「位相端」である最遅角位相Prにて規制される。一方、図4に示すように最進角ストッパ面62aは、ストッパ溝62内にて進角方向Daへと揺動したストッパ突起64を係止することで、駆動回転体10に対する従動回転体20の進角方向Daへの相対回転を止める。これにより回転位相の変化は、進角方向Daの「位相端」である最進角位相Paにて、規制される。   As shown in FIG. 3, the most retarded stopper surface 62 r engages the stopper protrusion 64 that swings in the retard direction Dr within the stopper groove 62, thereby delaying the driven rotor 20 relative to the drive rotor 10. Relative rotation in the angular direction Dr is stopped. As a result, the change of the rotational phase is regulated by the most retarded phase Pr that is the “phase end” in the retarded direction Dr. On the other hand, as shown in FIG. 4, the most advanced stopper surface 62 a engages the stopper protrusion 64 that swings in the advance angle direction Da within the stopper groove 62, so that the driven rotor 20 with respect to the drive rotor 10 is engaged. The relative rotation in the advance angle direction Da is stopped. As a result, the change in the rotational phase is regulated at the most advanced angle phase Pa which is the “phase end” in the advanced angle direction Da.

ここで、最遅角ストッパ面62r又は62aによるストッパ突起64の係止時、即ち回転位相の規制時に発生する衝撃トルクは、回転体10,20から遊星歯車50及び遊星キャリア30を通じて、可動軸継手機構40及びモータ軸5へと順次伝達される。このとき、最遅角ストッパ面62r又は62aに対してストッパ突起64が衝突するときの相対速度が増大することで、衝撃トルクも増大することになる。   Here, the impact torque generated when the stopper projection 64 is locked by the most retarded stopper surface 62r or 62a, that is, when the rotational phase is restricted, is transmitted from the rotating bodies 10 and 20 through the planetary gear 50 and the planet carrier 30 to the movable shaft coupling. It is sequentially transmitted to the mechanism 40 and the motor shaft 5. At this time, since the relative speed when the stopper projection 64 collides with the most retarded stopper surface 62r or 62a increases, the impact torque also increases.

(可動軸継手機構)
次に、可動軸継手機構40の構成につき、詳細に説明する。図5〜7に示すように、金属製のモータ軸5と金属製の遊星キャリア30とを中継する可動軸継手機構40は、金属製の継手部材42,44を組み合わせて構成されている。第一継手部材42は、筒部420及び第一固定部422を一体に有している。
(Movable shaft coupling mechanism)
Next, the configuration of the movable shaft coupling mechanism 40 will be described in detail. As shown in FIGS. 5 to 7, the movable shaft coupling mechanism 40 that relays the metallic motor shaft 5 and the metallic planet carrier 30 is configured by combining metallic coupling members 42 and 44. The first joint member 42 has a cylindrical portion 420 and a first fixing portion 422 integrally.

図5,6に示すように円筒状の筒部420は、固定孔31の内周側且つモータ軸5の外周側に配置されることで、それら固定孔31とモータ軸5とに対して本実施形態では、軸方向の全域にてオーバラップしている。筒部420は、固定孔31よりも小径に形成されることで、当該固定孔31との間に径方向隙間424をあけて同軸上に位置している。そこで、以下の説明において「径方向」とは、筒部420及び固定孔31に共通の径方向を、意味するものとする。また、以下の説明において「周方向」とは、筒部420及び固定孔31に共通の周方向を、意味するものとする。   As shown in FIGS. 5 and 6, the cylindrical tube portion 420 is arranged on the inner peripheral side of the fixed hole 31 and on the outer peripheral side of the motor shaft 5, so In the embodiment, it overlaps in the whole area in the axial direction. The cylindrical portion 420 is formed to have a smaller diameter than the fixed hole 31, and is positioned coaxially with a radial gap 424 between the cylindrical portion 420 and the fixed hole 31. Therefore, in the following description, “radial direction” means a radial direction common to the cylindrical portion 420 and the fixing hole 31. Further, in the following description, “circumferential direction” means a circumferential direction common to the cylindrical portion 420 and the fixing hole 31.

図5〜7に示すように板状の第一固定部422は、筒部420から径方向両側へとそれぞれ突出するように、一対設けられている。各第一固定部422は、固定孔31に一対設けられた固定溝部310のうちそれぞれ対応する溝部に、突入している。各第一固定部422は、対応溝部310と比べて周方向に実質同一幅又は僅かに大きい幅を与えられることで、遊星キャリア30に対しては嵌合又は圧入により固定されて相対摺動不能となっている。それと共に各第一固定部422は、支持面34が偏心する径方向としての偏心径方向Dfに対して、直交する直交方向Doの両側に位置している。   As shown in FIGS. 5 to 7, a pair of plate-like first fixing portions 422 are provided so as to protrude from the cylindrical portion 420 to both sides in the radial direction. Each first fixing portion 422 enters a corresponding groove portion among the fixing groove portions 310 provided in a pair in the fixing hole 31. Each first fixing portion 422 is given substantially the same width or a slightly larger width in the circumferential direction than the corresponding groove portion 310, and is fixed to the planet carrier 30 by fitting or press-fitting and is not relatively slidable. It has become. At the same time, the first fixing portions 422 are located on both sides of the orthogonal direction Do orthogonal to the eccentric radial direction Df as the radial direction in which the support surface 34 is eccentric.

円柱状の第二継手部材44は、偏心径方向Dfとは傾斜した径方向としての摺動径方向Dsに沿って、ストレートに延伸している。第二継手部材44は、摺動径方向Dsの全域にて固定孔31の内周側に配置されている。第二継手部材44は、貫通部440、第二固定部442及び低強度部444を一体に有している。   The cylindrical second joint member 44 extends straight along a sliding radial direction Ds as a radial direction inclined with respect to the eccentric radial direction Df. The second joint member 44 is disposed on the inner peripheral side of the fixed hole 31 in the entire sliding radial direction Ds. The second joint member 44 integrally includes a through portion 440, a second fixing portion 442, and a low strength portion 444.

図6,7に示すように貫通部440は、第二継手部材44において摺動径方向Dsの両端部を含む二箇所に、それぞれ設けられている。各貫通部440は、筒部420に一対設けられた貫通横孔421のうちそれぞれ対応する横孔を、固定孔31の内周側にて摺動径方向Dsに貫通している。各貫通部440は、対応横孔421と比べて僅かに小径に形成されることで、筒部420に対しては相対摺動可能となっている。ここで、筒部420に対して各貫通部440が相対摺動可能な方向は、摺動径方向Dsの両側と、同方向Dsに沿った軸線Asまわりの円周方向Dcの両側となる。また、摺動径方向Dsについて偏心径方向Dfに対する傾斜角度θは、所定の鋭角に、特に本実施形態では後に詳述する軸ずれ及び傾きを吸収する観点から30度程度に、設定されている。   As shown in FIGS. 6 and 7, the through portions 440 are respectively provided at two locations including both ends of the sliding radial direction Ds in the second joint member 44. Each penetrating portion 440 penetrates a corresponding one of the penetrating lateral holes 421 provided in the cylindrical portion 420 on the inner peripheral side of the fixed hole 31 in the sliding radial direction Ds. Each penetrating portion 440 is formed to be slightly smaller in diameter than the corresponding lateral hole 421, so that it can slide relative to the cylindrical portion 420. Here, the direction in which each penetration part 440 can slide relative to the cylindrical part 420 is both sides of the sliding radial direction Ds and both sides of the circumferential direction Dc around the axis As along the same direction Ds. In addition, the inclination angle θ with respect to the eccentric radial direction Df with respect to the sliding radial direction Ds is set to a predetermined acute angle, particularly about 30 degrees from the viewpoint of absorbing the axis deviation and inclination described in detail later in the present embodiment. .

各貫通部440は、対応横孔421よりも摺動径方向Dsの外側へと突出している。かかる突出形態により、図6に示す基準状態Sbにて各貫通部440が固定孔31との間にあける径方向距離Laは、筒部420において各貫通部440が実際に貫通している箇所の径方向長さLbよりも、小さく設定されている。尚、基準状態Sbの定義については、後に詳述する。   Each through portion 440 protrudes outward in the sliding radial direction Ds from the corresponding lateral hole 421. With such a protruding form, the radial distance La between each through-hole 440 and the fixed hole 31 in the reference state Sb shown in FIG. 6 is the portion of the tube portion 420 where each through-hole 440 actually penetrates. It is set smaller than the radial length Lb. The definition of the reference state Sb will be described later in detail.

図5,6に示すように第二固定部442は、第二継手部材44において摺動径方向Dsの中央部となる一箇所に、設けられている。第二固定部442は、モータ軸5に設けられた貫通横孔5aを、筒部420の内周側にて摺動径方向Dsに貫通している。第二固定部442は、各貫通部440と実質同一径に形成されている。それと共に第二固定部442は、貫通横孔5aと比べて実質同一径又は僅かに大径に形成されることで、モータ軸5に対しては嵌合又は圧入により固定されて相対摺動不能となっている。   As shown in FIGS. 5 and 6, the second fixing portion 442 is provided at one location that is the central portion of the second joint member 44 in the sliding radial direction Ds. The second fixed portion 442 passes through the through horizontal hole 5 a provided in the motor shaft 5 in the sliding radial direction Ds on the inner peripheral side of the cylindrical portion 420. The second fixing portion 442 is formed to have substantially the same diameter as each through portion 440. At the same time, the second fixing portion 442 is formed to have substantially the same diameter or slightly larger diameter than the through lateral hole 5a, so that the second fixing portion 442 is fixed to the motor shaft 5 by fitting or press-fitting and is not relatively slidable. It has become.

ここで、モータ軸5と筒部420との間には径方向隙間426があけられていることで、第二固定部442を摺動径方向Dsに挟んだ両側のそれぞれでは、筒部420に対する各貫通部440の相対摺動が各方向Ds,Dcに許容されている。かかる許容形態により、第二継手部材44が第二固定部442にて固定されるモータ軸5と、第一継手部材42が第一固定部422にて固定される遊星キャリア30とは、相対変位により軸ずれ及び傾きを吸収しつつの相互間でのトルク伝達が可能となっている。そこで本実施形態では、要素5,30間にて軸ずれ及び傾きを吸収するのに必要な間隔に、径方向隙間426の径方向間隔Lcが設定されている。それと共に本実施形態では、要素5,30間にて軸ずれ及び傾きのない図5〜7の状態を、上述の基準状態Sbとして定義している。   Here, since the radial gap 426 is provided between the motor shaft 5 and the cylindrical portion 420, each of the both sides sandwiching the second fixing portion 442 in the sliding radial direction Ds with respect to the cylindrical portion 420. Relative sliding of each penetrating part 440 is allowed in each direction Ds, Dc. With such an allowable form, the motor shaft 5 to which the second joint member 44 is fixed by the second fixing portion 442 and the planet carrier 30 to which the first joint member 42 is fixed by the first fixing portion 422 are relatively displaced. Thus, it is possible to transmit torque between the two while absorbing the shaft misalignment and inclination. Therefore, in the present embodiment, the radial interval Lc of the radial gap 426 is set to an interval necessary for absorbing the axial deviation and inclination between the elements 5 and 30. At the same time, in the present embodiment, the state of FIGS. 5 to 7 where there is no axis deviation and no inclination between the elements 5 and 30 is defined as the above-described reference state Sb.

図6,7に示すように低強度部444は、第二継手部材44において各貫通部440と第二固定部442との間となる二箇所に、それぞれ設けられている。各低強度部444は、各貫通部440の円柱周面440a及び第二固定部442の円柱周面442aよりも断面円弧状に凹むことで、円周方向Dcに連続する環状溝部444aを形成している。かかる環状溝部444aの形成により各低強度部444の強度は、各貫通部440及び第二固定部442のいずれの強度よりも低くなるように、互いに同じに又は異なって設定されている。それと共に各低強度部444の強度は、本実施形態では、機構系7のうち可動軸継手機構40以外の各要素が破損しない範囲で可及的に高くなるように、それら各要素のいずれの強度と比べても低く設定されている。   As shown in FIGS. 6 and 7, the low-strength portions 444 are provided at two locations between the through portions 440 and the second fixing portions 442 in the second joint member 44. Each low-strength portion 444 forms an annular groove portion 444a continuous in the circumferential direction Dc by being recessed in a circular arc shape from the cylindrical circumferential surface 440a of each penetration portion 440 and the cylindrical circumferential surface 442a of the second fixing portion 442. ing. By forming the annular groove 444a, the strength of each low-strength portion 444 is set to be the same as or different from each other so as to be lower than the strength of each of the through portions 440 and the second fixing portion 442. At the same time, in this embodiment, the strength of each low-strength portion 444 is as high as possible within a range in which each element other than the movable shaft coupling mechanism 40 in the mechanism system 7 is not damaged. It is set lower than the strength.

こうした各低強度部444では、図6,7の基準状態Sbにて環状溝部444aの全体を径方向隙間426に露出させるように、当該環状溝部444aの位置及びサイズが設定されている。かかる設定により、モータ軸5と遊星キャリア30との間にて任意の軸ずれ及び傾きが生じても、各低強度部444において環状溝部444aの少なくとも一部分ずつは、径方向隙間426に露出可能となっている。   In each of these low strength portions 444, the position and size of the annular groove portion 444a are set so that the entire annular groove portion 444a is exposed to the radial gap 426 in the reference state Sb of FIGS. With this setting, even if any axial deviation and inclination occur between the motor shaft 5 and the planet carrier 30, at least a part of the annular groove 444 a can be exposed to the radial gap 426 in each low-strength portion 444. It has become.

(作用効果)
以上説明した第一実施形態の作用効果を、以下に説明する。
(Function and effect)
The effects of the first embodiment described above will be described below.

第一実施形態によると、遊星キャリア30において第一継手部材42の第一固定部422が固定される固定孔31の内周側では、第一継手部材42の筒部420に対して第二継手部材44の貫通部440が相対摺動可能に径方向へと貫通した状態となる。かかる貫通状態下、第二継手部材44の第二固定部442が筒部420の内周側にて電動モータ3のモータ軸5に固定されることで、モータ軸5と遊星キャリア30とが相対変位可能且つトルク伝達可能に中継されることになる。   According to the first embodiment, on the inner peripheral side of the fixing hole 31 to which the first fixing portion 422 of the first joint member 42 is fixed in the planetary carrier 30, the second joint is connected to the cylindrical portion 420 of the first joint member 42. The penetrating portion 440 of the member 44 penetrates in the radial direction so as to be slidable relative to the member 44. Under such a penetrating state, the second fixing portion 442 of the second joint member 44 is fixed to the motor shaft 5 of the electric motor 3 on the inner peripheral side of the cylindrical portion 420, so that the motor shaft 5 and the planetary carrier 30 are relative to each other. It is relayed so that it can be displaced and can transmit torque.

ここで、モータ軸5と筒部420との間の径方向隙間426にて、貫通部440及び第二固定部442よりも強度の低い低強度部444を第二継手部材44に設けた第一実施形態によれば、ストッパ機構9により回転位相の規制時に発生する衝撃トルクが過大となっても、低強度部444を優先的に破損させ得る。故に、衝撃トルクが過大となるまでは、遊星キャリア30の空転による回転位相のずれを回避して、内燃機関の燃焼特性に悪影響を与える事態を抑制することが、可能である。また、衝撃トルクが過大となった場合には、ストッパ機構9や位相調整機構8の破損物が内燃機関の耐久性に悪影響を与える事態も、抑制可能となる。   Here, the first joint member 44 is provided with a low-strength portion 444 having a lower strength than the penetrating portion 440 and the second fixing portion 442 in the radial gap 426 between the motor shaft 5 and the cylindrical portion 420. According to the embodiment, the low-strength portion 444 can be preferentially damaged even when the impact torque generated when the rotational phase is restricted by the stopper mechanism 9 becomes excessive. Therefore, until the impact torque becomes excessive, it is possible to avoid a rotational phase shift due to the idling of the planetary carrier 30 and to suppress a situation that adversely affects the combustion characteristics of the internal combustion engine. Further, when the impact torque becomes excessive, it is possible to suppress a situation in which a damaged material of the stopper mechanism 9 or the phase adjusting mechanism 8 adversely affects the durability of the internal combustion engine.

しかも、筒部420において貫通部440が貫通している箇所の径方向長さLbよりも、貫通部440が固定孔31との間にあける径方向距離Laを小さく設定した第一実施形態によれば、図8に示すように低強度部444が破損して貫通部440が第二固定部442とは分断されたとしても、当該貫通部440は筒部420における貫通箇所からの離脱を規制され得る。故に、遊星キャリア30において外部へと向かって開口する固定孔31からは、破損物としての貫通部440が脱出し難くなるので、当該脱出により内燃機関の耐久性に悪影響を与える事態も抑制可能となる。   Moreover, according to the first embodiment in which the radial distance La between the through-hole 440 and the fixed hole 31 is set smaller than the radial length Lb of the portion where the through-hole 440 passes through the cylindrical portion 420. For example, as shown in FIG. 8, even if the low-strength portion 444 is broken and the penetration portion 440 is separated from the second fixing portion 442, the penetration portion 440 is restricted from being detached from the penetration portion in the cylindrical portion 420. obtain. Therefore, it is difficult for the through-hole 440 as a damaged object to escape from the fixed hole 31 that opens toward the outside in the planetary carrier 30, and therefore it is possible to suppress a situation that adversely affects the durability of the internal combustion engine due to the escape. Become.

さらに、第二固定部442を径方向に挟む両側に貫通部440がそれぞれ設けられる第一実施形態において、それら各貫通部440と第二固定部442との間には、それぞれ低強度部444が設けられることになる。これによれば、過大となった衝撃トルクの伝達により一方の低強度部444が破損したとしても、図8に示すように他方の低強度部444を正常に保つようにすることで、内燃機関の燃焼特性に悪影響を与える事態を抑制可能となる。   Furthermore, in the first embodiment in which the through portions 440 are provided on both sides of the second fixing portion 442 in the radial direction, the low strength portions 444 are respectively provided between the through portions 440 and the second fixing portion 442. Will be provided. According to this, even if one low-strength portion 444 is damaged due to the transmission of the excessive impact torque, the other low-strength portion 444 is kept normal as shown in FIG. It is possible to suppress the situation that adversely affects the combustion characteristics.

さらに第一実施形態によると、低強度部444が貫通部440及び第二固定部442よりも凹むことで形成される環状溝部444aは、上述の径方向隙間426に露出させられる。故に、径方向隙間426への露出により任意の方向にて補強のない低強度部444は、過大となった衝撃トルクの伝達方向に拘らず、確実に破損し得る。これによれば、ストッパ機構9や位相調整機構8の破損物が内燃機関の耐久性に悪影響を与える事態の抑制効果につき、信頼性を高めることが可能となる。   Furthermore, according to the first embodiment, the annular groove portion 444a formed by the low strength portion 444 being recessed from the through portion 440 and the second fixing portion 442 is exposed to the radial gap 426 described above. Therefore, the low-strength portion 444 that is not reinforced in any direction due to exposure to the radial gap 426 can be reliably damaged regardless of the transmission direction of the excessive impact torque. According to this, it becomes possible to increase the reliability with respect to the effect of suppressing the situation in which the damage of the stopper mechanism 9 and the phase adjustment mechanism 8 adversely affects the durability of the internal combustion engine.

(第二実施形態)
図9〜11に示すように本発明の第二実施形態は、第一実施形態の変形例である。第二実施形態による可動軸継手機構2040の第二継手部材2044において、摺動径方向Dsの両端部を含む二箇所には、図10に示すように、それぞれ第二固定部2442が設けられている。各第二固定部2442は、第一継手部材42の筒部420においてそれぞれ対応する貫通横孔421を、固定孔31の内周側にて摺動径方向Dsに貫通している。各第二固定部2442は、対応横孔421と比べて実質同一径又は僅かに大径に形成されることで、筒部420に対しては嵌合又は圧入により固定されて相対摺動不能となっている。
(Second embodiment)
As shown to FIGS. 9-11, 2nd embodiment of this invention is a modification of 1st embodiment. In the second joint member 2044 of the movable shaft joint mechanism 2040 according to the second embodiment, as shown in FIG. 10, second fixing portions 2442 are respectively provided at two locations including both end portions in the sliding radial direction Ds. Yes. Each of the second fixing portions 2442 passes through the corresponding through lateral hole 421 in the cylindrical portion 420 of the first joint member 42 in the sliding radial direction Ds on the inner peripheral side of the fixing hole 31. Each second fixing portion 2442 is formed to have substantially the same diameter or a slightly larger diameter than the corresponding lateral hole 421, so that the second fixing portion 2442 is fixed to the cylindrical portion 420 by fitting or press-fitting and cannot be relatively slid. It has become.

また、第二継手部材2044において摺動径方向Dsの中央部となる一箇所には、図9〜11に示すように、貫通部2440が設けられている。貫通部2440は、モータ軸5における貫通横孔5aを、筒部420の内周側にて摺動径方向Dsに貫通している。貫通部2440は、各第二固定部2442と実質同一径に形成されている。それと共に貫通部2440は、貫通横孔5aと比べて僅かに小径に形成されることで、モータ軸5に対しては相対摺動可能となっている。ここで図10,11に示すように、筒部420に対して貫通部2440が相対摺動可能な方向は、摺動径方向Dsの両側と、同方向Dsに沿う軸線Asまわりの円周方向Dcの両側となる。また、摺動径方向Dsについて偏心径方向Dfに対する傾斜角度θは、第一実施形態と同様、所定の鋭角に設定されている。   Moreover, as shown in FIGS. 9-11, the penetration part 2440 is provided in one place used as the center part of the sliding radial direction Ds in the 2nd joint member 2044. As shown in FIG. The penetrating portion 2440 penetrates the penetrating horizontal hole 5 a in the motor shaft 5 in the sliding radial direction Ds on the inner peripheral side of the cylindrical portion 420. The through portion 2440 is formed to have substantially the same diameter as each of the second fixing portions 2442. At the same time, the penetrating portion 2440 is formed to be slightly smaller in diameter than the penetrating lateral hole 5a, so that it can slide relative to the motor shaft 5. Here, as shown in FIGS. 10 and 11, the direction in which the penetrating portion 2440 can slide relative to the cylindrical portion 420 is the circumferential direction around both sides of the sliding radial direction Ds and the axis As along the same direction Ds. It becomes both sides of Dc. Further, the inclination angle θ with respect to the eccentric radial direction Df with respect to the sliding radial direction Ds is set to a predetermined acute angle as in the first embodiment.

こうした第二実施形態でも、図9〜11に示すように、モータ軸5と筒部420との間には径方向隙間426があけられていることで、貫通部2440を摺動径方向Dsに挟んだ両側のそれぞれでは、筒部420に対する各第二固定部2442の相対摺動が各方向Ds,Dcに許容されている。かかる許容形態により、第二継手部材2044が各第二固定部2442にて固定されるモータ軸5と、第一継手部材42が第一固定部422にて固定される遊星キャリア30とは、相対変位により軸ずれ及び傾きを吸収しつつの相互間でのトルク伝達が可能となっている。   Even in such a second embodiment, as shown in FIGS. 9 to 11, the radial gap 426 is provided between the motor shaft 5 and the cylindrical portion 420, so that the through portion 2440 is moved in the sliding radial direction Ds. In each of the sandwiched sides, relative sliding of each second fixing portion 2442 with respect to the cylindrical portion 420 is allowed in each direction Ds, Dc. With such an allowable form, the motor shaft 5 to which the second joint member 2044 is fixed at each second fixing portion 2442 and the planet carrier 30 to which the first joint member 42 is fixed at the first fixing portion 422 are relative to each other. The torque can be transmitted between the two while absorbing the axis deviation and the inclination by the displacement.

そこで第二実施形態でも、要素5,30間にて軸ずれ及び傾きのない図9〜11の状態を、基準状態Sbとして定義している。それと共に第二実施形態でも、要素5,30間の軸ずれ及び傾きを吸収するのに必要な間隔に、径方向隙間426の径方向間隔Lcが設定されている。尚、第二実施形態において各第二固定部2442が固定孔31との間にあける径方向距離Ldは、各第一固定部422を対応溝部310に固定する際の作業性を考慮して、適宜設定されている。   Therefore, also in the second embodiment, the state shown in FIGS. 9 to 11 having no axis deviation and inclination between the elements 5 and 30 is defined as the reference state Sb. At the same time, in the second embodiment, the radial interval Lc of the radial gap 426 is set to an interval necessary to absorb the axial deviation and inclination between the elements 5 and 30. In the second embodiment, the radial distance Ld between each second fixing portion 2442 and the fixing hole 31 is determined in consideration of workability when fixing each first fixing portion 422 to the corresponding groove portion 310. It is set appropriately.

そしてさらに、第二継手部材2044において各第二固定部2442と貫通部2440との間となる二箇所には、図10,11に示すように、それぞれ低強度部2444が設けられている。各低強度部2444は、各第二固定部2442の円柱周面2442a及び貫通部2440の円柱周面2440aよりも断面円弧状に凹むことで、円周方向Dcに連続する環状溝部2444aを形成している。かかる環状溝部2444aの形成により各低強度部2444の強度は、各第二固定部2442及び貫通部2440のいずれの強度よりも低く設定されている。それと共に各低強度部2444の強度は、第一実施形態に準じて、機構系7のうち可動軸継手機構40以外の各要素が破損しない範囲で可及的に高くなるように、それら各要素のいずれの強度と比べても低く設定されている。   Furthermore, as shown in FIGS. 10 and 11, low strength portions 2444 are provided at two locations between the second fixing portions 2442 and the penetrating portions 2440 in the second joint member 2044. Each low-strength portion 2444 is recessed in a circular arc shape from the cylindrical circumferential surface 2442a of each second fixing portion 2442 and the cylindrical circumferential surface 2440a of the penetrating portion 2440, thereby forming an annular groove 2444a continuous in the circumferential direction Dc. ing. Due to the formation of the annular groove 2444a, the strength of each low strength portion 2444 is set to be lower than the strength of each of the second fixing portion 2442 and the through portion 2440. At the same time, according to the first embodiment, the strength of each low-strength portion 2444 is as high as possible within a range in which the elements other than the movable shaft coupling mechanism 40 in the mechanism system 7 are not damaged. It is set low compared to any of the strengths.

こうした各低強度部2444では、図10,11の基準状態Sbにて環状溝部2444aの全体を径方向隙間426に露出させるように、当該環状溝部2444aの位置及びサイズが設定されている。かかる設定により、モータ軸5と遊星キャリア30との間にて任意の軸ずれ及び傾きが生じても、各低強度部2444において環状溝部2444aの少なくとも一部分ずつは、径方向隙間426に露出可能となっている。   In each of these low-strength portions 2444, the position and size of the annular groove portion 2444a are set so that the entire annular groove portion 2444a is exposed to the radial gap 426 in the reference state Sb of FIGS. With this setting, even if any axial deviation and inclination occur between the motor shaft 5 and the planet carrier 30, at least a part of the annular groove 2444 a can be exposed to the radial gap 426 in each low strength portion 2444. It has become.

(作用効果)
以上説明した第二実施形態の作用効果を、以下に説明する。
(Function and effect)
The effects of the second embodiment described above will be described below.

第二実施形態によると、遊星キャリア30において第一継手部材42の第一固定部422が固定される固定孔31の内周側では、第一継手部材42の筒部420に対して第二継手部材2044の第二固定部2442が固定された状態となる。かかる固定状態下、第二継手部材2044の貫通部2440が筒部420の内周側にて電動モータ3のモータ軸5を相対摺動可能に径方向へと貫通することで、モータ軸5と遊星キャリア30とが相対変位可能且つトルク伝達可能に中継されることになる。   According to the second embodiment, on the inner peripheral side of the fixing hole 31 where the first fixing portion 422 of the first joint member 42 is fixed in the planetary carrier 30, the second joint is connected to the cylindrical portion 420 of the first joint member 42. The second fixing portion 2442 of the member 2044 is fixed. Under such a fixed state, the penetrating portion 2440 of the second joint member 2044 penetrates the motor shaft 5 of the electric motor 3 radially on the inner peripheral side of the cylindrical portion 420 so as to be slidable relative to the motor shaft 5. The planet carrier 30 is relayed so as to be capable of relative displacement and torque transmission.

ここで、モータ軸5と筒部420との間の径方向隙間426にて、第二固定部2442及び貫通部2440よりも強度の低い低強度部2444を第二継手部材2044に設けた第二実施形態によれば、ストッパ機構9により回転位相の規制時に発生する衝撃トルクが過大となっても、低強度部2444を優先的に破損させ得る。故に、衝撃トルクが過大となるまでは、遊星キャリア30の空転による回転位相のずれを回避して、内燃機関の燃焼特性に悪影響を与える事態を抑制することが、可能である。また、衝撃トルクが過大となった場合には、ストッパ機構9や位相調整機構8の破損物が内燃機関の耐久性に悪影響を与える事態も、抑制可能となる。   Here, in the radial gap 426 between the motor shaft 5 and the cylindrical portion 420, the second joint member 2044 is provided with a low strength portion 2444 having lower strength than the second fixing portion 2442 and the through portion 2440. According to the embodiment, the low-strength portion 2444 can be preferentially damaged even when the impact torque generated when the rotational phase is restricted by the stopper mechanism 9 becomes excessive. Therefore, until the impact torque becomes excessive, it is possible to avoid a rotational phase shift due to the idling of the planetary carrier 30 and to suppress a situation that adversely affects the combustion characteristics of the internal combustion engine. Further, when the impact torque becomes excessive, it is possible to suppress a situation in which a damaged material of the stopper mechanism 9 or the phase adjusting mechanism 8 adversely affects the durability of the internal combustion engine.

しかも、貫通部2440を径方向に挟む両側にそれぞれ第二固定部2442を設けて、それら各第二固定部2442と貫通部2440との間にそれぞれ低強度部2444を設けた第二実施形態によれば、図12に示すように低強度部2444が破損して貫通部2440が第二固定部442とは分断されたとしても、当該貫通部2440はモータ軸5における貫通箇所からの離脱を規制され得る。故に、遊星キャリア30において外部へと向かって開口する固定孔31からは、破損物としての貫通部2440が脱出し難くなるので、当該脱出により内燃機関の耐久性に悪影響を与える事態も抑制可能となる。   Moreover, in the second embodiment, second fixing portions 2442 are provided on both sides of the through portion 2440 in the radial direction, and low strength portions 2444 are provided between the second fixing portions 2442 and the through portions 2440, respectively. Accordingly, as shown in FIG. 12, even if the low-strength portion 2444 is damaged and the penetrating portion 2440 is separated from the second fixing portion 442, the penetrating portion 2440 regulates the separation from the penetrating portion of the motor shaft 5. Can be done. Therefore, it is difficult for the through-hole 2440 as a damaged object to escape from the fixed hole 31 that opens toward the outside in the planetary carrier 30, and therefore it is possible to suppress a situation that adversely affects the durability of the internal combustion engine due to the escape. Become.

さらに、貫通部2440を径方向に挟む両側に第二固定部2442がそれぞれ設けられる第二実施形態において、それら各第二固定部2442と貫通部2440との間には、それぞれ低強度部2444が設けられることになる。これによれば、過大となった衝撃トルクの伝達により一方の低強度部2444が破損したとしても、図12に示すように他方の低強度部2444を正常に保つようにすることで、内燃機関の燃焼特性に悪影響を与える事態を抑制可能となる。   Further, in the second embodiment in which the second fixing portions 2442 are provided on both sides sandwiching the penetration portion 2440 in the radial direction, the low-strength portions 2444 are respectively provided between the second fixing portions 2442 and the penetration portions 2440. Will be provided. According to this, even if one low-strength portion 2444 is damaged by transmission of excessive impact torque, the other low-strength portion 2444 is kept normal as shown in FIG. It is possible to suppress the situation that adversely affects the combustion characteristics.

さらに第二実施形態によると、低強度部2444が第二固定部2442及び貫通部2440よりも凹むことで形成される環状溝部2444aは、上述の径方向隙間426に露出させられる。故に、径方向隙間426への露出により任意の方向にて補強のない低強度部2444は、過大となった衝撃トルクの伝達方向に拘らず、確実に破損し得る。これによれば、ストッパ機構9や位相調整機構8の破損物が内燃機関の耐久性に悪影響を与える事態の抑制効果につき、信頼性を高めることが可能となる。   Furthermore, according to the second embodiment, the annular groove portion 2444a formed by the low strength portion 2444 being recessed from the second fixing portion 2442 and the penetrating portion 2440 is exposed to the radial gap 426 described above. Therefore, the low-strength portion 2444 that is not reinforced in any direction due to exposure to the radial gap 426 can be reliably damaged regardless of the transmission direction of the excessive impact torque. According to this, it becomes possible to increase the reliability with respect to the effect of suppressing the situation in which the damage of the stopper mechanism 9 and the phase adjustment mechanism 8 adversely affects the durability of the internal combustion engine.

(他の実施形態)
以上、本発明の複数の実施形態について説明したが、本発明は、それらの実施形態に限定して解釈されるものではなく、本発明の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
(Other embodiments)
Although a plurality of embodiments of the present invention have been described above, the present invention is not construed as being limited to these embodiments, and various embodiments and combinations can be made without departing from the scope of the present invention. Can be applied.

具体的に変形例1では、図13に示すように、一方の低強度部444,2444を設けなくてもよい。変形例2では、低強度部444,2444に設ける環状溝部444a,2444aを、図14に示す断面V字状、又は図15に示す断面矩形状等に、凹ませてもよい。変形例3では、図16に示すように、貫通部440,2440及び第二固定部442,2442よりも凹む凹部1444aを、円周方向Dcに一つ又は複数設けてもよい。尚、図16は、第一実施形態において環状溝部444aの代わりに、複数の凹部1444aを円周方向Dcにて等間隔に設けた場合の変形例3を、示している。   Specifically, in the first modification, as shown in FIG. 13, one of the low strength portions 444 and 2444 may not be provided. In Modification 2, the annular groove portions 444a and 2444a provided in the low-strength portions 444 and 2444 may be recessed into a V-shaped cross section shown in FIG. 14, a rectangular cross section shown in FIG. In Modification 3, as illustrated in FIG. 16, one or more recesses 1444 a that are recessed from the through portions 440 and 2440 and the second fixing portions 442 and 2442 may be provided in the circumferential direction Dc. FIG. 16 shows a third modification in which a plurality of concave portions 1444a are provided at equal intervals in the circumferential direction Dc instead of the annular groove portion 444a in the first embodiment.

変形例4では、「出力回転体」から制御トルクを出力可能な電磁ブレーキ等を、「トルク出力源」として採用してもよい。変形例5では、図1〜3に示す差動歯車機構以外の構造を備えた「位相調整機構」を、採用してもよい。変形例6では、図1〜3に示す各回転体10,20にそれぞれストッパ溝62及びストッパ突起64を設ける以外の構造を備えた「ストッパ機構」を、採用してもよい。変形例7では、「動弁」としての排気弁のバルブタイミングを調整するバルブタイミング調整装置に、本発明を適用してもよい。   In the fourth modification, an electromagnetic brake or the like that can output a control torque from the “output rotating body” may be employed as the “torque output source”. In Modification 5, a “phase adjustment mechanism” having a structure other than the differential gear mechanism shown in FIGS. In the sixth modification, a “stopper mechanism” having a structure other than the provision of the stopper groove 62 and the stopper protrusion 64 in each of the rotating bodies 10 and 20 shown in FIGS. In Modification 7, the present invention may be applied to a valve timing adjusting device that adjusts the valve timing of the exhaust valve as the “valve valve”.

1 バルブタイミング調整装置、2 カム軸、3 電動モータ、5 モータ軸、8 位相調整機構、9 ストッパ機構、30 遊星キャリア、31 固定孔、40,2040 可動軸継手機構、42 第一継手部材、44,2044 第二継手部材、62 ストッパ溝、64 ストッパ突起、420 筒部、422 第一固定部、426 径方向隙間、440,2440 貫通部、442,2442 第二固定部、444,2444 低強度部、1444a 凹部、444a,2444a 環状溝部、Ds 摺動径方向、La 径方向距離、Lb 径方向長さ、Lc 径方向間隔 DESCRIPTION OF SYMBOLS 1 Valve timing adjustment device, 2 Cam shaft, 3 Electric motor, 5 Motor shaft, 8 Phase adjustment mechanism, 9 Stopper mechanism, 30 Planet carrier, 31 Fixed hole, 40, 2040 Movable shaft coupling mechanism, 42 1st coupling member, 44 , 2044 Second joint member, 62 Stopper groove, 64 Stopper protrusion, 420 Tube portion, 422 First fixing portion, 426 Radial clearance, 440, 2440 Through portion, 442, 2442 Second fixing portion, 444, 2444 Low strength portion , 1444a recess, 444a, 2444a annular groove, Ds sliding radial direction, La radial distance, Lb radial length, Lc radial spacing

Claims (4)

内燃機関においてクランク軸からのクランクトルクの伝達によりカム軸(2)が開閉する動弁のバルブタイミングを調整するバルブタイミング調整装置(1)であって、
制御トルクを出力する出力回転体(5)を、有するトルク出力源(3)と、
前記出力回転体から前記制御トルクの伝達される入力回転体(30)を、有し、前記入力回転体の回転状態に従って前記クランク軸と前記カム軸との間の回転位相を調整する位相調整機構(8)と、
前記位相調整機構を係止することにより、前記回転位相を位相端(Pr,Pa)にて規制するストッパ機構(9)と、
前記出力回転体と前記入力回転体とを相対変位可能且つトルク伝達可能に中継する可動軸継手機構(40)とを、備え、
前記可動軸継手機構は、
前記入力回転体において外部へ向かって開口した固定孔(31)に固定される第一固定部(422)、並びに前記固定孔の内周側に配置される筒部(420)を、有する第一継手部材(42)と、
前記固定孔の内周側にて前記筒部を相対摺動可能に径方向へ貫通する貫通部(440)、前記筒部の内周側にて前記出力回転体に固定される第二固定部(442)、並びに前記出力回転体と前記筒部との間の径方向隙間(426)にて前記貫通部及び前記第二固定部よりも強度が低く設定される低強度部(444)を、有する第二継手部材(44)とを、組み合わせて構成され、
前記貫通部が前記固定孔との間にあける径方向距離(La)は、前記筒部において前記貫通部が貫通している箇所の径方向長さ(Lb)よりも小さく設定されることを特徴とするバルブタイミング調整装置。
A valve timing adjustment device (1) for adjusting a valve timing of a valve that opens and closes a camshaft (2) by transmission of crank torque from a crankshaft in an internal combustion engine,
A torque output source (3) having an output rotating body (5) for outputting a control torque;
A phase adjustment mechanism that has an input rotator (30) to which the control torque is transmitted from the output rotator, and adjusts the rotational phase between the crankshaft and the camshaft according to the rotation state of the input rotator (8) and
A stopper mechanism (9) for restricting the rotational phase at a phase end (Pr, Pa) by locking the phase adjustment mechanism;
A movable shaft coupling mechanism (40) that relays the output rotator and the input rotator so as to allow relative displacement and torque transmission; and
The movable shaft coupling mechanism is
A first fixing portion (422) that is fixed to a fixing hole (31) that opens outward in the input rotator, and a cylinder portion (420) that is disposed on the inner peripheral side of the fixing hole. A coupling member (42);
A through portion (440) that radially penetrates the cylindrical portion on the inner peripheral side of the fixing hole, and a second fixing portion that is fixed to the output rotating body on the inner peripheral side of the cylindrical portion (442), and a low-strength portion (444) whose strength is set lower than that of the penetrating portion and the second fixing portion in a radial gap (426) between the output rotating body and the cylindrical portion, A second joint member (44) having a combination,
A radial distance (La) between the penetration portion and the fixed hole is set to be smaller than a radial length (Lb) of a portion where the penetration portion penetrates in the cylindrical portion. The valve timing adjustment device.
前記第二固定部を径方向に挟む両側には、それぞれ前記貫通部が設けられ、
各前記貫通部と前記第二固定部との間には、それぞれ前記低強度部が設けられることを特徴とする請求項1に記載のバルブタイミング調整装置。
The penetrating portions are provided on both sides of the second fixing portion in the radial direction,
The valve timing adjusting device according to claim 1, wherein the low-strength portion is provided between each of the through portions and the second fixing portion.
内燃機関においてクランク軸からのクランクトルクの伝達によりカム軸(2)が開閉する動弁のバルブタイミングを調整するバルブタイミング調整装置(1)であって、
制御トルクを出力する出力回転体(5)を、有するトルク出力源(3)と、
前記出力回転体から前記制御トルクの伝達される入力回転体(30)を、有し、前記入力回転体の回転状態に従って前記クランク軸と前記カム軸との間の回転位相を調整する位相調整機構(8)と、
前記位相調整機構を係止することにより、前記回転位相を位相端(Pr,Pa)にて規制するストッパ機構(9)と、
前記出力回転体と前記入力回転体とを相対変位可能且つトルク伝達可能に中継する可動軸継手機構(2040)とを、備え、
前記可動軸継手機構は、
前記入力回転体において外部へ向かって開口した固定孔(31)に固定される第一固定部(422)、並びに前記固定孔の内周側に配置される筒部(420)を、有する第一継手部材(42)と、
前記固定孔の内周側にて前記筒部に固定される第二固定部(2442)、前記筒部の内周側にて前記出力回転体を相対摺動可能に径方向へ貫通する貫通部(2440)、並びに前記出力回転体と前記筒部との間の径方向隙間(426)にて前記第二固定部及び前記貫通部よりも強度が低く設定される低強度部(2444)を、有する第二継手部材(2044)とを、組み合わせて構成され、
前記貫通部を径方向に挟む両側には、それぞれ前記第二固定部が設けられ、
各前記第二固定部と前記貫通部との間には、それぞれ前記低強度部が設けられることを特徴とするバルブタイミング調整装置。
A valve timing adjustment device (1) for adjusting a valve timing of a valve that opens and closes a camshaft (2) by transmission of crank torque from a crankshaft in an internal combustion engine,
A torque output source (3) having an output rotating body (5) for outputting a control torque;
A phase adjustment mechanism that has an input rotator (30) to which the control torque is transmitted from the output rotator, and adjusts the rotational phase between the crankshaft and the camshaft according to the rotation state of the input rotator (8) and
A stopper mechanism (9) for restricting the rotational phase at a phase end (Pr, Pa) by locking the phase adjustment mechanism;
A movable shaft coupling mechanism (2040) that relays the output rotator and the input rotator so as to allow relative displacement and torque transmission; and
The movable shaft coupling mechanism is
A first fixing portion (422) that is fixed to a fixing hole (31) that opens outward in the input rotator, and a cylinder portion (420) that is disposed on the inner peripheral side of the fixing hole. A coupling member (42);
A second fixing portion (2442) fixed to the cylindrical portion on the inner peripheral side of the fixing hole, and a penetrating portion that penetrates the output rotating body in the radial direction so as to be relatively slidable on the inner peripheral side of the cylindrical portion (2440), and a low-strength portion (2444) whose strength is set to be lower than that of the second fixed portion and the penetrating portion in the radial gap (426) between the output rotating body and the cylindrical portion, A second joint member (2044) having a combination,
On both sides sandwiching the penetrating part in the radial direction, the second fixing part is provided,
The valve timing adjusting device, wherein the low-strength portion is provided between each of the second fixing portions and the through portion.
前記低強度部(444,2444)は、前記貫通部(440,2440)及び前記第二固定部(442,2442)よりも凹むことにより、環状溝部(444a,2444a)を形成して前記径方向隙間に露出させることを特徴とする請求項1〜3のいずれか一項に記載のバルブタイミング調整装置。   The low-strength portions (444, 2444) are recessed more than the penetrating portions (440, 2440) and the second fixing portions (442, 2442), thereby forming annular groove portions (444a, 2444a) to form the radial direction. The valve timing adjusting device according to any one of claims 1 to 3, wherein the valve timing adjusting device is exposed to a gap.
JP2014256567A 2014-12-18 2014-12-18 Valve timing adjustment device Active JP6314816B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014256567A JP6314816B2 (en) 2014-12-18 2014-12-18 Valve timing adjustment device
DE102015120170.4A DE102015120170B4 (en) 2014-12-18 2015-11-20 valve timing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014256567A JP6314816B2 (en) 2014-12-18 2014-12-18 Valve timing adjustment device

Publications (2)

Publication Number Publication Date
JP2016118107A JP2016118107A (en) 2016-06-30
JP6314816B2 true JP6314816B2 (en) 2018-04-25

Family

ID=56097933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014256567A Active JP6314816B2 (en) 2014-12-18 2014-12-18 Valve timing adjustment device

Country Status (2)

Country Link
JP (1) JP6314816B2 (en)
DE (1) DE102015120170B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112585338A (en) * 2018-10-31 2021-03-30 株式会社三国 Phase changing unit and valve timing changing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017116730B3 (en) * 2017-07-25 2018-12-27 Schaeffler Technologies AG & Co. KG Electromechanical camshaft adjuster and mounting method
WO2019054218A1 (en) * 2017-09-12 2019-03-21 日立オートモティブシステムズ株式会社 Valve timing control device for internal combustion engine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59183908U (en) * 1983-05-23 1984-12-07 岩崎工業株式会社 Snow plow shear pin device
JPS60167833U (en) * 1984-04-16 1985-11-07 株式会社東芝 Connection fixing device for vibration damping device
JP2812165B2 (en) * 1993-11-11 1998-10-22 トヨタ自動車株式会社 Mechanical fuse device
JP3170683B2 (en) * 1998-09-17 2001-05-28 株式会社協和機械製作所 Shear pin fall prevention device
JP3937164B2 (en) * 2002-04-19 2007-06-27 株式会社デンソー Valve timing adjustment device
JP3865702B2 (en) * 2003-03-06 2007-01-10 株式会社デンソー Engine protection device for vehicles equipped with variable valve timing device
JP4924922B2 (en) * 2006-01-16 2012-04-25 株式会社デンソー Valve timing adjustment device
JP2007263027A (en) * 2006-03-29 2007-10-11 Denso Corp Valve timing control device
JP4877199B2 (en) * 2007-11-05 2012-02-15 株式会社デンソー Valve timing adjustment device
JP5440474B2 (en) 2010-10-26 2014-03-12 株式会社デンソー Variable valve timing device
JP5494547B2 (en) * 2011-04-06 2014-05-14 株式会社デンソー Valve timing adjustment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112585338A (en) * 2018-10-31 2021-03-30 株式会社三国 Phase changing unit and valve timing changing device
CN112585338B (en) * 2018-10-31 2022-06-07 株式会社三国 Phase changing unit and valve timing changing device

Also Published As

Publication number Publication date
JP2016118107A (en) 2016-06-30
DE102015120170B4 (en) 2022-03-31
DE102015120170A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
JP4390078B2 (en) Valve timing adjustment device
JP6178784B2 (en) Concentric camshaft phaser torsion drive mechanism
JP5862696B2 (en) Valve timing adjustment device
US9810108B2 (en) Engine variable camshaft timing phaser with planetary gear assembly
US20190277369A1 (en) Spring loaded planet gear assembly
JP5987868B2 (en) Valve timing adjustment device
US10006321B2 (en) Engine variable camshaft timing phaser with planetary gear set
JP6350365B2 (en) Valve timing adjusting device, lock jig used for manufacturing valve timing adjusting device, and method for manufacturing valve timing adjusting device
WO2017179322A1 (en) Valve timing adjustment device
JP6314816B2 (en) Valve timing adjustment device
JP5494547B2 (en) Valve timing adjustment device
JP2009215954A (en) Valve timing adjusting device
US8127729B2 (en) Valve timing control apparatus
JP6228065B2 (en) Valve timing adjustment device
JP2008223552A (en) Valve timing adjusting device
JP2007071059A (en) Valve timing adjusting device
JP7198099B2 (en) valve timing adjuster
JP2016061234A (en) Valve opening/closing timing control device
WO2020189616A1 (en) Valve timing adjustment device
JP5920096B2 (en) Valve timing adjustment device
JP2009074398A (en) Valve timing adjusting device
WO2019009104A1 (en) Valve timing adjusting device
US20180216503A1 (en) Travel stop for planetary gears of an electric phaser
JP6172045B2 (en) Valve timing adjustment device
WO2020189482A1 (en) Valve timing adjusting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170519

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R151 Written notification of patent or utility model registration

Ref document number: 6314816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250