JP6314811B2 - Clad steel plate manufacturing method and manufacturing equipment - Google Patents

Clad steel plate manufacturing method and manufacturing equipment Download PDF

Info

Publication number
JP6314811B2
JP6314811B2 JP2014250944A JP2014250944A JP6314811B2 JP 6314811 B2 JP6314811 B2 JP 6314811B2 JP 2014250944 A JP2014250944 A JP 2014250944A JP 2014250944 A JP2014250944 A JP 2014250944A JP 6314811 B2 JP6314811 B2 JP 6314811B2
Authority
JP
Japan
Prior art keywords
rolled
induction heating
frequency induction
clad steel
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014250944A
Other languages
Japanese (ja)
Other versions
JP2016113641A (en
Inventor
雄太 田村
雄太 田村
恵三 籔本
恵三 籔本
木島 秀夫
秀夫 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014250944A priority Critical patent/JP6314811B2/en
Publication of JP2016113641A publication Critical patent/JP2016113641A/en
Application granted granted Critical
Publication of JP6314811B2 publication Critical patent/JP6314811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Articles (AREA)

Description

この発明は、クラッド鋼板の製造方法、製造設備およびそれによって製造されたクラッド鋼板に関するものである。   The present invention relates to a clad steel plate manufacturing method, manufacturing equipment, and a clad steel plate manufactured thereby.

クラッド鋼板は、炭素鋼または低合金鋼の鋼板(母材)の片面にステンレス鋼板等(合せ材)を接合したものが一般的である。   The clad steel plate is generally a carbon steel or low-alloy steel plate (base material) joined on one side with a stainless steel plate or the like (laminated material).

このようなクラッド鋼板を製造する方法には、圧延による方法、爆着による方法、肉盛による方法、鋳込による方法等があるが、生産性やコスト面で優れている圧延による方法が広く採用されている。なお、ここでは、圧延は熱間圧延を意味している。   Methods for producing such clad steel plates include rolling methods, explosive deposition methods, overlaying methods, casting methods, etc., but rolling methods that are superior in terms of productivity and cost are widely used. Has been. Here, rolling means hot rolling.

圧延による方法(圧延クラッド法)では、予め母材と合せ材を組立てておき、その組立て材を被圧延材として圧延することになるが、組立て方式には、図1に示すように、サンドイッチ型とオープン型がある。   In a rolling method (rolling clad method), a base material and a laminated material are assembled in advance, and the assembled material is rolled as a material to be rolled. As shown in FIG. And open type.

図1(a)に示すように、サンドイッチ型の組立て材(被圧延材)10は、母材11と合せ材12を重ね合わせたものと、母材13と合せ材14を重ね合わせたものとを、剥離材15を挟んで上下対称になるように組立てたものである。なお、サンドイッチ型の組立て材10を組立てる際には、重ね合わせた母材11、合せ材12、合せ材14、母材13の四周を電子ビーム溶接機によって溶接する。最終的に、サンドイッチ型の組立て材10は、溶接された四周を切断された後、剥離材15の部分で剥離されて、2枚のクラッド鋼板となる。   As shown in FIG. 1A, a sandwich-type assembly material (rolled material) 10 includes a base material 11 and a laminated material 12 superimposed, and a base material 13 and a laminated material 14 superimposed. Are assembled so as to be vertically symmetrical with the release material 15 in between. When the sandwich-type assembly material 10 is assembled, the four circumferences of the base material 11, the joining material 12, the joining material 14, and the base material 13 that are overlapped are welded by an electron beam welding machine. Finally, the sandwich-type assembly material 10 is cut around the welded four circumferences, and then peeled off at the part of the peeling material 15 to form two clad steel plates.

一方、図1(b)に示すように、オープン型の組立て材(被圧延材)20は、母材21と合せ材22を重ね合わせたものであり、上下非対称である。最終的に、1枚のクラッド鋼板となる。   On the other hand, as shown in FIG. 1B, an open-type assembly material (rolled material) 20 is a superposition of a base material 21 and a laminated material 22 and is asymmetric in the vertical direction. Finally, one clad steel plate is obtained.

圧延クラッド法では、圧延終了後に加速冷却(水冷による強制冷却)を行うことで、合せ材の炭化物析出による割れ抑制や母材の機械特性向上効果が期待できる。しかし、上下非対称であるオープン型の被圧延材20に対して加速冷却を適用すると、合せ材22と母材21の熱収縮量の差によって冷却中に大きな反りが生じて、搬送不能になるなどの問題がある。そのため、圧延後の加速冷却は、上下対称であるサンドイッチ型の被圧延材10に対して適用される。   In the rolling clad method, accelerated cooling (forced cooling by water cooling) is performed after completion of rolling, so that cracking suppression due to carbide precipitation of the laminated material and improvement of the mechanical properties of the base material can be expected. However, when accelerated cooling is applied to the open-type material 20 that is asymmetrical in the vertical direction, a large warp occurs during cooling due to the difference in thermal shrinkage between the mating material 22 and the base material 21, and conveyance becomes impossible. There is a problem. Therefore, the accelerated cooling after rolling is applied to the sandwich-type rolled material 10 that is vertically symmetrical.

ただし、サンドイッチ型の被圧延材10では、圧延後の加速冷却中は反りが生じないが、加速冷却中に図2に示すような板厚方向(中心と表層)での温度差が生じ、この温度差によって被圧延材10の表層に引張応力、板厚中心部に圧縮応力が発生し、その結果、板厚方向(中心と表層)で図3に示すような板幅方向塑性歪の差が発生して、加速冷却後に被圧延材10を2枚のクラッド鋼板に剥離した際に、加速冷却時の板幅方向塑性歪の差により生じた残留応力によって、クラッド鋼板に大きな反りが生じるという問題がある。   However, the sandwich-type workpiece 10 does not warp during accelerated cooling after rolling, but a temperature difference in the thickness direction (center and surface layer) as shown in FIG. 2 occurs during accelerated cooling. Due to the temperature difference, a tensile stress is generated in the surface layer of the material 10 to be rolled and a compressive stress is generated in the center portion of the sheet thickness. As a result, the difference in the plastic strain in the sheet width direction as shown in FIG. When the material to be rolled 10 is separated into two clad steel plates after accelerated cooling, a large warp occurs in the clad steel plate due to the residual stress generated by the difference in the plastic strain in the plate width direction during accelerated cooling. There is.

鋼板の大きな反りを矯正する方法としては、プレス矯正や強圧下のローラー矯正が一般的であるが、剥離後に生じたクラッド鋼板の反りをプレス矯正や強圧下のローラー矯正で矯正する場合、生産能率が低下し、生産性を著しく低下させる。また、プレス矯正を行うと加工硬化により局所的に母材の表層硬度が上昇する問題があり、強圧下のローラー矯正を行う場合も同様に鋼板幅方向に不均一に母材の表層硬度が上昇する可能性がある。   As a method of correcting large warpage of steel sheets, press correction or roller correction under high pressure is generally used. Lowers the productivity significantly. In addition, when press correction is performed, there is a problem that the surface layer hardness of the base material locally increases due to work hardening. Similarly, when performing roller correction under strong pressure, the surface layer hardness of the base material also increases unevenly in the width direction of the steel sheet. there's a possibility that.

サンドイッチ型の被圧延材10を2枚のクラッド鋼板に剥離する前に、予めローラー矯正などによって、加速冷却によって生じた残留応力を低減して、剥離後の反りを抑制する方法が考えられるが、剥離前のサンドイッチ型の被圧延材10は、クラッド鋼板が2枚重なっているので板厚が厚く、十分な矯正効果が得られないため、反りを抑制することは困難である。例えば、製品板厚35mmのクラッド鋼板の場合は、剥離前のサンドイッチ型の被圧延材10の板厚は70mmとなる。   Before the sandwich-type rolled material 10 is peeled to the two clad steel plates, a method of reducing the residual stress generated by accelerated cooling by roller correction or the like in advance and suppressing warpage after peeling can be considered. Since the sandwich-type rolled material 10 before peeling has two clad steel plates overlapped with each other, the plate thickness is large and a sufficient correction effect cannot be obtained, so it is difficult to suppress warpage. For example, in the case of a clad steel plate having a product plate thickness of 35 mm, the plate thickness of the sandwich-type rolled material 10 before peeling is 70 mm.

これに対して、上記の方法以外でクラッド鋼板の反りを抑制する方法として、特許文献1では、オープン型の被圧延材について、熱間矯正前あるいは熱間矯正中に熱収縮量の大きい金属板側をより強く冷却することで、最終形状の平坦化を図っている。   On the other hand, as a method for suppressing the warpage of the clad steel plate other than the above method, Patent Document 1 discloses a metal plate having a large amount of heat shrinkage before hot correction or during hot correction for an open type rolled material. The final shape is flattened by cooling the side more strongly.

また、特許文献2では、鋼板の変態点以下の温度で圧延を完了することで、変態中に生じる反りを圧延によって矯正するとともに、圧延後の加速冷却では、矯正を繰り返しながら冷却を行うことで、形状の平坦化を図っている。   Moreover, in patent document 2, while completing rolling at the temperature below the transformation point of a steel plate, the curvature which arises during transformation is corrected by rolling, and in accelerated cooling after rolling, cooling is performed while repeating correction. The shape is flattened.

また、厚鋼板の反り抑制方法として、特許文献3では、加速冷却後に厚鋼板の幅端部が幅中央部よりも40℃以上高くなるように加熱することにより、厚鋼板の幅端部近傍の残留応力を除去する方法が提案されている。   In addition, as a method for suppressing warpage of a thick steel plate, in Patent Document 3, by heating so that the width end portion of the thick steel plate is 40 ° C. higher than the center portion of the width after accelerated cooling, the vicinity of the width end portion of the thick steel plate is obtained. A method for removing the residual stress has been proposed.

特公平2−4374号公報Japanese Patent Publication No.2-4374 特公平3−71954号公報Japanese Patent Publication No. 3-71954 特許第3791454号公報Japanese Patent No. 3791454

上述したように、合せ材の炭化物析出による割れ抑制や母材の機械特性向上効果が期待できる圧延後の加速冷却は、上下対称であるサンドイッチ型の被圧延材10に対して適用されるが、サンドイッチ型の被圧延材10の場合、加速冷却後に被圧延材10を2枚のクラッド鋼板に剥離した際に、加速冷却時の板厚方向における板幅方向塑性歪の差により生じた残留応力によって、クラッド鋼板に大きな反りが生じるという問題がある。   As described above, accelerated cooling after rolling that can be expected to suppress cracking due to carbide precipitation of the laminated material and to improve the mechanical properties of the base material is applied to the sandwich-type rolled material 10 that is vertically symmetrical, In the case of the sandwich-type material to be rolled 10, when the material to be rolled 10 is separated into two clad steel plates after accelerated cooling, the residual stress caused by the difference in the plastic strain in the plate width direction in the plate thickness direction during accelerated cooling There is a problem that a large warp occurs in the clad steel plate.

これに対して、上述したように、剥離後に生じたクラッド鋼板の大きな反りをプレス矯正や強圧下のローラー矯正などで矯正するのは、生産性の低下や製品品質の悪化(表層硬度の不均一)が生じる。   On the other hand, as described above, correcting the large warpage of the clad steel plate after peeling by press correction or roller correction under high pressure is the reason for reducing productivity and product quality (non-uniform surface hardness). ) Occurs.

また、上記の特許文献1〜3に記載の反り抑制方法についても、以下のような問題がある。   In addition, the warp suppressing methods described in Patent Documents 1 to 3 have the following problems.

すなわち、特許文献1の方法は、熱間矯正前あるいは矯正中に被圧延材の上下面で冷却量を変えることで、最終形状の平坦化を図るものであるが、この方法は、オープン型の被圧延材にのみ反り抑制効果があり、サンドイッチ型の被圧延材には反り抑制効果が無い。   That is, the method of Patent Document 1 is intended to flatten the final shape by changing the cooling amount on the upper and lower surfaces of the material to be rolled before or during hot straightening, but this method is an open type. Only the material to be rolled has a warp suppressing effect, and the sandwich-type material to be rolled has no warp suppressing effect.

また、特許文献2の方法は、変態点以下の温度で圧延する必要があり、焼入れ開始温度を確保できずに母材の機械的特性を満足できない問題がある上、矯正を繰り返しながら連続冷却を行うには、冷却帯内に矯正機を導入する必要があり、コストが膨大となる。また上述のように、サンドイッチ型の被圧延材は板厚が厚く、十分な矯正効果が得られずに反りを抑制することは困難である上、矯正時に鋼板幅方向に不均一に母材の表層硬度上昇を引き起して、母材の表層硬度分布が不均一になる問題がある。   In addition, the method of Patent Document 2 requires rolling at a temperature below the transformation point, has a problem that the quenching start temperature cannot be ensured and the mechanical properties of the base material cannot be satisfied, and continuous cooling is performed while repeating correction. In order to do so, it is necessary to introduce a straightening machine in the cooling zone, and the cost becomes enormous. In addition, as described above, the sandwich-type rolled material has a large plate thickness, and it is difficult to suppress warpage without obtaining a sufficient correction effect. There is a problem that the surface hardness distribution of the base material becomes non-uniform due to an increase in the surface hardness.

また、特許文献3の方法は、加速冷却によって生じた幅端部と幅中央部の温度差によって生じた残留応力を、加速冷却後の加熱によって除去するものであり、板厚方向に生じた板幅方向塑性歪差によって発生する反りを解決できるものではない。   In addition, the method of Patent Document 3 removes residual stress caused by the temperature difference between the width end portion and the width center portion caused by accelerated cooling by heating after accelerated cooling, and the plate produced in the plate thickness direction. The warp caused by the width direction plastic strain difference cannot be solved.

本発明は、上記のような事情に鑑みてなされたものであり、サンドイッチ型の組立て材を被圧延材としてクラッド鋼板を製造する際に、合せ材の炭化物析出による割れ抑制や母材の機械特性向上効果を得るために、熱間圧延後に加速冷却を行っても、生産性を低下させることなく、平坦度と表層硬度の均一性に優れた高品質なクラッド鋼板を製造することができる技術を提供することを目的としている。   The present invention has been made in view of the above circumstances, and when manufacturing a clad steel sheet using a sandwich-type assembly material as a material to be rolled, suppressing cracking due to carbide precipitation of the laminated material and mechanical properties of the base material. Technology that can produce high-quality clad steel sheets with excellent flatness and uniformity of surface hardness without reducing productivity even if accelerated cooling is performed after hot rolling in order to obtain an improvement effect. It is intended to provide.

上記課題を解決するために、本発明は以下の特徴を有している。   In order to solve the above problems, the present invention has the following features.

[1]サンドイッチ型の組立て材を被圧延材としてクラッド鋼板を製造する方法であって、被圧延材を加熱する加熱工程と、加熱された被圧延材を熱間圧延する熱間圧延工程と、熱間圧延された被圧延材を加速冷却する加速冷却工程と、加速冷却された被圧延材を高周波誘導加熱によって加熱する高周波誘導加熱工程とを備え、高周波誘導加熱工程において、高周波誘導加熱中の被圧延材の表層と板厚中心部の最大温度差が50℃以上300℃以下となるように加熱することを特徴とするクラッド鋼板の製造方法。
[2]高周波誘導加熱工程において、1回の高周波誘導加熱によって被圧延材を加熱することを特徴とする前記[1]に記載のクラッド鋼板の製造方法。
[1] A method for producing a clad steel plate using a sandwich-type assembly material as a material to be rolled, a heating step for heating the material to be rolled, a hot rolling step for hot rolling the heated material to be rolled, An accelerated cooling process for accelerating and cooling the hot rolled material; and a high frequency induction heating process for heating the accelerated and cooled material by high frequency induction heating. In the high frequency induction heating process, A method for producing a clad steel sheet, characterized by heating so that the maximum temperature difference between the surface layer of the material to be rolled and the thickness center portion is 50 ° C or higher and 300 ° C or lower.
[2] The method for producing a clad steel plate according to [1], wherein in the high frequency induction heating step, the material to be rolled is heated by one high frequency induction heating.

[3]高周波誘導加熱工程において、高周波誘導加熱時の被圧延材への投入熱量を100W/cm以上、周波数を500Hz以上とすることを特徴とする前記[1]または[2]に記載のクラッド鋼板の製造方法。 [3] As described in [1] or [2], in the high frequency induction heating step, the amount of heat input to the material to be rolled during high frequency induction heating is 100 W / cm 2 or more and the frequency is 500 Hz or more. Manufacturing method of clad steel plate.

[4]加速冷却工程と高周波誘導加熱工程との間に、ホットレベラーによって被圧延材を矯正する矯正工程を備えていることを特徴とする前記[1]〜[3]のいずれかに記載のクラッド鋼板の製造方法。   [4] The correction method according to any one of [1] to [3], further including a correction step of correcting the material to be rolled by a hot leveler between the accelerated cooling step and the high-frequency induction heating step. Manufacturing method of clad steel plate.

[5]サンドイッチ型の組立て材を被圧延材としてクラッド鋼板を製造する設備であって、被圧延材を加熱する加熱炉と、加熱された被圧延材を熱間圧延する熱間圧延機と、熱間圧延された被圧延材を加速冷却する加速冷却装置と、加速冷却された被圧延材を高周波誘導加熱によって加熱する高周波誘導加熱装置とを備え、高周波誘導加熱装置において、高周波誘導加熱中の被圧延材の表層と板厚中心部の最大温度差が50℃以上300℃以下となるように加熱することを特徴とするクラッド鋼板の製造設備。   [5] A facility for producing a clad steel plate using a sandwich-type assembly material as a material to be rolled, a heating furnace for heating the material to be rolled, a hot rolling mill for hot rolling the heated material to be rolled, An accelerated cooling device that accelerates and cools the hot-rolled material to be rolled, and a high-frequency induction heating device that heats the accelerated and cooled material to be rolled by high-frequency induction heating. In the high-frequency induction heating device, A facility for producing a clad steel sheet, wherein the steel sheet is heated so that the maximum temperature difference between the surface layer of the material to be rolled and the central part of the sheet thickness is 50 ° C or higher and 300 ° C or lower.

[6]高周波誘導加熱装置において、1回の高周波誘導加熱によって被圧延材を加熱することを特徴とする前記[5]に記載のクラッド鋼板の製造設備。   [6] The equipment for producing a clad steel plate according to [5], wherein the material to be rolled is heated by one high frequency induction heating in the high frequency induction heating apparatus.

[7]高周波誘導加熱装置において、高周波誘導加熱時の被圧延材への投入熱量を100W/cm以上、周波数を500Hz以上とすることを特徴とする前記[5]または[6]に記載のクラッド鋼板の製造設備。 [7] The high frequency induction heating apparatus according to [5] or [6], wherein the heat input to the material to be rolled during high frequency induction heating is 100 W / cm 2 or more and the frequency is 500 Hz or more. Production equipment for clad steel plates.

[8]加速冷却装置と高周波誘導加熱装置との間に、被圧延材を矯正するホットレベラーを備えていることを特徴とする前記[5]〜[7]のいずれかに記載のクラッド鋼板の製造設備。   [8] The clad steel plate according to any one of [5] to [7], wherein a hot leveler for correcting the material to be rolled is provided between the acceleration cooling device and the high-frequency induction heating device. production equipment.

[9]前記[1]〜[4]のいずれかに記載のクラッド鋼板の製造方法によって製造されたことを特徴とするクラッド鋼板。   [9] A clad steel plate produced by the method for producing a clad steel plate according to any one of [1] to [4].

[10]前記[5]〜[8]のいずれかに記載のクラッド鋼板の製造設備によって製造されたことを特徴とするクラッド鋼板。   [10] A clad steel plate produced by the clad steel plate production facility according to any one of [5] to [8].

本発明によれば、サンドイッチ型の組立て材を被圧延材としてクラッド鋼板を製造する際に、合せ材の炭化物析出による割れ抑制や母材の機械特性向上効果を得るために、熱間圧延後に加速冷却を行っても、生産性を低下させることなく、平坦度と表層硬度の均一性に優れた高品質なクラッド鋼板を製造することができる。   According to the present invention, when manufacturing a clad steel sheet using a sandwich-type assembly material as a material to be rolled, acceleration is performed after hot rolling in order to obtain cracking suppression due to carbide precipitation of the laminated material and an improvement in the mechanical properties of the base material. Even if cooling is performed, a high-quality clad steel plate excellent in uniformity of flatness and surface hardness can be produced without reducing productivity.

クラッド鋼板を圧延で製造する際に用いる組立て材を示す図である。It is a figure which shows the assembly material used when manufacturing a clad steel plate by rolling. 加速冷却時の被圧延材における板厚方向での温度差を示す図である。It is a figure which shows the temperature difference in the plate | board thickness direction in the to-be-rolled material at the time of accelerated cooling. 加速冷却時の被圧延材における板厚方向での板幅方向塑性歪差を示す図である。It is a figure which shows the sheet | seat width direction plastic strain difference in the sheet | seat thickness direction in the to-be-rolled material at the time of accelerated cooling. 本発明の実施形態において、高周波誘導加熱時の被圧延材における板厚方向での温度差を示す図である(3回の高周波誘導加熱)。In embodiment of this invention, it is a figure which shows the temperature difference in the plate | board thickness direction in the to-be-rolled material at the time of high frequency induction heating (3 times high frequency induction heating). 本発明の実施形態において、高周波誘導加熱時の被圧延材における板厚方向での板幅方向塑性歪差を示す図である(3回の高周波誘導加熱)。In embodiment of this invention, it is a figure which shows the sheet | seat width direction plastic strain difference in the plate | board thickness direction in the to-be-rolled material at the time of high frequency induction heating (three times of high frequency induction heating). 本発明の実施形態において、高周波誘導加熱時の被圧延材における板厚方向での温度差を示す図である(1回の高周波誘導加熱)。In embodiment of this invention, it is a figure which shows the temperature difference in the plate | board thickness direction in the to-be-rolled material at the time of high frequency induction heating (one high frequency induction heating). 本発明の実施形態において、高周波誘導加熱時の被圧延材における板厚方向での板幅方向塑性歪差を示す図である(1回の高周波誘導加熱)。In embodiment of this invention, it is a figure which shows the sheet | seat width direction plastic strain difference in the sheet | seat thickness direction in the to-be-rolled material at the time of high frequency induction heating (one high frequency induction heating). 本発明の実施形態において、高周波誘導加熱時の被圧延材への投入熱量を違えた場合の被圧延材における板厚方向での温度差を示す図である。In embodiment of this invention, it is a figure which shows the temperature difference in the plate | board thickness direction in a to-be-rolled material when the input heat amount to the to-be-rolled material at the time of high frequency induction heating is changed. 本発明の実施形態において、高周波誘導加熱時の周波数を違えた場合の被圧延材における板厚方向での温度差を示す図である。In embodiment of this invention, it is a figure which shows the temperature difference in the plate | board thickness direction in the to-be-rolled material when the frequency at the time of high frequency induction heating is changed. 本発明の実施形態におけるクラッド鋼板の製造設備を示す図である。It is a figure which shows the manufacturing equipment of the clad steel plate in embodiment of this invention.

本発明の実施形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

本発明の実施形態におけるクラッド鋼板の製造方法においては、サンドイッチ型の組立て材10を被圧延材としてクラッド鋼板を製造するに際して、被圧延材を加熱する加熱工程と、加熱された被圧延材を熱間圧延する熱間圧延工程と、熱間圧延された被圧延材を加速冷却する加速冷却工程と、高周波誘導加熱によって被圧延材を加熱する高周波誘導加熱工程とを備えていて、高周波誘導加熱工程において、図4に示すように、高周波誘導加熱中の被圧延材の表層と板厚中心部の最大温度差が50℃以上300℃以下となるように加熱している。これによって、熱間圧延後に加速冷却を行っても、生産性を低下させることなく、平坦度と表層硬度の均一性に優れた高品質なクラッド鋼板を製造することを可能にしている。   In the method for manufacturing a clad steel plate according to an embodiment of the present invention, when the clad steel plate is manufactured using the sandwich-type assembly material 10 as the material to be rolled, a heating step for heating the material to be rolled, and the heated material to be rolled are heated. A hot rolling process for hot rolling, an accelerated cooling process for accelerated cooling of the hot-rolled material, and a high-frequency induction heating process for heating the material to be rolled by high-frequency induction heating. 4, heating is performed so that the maximum temperature difference between the surface layer of the material to be rolled and the thickness center portion during high frequency induction heating is 50 ° C. or more and 300 ° C. or less. Thereby, even if accelerated cooling is performed after hot rolling, it is possible to manufacture a high-quality clad steel plate having excellent flatness and uniformity of surface hardness without reducing productivity.

すなわち、後述する実施例1でもその効果を示すが、高周波誘導加熱中の被圧延材の表層と板厚中心部の最大温度差を50℃以上300℃以下とすることで、被圧延材の表面に圧縮応力、板厚中心部に引張応力がそれぞれ適正量発生し、図5に示すように、加速冷却時に生じた板厚方向の板幅方向塑性歪差が緩和されて、切断・剥離後の反りが抑制される。また、これにより、プレス矯正や強圧下のローラー矯正をする必要がなくなり、母材の表層硬度の均一性が保たれる。   That is, although the effect is shown also in Example 1 described later, the surface temperature of the material to be rolled is adjusted by setting the maximum temperature difference between the surface layer of the material to be rolled and the center of the plate thickness during high frequency induction heating to 50 ° C. or more and 300 ° C. or less. Compressive stress and tensile stress at the center of the plate thickness are generated in appropriate amounts. As shown in FIG. 5, the plate-width direction plastic strain difference in the plate thickness direction generated during accelerated cooling is alleviated, and after cutting and peeling. Warpage is suppressed. In addition, this eliminates the need for press correction or roller correction under strong pressure, and maintains the uniformity of the surface hardness of the base material.

なお、より高い反り抑制効果を得るためには、好ましくは、高周波誘導加熱中の被圧延材の表層と板厚中心部の最大温度差を100℃以上とするのが良い。   In order to obtain a higher warp suppressing effect, it is preferable that the maximum temperature difference between the surface layer of the material to be rolled during high frequency induction heating and the center portion of the plate thickness is 100 ° C. or more.

ちなみに、高周波誘導加熱中の被圧延材の表層と板厚中心部の最大温度差が50℃未満である場合は、その際に発生する応力が小さく、十分な反り抑制効果が得られない。そのため、剥離後にプレス矯正や強圧下のローラー矯正を行う必要があり、局所的な表層硬度の上昇を引き起して、母材の表層硬度が不均一となってしまう。   Incidentally, when the maximum temperature difference between the surface layer of the material to be rolled during high frequency induction heating and the center portion of the plate thickness is less than 50 ° C., the stress generated at that time is small, and a sufficient warp suppressing effect cannot be obtained. Therefore, it is necessary to perform press correction or roller correction under strong pressure after peeling, which causes a local increase in surface layer hardness, resulting in uneven surface layer hardness of the base material.

一方、高周波誘導加熱中の被圧延材の表層と板厚中心部の最大温度差が300℃を超えると、被圧延材に発生する応力が大きすぎて、板幅方向塑性歪差が逆方向に増加し、剥離後のクラッド鋼板の最終形状として逆方向の反りが生じてしまう。   On the other hand, if the maximum temperature difference between the surface layer of the rolled material during high frequency induction heating and the center portion of the plate thickness exceeds 300 ° C., the stress generated in the rolled material is too large, and the plastic strain difference in the plate width direction is in the reverse direction. The warpage in the opposite direction occurs as the final shape of the clad steel plate after peeling.

そして、上述した図4、図5では、高周波誘導加熱工程において、所定の間隔をおいて直列に設置した3台の誘導加熱コイルを用いて加熱し、誘導加熱コイル間で冷却を行う場合(3回加熱)を示しているが、高周波誘導加熱工程において、1台の誘導加熱コイルを用いて加熱し、加熱の途中で空冷や水冷などの冷却を行わない1回加熱によって被圧延材を昇温させることで、より効率的に反りを抑制することができる。   4 and 5 described above, in the high-frequency induction heating process, heating is performed using three induction heating coils installed in series at a predetermined interval, and cooling is performed between the induction heating coils (3). In the high-frequency induction heating process, heating is performed using a single induction heating coil, and the material to be rolled is heated by one-time heating without cooling such as air cooling or water cooling in the middle of heating. By doing so, the warpage can be more efficiently suppressed.

すなわち、図4、図5のように、複数回加熱(例えば、3回加熱)の場合は、誘導加熱コイル間の冷却時に一旦板厚方向温度差が減少するため、板厚方向に大きな温度差を付けにくい。   That is, as shown in FIGS. 4 and 5, in the case of heating multiple times (for example, 3 times heating), the temperature difference in the plate thickness direction once decreases during cooling between the induction heating coils, so a large temperature difference in the plate thickness direction. It is difficult to attach.

それに対して、1回加熱の場合は、図6に温度履歴、図7に板幅方向塑性歪を示すように、複数回加熱のような誘導加熱コイル間での冷却がないので、板厚方向に大きな温度差を付け易いため、大きな応力を発生させることができ、効率的に反りを抑制することが可能となる。しかも、1回加熱の場合は、板厚方向平均温度の上昇が小さくてすみ、靭性などの材質への影響を最小限に抑えながら、反りを抑制することができる。   On the other hand, in the case of one-time heating, there is no cooling between induction heating coils, such as heating several times, as shown in FIG. 6 in the temperature history and in FIG. 7 in the plate width direction plastic strain. Since it is easy to apply a large temperature difference, it is possible to generate a large stress and efficiently suppress warping. In addition, in the case of one-time heating, the increase in the plate thickness direction average temperature is small, and warpage can be suppressed while minimizing the influence on the material such as toughness.

また、高周波誘導加熱工程において、高周波誘導加熱時の被圧延材への投入熱量が100W/cm以上、周波数が500Hz以上とすることで、より効率的に反りを抑制することができる。 Moreover, in the high frequency induction heating process, warping can be more efficiently suppressed by setting the amount of heat input to the material to be rolled during high frequency induction heating to 100 W / cm 2 or more and the frequency to 500 Hz or more.

すなわち、高周波誘導加熱時の被圧延材への投入熱量を100W/cm以上とすることで、板厚方向温度差を付け易くなる。例えば、図8に示すように、投入熱量を50W/cmにした場合と100W/cmにした場合の温度履歴を比較すると、100W/cmにした場合のほうが、より短い時間で反り抑制に十分な板厚方向温度差を付けることができる。しかも、板厚方向平均温度の上昇も小さくてすみ、靭性などの材質への影響を最小限に抑えながら、反りを抑制することが可能となる。 That is, by setting the amount of heat input to the material to be rolled at the time of high-frequency induction heating to 100 W / cm 2 or more, it becomes easy to add a temperature difference in the thickness direction. For example, as shown in FIG. 8, when comparing the temperature history when the input heat amount is 50 W / cm 2 and when it is 100 W / cm 2 , warping is suppressed in a shorter time when it is set to 100 W / cm 2. A sufficient temperature difference in the thickness direction can be provided. In addition, the increase in the plate thickness direction average temperature is small, and it is possible to suppress warpage while minimizing the influence on the material such as toughness.

また、高周波誘導加熱時の周波数を500Hz以上とすることで、表層を板厚中央部に比べて急速に昇温させる表層急速加熱を実現でき、加熱時の板厚方向温度差を付けやすくなる。   Moreover, by setting the frequency at the time of high-frequency induction heating to 500 Hz or more, it is possible to realize surface layer rapid heating in which the surface layer is rapidly heated compared to the central portion of the plate thickness, and it is easy to add a plate thickness direction temperature difference during heating.

すなわち、高周波誘導加熱時の発熱領域はスキンデプスδで特徴付けられ、以下の(1)式で表記される。   That is, the heat generation region during high-frequency induction heating is characterized by skin depth δ and expressed by the following equation (1).

δ=(πfμσ)−0.5 ・・・(1)
ここで、fは周波数(Hz)、μは透磁率(H/m)、σは導電率(S/m)
したがって、周波数fが大きいほどスキンデプスδは小さく、発熱領域が表層近傍に限定される。例えば、図9に示すように、周波数fを300Hzとした場合と1000Hzとした場合を比較すると、周波数fを1000Hzとした場合の方が、より短い時間で反り抑制に十分な板厚方向温度差を付けることができる。しかも、板厚方向平均温度の上昇も小さくてすみ、靭性などの材質への影響を最小限に抑えながら、反りを抑制することが可能となる。
δ = (πfμσ) −0.5 (1)
Where f is the frequency (Hz), μ is the magnetic permeability (H / m), and σ is the conductivity (S / m).
Therefore, the skin depth δ is smaller as the frequency f is larger, and the heat generation region is limited to the vicinity of the surface layer. For example, as shown in FIG. 9, when the frequency f is set to 300 Hz and the case where the frequency f is set to 1000 Hz, the temperature difference in the plate thickness direction sufficient for warpage suppression in a shorter time is obtained when the frequency f is set to 1000 Hz. Can be attached. In addition, the increase in the plate thickness direction average temperature is small, and it is possible to suppress warpage while minimizing the influence on the material such as toughness.

なお、より一層効率的に反りを抑制するためには、投入熱量200W/cm以上、周波数1000Hz以上とするのが良い。 In order to suppress the warpage more efficiently, it is preferable that the input heat amount is 200 W / cm 2 or more and the frequency is 1000 Hz or more.

また、必要に応じて、加速冷却工程と高周波誘導加熱工程との間に、ホットレベラーによって被圧延材を矯正する矯正工程を設けてもよい。ホットレベラーで被圧延材の形状を平坦にした後に、高周波誘導加熱を行うことで、より均一な加熱を行うことができる。   Moreover, you may provide the correction process which corrects a to-be-rolled material with a hot leveler between an accelerated cooling process and a high frequency induction heating process as needed. After flattening the shape of the material to be rolled by a hot leveler, more uniform heating can be performed by performing high-frequency induction heating.

なお、上記において、被圧延材の温度や板幅方向塑性歪の時間的推移等については、シミュレーション計算によって算定することができる。   In the above, the temperature of the material to be rolled, the temporal transition of the plastic strain in the sheet width direction, and the like can be calculated by simulation calculation.

そして、このような、本発明の実施形態におけるクラッド鋼板の製造方法を実施するための製造設備を図10に示す。   And the manufacturing equipment for enforcing the manufacturing method of such a clad steel plate in embodiment of this invention is shown in FIG.

図10に示すように、本発明の実施形態におけるクラッド鋼板の製造設備30は、サンドイッチ型の組立て材10を被圧延材としてクラッド鋼板を製造する設備であって、サンドイッチ型の組立て材10を組立てる組立て装置(図示せず)と、被圧延材を加熱する加熱炉31と、加熱された被圧延材を熱間圧延する熱間圧延機32と、熱間圧延された被圧延材を加速冷却する加速冷却装置33と、加速冷却された被圧延材を矯正するホットレベラー34と、矯正された被圧延材を高周波誘導加熱によって加熱する高周波誘導加熱装置35と、高周波誘導加熱した被圧延材の四周を切断し、剥離材15の部分で剥離して2枚のクラッド鋼板を得る切断・剥離装置36を備えている。   As shown in FIG. 10, a clad steel plate manufacturing facility 30 according to an embodiment of the present invention is a facility for manufacturing a clad steel plate using a sandwich-type assembly material 10 as a material to be rolled, and assembles the sandwich-type assembly material 10. An assembling apparatus (not shown), a heating furnace 31 for heating the material to be rolled, a hot rolling mill 32 for hot-rolling the heated material to be rolled, and the hot-rolled material to be accelerated are accelerated and cooled. Accelerated cooling device 33, hot leveler 34 for correcting the accelerated and cooled material to be rolled, high-frequency induction heating device 35 for heating the straightened material to be rolled by high-frequency induction heating, and four rounds of the rolled material that has been subjected to high-frequency induction heating And a peeling / peeling device 36 that obtains two clad steel plates by peeling at the part of the release material 15.

そして、高周波誘導加熱装置35は、高周波誘導加熱中の被圧延材の表層と板厚中心部の最大温度差が50℃以上300℃以下となるように加熱することができるようになっている。   And the high frequency induction heating apparatus 35 can heat so that the maximum temperature difference of the surface layer and plate | board thickness center part of a to-be-rolled material in high frequency induction heating may be 50 to 300 degreeC.

また、高周波誘導加熱装置35は、誘導加熱コイルを直列に複数台備えていて、1回加熱と複数回加熱のどちらも可能になっている。   The high-frequency induction heating device 35 includes a plurality of induction heating coils in series, and can perform both one-time heating and multiple-time heating.

また、高周波誘導加熱装置35は、被圧延材への投入熱量と周波数を変更できるようになっており、被圧延材への投入熱量を100W/cm以上、周波数を500Hz以上にすることが可能になっている。 Moreover, the high frequency induction heating device 35 can change the amount of heat input to the material to be rolled and the frequency, and the amount of heat input to the material to be rolled can be 100 W / cm 2 or more, and the frequency can be 500 Hz or more. It has become.

なお、高周波誘導加熱装置35は、比較的熱効率の良いソレノイド型の誘導加熱コイルを有した高周波誘導加熱装置であることが望ましい。   The high-frequency induction heating device 35 is desirably a high-frequency induction heating device having a solenoid-type induction heating coil with relatively high thermal efficiency.

また、サンドイッチ型の組立て材10を組立てる組立て装置は、真空チャンバーと、真空チャンバーの中で、重ね合わせた母材11、合せ材12、合せ材14、母材13の四周を溶接する電子ビーム溶接機を備えている。   The assembly apparatus for assembling the sandwich-type assembly material 10 includes a vacuum chamber and electron beam welding for welding the four circumferences of the superposed base material 11, the composite material 12, the composite material 14, and the base material 13 in the vacuum chamber. Equipped with a machine.

なお、場合によっては、ホットレベラー34を省略してもよい。   In some cases, the hot leveler 34 may be omitted.

そして、このクラッド鋼板の製造設備30では、切断・剥離装置36で切断・剥離されて得られたクラッド鋼板の反りを矯正するためのコールドレベラー37とプレス装置38を備えている。   The clad steel plate manufacturing facility 30 includes a cold leveler 37 and a press device 38 for correcting the warp of the clad steel plate obtained by cutting and peeling with the cutting and peeling device 36.

この実施形態では、基本的に、切断・剥離後のクラッド鋼板の反りは小さいので、その反りを矯正する際には、コールドレベラー37で軽圧下の1パス矯正を行う。   In this embodiment, basically, the warpage of the clad steel sheet after cutting and peeling is small, and therefore, when the warp is corrected, the cold leveler 37 performs one-pass correction under light pressure.

ただし、試験等で、切断・剥離後のクラッド鋼板に大きな反りが発生した場合は、コールドレベラー37で強圧下の多数パス矯正を行い、さらに反りが大きい場合には、プレス装置38で矯正するようにしている。   However, when a large warp occurs in the clad steel sheet after cutting and peeling in a test or the like, a multiple level correction under strong pressure is performed by the cold leveler 37, and when the warp is large, the press device 38 corrects it. I have to.

このようにして、本発明の実施形態においては、サンドイッチ型の組立て材10を被圧延材としてクラッド鋼板を製造する際に、高周波誘導加熱中の被圧延材の表層と板厚中心部の最大温度差を50℃以上300℃以下となるように加熱することによって、圧延後の加速冷却時に発生した板厚方向での板幅方向塑性歪差を緩和することができる。その結果、合せ材の炭化物析出による割れ抑制や母材の機械特性向上効果を得るために、圧延後に加速冷却を行っても、生産性を低下させることなく、平坦度と表層硬度の均一性に優れた高品質なクラッド鋼板を製造することができる。   Thus, in the embodiment of the present invention, when manufacturing a clad steel plate using the sandwich-type assembly material 10 as a material to be rolled, the maximum temperature of the surface layer and the center of the plate thickness of the material to be rolled during high frequency induction heating. By heating the difference so as to be 50 ° C. or more and 300 ° C. or less, the difference in the plastic strain in the plate width direction in the plate thickness direction generated during accelerated cooling after rolling can be relaxed. As a result, in order to obtain cracking suppression due to carbide precipitation of the laminated material and the effect of improving the mechanical properties of the base material, even if accelerated cooling is performed after rolling, the flatness and surface hardness are uniform without reducing productivity. An excellent high quality clad steel sheet can be manufactured.

そして、特に、サンドイッチ型の組立て材10の板厚が20mm以上100mm以下、クラッド鋼板の製品板幅が1000mm以上5000mm以下の時に、顕著な効果を発揮する。   In particular, a remarkable effect is exhibited when the thickness of the sandwich-type assembly material 10 is 20 mm or more and 100 mm or less and the product plate width of the clad steel plate is 1000 mm or more and 5000 mm or less.

本発明の実施例として、図10に示したクラッド鋼板の製造設備30を用いてクラッド鋼板を製造した。   As an example of the present invention, a clad steel plate was produced using the clad steel plate production facility 30 shown in FIG.

その際、サンドイッチ型の組立て材10を加熱炉31で所定温度に加熱し、熱間圧延機32で板厚40mm、板幅2500mm、板長15mとした後、加速冷却装置33で800℃から500℃まで冷却し、ホットレベラー34で矯正して、高周波誘導加熱装置35で加熱した後、切断・剥離装置36で切断・剥離して、クラッド鋼板を得た。   At that time, the sandwich-type assembly material 10 is heated to a predetermined temperature in the heating furnace 31 and is made into a plate thickness of 40 mm, a plate width of 2500 mm, and a plate length of 15 m by the hot rolling mill 32, and then from 800 ° C. to 500 ° C. After cooling to 0 ° C., correcting with a hot leveler 34, heating with a high-frequency induction heating device 35, and cutting and peeling with a cutting / peeling device 36, a clad steel plate was obtained.

なお、高周波誘導加熱装置35は、ソレノイド型の誘導加熱コイルを直列に3台備えていて、1回加熱と複数回加熱のどちらも可能になっていた。   The high-frequency induction heating device 35 includes three solenoid-type induction heating coils in series, and can perform either one-time heating or multiple-time heating.

そして、生産性を落とすことなく、平坦度と表層硬度の均一性に優れたクラッド鋼板を製造するためには、切断・剥離後の反り量を10mm以下とする必要があった。   And in order to manufacture the clad steel plate excellent in the uniformity of flatness and surface hardness, without reducing productivity, it was necessary to make the curvature amount after a cutting and peeling into 10 mm or less.

切断・剥離後の反り量が10mm以下であれば、コールドレベラー37で軽圧下の1パス矯正によって矯正できるので、生産性を落とさずに、表層硬度も上昇させることなく、平坦度と表層硬度の均一性に優れた高品質なクラッド鋼板を製造できるが、切断・剥離後の反り量が10mmより大きいと、コールドレベラー37で強圧下の多数パス矯正が必要であり、さらに反りが大きい場合は、プレス装置38による矯正となるため、生産性が著しく低下する上、鋼板面内で不均一な硬度上昇が生じてしまうからである。   If the warping amount after cutting / peeling is 10 mm or less, the cold leveler 37 can be corrected by one-pass correction under light pressure. Therefore, the flatness and the surface hardness can be reduced without decreasing the productivity and without increasing the surface hardness. High quality clad steel plate with excellent uniformity can be manufactured, but if the amount of warpage after cutting and peeling is larger than 10 mm, it is necessary to correct multiple passes under strong pressure with the cold leveler 37. This is because the correction is performed by the pressing device 38, so that productivity is remarkably lowered and a non-uniform increase in hardness occurs in the steel plate surface.

ちなみに、クラッド鋼板の反り量は、クラッド鋼板の板幅方向両端を結んだ線を基準線として、板幅方向中央部から基準線までの垂線の長さとした。   Incidentally, the amount of warpage of the clad steel plate was defined as the length of the perpendicular from the central part in the plate width direction to the reference line, with the line connecting both ends of the clad steel plate as the reference line.

上記の本発明の実施形態に基づいて行った本発明例(本発明例1〜5)と、比較のために行った比較例(比較例1〜3)について、製造条件(誘導加熱条件)と製造結果(切断・剥離後の反り量)を表1に示す。   About the present invention example (present invention examples 1-5) performed based on the above-mentioned embodiment of the present invention and the comparative example (comparative examples 1-3) performed for comparison, the manufacturing conditions (induction heating conditions) and The production results (warping amount after cutting / peeling) are shown in Table 1.

すなわち、本発明例(本発明例1〜5)は、誘導加熱中の板厚方向最大温度差が50〜300℃になるようにした場合であり、比較例(比較例1〜3)は、その条件を満たしていない場合である。   That is, this invention example (this invention example 1-5) is a case where the plate | board thickness direction maximum temperature difference during induction heating is set to 50-300 degreeC, and a comparative example (comparative examples 1-3) is, This is a case where the condition is not satisfied.

Figure 0006314811
Figure 0006314811

本発明例1では、3台の誘導加熱コイルによって加熱した。そして、搬送速度を制御することで、加熱中の板厚方向最大温度差を150℃とした。この結果、切断・剥離後の反り量は5mmとなり、生産性を落とすことなく、平坦度と表層硬度の均一性に優れた高品質なクラッド鋼板を製造することができた。   In Example 1 of the present invention, heating was performed by three induction heating coils. And the board | plate thickness direction maximum temperature difference during a heating was 150 degreeC by controlling a conveyance speed. As a result, the amount of warpage after cutting and peeling was 5 mm, and a high-quality clad steel sheet excellent in flatness and uniformity of surface hardness could be produced without reducing productivity.

本発明例2では、1台の誘導加熱コイルのみを使用して加熱した。1回加熱なので3回加熱である本発明例1と同じ投入電力、周波数でも板厚方向温度差を付け易く、搬送速度を制御することで、加熱中の板厚方向最大温度差を200℃とした。切断・剥離後の反り量は3mmとなり、生産性を落とすことなく、平坦度と表層硬度の均一性に優れた高品質なクラッド鋼板を製造することができた。   In Example 2 of the present invention, heating was performed using only one induction heating coil. Since it is once heated, it is easy to give a temperature difference in the thickness direction even with the same input power and frequency as in Invention Example 1, which is three times heating. By controlling the conveyance speed, the maximum temperature difference in the thickness direction during heating is 200 ° C. did. The amount of warpage after cutting and peeling was 3 mm, and a high-quality clad steel plate excellent in flatness and uniformity of surface hardness could be produced without reducing productivity.

本発明例3〜5では、3台の誘導加熱コイルによって加熱した。その際に、投入熱量200W/cm以上、周波数1000Hz以上という好適条件は満足していないので、加熱中の板厚方向最大温度差は付き難くなったが、いずれも加熱中の板厚方向最大温度差は50℃以上であったので、切断・剥離後の反り量は10mm以下となり、生産性を落とすことなく、平坦度と表層硬度の均一性に優れた高品質なクラッド鋼板を製造することができた。 In Invention Examples 3 to 5, heating was performed by three induction heating coils. At that time, since the preferable conditions of input heat amount of 200 W / cm 2 or more and frequency of 1000 Hz or more were not satisfied, it became difficult to attach the maximum temperature difference in the plate thickness direction during heating. Since the temperature difference was 50 ° C or more, the warpage amount after cutting and peeling was 10 mm or less, and a high-quality clad steel sheet with excellent flatness and uniformity of surface hardness was manufactured without reducing productivity. I was able to.

比較例1では、高周波誘導加熱装置35での加熱を行わなかった。その結果、加速冷却時の板幅方向塑性歪差により生じた残留応力がそのまま残存し、切断・剥離後の反り量が50mmとなった。反り量が大きいためプレス装置38での矯正が必要となり、生産性が著しく低下した上、鋼板面内で不均一な硬度上昇が生じた。   In Comparative Example 1, heating by the high frequency induction heating device 35 was not performed. As a result, the residual stress generated due to the plastic strain difference in the plate width direction during accelerated cooling remained as it was, and the warpage amount after cutting and peeling was 50 mm. Since the amount of warpage was large, correction with the press device 38 was required, the productivity was remarkably lowered, and a non-uniform increase in hardness occurred in the steel plate surface.

比較例2では、3台の誘導加熱コイルによって加熱したが、搬送速度が速かったため、加熱中の板厚方向最大温度差は40℃となった。その結果、切断・剥離後の反り量は12mmとなり、コールドレベラー37による強圧下の多数パス矯正が必要となり、生産性が低下した上、鋼板面内で不均一な硬度上昇が生じた。   In Comparative Example 2, although heating was performed by three induction heating coils, the maximum temperature difference in the plate thickness direction during heating was 40 ° C. because the conveyance speed was high. As a result, the warpage amount after cutting / peeling was 12 mm, and it was necessary to correct a large number of passes under a strong pressure by the cold leveler 37, resulting in a decrease in productivity and a non-uniform increase in hardness in the steel plate surface.

比較例3では、3台の誘導加熱コイルによって加熱したが、投入熱量が300W/cmであった上、搬送速度が遅かったので、加熱中の板厚方向最大温度差は350℃となった。その結果、切断・剥離後の反り量は14mmとなり、コールドレベラー37による強圧下の多数パス矯正が必要となり、生産性が低下した上、鋼板面内で不均一な硬度上昇が生じた。 In Comparative Example 3, heating was performed by three induction heating coils. However, since the input heat amount was 300 W / cm 2 and the conveyance speed was slow, the maximum temperature difference in the plate thickness direction during heating was 350 ° C. . As a result, the amount of warpage after cutting / peeling was 14 mm, and it was necessary to correct a large number of passes under a strong pressure by the cold leveler 37, resulting in a decrease in productivity and an uneven increase in hardness in the steel plate surface.

これによって、本発明の有効性が確認された。   This confirmed the effectiveness of the present invention.

10 サンドイッチ型の組立て材(被圧延材)
11 母材
12 合せ材
13 母材
14 合せ材
15 剥離材
20 オープン型の組立て材(被圧延材)
21 母材
22 合せ材
30 クラッド鋼板の製造設備
31 加熱炉
32 熱間圧延機
33 加速冷却装置
34 ホットレベラー
35 高周波誘導加熱装置
36 切断・剥離装置
37 コールドレベラー
38 プレス装置
10 Sandwich-type assembly material (rolled material)
11 Base material 12 Lamination material 13 Base material 14 Lamination material 15 Release material 20 Open type assembly material (rolled material)
21 Base Material 22 Laminated Material 30 Clad Steel Plate Manufacturing Equipment 31 Heating Furnace 32 Hot Rolling Mill 33 Accelerated Cooling Device 34 Hot Leveler 35 High Frequency Induction Heating Device 36 Cutting / Peeling Device 37 Cold Leveler 38 Press Device

Claims (8)

サンドイッチ型の組立て材を被圧延材としてクラッド鋼板を製造する方法であって、被圧延材を加熱する加熱工程と、加熱された被圧延材を熱間圧延する熱間圧延工程と、熱間圧延された被圧延材を加速冷却する加速冷却工程と、加速冷却された被圧延材を高周波誘導加熱によって加熱する高周波誘導加熱工程とを備え、高周波誘導加熱工程において、高周波誘導加熱中の被圧延材の表層と板厚中心部の最大温度差が50℃以上300℃以下となるように加熱することを特徴とするクラッド鋼板の製造方法。   A method of manufacturing a clad steel plate using a sandwich-type assembly material as a material to be rolled, a heating step for heating the material to be rolled, a hot rolling step for hot rolling the heated material to be rolled, and hot rolling An accelerated cooling process for accelerating and cooling the rolled material to be rolled, and a high frequency induction heating process for heating the accelerated and cooled material to be rolled by high frequency induction heating, wherein the rolled material being subjected to high frequency induction heating in the high frequency induction heating process A method for producing a clad steel sheet, comprising heating so that the maximum temperature difference between the surface layer and the central part of the sheet thickness is 50 ° C. or more and 300 ° C. or less. 高周波誘導加熱工程において、1回の高周波誘導加熱によって被圧延材を加熱することを特徴とする請求項1に記載のクラッド鋼板の製造方法。   The method for producing a clad steel sheet according to claim 1, wherein in the high frequency induction heating step, the material to be rolled is heated by one high frequency induction heating. 高周波誘導加熱工程において、高周波誘導加熱時の被圧延材への投入熱量を100W/cm以上、周波数を500Hz以上とすることを特徴とする請求項1または2に記載のクラッド鋼板の製造方法。 The method for producing a clad steel sheet according to claim 1 or 2, wherein in the high-frequency induction heating step, the amount of heat input to the material to be rolled during high-frequency induction heating is 100 W / cm 2 or more and the frequency is 500 Hz or more. 加速冷却工程と高周波誘導加熱工程との間に、ホットレベラーによって被圧延材を矯正する矯正工程を備えていることを特徴とする請求項1〜3のいずれかに記載のクラッド鋼板の製造方法。   The method for producing a clad steel sheet according to any one of claims 1 to 3, further comprising a straightening step of straightening the material to be rolled by a hot leveler between the accelerated cooling step and the high frequency induction heating step. サンドイッチ型の組立て材を被圧延材としてクラッド鋼板を製造する設備であって、被圧延材を加熱する加熱炉と、加熱された被圧延材を熱間圧延する熱間圧延機と、熱間圧延された被圧延材を加速冷却する加速冷却装置と、加速冷却された被圧延材を高周波誘導加熱によって加熱する高周波誘導加熱装置とを備え、高周波誘導加熱装置において、高周波誘導加熱中の被圧延材の表層と板厚中心部の最大温度差が50℃以上300℃以下となるように加熱することを特徴とするクラッド鋼板の製造設備。   A facility for manufacturing a clad steel sheet using a sandwich-type assembly material as a material to be rolled, a heating furnace for heating the material to be rolled, a hot rolling mill for hot rolling the heated material to be rolled, and hot rolling An accelerated cooling device that accelerates and cools the rolled material to be rolled, and a high-frequency induction heating device that heats the accelerated and cooled material to be rolled by high-frequency induction heating. The clad steel sheet manufacturing equipment is characterized in that heating is performed so that the maximum temperature difference between the surface layer and the center portion of the sheet thickness is 50 ° C. or more and 300 ° C. or less. 高周波誘導加熱装置において、1回の高周波誘導加熱によって被圧延材を加熱することを特徴とする請求項5に記載のクラッド鋼板の製造設備。   6. The production equipment for clad steel sheets according to claim 5, wherein in the high frequency induction heating apparatus, the material to be rolled is heated by one high frequency induction heating. 高周波誘導加熱装置において、高周波誘導加熱時の被圧延材への投入熱量を100W/cm以上、周波数を500Hz以上とすることを特徴とする請求項5または6に記載のクラッド鋼板の製造設備。 7. The clad steel plate manufacturing equipment according to claim 5, wherein, in the high frequency induction heating apparatus, the heat input to the material to be rolled during high frequency induction heating is 100 W / cm 2 or more and the frequency is 500 Hz or more. 加速冷却装置と高周波誘導加熱装置との間に、被圧延材を矯正するホットレベラーを備えていることを特徴とする請求項5〜7のいずれかに記載のクラッド鋼板の製造設備。   The production equipment for clad steel sheets according to any one of claims 5 to 7, further comprising a hot leveler for correcting the material to be rolled, between the accelerated cooling device and the high-frequency induction heating device.
JP2014250944A 2014-12-11 2014-12-11 Clad steel plate manufacturing method and manufacturing equipment Active JP6314811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014250944A JP6314811B2 (en) 2014-12-11 2014-12-11 Clad steel plate manufacturing method and manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014250944A JP6314811B2 (en) 2014-12-11 2014-12-11 Clad steel plate manufacturing method and manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2016113641A JP2016113641A (en) 2016-06-23
JP6314811B2 true JP6314811B2 (en) 2018-04-25

Family

ID=56140924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014250944A Active JP6314811B2 (en) 2014-12-11 2014-12-11 Clad steel plate manufacturing method and manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6314811B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114932145B (en) * 2022-05-23 2023-03-28 燕山大学 Method for rolling titanium/aluminum composite plate by moving induction heating titanium plate single-roller drive

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686651B2 (en) * 1987-02-04 1994-11-02 株式会社神戸製鋼所 Method for producing copper alloy clad steel with excellent corrosion resistance and mechanical properties
JPH08276283A (en) * 1995-04-05 1996-10-22 Sumitomo Metal Ind Ltd Manufacture of titanium clad steel sheet
JP4674421B2 (en) * 2001-07-13 2011-04-20 Jfeスチール株式会社 Manufacturing method of high corrosion resistant clad steel plate
JP4734805B2 (en) * 2001-09-04 2011-07-27 Jfeスチール株式会社 Heat treatment method for clad steel

Also Published As

Publication number Publication date
JP2016113641A (en) 2016-06-23

Similar Documents

Publication Publication Date Title
WO2015152041A1 (en) Method for producing metal laminate material
TWI650424B (en) Iron core board manufacturing method
JP4449455B2 (en) Steel plate manufacturing method
US9186716B2 (en) Method of production of pressed sheet parts with integrated preparation of blanks of non-uniform thickness
WO2010103761A1 (en) Oriented electrical steel sheet and method of producing same
CN105363864A (en) Hot-forming apparatus and method for producing press-hardened shaped components from steel sheet
US10570492B2 (en) Titanium cast product for hot rolling having excellent surface properties after hot rolling even when slabbing step and finishing step are omitted, and method for producing same
JP5237573B2 (en) Aluminum alloy sheet, sheet, and method for producing molded member
JP6314811B2 (en) Clad steel plate manufacturing method and manufacturing equipment
US20130283881A1 (en) Process of and Device For Producing Metal Blanks With Different Thicknesses
KR101569356B1 (en) Method for manufacturing steel sheet for making joc steel pipe and joc steel pipe
JP5482539B2 (en) Determination of furnace temperature of continuous heat treatment furnace
JP4066652B2 (en) Heat treatment method and apparatus for steel
JP2003112205A (en) METHOD AND DEVICE FOR MANUFACTURING Mg OR Mg ALLOY BAND PLATE
JP5015386B2 (en) Heat treatment method for thick steel plate
JP2014184478A (en) Manufacturing method of endless metal belt
JP4655684B2 (en) Heat treatment method for steel sheet
KR101738985B1 (en) Hot formed steel part for vehicles and the method for manufacturing the same
CN113680821B (en) Preparation method of Incoloy alloy wide sheet
JP2005238290A (en) Method for producing metal slab
JP6478822B2 (en) Extra-thick stainless steel sheet and method for producing the same
JP4586479B2 (en) Manufacturing method of high-tensile cold-rolled steel sheet in continuous annealing process
JP6863332B2 (en) Clad steel sheet manufacturing method and clad steel sheet manufacturing equipment
JP2010005659A (en) Method of manufacturing magnesium sheet
WO2018016475A1 (en) Method for manufacturing core plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180312

R150 Certificate of patent or registration of utility model

Ref document number: 6314811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250