JP6311116B2 - Blower - Google Patents

Blower Download PDF

Info

Publication number
JP6311116B2
JP6311116B2 JP2014061340A JP2014061340A JP6311116B2 JP 6311116 B2 JP6311116 B2 JP 6311116B2 JP 2014061340 A JP2014061340 A JP 2014061340A JP 2014061340 A JP2014061340 A JP 2014061340A JP 6311116 B2 JP6311116 B2 JP 6311116B2
Authority
JP
Japan
Prior art keywords
blade
leading edge
axis direction
protrusion
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014061340A
Other languages
Japanese (ja)
Other versions
JP2015183604A (en
Inventor
広幸 近藤
広幸 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014061340A priority Critical patent/JP6311116B2/en
Publication of JP2015183604A publication Critical patent/JP2015183604A/en
Application granted granted Critical
Publication of JP6311116B2 publication Critical patent/JP6311116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、空調機や換気扇などに用いられる、羽根車が格子や羽根板等で目隠しされた送風装置に関するものである。   The present invention relates to an air blower used for an air conditioner, a ventilation fan, or the like, in which an impeller is blinded by a lattice, a blade plate, or the like.

従来、この種の送風装置として、羽根の翼外周部の前縁を先細形状とし気流の流入をスムーズにして騒音を低減させたものが知られている(例えば特許文献1参照)。   2. Description of the Related Art Conventionally, as this type of air blower, there has been known one in which the leading edge of the blade outer peripheral portion of the blade is tapered to reduce the noise by smoothing the inflow of airflow (see, for example, Patent Document 1).

以下、その送風装置について図6を参照しながら説明する。   Hereinafter, the blower will be described with reference to FIG.

図6は羽根車の翼101を回転軸方向上流側から平面視した概略図である。図6に示すように、翼101の前縁における接線102の半径方向成分103が回転方向成分104よりも大きい翼内周部105と、前縁における接線106の回転方向成分107が半径方向成分108よりも大きい翼外周部109とによって構成され、翼外周部109の前縁を先細形状としている。   FIG. 6 is a schematic view of the blade 101 of the impeller as viewed from the upstream side in the rotation axis direction. As shown in FIG. 6, the blade inner periphery 105 in which the radial component 103 of the tangent 102 at the leading edge of the blade 101 is larger than the rotational component 104, and the rotational component 107 of the tangent 106 at the leading edge is a radial component 108. And the leading edge of the blade outer peripheral portion 109 has a tapered shape.

これにより、周速の早い翼外周部109の前縁に流入する気流に対して衝突する時間をずらし、前縁における騒音の発生を抑制することができる。   Thereby, the time which collides with the airflow which flows into the front edge of the wing | blade outer peripheral part 109 with a quick peripheral speed can be shifted, and generation | occurrence | production of the noise in a front edge can be suppressed.

また、前縁に肉厚部を設け、翼の強度を上げたものが知られている(例えば特許文献2参照)。   Moreover, what provided the thick part in the front edge and raised the intensity | strength of the wing | blade is known (for example, refer patent document 2).

図7は軸流羽根車の翼202の厚みを増加した位置および断面形状を示す。図7(a)に位置を図7(b)および図7(c)に断面形状を示す。ここでは、翼202の変形防止手段として、軸流羽根車201の翼部202の前縁が翼202を支持する支持部である円筒状の支持部203と接合する位置204から前縁中央部205までの範囲206の翼202の厚みを図7(b)に示すように、及び、前縁が円筒状の支持部203と接合する位置204から翼端中央位置207までを結ぶ範囲208の翼部の厚みを図7(c)に示すように局所的に厚くしている。   FIG. 7 shows the position and cross-sectional shape where the thickness of the blade 202 of the axial impeller is increased. FIG. 7A shows the position, and FIGS. 7B and 7C show the cross-sectional shapes. Here, as a means for preventing the deformation of the blade 202, the leading edge central portion 205 is located from the position 204 where the leading edge of the blade portion 202 of the axial flow impeller 201 is joined to the cylindrical support portion 203 which is a support portion for supporting the blade 202. The thickness of the blade 202 in the range 206 is as shown in FIG. 7B, and the blade portion in the range 208 connecting the position 204 where the leading edge joins the cylindrical support portion 203 to the blade tip center position 207. As shown in FIG. 7C, the thickness is locally increased.

これにより、軸流羽根車201が回転時の変形量を低下することができ、設計時の性能が確保できる。即ち、風量の低下を抑制でき、また、同一風量で騒音の増加を抑制できる。   Thereby, the deformation amount at the time of the axial-flow impeller 201 rotating can be reduced, and the performance at the time of design can be ensured. That is, a decrease in air volume can be suppressed, and an increase in noise can be suppressed with the same air volume.

特開平6−307397号公報Japanese Patent Laid-Open No. 6-307397 特開平7−293495号公報JP 7-293495 A

しかしながら上記した従来の特許文献1の送風装置においては、樹脂材料にて羽根車が成形されることの多い、屋内換気用の比較的小型で翼の肉厚が薄い送風装置として使用する場合においては、送風性能に対する影響が少ないハブ部分に樹脂充填のゲートが設けられることが多いが、この場合翼外周部の前縁の先細形状部分がゲートから遠い位置にあり充填されにくいため成形時の形状が安定しにくくなってしまい、特に周速の早い翼外周部に変形が生じるとそれぞれの翼のなす仕事にアンバランスが生じて羽根車の後流に乱れを生み、騒音性能および送風性能を悪化させてしまうため、先細形状による騒音低減効果を作用させるためには成形の安定性が課題となるものであった。また、特許文献2を参考にして単に前縁部を肉厚形状とし、強度向上と同時に翼端前縁の先細形状への樹脂充填をしやすくするだけでは、実使用において異物流入防止のため羽根車の上流に格子や羽根板が設けた場合に、羽根車に流入する気流が乱れた場合に翼からの気流の剥離が生じやすくなり送風性能および騒音性能が悪化してしまうものであった。   However, in the above-described conventional blower of Patent Document 1, an impeller is often formed of a resin material, and when used as a blower that is relatively small for indoor ventilation and has a thin blade thickness. In many cases, a resin-filled gate is provided at the hub part, which has little influence on the air blowing performance.In this case, the tapered shape of the front edge of the outer periphery of the blade is located far from the gate, so it is difficult to fill. It becomes difficult to stabilize, especially when the outer peripheral part of the blade with a high peripheral speed is deformed, the work performed by each blade will be unbalanced and the wake of the impeller will be disturbed, deteriorating the noise performance and air blowing performance. Therefore, the stability of molding becomes a problem in order to cause the noise reduction effect due to the tapered shape. In addition, by simply making the leading edge thick with reference to Patent Document 2 and improving the strength and facilitating resin filling into the tapered shape of the leading edge of the blade tip, the blades can be used to prevent inflow of foreign matter in actual use. When a lattice or a blade plate is provided upstream of the car, if the airflow flowing into the impeller is disturbed, the airflow from the wing is likely to be peeled off and the air blowing performance and noise performance are deteriorated.

よって、本発明は上記の課題を解決し、成形安定性と送風性能および騒音性能を両立させた送風装置を提供することを目的とする。   Therefore, an object of the present invention is to solve the above-mentioned problems and to provide a blower that achieves both molding stability, blower performance, and noise performance.

上記課題を解決するために、本発明の送風装置は、ハブの外周に複数枚の翼を固定した軸流の羽根車と、前記羽根車を回転させる電動機と、前記電動機を支持して風路を形成するフレームと、前記羽根車の上流側に近接してフレームに固定される格子または羽根板を備えた送風装置であって、前記翼は、平面視における翼前縁の接線の向きが回転方向成分よりも半径方向成分が大きい翼内周部と、半径方向成分よりも回転方向成分が大きい翼外周部とから構成され、前記翼内周部は、前記翼前縁から翼後縁に渡って翼の回転軸方向上流側に膨出した弧と、前記翼前縁に沿って備えた翼前部を有し、前記翼前部は、前記翼の回転軸方向下流側に向かって突出した第一突出部と前記翼の回転軸方向上流側に向かって突
出した第二突出部を備え、前記第一突出部は、前記翼前縁から翼の回転軸方向下流側に向かって前記弧に比べて曲率の大きな第一円弧を形成し、前記翼後縁側の面が切り立つように形成し、前記第二突出部は、前記翼前縁側の面が前記翼前縁から翼の回転軸方向上流側に向かって前記弧に比べて曲率の大きな第二円弧を形成し、前記翼後縁側の面が切り立つように形成し、前記第一突出部の下流側端部と前記第二突出部の上流側端部とで形成される前記翼前部に亘る最大厚みは、前記孤における翼の厚みよりも大きく、前記第一突出部と前記第二突出部とは、前記翼前部に亘って設けられているものであり、これにより所期の目的を達成するものである。
In order to solve the above problems, an air blower according to the present invention includes an axial-flow impeller in which a plurality of blades are fixed to the outer periphery of a hub, an electric motor that rotates the impeller, and an air passage that supports the electric motor. And an air blower provided with a lattice or vane plate fixed to the frame in the vicinity of the upstream side of the impeller, the blades rotating in the direction of the tangent of the blade leading edge in plan view A blade inner circumferential portion having a radial component larger than the directional component and a blade outer circumferential portion having a rotational direction component larger than the radial component, and the blade inner circumferential portion extends from the blade leading edge to the blade trailing edge. And a blade front portion provided along the blade leading edge, and the blade front portion protrudes toward the downstream side in the rotation axis direction of the blade. A first protrusion and a second protrusion protruding toward the upstream side in the rotational axis direction of the blade, The first projecting portion forms a first arc having a larger curvature than the arc from the blade leading edge toward the downstream side in the rotation axis direction of the blade, and is formed so that a surface on the blade trailing edge side is raised, The second projecting portion forms a second arc whose surface on the blade leading edge side has a larger curvature than the arc from the blade leading edge toward the upstream side in the rotation axis direction of the blade, and the surface on the blade trailing edge side The maximum thickness over the blade front formed by the downstream end of the first protrusion and the upstream end of the second protrusion is greater than the thickness of the blade at the arc. Largely, the first projecting portion and the second projecting portion are provided over the front portion of the wing , thereby achieving the intended purpose.

本発明によれば、羽根の成形性と送風性能および騒音性能の両立ができる送風装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the air blower which can make the moldability of a blade | wing, ventilation performance, and noise performance compatible can be provided.

本発明の実施の形態1の送風装置の概略断面図Schematic sectional view of the air blower according to Embodiment 1 of the present invention. 同送風装置の羽根車の翼の一枚を平面視した概略図Schematic view of one blade of the impeller of the air blower in plan view 同送風装置の翼の翼内周部の回転方向断面図Sectional view in the rotational direction of the inner periphery of the blade of the same blower 同送風装置の翼の回転軸方向下流側を流れる気流を模式的に示す回転方向断面図Rotational direction sectional view schematically showing the airflow flowing downstream in the rotational axis direction of the blade of the blower 同送風装置の翼の回転軸方向上流側を流れる気流を模式的に示す回転方向断面図Rotational direction cross-sectional view schematically showing the airflow flowing on the upstream side in the rotational axis direction of the blade of the blower 従来技術としての特許文献1の送風装置の翼を平面視した概略図Schematic which planarly viewed the wing | blade of the air blower of patent document 1 as a prior art (a)従来技術としての特許文献2の送風装置の翼を示す概略斜視図、(b)同送風装置の翼のA−A断面の形状を示す概略図、(c)同送風装置の翼のB−B断面の形状を示す概略図(A) The schematic perspective view which shows the wing | blade of the air blower of patent document 2 as a prior art, (b) The schematic which shows the shape of the AA cross section of the wing | blade of the air blower, (c) The wing | blade of the air blower Schematic showing the shape of the BB cross section

本発明の請求項1記載の送風装置は、ハブの外周に複数枚の翼を固定した軸流の羽根車と、前記羽根車を回転させる電動機と、前記電動機を支持して風路を形成するフレームと、前記羽根車の上流側に近接してフレームに固定される格子または羽根板を備えた送風装置であって、前記翼は、翼前縁の平面視における接線の向きが回転方向成分よりも半径方向成分が大きい翼内周部と、半径方向成分よりも回転方向成分が大きい翼外周部とから構成され、前記翼内周部は、前記翼前縁から翼後縁に渡って翼の回転軸方向上流側に膨出した弧と、前記翼前縁に沿って備えた翼前部を有し、前記翼前部は、前記翼の回転軸方向下流側に向かって突出した第一突出部と前記翼の回転軸方向上流側に向かって突出した第二突出部を備え、前記第一突出部は、前記翼前縁から翼の回転軸方向下流側に向かって前記弧に比べて曲率の大きな第一円弧を形成し、前記翼後縁側の面が切り立つように形成し、前記第二突出部は、前記翼前縁側の面が前記翼前縁から翼の回転軸方向上流側に向かって前記弧に比べて曲率の大きな第二円弧を形成し、前記翼後縁側の面が切り立つように形成したものである。   The blower according to claim 1 of the present invention forms an air passage by supporting an impeller of an axial flow in which a plurality of blades are fixed to the outer periphery of the hub, an electric motor for rotating the impeller, and the electric motor. An air blower comprising a frame and a lattice or vane plate fixed to the frame in proximity to the upstream side of the impeller, wherein the blade has a tangent direction in a plan view of the blade leading edge from a rotational direction component The blade inner peripheral portion has a large radial component and the blade outer peripheral portion has a rotational direction component larger than the radial component, and the blade inner peripheral portion extends from the blade leading edge to the blade trailing edge. A first protrusion that has an arc that bulges upstream in the rotational axis direction and a blade front portion that is provided along the leading edge of the blade, wherein the blade front part projects toward the downstream side in the rotational axis direction of the blade And a second projecting portion projecting toward the upstream side in the rotational axis direction of the blade, the first projecting portion Forming a first arc having a larger curvature than the arc from the blade leading edge toward the downstream side in the rotational axis direction of the blade, and forming the blade trailing edge side surface to be upright, and the second protrusion is The blade leading edge side surface forms a second arc having a larger curvature than the arc from the blade leading edge toward the upstream side in the rotation axis direction of the blade, and the blade trailing edge side surface is formed so as to stand up. Is.

このようにすると、第一突出部の翼後縁側の面を回転軸方向に切り立つように形成し、第二突出部の翼後縁側の面を回転軸方向に切り立つように形成したので、第一突出部および第二突出部の翼後縁側に流路が急激拡大する部分ができるようになる。この流路が急激拡大する部分において気流の渦が生じる。   In this case, the surface on the blade trailing edge side of the first protrusion is formed so as to be cut in the rotation axis direction, and the surface on the blade trailing edge side of the second protrusion is formed so as to be cut in the rotation axis direction. A portion where the flow path rapidly expands is formed on the blade trailing edge side of the protrusion and the second protrusion. A vortex of airflow is generated in a portion where the flow path expands rapidly.

この渦の回転軸は翼前縁に沿って形成され、その回転方向は、第一突出部の翼後縁側にできる渦においては翼端側から見て時計回り、すなわち、翼の回転軸方向下流側の面から離れた位置においては翼前縁側から翼後縁側に向かって流れ、翼の回転軸方向下流側の面に近い位置では翼後縁側から翼前縁側に向かって流れるように渦が生じている。一方、第二突出部の翼後縁側にできる渦においては、翼の回転軸方向上流側の面から離れた位置においては、翼端側から見て反時計回り、すなわち、翼前縁側から翼後縁側に向かって流れ、翼の回転軸方向上流側の面に近い位置では翼後縁側から翼前縁側に向かって流れるように渦が生じている。   The rotation axis of this vortex is formed along the blade leading edge, and the rotation direction is clockwise when viewed from the blade tip side in the vortex formed on the blade trailing edge side of the first protrusion, that is, downstream of the blade rotation axis direction. At a position away from the blade surface, a vortex is generated that flows from the blade leading edge side toward the blade trailing edge side, and at a position near the blade downstream side in the rotational axis direction of the blade, flows from the blade trailing edge side toward the blade leading edge side. ing. On the other hand, in the vortex generated on the blade trailing edge side of the second protrusion, at a position away from the surface on the upstream side in the rotation axis direction of the blade, counterclockwise when viewed from the blade tip side, that is, from the blade leading edge side to the blade trailing edge. A vortex is generated so as to flow toward the edge side and flow from the trailing edge side of the blade toward the leading edge side of the blade at a position close to the surface on the upstream side in the rotation axis direction of the blade.

そして格子または羽根板の影響により気流が乱れ、翼からの気流の剥離が生じると全圧損失の増加が生じるが、流入する気流の向きが羽根車の回転軸方向寄りの角度になった場合、気流は回転軸方向下流側の面で剥離が生じるが、第一突出部の翼後縁側に生じる渦に引き込まれるようにして気流が曲がり、回転軸方向下流側の面から気流が剥離しにくくなるので、損失を小さくすることができる。   And if the airflow is disturbed by the influence of the lattice or blades, and the separation of the airflow from the wings causes an increase in the total pressure loss, but if the direction of the inflowing airflow is at an angle closer to the rotation axis direction of the impeller, The airflow is separated on the downstream surface in the rotation axis direction, but the airflow is bent so as to be drawn into the vortex generated on the trailing edge side of the first protrusion, and the airflow is not easily separated from the downstream surface in the rotation axis direction. Therefore, loss can be reduced.

一方、格子または羽根板の影響により翼に流入する気流の向きが羽根車の回転方向寄りの角度となった場合、気流は回転軸方向上流側の面で剥離が生じるが、第二突出部の翼後縁側に生じる渦に引き込まれるようにして気流が曲がり、回転軸方向上流側の面から気流が剥離しにくくなるので、損失を小さくすることができる。   On the other hand, when the direction of the airflow flowing into the wings becomes an angle closer to the rotation direction of the impeller due to the influence of the lattice or the blade plate, the airflow peels off on the upstream surface in the rotation axis direction. Since the air current is bent so as to be drawn into the vortex generated on the trailing edge side of the blade and the air current is less likely to be separated from the upstream surface in the rotation axis direction, the loss can be reduced.

そして、第一突出部および第二突出部の翼後縁側の面を回転軸方向に切り立った形状としたので、渦のできる空間を大きくでき、気流が渦に引き寄せられる時間を長くして気流の曲がりを大きくすることができるので、翼からの気流剥離の作用をより強めることができる。   And since the surface on the blade trailing edge side of the first projecting part and the second projecting part is formed in a shape that stands in the direction of the rotation axis, the space where the vortex can be made can be enlarged, and the time for the air current to be attracted to the vortex can be lengthened. Since the bending can be increased, the action of airflow separation from the wing can be further enhanced.

そして、成形時に樹脂充填のゲートをハブ部分に設けたときに、翼の翼前部の肉厚が厚く樹脂が翼端までまわりやすくなるので、前縁の接線の向きにおいて半径方向成分よりも回転方向成分が大きく先細形状となっている翼外周部の形状が出やすくなるので、成形安定性が向上し先細形状による騒音低減効果を作用させやすくすることができる。   When a resin-filled gate is provided at the hub during molding, the blade front is thick and the resin can easily reach the tip of the blade, so it rotates more than the radial component in the direction of the tangent to the leading edge. Since the shape of the blade outer peripheral portion having a large directional component and a tapered shape can be easily obtained, the molding stability can be improved and the noise reduction effect by the tapered shape can be easily applied.

このようにして、成形性と送風性能および騒音性能を両立させることができる。   In this way, it is possible to achieve both formability, blowing performance, and noise performance.

(実施の形態1)
以下、本発明の送風装置の実施の形態1について、図1を参照しながら説明する。
(Embodiment 1)
Hereinafter, Embodiment 1 of the air blower of the present invention will be described with reference to FIG.

図1に示すように、本発明の送風装置は、翼1をハブ2に固定した軸流の羽根車3と、羽根車3を下流側で接続する電動機4と、電動機4を支持し風路を形成するフレーム5と、フレーム5に固定され、羽根車3の上流側に、羽根車3の直径の25%以内の距離に近接して固定された化粧パネル6を備えている。   As shown in FIG. 1, the blower of the present invention includes an axial-flow impeller 3 in which a blade 1 is fixed to a hub 2, an electric motor 4 that connects the impeller 3 on the downstream side, and an air passage that supports the electric motor 4. And a decorative panel 6 fixed to the frame 5 on the upstream side of the impeller 3 and fixed close to a distance within 25% of the diameter of the impeller 3.

化粧パネル6は格子状または平板状のパネル板に複数枚の平板を放射状に配設した羽根板形状に形成されている。本実施の形態では一例として図1に示すような格子状に形成された化粧パネルとしている。   The decorative panel 6 is formed in a blade plate shape in which a plurality of flat plates are radially arranged on a lattice-like or flat panel plate. In the present embodiment, as an example, a decorative panel formed in a lattice shape as shown in FIG. 1 is used.

翼1は、ハブ2の周囲に4枚設けられており、そのうちの1枚の構成について回転軸方向から平面視した図を図2に示す。図2に示すように、翼1は回転軸7を中心とし、上流側から見て反時計回りに回転する向きに設けられている。   Four blades 1 are provided around the hub 2, and FIG. 2 shows a plan view of the configuration of one of the blades from the direction of the rotation axis. As shown in FIG. 2, the blade 1 is provided so as to rotate counterclockwise around the rotation shaft 7 as viewed from the upstream side.

翼1は、翼前縁8において、翼前縁8の接線の向き(矢符9)において、翼内周部の翼前縁の接線方向の半径方向成分10が翼内周部の翼前縁の接線方向の回転方向成分11よりも大きい領域となる翼内周部12と、翼前縁8の接線の向き(矢符13)において、翼外周部の翼前縁の接線方向の回転方向成分14が、翼外周部の翼前縁の接線方向の半径方向成分15よりも大きい領域となる翼外周部16から構成されている。   In the blade 1, the radial component 10 in the tangential direction of the blade leading edge of the blade inner peripheral portion is the blade leading edge of the blade inner peripheral portion in the direction of the tangent of the blade leading edge 8 (arrow 9). In the direction of the tangent of the blade inner edge 12 and the blade leading edge 8 (arrow 13), which is larger than the rotational direction component 11 in the tangential direction of 14 is composed of a blade outer peripheral portion 16 which is a region larger than the radial component 15 in the tangential direction of the blade leading edge of the blade outer peripheral portion.

翼内周部12の回転方向断面図を図3に示す。図3に示すように、翼内周部12は翼前縁8から翼後縁17に渡って翼1の回転軸方向上流側に膨出した弧18と、翼前縁8に沿って備えられた翼前部19から構成されている。   A cross-sectional view in the rotational direction of the blade inner peripheral portion 12 is shown in FIG. As shown in FIG. 3, the blade inner peripheral portion 12 is provided along the blade leading edge 8 and an arc 18 bulging from the blade leading edge 8 to the blade trailing edge 17 on the upstream side in the rotation axis direction of the blade 1. The wing front part 19 is constituted.

そして、翼前部19には、回転軸方向下流側に向かって突出した第一突出部20が形成されている。第一突出部20の翼前縁8側の面である第一突出部翼前縁面21は翼前縁8から翼1の回転軸方向下流側に向かって弧18に比べて曲率の大きな第一円弧22を形成している。そして、第一突出部20の翼後縁17側の面である第一突出部翼後縁面23は回転軸方向に切り立つように形成、すなわち、本実施の形態では、第一突出部翼後縁面23を回転軸7に平行な線分を翼前縁8に沿って翼根24から接続部25まで掃引して形成した面となっている。   The blade front portion 19 is formed with a first protruding portion 20 that protrudes toward the downstream side in the rotational axis direction. The first protruding portion blade leading edge surface 21, which is the surface of the first protruding portion 20 on the blade leading edge 8 side, has a larger curvature than the arc 18 from the blade leading edge 8 toward the downstream side in the rotation axis direction of the blade 1. A circular arc 22 is formed. And the 1st protrusion part blade trailing edge surface 23 which is the surface by the side of the blade trailing edge 17 of the 1st protrusion part 20 is formed so that it may stand up in a rotating shaft direction, ie, in this Embodiment, a 1st protrusion part blade back surface. The edge surface 23 is a surface formed by sweeping a line segment parallel to the rotary shaft 7 from the blade root 24 to the connecting portion 25 along the blade leading edge 8.

また、翼前部19には、回転軸方向上流側に向かって突出した第二突出部26が形成されている。第二突出部26の翼前縁8側の面である第二突出部翼前縁面27は翼前縁8から翼1の回転軸方向上流側に向かって弧18に比べて曲率の大きな第二円弧28を形成している。そして、第二突出部26の翼後縁17側の面である第二突出部翼後縁面29は回転軸方向に切り立つように形成、すなわち、本実施の形態では、第二突出部翼後縁面29を、回転軸7に平行な線分を翼前縁8に沿って翼根24から接続部25まで掃引して形成した面となっている。   The blade front portion 19 is formed with a second protruding portion 26 that protrudes toward the upstream side in the rotational axis direction. The second protruding portion blade leading edge surface 27, which is the surface of the second protruding portion 26 on the blade leading edge 8 side, has a larger curvature than the arc 18 from the blade leading edge 8 toward the upstream side in the rotation axis direction of the blade 1. Two arcs 28 are formed. And the 2nd protrusion part wing | wing trailing edge surface 29 which is the surface by the side of the wing | wing trailing edge 17 of the 2nd protrusion part 26 is formed so that it may cut in the rotating shaft direction, ie, in this Embodiment, 2nd protrusion part wing | blade rear side. The edge surface 29 is a surface formed by sweeping a line segment parallel to the rotary shaft 7 from the blade root 24 to the connection portion 25 along the blade leading edge 8.

これらの第一突出部20および第二突出部26は、図2に示すように、翼内周部12の翼根24から翼外周部16との接続部25にかけて、翼前部19に沿うようにして形成されており、接続部25にて翼内周部12から翼外周部16にかけて徐々に消滅している。   As shown in FIG. 2, the first projecting portion 20 and the second projecting portion 26 extend along the blade front portion 19 from the blade root 24 of the blade inner peripheral portion 12 to the connecting portion 25 with the blade outer peripheral portion 16. And gradually disappears from the blade inner peripheral portion 12 to the blade outer peripheral portion 16 at the connection portion 25.

次に、本実施の形態における作用について説明する。   Next, the operation in the present embodiment will be described.

電動機4により羽根車3が回転すると、翼1が空気を掻く作用により、外部から化粧パネル6を通ってフレーム5内部に空気が吸い込まれ、羽根車3を通って外部へ吹出される。化粧パネル6は格子状に形成されているため、格子の隙間を通過した気流の風速が局所的に高まり、化粧パネル6の下流側では気流の乱れが生じる。そして、化粧パネル6はフレーム5に近接して設けられているので、気流は乱れた状態のまま羽根車3に流入する。   When the impeller 3 is rotated by the electric motor 4, the air is sucked into the frame 5 from the outside through the decorative panel 6 and blown out through the impeller 3 by the action of the blades 1 scratching the air. Since the decorative panel 6 is formed in a lattice shape, the wind speed of the airflow that has passed through the gap between the lattices locally increases, and the turbulence of the airflow occurs on the downstream side of the decorative panel 6. Since the decorative panel 6 is provided close to the frame 5, the airflow flows into the impeller 3 in a turbulent state.

この乱れた気流と翼前縁8とが衝突すると非定常な圧力変動が生じ騒音が生じる。ここで、本実施の形態では、翼内周部12の翼前部19に第一突出部20および第二突出部26を設けている。   When this turbulent air current collides with the blade leading edge 8, an unsteady pressure fluctuation occurs and noise is generated. Here, in the present embodiment, the first protrusion 20 and the second protrusion 26 are provided in the blade front portion 19 of the blade inner peripheral portion 12.

化粧パネル6の影響により翼1へ流入する気流の向きが羽根車3の回転軸方向寄りの角度になった場合、回転軸方向下流側の面30から気流が剥離し損失が増加してしまう。しかし本発明では、第一突出部翼後縁面23を回転軸方向に切り立つように形成、すなわち、本実施の形態では、第一突出部翼後縁面23を、回転軸7に平行な線分を翼前縁8に沿って翼根24から接続部25まで掃引して形成した面としたので、図4に示すように、第一突出部20の翼後縁側に流路が急激拡大する部分31ができるようになる。この流路が急激拡大する部分31では渦32が生じる。この渦32の回転軸は翼前縁8に沿って形成され、その回転方向は、翼端33から見て反時計回り、すなわち、翼1の回転軸方向下流側の面30から離れた位置においては翼前縁8側から翼後縁17側に向かって流れ、回転軸方向下流側の面30に近い位置においては翼後縁17側から翼前縁8側に向かって流れるように渦32が生じている。この渦32により、この近傍を流れる気流34は渦32に引き寄せられるように流れ方向が曲げられるので、気流34は翼1の回転軸方向下流側の面30に付着して流れるようになる。   When the direction of the airflow flowing into the wing 1 becomes an angle closer to the rotational axis direction of the impeller 3 due to the effect of the decorative panel 6, the airflow is separated from the surface 30 on the downstream side in the rotational axis direction and the loss increases. However, in the present invention, the first protrusion blade trailing edge surface 23 is formed so as to be cut in the direction of the rotation axis, that is, in the present embodiment, the first protrusion blade trailing edge surface 23 is a line parallel to the rotation shaft 7. Since the surface is formed by sweeping the portion along the blade leading edge 8 from the blade root 24 to the connecting portion 25, the flow path rapidly expands to the blade trailing edge side of the first protrusion 20 as shown in FIG. A portion 31 is created. A vortex 32 is generated in a portion 31 where the flow path rapidly expands. The rotation axis of the vortex 32 is formed along the blade leading edge 8, and the rotation direction is counterclockwise when viewed from the blade tip 33, that is, at a position away from the surface 30 on the downstream side in the rotation axis direction of the blade 1. Flows from the blade leading edge 8 side toward the blade trailing edge 17 side, and at a position close to the surface 30 on the downstream side in the rotational axis direction, the vortex 32 flows so as to flow from the blade trailing edge 17 side toward the blade leading edge 8 side. Has occurred. The flow direction is bent by the vortex 32 so that the air flow 34 flowing in the vicinity thereof is attracted to the vortex 32, so that the air flow 34 is attached to the surface 30 on the downstream side in the rotation axis direction of the blade 1.

一方、化粧パネル6の影響により気流が乱れ、翼1に流入する気流の向きが羽根車3の回転方向寄りの角度になった場合、回転軸方向上流側の面35から気流が剥離し、損失や騒音が増加してしまう。しかし本発明では、図5に示すように第二突出部翼後縁面29を回転軸方向に切り立つように形成、すなわち、本実施の形態では、第二突出部翼後縁面29を、回転軸7に平行な線分を翼前縁8に沿って翼根24から接続部25まで掃引して形成した面としたので、第二突出部26の翼後縁側に流路が急激拡大する部分36ができるようになる。この流路が急激拡大する部分36では渦37が生じる。この渦37の回転方向は翼端33からみて時計回り、すなわち、回転軸方向上流側の面35から離れた位置においては翼前縁8側から翼後縁17側に向かって流れ、回転軸方向上流側の面35に近い位置においては翼後縁17側から翼前縁8側に向かって流れるように渦37が生じる。第二突出部26の翼後縁17側にできる渦37により、この近傍を流れる気流38は渦37に引き寄せられるように流れ方向が曲げられるので、気流38は翼1の回転軸方向上流側の面35に付着して流れるようになる。   On the other hand, when the airflow is disturbed by the effect of the decorative panel 6 and the direction of the airflow flowing into the wing 1 becomes an angle closer to the rotation direction of the impeller 3, the airflow is separated from the surface 35 on the upstream side in the rotation axis direction, and the loss And noise increases. However, in the present invention, as shown in FIG. 5, the second protrusion blade trailing edge surface 29 is formed so as to stand up in the direction of the rotation axis, that is, in the present embodiment, the second protrusion blade trailing edge surface 29 is rotated. Since the line segment parallel to the shaft 7 is formed by sweeping from the blade root 24 to the connecting portion 25 along the blade leading edge 8, the portion where the flow path rapidly expands on the blade trailing edge side of the second protrusion 26 36 can be made. A vortex 37 is generated in a portion 36 where the flow path rapidly expands. The direction of rotation of the vortex 37 is clockwise when viewed from the blade tip 33, that is, at a position away from the surface 35 on the upstream side in the rotation axis direction, flows from the blade leading edge 8 side toward the blade trailing edge 17 side. At a position close to the upstream surface 35, a vortex 37 is generated so as to flow from the blade trailing edge 17 side toward the blade leading edge 8 side. The vortex 37 formed on the blade trailing edge 17 side of the second protrusion 26 causes the airflow 38 flowing in the vicinity thereof to be bent so that the airflow 38 is attracted to the vortex 37. It adheres to the surface 35 and flows.

そして、従来技術と比較すると、第一突出部翼後縁面23および第二突出部翼後縁面29を回転軸方向に切り立った形状としたので、従来技術のように略円筒形状とした場合よりも流路の拡大率がより急となっている。翼1に流入する気流は第一突出部翼前縁面21および第二突出部翼前縁面27に流入し、翼1の回転軸方向に対して下流側および上流側へと分流し、それぞれ第一突出部翼前縁面21および第二突出部翼前縁面27に沿うようにして流れる。第一突出部20および第二突出部26の翼後縁17側に流れると、流路が急激拡大しているので、気流の向きが回転軸方向下流側の面30と回転軸方向上流側の面35に向かう方向寄りに変わる。第一突出部20および第二突出部26の翼後縁17側での流路の拡大が従来技術よりも急激であるため、渦のできる空間を大きくでき、気流が渦に引き寄せられる時間を長くして気流の曲がりを大きくすることができるので、翼からの気流剥離の作用をより強めることができる。   And when compared with the prior art, the first projecting blade trailing edge surface 23 and the second projecting blade trailing edge surface 29 are formed in a substantially cylindrical shape as in the prior art, because they have a shape that stands up in the rotational axis direction. The expansion rate of the flow path is steeper than that. The airflow flowing into the blade 1 flows into the first projecting blade front edge surface 21 and the second projecting blade front edge surface 27, and is divided into the downstream side and the upstream side with respect to the rotational axis direction of the blade 1, respectively. It flows along the first protruding portion blade leading edge surface 21 and the second protruding portion blade leading edge surface 27. When the first projecting portion 20 and the second projecting portion 26 flow toward the blade trailing edge 17 side, the flow path rapidly expands, so that the direction of the airflow is the downstream surface 30 in the rotational axis direction and the upstream surface in the rotational axis direction. The direction changes toward the surface 35. Since the expansion of the flow path on the blade trailing edge 17 side of the first protrusion 20 and the second protrusion 26 is more rapid than in the prior art, the space where the vortex can be made can be enlarged, and the time during which the airflow is drawn to the vortex is lengthened. Thus, the bending of the airflow can be increased, so that the action of airflow separation from the wing can be further enhanced.

そして、成形時に樹脂充填のためのゲートをハブ2に設けたときに、翼1の翼前部19の肉厚が厚いため樹脂が翼端33までまわりやすくなるので、翼外周部16の翼前縁8の先細形状が安定して出やすくなるので、成形の安定性に加えて先細形状による騒音低減効果を作用させやすくすることができる。   When the hub 2 is provided with a gate for resin filling at the time of molding, since the thickness of the blade front portion 19 of the blade 1 is thick, the resin can easily reach the blade tip 33. Since the tapered shape of the edge 8 is stable and easy to come out, the noise reduction effect by the tapered shape can be easily applied in addition to the stability of molding.

以上のようにして、成形安定性と送風性能および騒音性能を両立した送風装置を提供することができる。   As described above, it is possible to provide a blower device that achieves both molding stability, blower performance, and noise performance.

本発明にかかる送風装置は、成形安定性と騒音性能および送風性能を両立させることができるので、送風能力や静音性が求められる屋内換気用の小型の送風装置としての活用が期待されるものである。   Since the blower according to the present invention can achieve both molding stability, noise performance, and blower performance, it is expected to be used as a small blower for indoor ventilation that requires blowing ability and quietness. is there.

1 翼
2 ハブ
3 羽根車
4 電動機
5 フレーム
6 化粧パネル
7 回転軸
8 翼前縁
10 翼内周部の翼前縁の接線方向の半径方向成分
11 翼内周部の翼前縁の接線方向の回転方向成分
12 翼内周部
14 翼外周部の翼前縁の接線方向の回転方向成分
15 翼外周部の翼前縁の接線方向の半径方向成分
16 翼外周部
17 翼後縁
18 弧
19 翼前部
20 第一突出部
21 第一突出部翼前縁面
22 第一円弧
23 第一突出部翼後縁面
24 翼根
25 接続部
26 第二突出部
27 第二突出部翼前縁面
28 第二円弧
29 第二突出部翼後縁面
30 回転軸方向下流側の面
31 流路が急激拡大する部分
32 渦
33 翼端
34 気流
35 回転軸方向上流側の面
36 流路が急激拡大する部分
37 渦
38 気流
1 wing 2 hub 3 impeller 4 motor 5 frame 6 decorative panel 7 rotating shaft 8 wing leading edge 10 tangential radial component of the wing leading edge of the wing inner periphery 11 tangential direction of the wing leading edge of the wing inner periphery Rotational direction component 12 Blade inner peripheral portion 14 Tangential rotational direction component of blade leading edge of blade outer peripheral portion 15 Tangential radial component of blade leading edge of blade outer peripheral portion 16 Blade outer peripheral portion 17 Blade trailing edge 18 Arc 19 Blade Front part 20 First projection part 21 First projection part blade leading edge surface 22 First arc 23 First projection part blade trailing edge surface 24 Blade root 25 Connection part 26 Second projection part 27 Second projection part blade leading edge surface 28 Second arc 29 Second projecting blade trailing edge surface 30 Surface 31 on the downstream side in the rotational axis direction A portion 32 where the flow path rapidly expands 32 Vortex 33 Blade tip 34 Air flow 35 Surface 36 on the upstream side in the rotational axis direction The flow path expands rapidly Part 37 Vortex 38 Airflow

Claims (1)

ハブの外周に複数枚の翼を固定した軸流の羽根車と、前記羽根車を回転させる電動機と、前記電動機を支持して風路を形成するフレームと、前記羽根車の上流側に近接してフレームに固定される格子または羽根板を備えた送風装置であって、前記翼は、翼前縁の平面視における接線の向きが回転方向成分よりも半径方向成分が大きい翼内周部と、半径方向成分よりも回転方向成分が大きい翼外周部とから構成され、前記翼内周部は、前記翼前縁から翼後縁に渡って翼の回転軸方向上流側に膨出した弧と、前記翼前縁に沿って備えた翼前部を有し、前記翼前部は、前記翼の回転軸方向下流側に向かって突出した第一突出部と前記翼の回転軸方向上流側に向かって突出した第二突出部を備え、前記第一突出部は、前記翼前縁から翼の回転軸方向下流側に向かって前記弧に比べて曲率の大きな第一円弧を形成し、前記翼後縁側の面が切り立つように形成し、前記第二突出部は、前記翼前縁側の面が前記翼前縁から翼の回転軸方向上流側に向かって前記弧に比べて曲率の大きな第二円弧を形成し、前記翼後縁側の面が切り立つように形成し、前記第一突出部の下流側端部と前記第二突出部の上流側端部とで形成される前記翼前部に亘る最大厚みは、前記孤における翼の厚みよりも大きく、前記第一突出部と前記第二突出部とは、前記翼前部に亘って設けられていることを特徴とする送風装置。 An axial-flow impeller having a plurality of blades fixed on the outer periphery of the hub, an electric motor that rotates the impeller, a frame that supports the electric motor to form an air passage, and an upstream side of the impeller. The blade is provided with a lattice or blades fixed to the frame, the blade has a blade inner peripheral portion in which the tangent direction in a plan view of the blade leading edge has a radial component larger than the rotational component, A blade outer peripheral portion having a rotational direction component larger than a radial direction component, and the blade inner peripheral portion swells to the upstream side in the rotational axis direction of the blade from the blade leading edge to the blade trailing edge; A blade front portion provided along the blade leading edge, the blade front portion projecting toward the downstream side in the rotational axis direction of the blade and the upstream side in the rotational axis direction of the blade. A second projecting portion projecting from the blade leading edge, and the first projecting portion is located below the blade leading edge. A first arc having a larger curvature than the arc is formed toward the side, and the surface on the blade trailing edge side is formed to be upright, and the surface of the blade leading edge side is formed on the blade leading edge side. A second arc having a larger curvature than the arc toward the upstream side in the rotation axis direction of the blade, and formed so that a surface on the blade trailing edge side is raised, and a downstream end of the first protrusion The maximum thickness over the wing front formed by the upstream end of the second protrusion is larger than the thickness of the wing at the arc, and the first protrusion and the second protrusion are A blower characterized by being provided over the front part of the wing .
JP2014061340A 2014-03-25 2014-03-25 Blower Active JP6311116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014061340A JP6311116B2 (en) 2014-03-25 2014-03-25 Blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014061340A JP6311116B2 (en) 2014-03-25 2014-03-25 Blower

Publications (2)

Publication Number Publication Date
JP2015183604A JP2015183604A (en) 2015-10-22
JP6311116B2 true JP6311116B2 (en) 2018-04-18

Family

ID=54350438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014061340A Active JP6311116B2 (en) 2014-03-25 2014-03-25 Blower

Country Status (1)

Country Link
JP (1) JP6311116B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528374B2 (en) * 2011-04-12 2016-12-27 Mitsubishi Electric Corporation Turbofan, and air-conditioning apparatus
JP6060370B2 (en) * 2012-07-27 2017-01-18 パナソニックIpマネジメント株式会社 Blower

Also Published As

Publication number Publication date
JP2015183604A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
CN107850083B (en) Blower and air conditioner equipped with same
JP6493682B2 (en) Centrifugal fan
JPWO2015092924A1 (en) Axial blower
JP2011074817A (en) Axial fan
JP6405529B2 (en) Blower
JP2016061241A5 (en)
JP2016102467A (en) Blower device
JP6121046B2 (en) Axial blower
JP4910534B2 (en) Blower impeller
JP5111582B2 (en) Centrifugal fan, air conditioner equipped with the same and centrifugal fan mold
JP2006322378A (en) Blower impeller
JP2008232049A (en) Centrifugal impeller and centrifugal blower
KR20170102097A (en) Fan of axial flow suppress for vortex and leakage flow
JP6060370B2 (en) Blower
JP5114845B2 (en) Blower impeller
JP6311116B2 (en) Blower
JP2012026380A (en) Ceiling fan
JP5147784B2 (en) Fan and axial blower
JP2010242597A (en) Axial blower and air conditioner
JP6134407B2 (en) Centrifugal fan
JP2019127865A (en) Centrifugal fan
JP2006125229A (en) Sirocco fan
JP2010242665A (en) Blower impeller
JP2008121611A (en) Impeller for multi-blade blower
JP6458248B2 (en) Blower impeller

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R151 Written notification of patent or utility model registration

Ref document number: 6311116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151