JP6309893B2 - デュアル楕円反射体 - Google Patents

デュアル楕円反射体 Download PDF

Info

Publication number
JP6309893B2
JP6309893B2 JP2014530932A JP2014530932A JP6309893B2 JP 6309893 B2 JP6309893 B2 JP 6309893B2 JP 2014530932 A JP2014530932 A JP 2014530932A JP 2014530932 A JP2014530932 A JP 2014530932A JP 6309893 B2 JP6309893 B2 JP 6309893B2
Authority
JP
Japan
Prior art keywords
light
workpiece
curing
elliptical
light sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014530932A
Other languages
English (en)
Other versions
JP2015501271A (ja
Inventor
ドグ チルダース,
ドグ チルダース,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoseon Technology Inc
Original Assignee
Phoseon Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoseon Technology Inc filed Critical Phoseon Technology Inc
Publication of JP2015501271A publication Critical patent/JP2015501271A/ja
Application granted granted Critical
Publication of JP6309893B2 publication Critical patent/JP6309893B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/067Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators using surface reflection, e.g. grazing incidence mirrors, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2256/00Wires or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/064Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements having a curved surface
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/065Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements provided with cooling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Textile Engineering (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Polymerisation Methods In General (AREA)
  • Led Device Packages (AREA)
  • Coating Apparatus (AREA)

Description

関連出願
本願は、2011年9月15日に出願されたアメリカ特許出願第61/535,318号の優先権を要求する。その出願の全ての内容はここに挿入される。
光ファイバーは、通信産業においてだけでなく、照明用途や画像用途にも普遍的に使用されている。光ファイバーは、電気配線と比較して長距離にわたって、高データ転送レートを提供する。加えて、光ファイバーは、金属配線より、フレキシブルで、明るく、小さい径の中に引き込むことができる。それにより、ケーブルの中に光ファイバーの高容量バンドルを提供する。紫外線(UV)硬化プロセスを適用された表面コーティングは、物理的損傷や水分の侵入から光ファイバーを保護するため、長期耐久性などの性能を維持するために使用される。
カーターら(アメリカ特許6,626,561)は、表面を有する光ファイバーのUV硬化の均一性に取り組む。その光ファイバーは、UV硬化デバイスの焦点の外に位置されている。そのUV硬化デバイスは、楕円反射体の第2の焦点に位置された一つのUV光源から光ファイバーの表面にUV光を向ける楕円反射体を用いる。硬化不均一性の問題は、光源に対する光ファイバーの不正確な配置または不整形な光ファイバーが原因で生ずる。これらの問題に対処するために、カーターは、第1の楕円反射体焦点付近に位置された一つの光源から、第2の楕円反射体焦点付近に位置された光ファイバー表面にUV光を照射するための楕円反射体を使用するUVランプ構造を使用する。光ファイバーと電球の両方は、焦点からわずかにずれている。このように、光ファイバーの表面に到達するUV光線は消散し、光コーティングの照射と硬化は、より均一になる可能性がある。
本発明者は、上記アプローチで潜在的な問題を認識した。すなわち、楕円反射体の焦点から遠ざけてUV光源と光ファイバーをずらすことによって、光ファイバー表面を照射するUV光の強度は消散し、低減される。それによって、硬化率と生産率を低下させ、高い製造コストを招いている。
上記問題に対処する一つのアプローチは、UV硬化デバイスを含む。UV硬化デバイスは、ワークピースに対して互いに反対側に配置され、共同設置焦点(co-located focus)を有するデュアル楕円反射体(dual elliptical reflectors)と,2つのUV光原とを含む。各光源は、各楕円反射体の第2の焦点に位置されている。これにより、光ファイバーまたは他のワークピースにUV光を均一かつ高強度で照射することができる。それによって、光ファイバーコーティングの急速でかつ均一な硬化を提供している。
上記要旨は、詳細な説明にさらに記載された概念の選択から単純化して提供される。それは、請求項に記載された発明の特徴または本質的特徴を特定する意図ではない。特許請求の範囲は、詳細な説明に続く請求項によって規定される。さらに、請求項に記載された発明は、この開示のいずれの部分における、または上記された利点を解決する実施形態に限定されない。
図1は、電源と、コントローラーと、冷却サブシステムと、発光サブシステムとを含むデュアル光反応性システムの実施例を示す。 図2は、一つの光源を有するUV硬化デバイスのための従来の楕円反射体の断面図を示す例である。 図3は、共同設置焦点に配置された2つの楕円形表面の断面図を示す例である。 図4は、共同設置焦点を有するように配置されたデュアル楕円反射体の断面図を示す構成例である。 図5は、デュアル楕円反射体と、2つのLEDアレイ光源とを含むUV硬化デバイスの例の平面図である。 図6は、図5に示されるUV硬化デバイスを使用する光ファイバーのようなワークピースをUV硬化する方法の例を示すフローチャートである。 図7は、UV硬化システムの平面図である。
被覆された光ファイバー、リボン、ケーブルおよび他のワークピースの製造に使用される、UV硬化装置、UV硬化方法およびUV硬化システムを説明する。光ファイバーのコーティングは、共同設置焦点を有するように配置されたデュアル楕円反射体を使用するUV硬化デバイスによってUV硬化される。ワークピース(例えば、光ファイバー)は、共同設置焦点に位置され、2つのUV光源は、各楕円反射体の第2の焦点に位置される。図1は、UV硬化デバイスと、カップリング光学系(coupling optics)と、カップリング電子機器(coupling electronics)を含むデュアルUV硬化デバイス(例えば、光反応性システム)の例を示す。図2は、UV硬化光ファイバー用の従来のUV硬化デバイスのシングル楕円反射体カップリング光学系の構成を示す。図3は、共同設置焦点を有するように配置された2つの楕円形表面の例を示す。図4は、UV硬化デバイスのデュアル楕円反射体カップリング光学系の構成を示す。そのデュアル楕円反射体は共同設置焦点を有する。図5は、共同設置焦点を有するように配置されたデュアル楕円反射体を含み、2つのLEDアレイ光源と、熱を消散するための外部フィンとともに構成されたUV硬化デバイスの例を示す。図6は、図5のUV硬化デバイスを使用する光ファイバーまたは他のワークピースをUV硬化する方法の工程を示すフローチャートである。図7は、UV硬化システムの例を示す。
UV硬化デバイスは、少なくとも2つの楕円反射体と、少なくとも2つの光源とを含む少なくとも2つの光反応性システムを含む。図1を参照して、図1は、デュアル光反応性システム10および11を含む構成例のブロック図を示す。この例において、光反応性システムは、互いにUV硬化ワークピースの反対側に配置されている。第1の例において、UV硬化ワークピースの反対側に配置された光反応性システムは、図1に示されるように、互いに反対側に配置され、または、互いに対して180°の方位に配置されている。別の例において、UV硬化ワークピースの反対側に配置された光反応性システムは、互いに対して少なくとも90〜270°、または、互いに対して少なくとも175〜185°の方位に配置されている。
一つの例において、光反応性システム10と11のそれぞれは、発光サブシステム12および13と、コントローラー14および15と、電源16および17と、冷却サブシステム18および39とを含む。
発光サブシステム12および13は、複数の半導体装置19および27を含む。半導体装置19および27は、たとえば、LEDデバイスである。選択された複数の半導体装置19および27は、放射出力(radiant output)24および25を提供するように実装される。放射出力24は、ワークピース26に向かっている。戻ってきた放射線28および29は、それぞれ、ワークピース26から発光サブシステム12および13に向いている(例えば、放射出力24および25の反射を介して)。
放射出力24および25は、カップリング光学系30および31を介してワークピース26に向いている。カップリング光学系30および31は、使用されると、さまざまに実行される。例として、カップリング光学系は、半導体デバイス19と27との間に介挿された、1または2以上の層、材料または他の構造を含み、ワークピース26の表面に放射出力24および25を提供している。例として、カップリング光学系30および31は、収集(collection)、集光(condensing)、コリメーション(collimation)、または別の方法で放射出力24および25の質または効果的な量を増大するためのマイクロレンズアレイを含む。別の例として、カップリング光学系30および31は、マイクロ反射体アレイを含む。そのようなマイクロ反射体アレイを使用すると、放射出力24および25を提供する半導体デバイスのそれぞれは、1対1の基準で、各マイクロ反射体に配置される。別の例として、半導体デバイス20および21のアレイまたは放射出力24および25を提供する半導体デバイス20および21の複数のアレイのうちの一つのアレイは、多数対1の基準で、複数のマクロ反射体に配置される。このように、カップリング光学系30は、両方のマイクロ反射体アレイを含んでいる。各半導体装置は、各マイクロ反射体および複数のマクロ反射体において、1対1の基準で配置されている。半導体デバイスからの放射出力24および25の量および/または質は、上述されたように、マクロ反射体によってさらに増大される。
カップリング光学系30および31の、層、材料または他の構造のそれぞれは、選択された屈折率を有する。各屈折率を正しく選択することによって、放射出力24および25(および/または帰ってきた放射線28、29)のパスにおける層と、材料と、他の構造の間のインターフェースでの反射光は、選択的に制御される。例として、ワークピース26に対して半導体デバイス間に配置された選択されたインターフェースでの屈折率の差を制御することによって、そのインターフェースでの反射光は、ワークピース26への最大搬送のためのそのインターフェースで放射出力の伝送を増大させるように、低減されまたは増大される。例えば、カップリング光学系は、二色性の反射体を含む。ある波長の入射光が吸収される一方、他の入射光は反射され、ワークピース26の表面にフォーカスされる。
カップリング光学系30および31は、種々の目的のために使用される。例えば、半導体デバイス19および27を保護する目的、冷却サブシステム18および39と関連する冷却流体を保有する目的、放射出力24および25を収集し、集光し、および/またはコリメートする目的、戻ってきた放射線28および29を取集し、方向付けし、退ける目的、その他の目的が挙げられる。これらは、1種または2種以上組合せることができる。さらなる例として、光反応性システム10および11は、特に、ワークピース26上に送られるような放射出力24および25の効果的な質または量を増大するように、カップリング光学系30および31を使用してもよい。
選択された複数の半導体デバイス19および27は、コントローラー14および15にデータを提供するように、カップリング電子機器22および23を介してコントローラー14および15に結合される。また、以下に説明するように、コントローラーは、そのようなデータを提供する半導体デバイスを、例えば、カップリング電子機器22および23を介して、制御するように実装される。コントローラー14および15は、各電源16および17と、冷却サブシステム18および39とに接続されており、それらを制御するように実装されている。さらに、コントローラー14および15は、電源16および17と、冷却サブシステム18および39とからデータを受信する。更なる例において、コントローラー14および15は、光反応性システム10および11の操作を制御するために、互いに通信してもよい(図1に示されていない)。例えば、コントローラー14および15は、マスタースレーブカスケーディング制御アルゴリズム(master-slave cascading control algorithm)で動作する。コントローラーの一つの設定点は、他のコントローラーの出力によって設定される。光反応性システム11と連動して、光反応性システム10の動作のための他の制御ストラテジーが使用されてもよい。
電源16および17と、冷却サブシステム18および39と、発光サブシステム12および13とに加えて、コントローラー14および15は、内部エレメント32および33と、外部エレメント34および35に接続され、それらを制御するように実装される。図示されるようなエレメント32および33は、光反応性システム10および11に対して内側にある。図示されるようなエレメント34および35は、光反応性システム10および11に対して外側にあるが、ワークピース26と関連している(例えば、ハンドリング機器、冷却機器またはその他の外部機器)、または、光反応性システム10および11が支持する光化学反応に関連する。
電源16および17、冷却サブシステム18および39、発光サブシステム12および13、および/またはエレメント32および33と34および35の1つまたは2つ以上からコントローラー14および15によって受信されたデータは、種々のタイプである。例として、そのデータは、結合された半導体デバイス19および27と関連する1または2以上の代表的な特性である。別の例として、そのデータは、発光サブシステム12および13と、電源16および17と、冷却サブシステム18および39と、内部エレメント32および33と、データを提供する外部エレメント34および35と関連する1または2以上の代表的な特性であってもよい。また、別の例として、そのデータは、ワークピース26(例えば、代表的な、ワークピースに向く放射出力エネルギーまたはスペクトルコンポーネント)と関連する1または2以上の代表的な特性であってもよい。さらに、データは、これらの特性を組み合わせた代表な特性であってもよい。
コントローラー14および15は、そのようなデータの受信において、データに応答するように実装されてもよい。例えば、そのようなコンポーネントからのデータに応答して、コントローラー14および15は、電源16および17、冷却サブシステム18および39、発光サブシステム12および13(1または2以上の連結された半導体デバイスを含む)、および/またはエレメント32、33、34および35の1つまたは2つ以上を制御するように実装されてもよい。一例として、光エネルギーがワークピースに関連する1または2以上のポイントで不十分であるということを示す発光サブシステムからのデータに応答して、コントローラー14は、次の(a)〜(d)のいずれかのように実行される。(a)1または2以上の半導体デバイスに電力の電源の供給を増加する。(b)冷却サブシステム18を介して発光サブシステムの冷却を上げる(例えば、冷却されたら、ある発光デバイスがより大きい放射出力を提供する)。(c)電力がそのようなデバイスに供給される間の時間を増やす。(d)上記の組合せを提供する。
発光サブシステム12および13の個々の半導体デバイス19および27(例えば、LEDデバイス)は、コントローラー14および15によって独立に制御される。例えば、コントローラー14および15は、異なる強度、波長などの光を発する1または2以上の個別のLEDデバイスの第2のグループを制御しながら、第1の強度、波長などの光を発する1または2以上の個別のLEDデバイスの第1のグループを制御する。1または2以上の個別のLEDデバイスの第1のグループは、半導体デバイスの同じアレイ20および21内にあってもよく、半導体デバイスの2以上のアレイ20および21にあってもよい。半導体デバイスのアレイ20および21は、それぞれ、コントローラー14および15による発光サブシステム12および13における半導体デバイスの他のアレイ20および21から、コントローラー14および15によって独立に制御されてもよい。例えば、第1のアレイの半導体デバイスは、第1の強度と波長などの光を発するように制御される。一方、第2のアレイの半導体デバイスは、第2の強度と波長などの光を発するように制御される。
更なる例として、第1のセットの条件下(例えば、特別なワークピース、光反応および/または操作条件のセットのための条件)、コントローラー14および15は、第1のコントロールストラテジーを実行するために、光反応性システム10および11を操作する。第2のセットの条件下(例えば、特別なワークピース、光反応および/または操作条件のセットのための条件)、コントローラー14および15は、第2のコントロールストラテジーを実行するために、光反応性システム10および11を操作する。上述したように、第1のコントロールストラテジーは、第1の強度と波長などの光を発する1または2以上の個別の半導体デバイス(例えば、LEDデバイス)の第1のグループを操作することを含んでいる。一方、第2のコントロールストラテジーは、第2の強度と波長などの光を発する1または2以上の個別のLEDデバイスの第2のグループを操作することを含んでいる。LEDデバイスの第1のグループは、第2のグループと同じLEDデバイスのグループであってもよい。また、LEDデバイスの第1のグループは、LEDデバイスの1または2以上のアレイにわたってもよく、または、第2のグループと異なるLEDデバイスのグループであってもよい。しかし、異なるLEDデバイスのグループは、第2のグループからの1または2以上のLEDデバイスのサブセットを含んでいる。
冷却サブシステム18および39は、発光サブシステム12および13の熱の挙動を扱うように実装されている。例えば、冷却サブシステム18および39は、発光サブシステム12および13、より具体的に、半導体デバイス19および27の冷却のために提供される。冷却サブシステム18および39は、ワークピース26、および/または、ワークピース26と光反応性システム10および11(例えば、発光サブシステム12および13)との間のスペースを冷却するために実装される。例えば、冷却サブシステム18および39は、空気冷却システムまたは他の流体(例えば、水)冷却システムである。冷却サブシステムは、半導体デバイス19および27に取り付けられた冷却フィンまたは半導体デバイスのアレイ20および21、カップリング光学系30および31に取り付けられた冷却フィンのような冷却エレメントを含む。例えば、冷却サブシステムは、LED反射体(例えば、カップリング光学系30および31)の全体にわたって、冷却エアーを吹き付けることを含む。反射体は、熱伝達を増大するために外部フィンを備えている。
光反応性システム10および11は、種々のアプリケーションのために使用される。そのようなアプリケーションは、特に限定されないが、例えば、インク印刷からDVDsの製造の硬化アプリケーション、リソグラフィーなどが挙げられる。光反応性システム10および11が使用されるアプリケーションは、関連した操作パラメーターを有する。すなわち、あるアプリケーションは、1または2以上の波長で、1または2以上の期間にわたって付与された1または2以上のレベルの放射強度(radiant power)を提供するように、操作パラメーターを関連づける。アプリケーションと関連づけられた光反応を正しく遂行するために、屈折力(optical power)は、ワークピース26で、またはワークピース26近くで、または、1または複数のこれらのパラメーター(ある時間、複数の時間または時間の範囲)の1または2以上の所定のレベルでまたは所定のレベルを超えて供給される必要がある。
意図したアプリケーションのパラメーターに従うために、放射出力24および25を提供する半導体デバイス19および27は、アプリケーションのパラメーター(例えば、温度、スペクトル分布、放射強度)と関連付けられた種々の特性に従って、操作される。同時に、半導体デバイス19および27は、ある操作仕様書を有する。それは、半導体デバイスの製造と関連づけられている。特に、それは、デバイスの破壊が起きないようにするために、および/または、デバイスの劣化を未然に防ぐために、付随される。光反応性システム10および11の他のコンポーネントは、操作仕様書を関連づける。これらの仕様書は、他のパラメーター仕様書の中で特に、操作温度および付与された電力の範囲(例えば、最大および最小)を含む。
したがって、光反応性システム10および11は、アプリケーションのパラメーターのモニタリングを支援する。加えて、光反応性システム10および11は、特性と仕様書とを含む半導体デバイス19および27のモニタリングを提供する。さらに、光反応性システム10および11は、特性と仕様書とを含むシステム10および11の選択された他のコンポーネントのモニタリングも提供する。
そのようなモニタリングによって、光反応性システム10および11の動作が確実に評価されるように、システムの正しい動作を証明することができる。例えば、光反応性システム10および11は、1または2以上のアプリケーションのパラメーター(例えば、温度、スペクトル分布、放射強度など)、そのようなパラメーターと関連付けられた任意のコンポーネントの特性および/または任意のコンポーネントの操作仕様書とに対して、不適切に動作するかもしれない。モニタリングは、1または2以上のシステムのコンポーネントからコントローラー14および15によって受信されたデータにしたがって、反応よく、実行される。
モニタリングは、システムの動作の制御を支援する。例えば、制御ストラテジーは、コントローラー14および15を介して実行される。コントローラー14および15は、1または2以上のシステムコンポーネントからデータを受信し、反応する。この制御ストラテジーは、上述したように、(例えば、そのコンポーネント動作に関するデータに基づいてコンポーネントに向かう制御信号を介してコンポーネントを制御することによって)直接的に、または、(他のコンポーネントの動作を調節するように向けられた制御信号を介してコンポーネントの動作を制御することによって)間接的に実行される。一例として、半導体デバイスの放射出力は、発光サブシステム12および13に印加される電力を調節する電源16および17に向けられた制御信号を介して、および/または、発光サブシステム12および13に付与される冷却を調節する冷却サブシステム18および39に向けられた制御信号を介して、間接的に調節される。
制御ストラテジーは、システムの適切な操作を可能にし、および/または、アプリケーションの性能を上げるために使用される。より具体的な例において、制御は、プリケーションの光反応を適切に完了するために十分なワークピース26に放射エネルギーを向けながら、例えば、仕様書の範囲を超えて、半導体デバイス19および27または半導体デバイスのアレイ20および21の加熱が起きないように、アレイの放射出力とその動作温度との間のバランスを可能にする、および/または、増大するために使用される。
いくつかのアプリケーションにおいて、高い放射強度がワークピース26に送られる。したがって、発光サブシステム12および13は、発光半導体デバイスのアレイ20および21を使用して実装される。例えば、サブシステム12および13は、高密度発光ダイオード(LED)アレイを使用して実装される。LEDアレイが使用され、ここで詳細に説明するが、半導体デバイス19および27と、そのアレイ20および21とは、発明の本質から離れることなく、他の発光技術を使用して実装されてもよい。そのような他の発光技術は、特に限定されないが、有機LEDs、レーザーダイオード、他の半導体レーザーなどが挙げられる。
図1に続き、複数の半導体デバイス19および27は、アレイ20および21形状、または、(例えば、図1に示されるような)複数のアレイのうちの一つのアレイ形状で提供される。アレイ20および21は、1または2以上、または、多くの半導体デバイス19および27が放射出力を提供するように構成されるように、実装される。しかしながら、同時に、1または2以上のアレイの半導体デバイス19および27は、選択されたアレイの特性のモニタリングを提供するように実装される。モニタリングデバイス36および37は、アレイにおけるデバイスの中から選択され、例えば、他の発光デバイスと同じ構造を有している。例えば、発光とモニタリングとの間の差は、(例えば、LEDアレイは、カップリング電子機器が逆電流を提供するモニタリングLEDデバイスと、カップリング電子機器が順方向電流を提供する発光LEDデバイスとを有するという基本形において、)特定の半導体デバイスと関連付けられたカップリング電子機器22および23によって決定される。
また、カップリング電子機器に基づいて、アレイにおける選択された半導体デバイスは、多機能デバイスおよび/または多重モードデバイスのいずれかまたは両方であってもよい。(a)多機能デバイスは、2以上の特性(例えば、放射強度、温度、磁界、振動、圧力、加速度、および他の機械的力または変形のいずれか)を検出することができ、アプリケーションパラメーターまたは他の決定要因にしたがって、これらの検出機能間でスイッチされる。(b)多重モードデバイスは、発光、検出およびその他のいくつかのモード(例えば、オフ)をとることができ、アプリケーションパラメーターまたは他の決定要因にしたがって、モード間でスイッチされる。
上述したように、光反応性システム10および11は、ワークピース26を受けるように構成されている。一例として、ワークピース26は、UV硬化光ファイバー、リボン、ケーブルなどである。また、ワークピース26は、光反応性システム10および11のカップリング光学系30および31の焦点に、または焦点近くに位置されている。このように、光反応性システム10および11から照射されるUV光は、UV硬化用ワークピースの表面にカップリング光学系を介して向けられ、その場で光反応を実行する。また、光反応性システム10および11のカップリング光学系30および31は、後に詳細に説明されるように、共同設置焦点を有するように構成されている。
図2に戻って、図2は、シングル楕円反射体200の例を示す。シングル楕円カップリング光学系は、光ファイバーワークピースの被膜を硬化するための従来のUV硬化デバイスに使用される。
楕円は、ある面と錐体との交差によって生じる平面曲線である。見方によれば、そのようなある面は閉曲線を作り、その錐体は、平面の全ての点の軌跡として規定される。2つの固定された点(楕円の焦点)に対する距離は、同じ定数を与える。楕円上の正反対の点間の距離は、または、楕円の中心に中間点がある点のペア間の距離は、その主軸または横径に沿って最大であり、その直交する短径または共役直径に沿って最小である。楕円は、その主軸および短軸を基準に対照的である。楕円の焦点は、楕円の主軸上の2つの特別な点であり、楕円の中心点(主軸と短軸の交点)から等距離のところにある。楕円上の任意の点からそれら2つの焦点への距離の合計は、一定であり、主軸と等しい。2つの点のそれぞれは、楕円の焦点と呼ばれる。楕円筒は、楕円の断面を有する円筒である。
楕円反射体200は、楕円の断面を有する楕円筒である。楕円反射体200は2つの焦点を有し、楕円筒の軸長に沿って、1つの焦点から照射される光は、円筒の軸長に沿って第2の焦点に集結される。楕円反射体の表面210は、楕円筒形状と、楕円の断面を有する光制御デバイスの一例である。その結果、楕円反射体の第1の焦点(例えば、楕円筒の軸に沿った焦点)で一つの光源230から発する光線250は、第2の焦点240(例えば、楕円筒の第2の軸に沿った焦点)に向けられる。UV硬化のために、楕円反射体の内表面は、第2の焦点240に位置するワークピースの表面上にUV光を実質的に向けるように、UV反射する。
一つの光源を有するシングル楕円反射体デバイスにおいて、近距離場のワークピース表面(例えば、光源に向かって直面するワークピース表面)は、遠距離場のワークピース(例えば、光源にから遠ざかって直面するワークピース表面)よりも高い強度で光を受ける。シングル楕円反射体は、光源230から発するUV光線264をフォーカスするために、および、ワークピースの遠距離場の表面上に向けるようにするために、円筒状の予備的なバック反射体260を含む。予備的なバック反射体は、ワークピースのより均一な照射を提供するために使用される。
上述したように、従来のシングル楕円反射体200は2つの焦点を有している。第1の焦点で光源230から出る光は、第2の焦点240にほぼ集中される。
図3に戻って、図3は、2つの楕円形表面が部分結合を形成するように重なり、結合した2つの楕円形表面310および320の一例を示す。2つの楕円形表面の一部が結合される端部は、湾曲した他の楕円孤の中間点近くに2つのエッジ314および324を形成する。図3に示されるように、楕円形表面310および320は、それらの主軸350に沿って配置され、それらが共同設置焦点330をほぼ共有するように配置される。楕円形表面310および320は、ほぼ共同設置焦点に、またはその付近に位置されたワークピースに対して互いに反対側に配置される。また、2以上の光源は、ワークピースの反対側の焦点340および346に位置されても、その周辺に位置されてもよく、またはそれらを取り囲んでいてもよい。光源は、例えば、個別のLEDデバイス、LEDデバイスのアレイまたは複数のLEDアレイのうちのアレイであってもよい。この配置において、デュアル楕円形表面は、デュアル楕円反射体の焦点340および346に、またはその付近に位置される光源から照射される光を、ワークピースの表面上に集中させることができる。
少なくとも2つの光源がデュアル楕円反射体に関連して使用されるから、ある光源に対して遠距離場に置かれたワークピースの表面は、別の光源に対して近距離場に置かれる。このように、デュアル楕円反射体のデザインは、バック反射体を使用することを潜在的に避け、システムデザインとコストを単純化している。このように、図3に示された構成は、従来のシングル楕円反射体UV硬化デバイスに対してワークピース表面中に、より高い照射強度と、より均一な照射強度を成し遂げることができる。より高く、均一な照射強度の実現は、生産率を高め、および/または、硬化時間を短くすることができる。それによって、生産物の製造コストを低減させている。
シングル楕円反射体に対するデュアル楕円反射体のさらなる利点は、従来のシングル楕円UV硬化デバイスと比較して、高強度を維持しながら、2つの光源からのUV光がワークピースの全ての表面にわたってより均一に集中するということである。また、複数の光源が使用されるので、共同設置焦点からワークピースのわずかなずれ、または、焦点の一つから1または2以上の光源のわずかなずれがあるとしても、光源から照射される光は、ほぼ、ワークピースの表面に向けられることができる。また、ワークピースの断面が不均一形状または非対称である場合、または、ワークピースの断面が大きい場合、複数の光源がデュアル楕円反射体とともに使用されるとき、光源から照射される光は、ほぼ、ワークピースの表面に向けられる。
少なくとも2つの光源を使用すると、照射された光の強度とスペクトル波長とを制御するために柔軟に対応できる。例えば、2つの光源の強度と電球タイプは、独立に変化し、またはそれらは一致させられる。複数の光源を使用すると、操作中に光源の一方が故障しまたは誤動作した場合において、フェイルセーフ冗長性(fail-safe redundancy)を提供することができる。
楕円形表面310および320は、ほぼ楕円であり、または少なくとも部分的に楕円である。デュアル反射体は、ほぼ楕円筒を形成し、焦点340および346で、またはその付近で照射された光は、共同設置焦点330で表面310および320の内部で実質的に反射される。例えば、表面310および320の形状は、共同設置焦点330で、焦点340および346の近くの光源または焦点340および346での光源によって照射された光の集中に支障を来すことなく、完全な楕円形からわずかにずれてもよい。更なる例として、完全な楕円形からわずかにずれる表面310および320の形状は、ファセットされた楕円形の表面(faceted elliptical surfaces)を含む。反射体の一般的な形状は、楕円形であるが、楕円から若干離れてファセットされた個別断面を有していてもよい。ファセットされた、または、部分的にファセットされた楕円形表面は、与えられた光源のためのワークピース表面での光の均一性または強度を増大させる方法で、反射された光を制御する。ファセット(facets、小平面)のそれぞれは、楕円形表面を形成するために複数のフラットファセットを結合する角を有する平面であってもよい。または、ファセットは、湾曲された表面を有していてもよい。
図4に戻って、図4は、図3の2つの楕円形の表面310および320の配置のように、デュアル楕円反射体480および490の主軸に直線状に並べられ、デュアル楕円反射体480および490が共同設置焦点460を共有するように配置されたデュアル楕円反射体480および490を含むUV硬化デバイス400用のカップリング光学系の一例の断面図を示す。UV硬化デバイス400は、楕円反射体480および490の他の焦点に、またはその近くに位置された2つの光源410および420と、中心軸が共同設置焦点に対してほぼ中心に置かれるように位置されたサンプルチューブ470とを含む。UV硬化デバイス400は、2以上の光源を含んでいる。このように、楕円反射体480および490は、それらが接触するエッジ486および488で結合された2つの部分楕円筒を形成する。UV硬化デバイス400は、ワークピース450を受け取るように構成されている。ワークピース450は、サンプルチューブ470の中を通り、その結果、その軸は、共同設置焦点460の軸に沿って延びている。この構成において、2つの光源と、デュアル楕円反射体は、ワークピースに対して互いに反対側に配置され、デュアル楕円反射体は、ほぼ均一な状態で、かつ高強度で、2つの光源410および420から照射される光線414および424をワークピース表面上にフォーカスし、向ける。ここで、略均一な状態でワークピースを照射することは、本質的に同じ放射照度(例えば、単位面積当たりの電力)を有するUV硬化デバイス内に含まれる全てのワークピース表面を照射することに言及する。また、2つの光源とデュアル楕円反射体がワークピースの反対側に位置されているので、ワークピースの表面は2つの光源のうちの少なくとも一つに対して、近距離場表面または、中距離場表面を含む。遠距離場表面はなくなり、ワークピース上に光を向けるために、バック反射体またはデュアル楕円反射体の内部表面以外の反射表面を使用することはない。
デュアル楕円反射体480および490は、光源410および420から発する光線414および424を向けるための反射内部表面484および494を含む。反射内部表面484および494は、光の最小吸収または最小屈折を有する可視光線、UV光線および/またはIR光線を反射する。また、反射内部表面484および494は、ある範囲の波長の光が反射するように、2色性であってもよい。ある範囲外の波長の光は、反射内部表面484および494で吸収される。例えば、反射内部表面484および494は、可視光線およびUV光線を反射し、IR光線を吸収するように設計されてもよい。そのような反射内部表面は、敏感な(傷つきやすい)コーティングまたはワークピースを熱するために、または、ワークピース450の表面で硬化反応の反応率と均一性を穏やかにするために有益である。一方、反射内部表面484および494は、UVとIRの両方を優先的に反射する。なぜなら、硬化反応は、高温でより迅速に進むからである。
ワークピース450は、サイズと寸法の範囲を有する、光ファイバー、リボン、またはケーブルを含む。ワークピース450は、表面上にプリントされたUV硬化インクだけでなく、UV硬化クラッディングおよび/またはUV硬化表面コーティングを含む。UV硬化クラッディングは、1または2以上のUV硬化ポリマー系を含み、1または2以上の硬化段階でUV硬化できる2以上のUV硬化層を含む。UV硬化表面コーティングは、薄膜、または、光ファイバーまたは光ファイバークラッディングの表面で硬化できるインクを含む。例えば、ワークピースは、コアと、クラッディング層とを含む光ファイバーを含み、クラッディングは、ポリイミドまたはアクリレートポリマーのようなUV硬化ポリマー、または、1または2以上の別のUV硬化ポリマーを含むコーティングを含む。別の例として、デュアル層コーティングが使用されてもよい。ワークピースは、インナー層と、アウター層で被覆されていてもよい。そのようなインナー層は、マイクロベンドによって減衰を最小にするために硬化されるとき、ソフトで弾性のある品質を有している。また、そのようなアウター層は、堅く、摩耗や環境への露出(例えば、湿気やUV)からワークピース(例えば、光ファイバー)を保護するために適合される。インナー層と、アウター層とは、開始剤、モノマー、オリゴマーおよび他の添加剤を含むポリマー系(例えば、エポキシ系)を含む。
硬化中、ワークピース450は、サンプルチューブ470内で、軸方向にUV硬化デバイスを通って引かれるか引き出される。ワークピース450は、共同設置焦点460で軸方向に沿って中心に置かれる。また、サンプルチューブ470は、共同設置焦点460で軸方向に沿って中心に置かれ、ワークピース450を同心円状に取り囲む。サンプルチューブ470は、ガラス、石英または別の光学透明材料、UV透明材料および/またはIR透明材料で構成されており、とても厚い寸法でない。その結果、サンプルチューブ470は、光源410および420から照射され、ワークピース450の表面上のサンプルチューブを介してデュアル楕円反射体480および490の内部表面から向けられた光線をブロックしない、または、光線とほぼ相互作用しない。サンプルチューブ470は、図4に示されるように、円形の断面を有しているが、適切な形状の別の断面を有していてもよい。サンプルチューブ470は、ワークピースの周りの内部雰囲気を維持するため、および、UV硬化反応を遅くする酸素阻害を低減するために、窒素、炭酸ガス、ヘリウムなどのような不活性ガスを含む。
光源410および420は、LED光源、LEDアレイ光源、マイクロ波動力(microwave-powered)光源、ハロゲンアーク光源またはそのアレイのような1または2以上の半導体デバイスまたは半導体デバイスアレイを含む。また、ほぼ焦点482および492に位置された光源410および420は、UV硬化デバイス400の部分楕円筒反射体部の長さに沿って延びるように、焦点482および492の軸長に沿って延びている。光源410および420、光源の特定のアレイ、または光源の複数のアレイのうちのアレイは、UV硬化デバイス400の部分楕円筒反射体部の長さに沿って、またはその長さに沿った位置で焦点482および492以上に延在しているか、それらを含んでいる。このように、デュアル楕円反射体の軸長に沿った光源410および420から照射された光は、その全体の長さに沿ってワークピース50の表面に実質的に向け直される。
また、光源410および420は、1または2以上の可視光、UV光またはIR光を発する。またさらに、光源410および420は、同一のタイプの光源または異なるタイプの光源であてもよい。例えば、光源410はUV光を照射し、光源420はIR光を照射してもよい。別の例として、光源410が第1のスペクトルのUV光を照射する一方、光源420が第2のスペクトルのUV光を照射してもよい。光源410および420によって発せられた光の第1と第2のスペクトルは、重複していても重複していなくてもよい。例えば、第1の光源420が第1のタイプのLED光源であり、第2の光源が第2のタイプのLED光源である場合、これらの発光スペクトルは、重複していても重複していなくてもよい。また、光源410と光源420によって照射された光の強度は、同一であっても異なっていてもよい。それらの強度は、コントローラー(例えば、14、15)やカップリング(例えば、22、23)電子機器を介してオペレーターによって独立に制御されることができる。このように、光源410および420の光の強度と波長の両方は、ワークピースの均一なUV照射と均一なUV硬化を成し遂げるために、柔軟にかつ独立に制御されることができる。例えば、ワークピースが、凸凹形状である場合、および/または、デュアル楕円反射体の共同設置焦点に対して対照的でない場合、UV硬化デバイスは、均一な硬化を成し遂げるために、ワークピースのある部分から別の部分を特異的に照射してもよい。別な例として、異なるコーティングやインクがワークピースの表面に付与されると、UV硬化デバイスは、ワークピースのある部分から別の部分を特異的に照射してもよい。
デュアル楕円反射体480と、その楕円反射体の焦点に位置された少なくとも2つの光源410および420とを有するUV硬化デバイスにおいて、図2に示されるような1つだけの楕円反射体と1つの光源とを使用する従来のUV硬化デバイスと比較して、共同設置焦点460に位置されたワークピースは、より均一にかつ高い強度でUV光を照射される。このように、デュアル楕円反射体480および490と、その楕円反射体の焦点に位置された2つの光源410および420とを使用してワークピースをUV硬化することは、ワークピースのより高い硬化率とより均一な硬化とを成し遂げる。すなわち、より高い硬化率は、より均一な硬化を成し遂げつつ、成し遂げられる。不均一または不規則に被覆されたワークピースは、コーティングが拡張または収縮するとき、不均一な力を受ける場合がある。光ファイバーの場合、不均一に被覆された光ファイバーは、より大きいシグナル減衰の影響を受けやすい。より均一な硬化を成し遂げるためには、反応性モノマーおよびオリゴマーの高い変換パーセントと、ポリマー系における高い架橋度とを要する。加えて、一定の厚さを有し、ワークピース(例えば、光ファイバー)のアプリケーション長さにわたって続く、ワークピース(例えば、光ファイバー)のまわりに同心コーティングを成し遂げることを含む。
光ファイバー、ケーブル、リボンなどの連続製造プロセスまたはバッチ製造プロセスにおける高い硬化率を実現することは、製造時間とコストを削減する。また、より均一な硬化の実現は、ワークピースにより高い耐久性と強度とを付与する。光ファイバーコーティングの場合において、高い均一性を有するコーティングは、ファイバー強度を保つ。それによって、光ファイバーにおけるマイクロベンド変形、ストレスによる弱体化、または他の機械的損傷のような現象のために、信号伝送の減衰を防止することに対して、光ファイバーの耐久性を増大させている。高い架橋度は、コーティングの化学的耐性を増大させ、光ファイバーの化学的浸透および化学的腐食や化学的損傷を防止する。光ファイバーは、表面欠陥によって、品質が低下する。従来のUV硬化デバイスにおいて、高い硬化率は、均一性の低い硬化でのみ成し遂げられる。同様に、より均一な硬化は、低い硬化率でのみ成し遂げられる。
UV硬化デバイスは、共同設置焦点と少なくとも2つのUV光源とを有するように配置された少なくとも2つの楕円筒反射体を含む。各光源は、少なくとも2つの楕円反射体のそれぞれの第2の焦点に位置されている。少なくとも2つの楕円反射体は、UV硬化ワークピースを受け取るように構成され、ワークピースに対して互いに反対側に配置されている。少なくとも2つの楕円筒反射体の楕円形表面は、UV硬化デバイスの中間点(midpoint)近くのトップエッジとボトムエッジを形成するために接触し、連結される。また、楕円形表面は、楕円筒反射体の軸長に沿って延びている。楕円筒反射体の楕円形表面は、楕円筒反射体が2以上の光源用のハウジングに取り付けられているUV硬化デバイスのエッジからどちらかの側に外方に向かって延びている。光源は、電源と、コントローラーと、冷却サブシステムと、発光サブシステムとを含む。発光サブシステムは、カップリング電子機器と、カップリング光学系と、複数の半導体デバイスとを含む。ハウジングは、光源を含み、冷却サブシステムの流体用の注入口と排出口とを含む。
冷却サブシステムは、UV硬化デバイスからの熱を消散させるための循環冷却流体を含み、楕円筒反射体の外表面上に搭載された冷却フィンをさらに含む。また、デュアル楕円反射体は、2色性の反射体を含んでいてもよい。少なくとも2つのUV光源の半導体デバイスは、LEDアレイと、マイクロ波動力UVランプとを含み、異なるピークの波長を有するUV光を発する。
図5に戻って、図5は、図3で述べられた特徴を含むUV硬化デバイス500の発光サブシステムの一例を示す。UV硬化デバイス500は、カップリング光学系(例えば、デュアル楕円反射体540および550)と、2つの光源510および520と、カップリング光学系(例えば、デュアル楕円反射体)の共同設置焦点に位置されたワークピース530(例えば、光ファイバー)とを含む。円筒状の同心サンプルチューブ560はワークピースを取り囲む。サンプルチューブ560は、石英サンプルチューブであり、例えば、窒素、炭酸ガス、ヘリウムまたはその他の不活性ガスのような不活性雰囲気でパージされまたは満たされている。サンプルチューブ560は、非円筒形状または非石英材料のサンプルチューブを含む。UV光のほぼすべてがワークピースの表面に向くように、UV光がサンプルチューブからの干渉(例えば、吸収や反射)を受けることなく、サンプルチューブを実質的に通過する。サンプルチューブ560は、ワークピースの周りの不活性雰囲気を維持するために、および、UV硬化反応を遅くする酸素による阻害を低減させるために、窒素、炭酸ガス、ヘリウムなどのような不活性ガスを含んでいる。
デュアル楕円反射体の反射内部表面544および554は、光の最小限の吸収または最小限の屈折を有する可視光線、UV光線および/またはIR光線を反射する。また、反射内部表面544および554は、ある範囲の波長の光が反射されるように、2色性であってもよい。その範囲外の波長の光は、反射内部表面544および554で吸収される。例えば、反射内部表面544および554は、UV光線および可視光線を反射し、IR光線を吸収するように設計される。そのような反射内部表面は、繊細なコーティングまたはワークピースを熱するために、または、ワークピース530の表面で硬化反応の反応率と均一性を緩和するために、有益である。一方、反射内部表面544および554は、UV光とIR光の両方を選択的に反射する。なぜなら、硬化反応は高温で急速に進行することができるからである。
熱負荷、正確さ、コストなどのようなアプリケーションパラメーターによって、種々のプロセスまたは方法がデュアル楕円反射体540および550に使用される。デュアル楕円反射体540および550は、金属から機械加工または成形されてもよい。また、それらは、高反射率を有するコーティングで形成され、そのコーティングと混合された、ガラス、セラミックおよび/またはプラスチックから機械加工または成形されてもよい。また、デュアル楕円反射体540および550は、UV硬化システムの熱伝導冷却のために設計された外部表面を含んでいる。例えば、外部表面は、熱伝導を上げるために棟を付けられ(ridged)ていてもよく、デュアル楕円反射体540および550の外部表面に取り付けられた冷却フィン590を含んでいてもよい。冷却サブシステム18(図5に示されていない)の部品としての追加の冷却エレメントは、デュアル楕円反射体の1または2以上の表面にわたって、冷却空気または他の不活性流体の転換によって提供されてもよい。
光源510および520は、各楕円反射体の第2の焦点からのUV光を発するUV LEDアレイ光源である。その結果、発せられたUV光線570は、楕円反射体によってワークピースの表面上に向けられる。光源510および520は、第2の焦点に、またはその近くに位置されてもよく、第2の焦点を超えて含んでも、延在してもよい。その結果、発せられたUV光線570は、楕円反射体によってワークピースの表面上に実質的に向けられる。図5において、UV LEDアレイ光源510および520は、UV硬化デバイス500とワークピース530の軸方向における各楕円反射体の第2の焦点に沿って延在している。その結果、均一で高強度のUV光は、UV硬化デバイス500の内側に含まれるワークピースの全長に沿ってワークピースの表面上に向けられる。UV硬化プロセスは、連続製造プロセスであり、ワークピース530(例えば、光ファイバー)の全長は、UV硬化デバイス500内に含まれていなくてもよい。例えば、UV硬化デバイス500の光ファイバーの下流(downstream)の部分は、ゲーブルまたは被覆材料の共押し出しのような下流処理工程または他の処理工程を伴う。また、UV硬化デバイス500の光ファイバーの上流(upstream)の部分は、引き出し(drawing)やコーティングのような上流処理工程を伴う。また、光ファイバー製造プロセスは、UV硬化のいくつかの段階を含む。直線状に配置されたUV硬化デバイス500のグループは、各硬化段階を規定するように使用される。例えば、各硬化段階間で、追加的なコーティング工程や他の処理工程があってもよい。
光源510および520は、1または2以上のLED光源と、LEDアレイ光源と、マイクロ波動力光源またはハロゲンアーク光源とを含む。また、光源510および520は、1または2以上の可視光、UV光またはIR光を発する。また、光源510および520は、同一のタイプの光源であってもよく、異なるタイプの光源であってもよい。例えば、光源510はUV光を照射し、光源520はIR光を照射してもよい。別の例として、光源510が第1のスペクトルのUV光を照射する一方、光源520が第2のスペクトルのUV光を照射してもよい。光源510および520によって発せられた光の第1と第2のスペクトルは、重複していても重複していなくてもよい。例えば、第1の光源520が第1のタイプのLED光源であり、第2の光源が第2のタイプのLED光源である場合、これらの発光スペクトルは、重複していても重複していなくてもよい。また、光源510と光源520によって照射された光の強度は、同一であっても異なっていてもよい。それらの強度は、オペレーターによって独立に制御されることができる。このように、光源510および520の光の強度と波長の両方は、ワークピースの均一なUV照射と均一なUV硬化を成し遂げるために、柔軟にかつ独立に制御されることができる。例えば、ワークピースが、凸凹形状である場合、および/または、デュアル楕円反射体の共同設置焦点に対して対照的でない場合、UV硬化デバイスは、均一な硬化を成し遂げるために、ワークピースのある部分から別の部分を特異的に照射してもよい。別な例として、異なるコーティングやインクがワークピースの表面に付与されると、UV硬化デバイスは、均一な硬化を成し遂げるために、ワークピースのある部分から別の部分を特異的に照射してもよい。
このように、2つの光源とデュアル楕円反射体とがワークピースに対して反対側に配置され、デュアル楕円反射体は、ほぼ均一な状態で、かつ高強度で、2つの光源から照射される光をワークピースの表面上に向けることができる。ほぼ均一な状態でワークピースへ照射することは、同じ放射照度(例えば、単位面積あたりの電力)を有するUV硬化デバイス内に含まれるワークピースの表面の全てを照射することを含んでいる。また、2つの光源とデュアル楕円反射体とは、ワークピースに対して反対側に位置され、ワークピースの表面は、2つの光源の少なくとも一つに対して近距離場、または中間距離場に位置されている。遠距離場表面は、実質的になくなっている。ワークピースの遠距離場表面上に光をフォーカスするための、デュアル楕円反射体の内部表面以外の反射表面またはバック反射体を使用することは、避けられる。それによって、UV硬化システムのコストを低下させ、UV硬化システムのデザインを単純化している。UV硬化デバイス500は、電力供給装置のような、図5に示されない他のコンポーネントを含んでいてもよい。また、光源510および520は、光源用のハウジング512および522を介して楕円反射体540および550に取り付けられていてもよい。例えば、光源510および520用のハウジング512および522は、図7に示される例のように、フェイスプレート(面板)を介して楕円反射体540および550に機械的に留められていてもよい。
したがって、UV硬化のための光反応性システムは、電源供給装置と、冷却サブシステムと、カップリング光学系を含む発光サブシステムと、2つのUV LEDアレイ光源と、コントローラーとを含んでいる。カップリング光学系は、共同設置焦点を有する少なくとも2つの楕円筒反射体を含み、ワークピースに対して互いに反対側に配置されている。各UV LEDアレイ光源は、デュアル楕円反射体のそれぞれの第2の焦点に位置されている。コントローラーは、2つのUV光源からUV光を照射するための実行可能命令を含んでいる。各UV光源は、楕円筒反射体の焦点に位置される。照射されたUV光は、楕円筒反射体によって反射され、光ファイバーの表面にフォーカスされる。
カップリング光学系は、共同設置焦点で軸方向に中心に置かれた、ワークピースを取り囲む石英チューブをさらに含んでいる。石英チューブは、UV硬化反応の酸化阻害を軽減するために、不活性ガスでパージされる。また、冷却サブシステムは、楕円筒反射体の外部表面に取り付けられる冷却フィンを含んでいてもよい。
図6に戻って、図6は、ワークピース(例えば、光ファイバー、光ファイバーコーティングまたは別のタイプのワークピース)を硬化する方法600を示す。方法600は、工程610で始まる。工程610は、ファイバー取り出し工程において、母材から光ファイバーの第1の取り出し工程を含んでいる。方法600は、工程620に進み、ファイバーは、所定のコーティング処理を使用するUV硬化コーティングまたはポリマー系で被覆される。
次に、方法600は、工程630に進む。被覆された光ファイバーは、UV硬化される。UV硬化工程630中、光ファイバーは、直線的に順次に配列された1または複数のUV硬化デバイス500のサンプルチューブを通して引かれる。その間中、UV光は、UV硬化デバイスのLEDアレイ光源510および520から照射され、デュアル楕円反射体540および550によって、共同設置焦点で光ファイバーの表面上に向けられる。光ファイバーが引かれる線速度は、とても速く、例えば、20m/sを超える。複数のUV硬化デバイスを直列(順次)に配列することによって、光ファイバーコーティングの硬化を略完全にするために、光ファイバーの被覆された長さ部分が、十分に長い滞留時間、UVにさらされる。光ファイバーコーティングの完全なUV硬化は、強度、耐久性、化学的耐性、疲労強度などのような物理的、化学的性質を付与する。不完全な硬化または不適切な硬化は、生産物の性能品質を低下させ、光ファイバイーの早期故障や性能の損失を引き起こすような他の性質を低下させる。いくつかの例において、UV硬化段階(例えば、直列に配列されたUV硬化デバイス500の数)の効果的な程度(length)は、生産率、光ファイバーまたはワークピースの引き出しまたは線速度などを考慮して決定される。こうして、光ファイバーの線速度が遅ければ、UV硬化システム段階の程度や数は、光ファイバーの線速度が速いケースよりも小さい。
次に、方法600は、工程640に進み、追加的なコーティング段階が要求されるかどうか決定される。いくつかの例において、デュアルレイヤーコーティングまたはマルチレイヤーコーティングが、ワークピース(例えば、光ファイバー)の表面に付与される。上述したように、光ファイバーは、2つの保護同心コーティング層を含むように製造される。例えば、デュアルレイヤーコーティングは、使用されてもよい。ワークピースは、インナー層と、アウター層で被覆されていてもよい。そのようなインナー層は、マイクロベンドによって減衰を最小にするために硬化されるとき、ソフトで弾性のある品質を有している。また、そのようなアウター層は、堅く、摩耗や環境への露出(例えば、湿気やUV)からワークピース(例えば、光ファイバー)を保護するために適合される。インナー層と、アウター層とは、開始剤、モノマー、オリゴマーおよび他の添加剤を含むポリマー系を含む。追加的なコーティング工程が実行されると、方法600は、工程620に戻り、光ファイバーまたは他のワークピース(UV硬化された第1の層で被覆されている)は、追加的なコーティング工程620と、それに続く追加的なUV硬化工程630とを経由して被覆される。図6において、各コーティング工程は、簡単に説明するために、光ファイバーコーティング工程620として示されている。しかしながら、各コーティング工程は、同一でなくてもよい。その結果、各コーティング工程は、異なるタイプのコーティング、異なるコーティング組成物、異なるコーティング厚さを付与しても、ワークピースに異なるコーティングの性質を付与してもよい。加えて、コーティング処理工程620は、異なる処理条件(例えば、温度、コーティング粘度、コーティング方法)を使用してもよい。同様に、異なるコーティング層や工程のUV硬化は、変更可能な方法や処理条件を含んでいる。例えば、異なるUV硬化工程において、UV光強度、UV露出時間、UV光の波長スペクトル、UV光源などのような処理条件は、コーティングのタイプおよび/またはコーティング性質に依存して変化されてもよい。
1または2以上のコーティングおよび硬化工程620および630に続いて、方法600は工程650に進む。工程650で、UV硬化インクまたはラッカーが、例えば、彩色目的または識別目的で、被覆された光ファイバー状にプリントされる。プリントは、所定のプリント処理を用いて実行され、1または2以上の多数のプリント段階またはプリント工程を含んでいてもよい。次に、方法600は、工程660に進む。プリントされたインクまたはラッカーは、UV硬化される。1または2以上の光ファイバーコーティングのUV硬化工程と同様に、プリントされたインクまたはラッカーは、直線的に順次に配置された1または複数のUV硬化デバイス500のサンプルチューブを介して光ファイバーを引くことによってUV硬化される。その間、UV光は、UV硬化デバイス500のLEDアレイ光源510および520から照射され、デュアル楕円反射体540および550によって共同設置焦点で光ファイバーの表面に向けられる。光ファイバーが引かれる線速度は、とても速く、例えば、20m/sを超えていてもよい。順次に複数のUV硬化デバイスを配置することにより、光ファイバーの長さに沿ってプリントされたインクまたはラッカーが、プリントされたインクまたはラッカーの硬化をほぼ完全にするために、十分に長い滞留時間でUVにさらされるようになる。いくつかの例において、UV硬化段階(例えば、直列に配置されたUV硬化デバイス500の数)の効果的な程度は、生産率、光ファイバーやワークピースの引き出しまたは線速度を考慮して決定される。したがって、光ファイバーの線速度が遅いと、UV硬化システムの段階の程度または数は、光ファイバーの線速度が速い場合のものよりも小さい。特に、共同設置焦点を有するデュアル楕円反射体と、デュアル光源510および520とを含むUV硬化デバイス500を使用することは、高い強度を提供し、ワークピースの表面上に向けられ、照射されるより均一なUV光を提供する。それによって、ワークピースのより速い硬化とより均一な硬化の両方を提供する。このように、光ファイバーコーティングおよび/またはインクは、高い生産率でUV硬化され、それによって、製造コストを下げている。
次に、方法600は、工程670に進み、追加的なプリント段階が要求されるかどうか決定される。例えば、識別目的で、インクまたはラッカーの第1の層をプリントし、それから、プリントされた第1の層を保護するために、インクまたはラッカーの第2の層をプリントすることが好ましい。追加的なプリント段階が要求されれば、方法600は、追加的にプリントされたインクおよび/またはラッカーをプリントおよびUV硬化するために、工程640に戻る。
図6において、各プリント工程は、説明を簡単にするために光ファイバープリント工程650として示される。しかしながら、各プリント工程は、インクまたはラッカーの異なるタイプ、インクまたはラッカーの異なる組成、インクまたはラッカーの異なる厚さを提供し、ワークピースに対するインクまたはラッカーの異なる性質を付与するように、同一でなくてもよい。加えて、プリント処理工程620は、異なる処理条件(例えば、温度、コーティング粘度、コーティング方法)を使用してもよい。同様に、プリントされた異なる層または異なる工程のUV硬化は、変更可能な方法または処理条件を含んでいる。例えば、異なるUV硬化工程で、UV光強度、UV露出時間、UV光の波長スペクトル、UV光源などのような処理条件は、コーティングのタイプおよび/またはコーティングの性質に依存して変化される。
追加的なプリント段階がなければ、方法600は、ポストUV硬化処理工程が実行される工程680に進む。例として、ポストUV硬化処理工程は、ケーブルまたはリボン構造を含む。複数の被覆され、およびプリントされたUV硬化光ファイバーは、フラットリボンまたは、多数のファイバーまたはリボンで構成される大口径のケーブルにまとめられる。他のポストUV硬化処理工程は、ケーブルおよびリボンの外部クラッディングまたはシーシングの共押し出しを含んでいる。
このように、ワークピースをUV硬化する方法は、少なくとも2つの楕円筒反射体の共同設置焦点に沿ってワークピースを引き出す工程と、ワークピースに対して互いに反対側に配置された少なくとも2つのUV光源からUV光を照射する工程とを含む。各UV光源は、楕円筒反射体の第2の焦点に位置される。照射されたUV光は、楕円筒反射体によって反射され、ワークピースの表面上にフォーカスされる。共同設置焦点に沿ってワークピースを引き出す工程は、共同設置焦点を通して、UV硬化コーティング、ポリマー、インクのうちの少なくとも一つを有する光ファイバー、リボンまたはケーブルのうちの少なくとも一つを引き出す工程を含んでいる。さらに、照射されたUV光は、LEDアレイまたはマイクロ波動力UVランプから照射され、楕円筒の2色性反射体によって反射される。また、2つのUV光源は、異なるピーク波長を有するUV光を発する。
冷却フィンは、熱を消散するために、少なくとも2つの楕円筒反射体の外部表面上に搭載されている。また、石英チューブは、共同設置焦点のまわりに軸方向に中心に置かれている。それによって、ワークピースを取り囲み、石英チューブは、UV硬化反応の酸化阻止を軽減するために、不活性ガスでパージされる。
図7に戻って、図7は、UV硬化システム700の一例を示す斜視図である。UV硬化システム700は、説明の目的のために、シングル楕円筒反射体760を含むが、図5のUV硬化デバイス500で例示したように、2以上の楕円筒反射体を含んでいてもよい。光源710は、ハウジング716と、冷却流体が循環する注入口および排出口パイプ接続714とを含んでいる。光源710は、楕円筒反射体の第1の焦点に沿って位置されたUV LEDの1または2以上のアレイを含んでいてもよい。UV硬化システム700は、搭載ブラケット718をさらに含み、それによって、ハウジング716は反射体の組立ベースプレート720に取り付けられる。UV硬化システム700は、サンプルチューブ730とワークピース(図示しない)とを含む。例えば、光ファイバーは、サンプルチューブ730内で引かれまたは引き出され、サンプルチューブ730のほぼ中心の長軸に位置されている。サンプルチューブ730の長軸は、楕円筒反射体の第2の焦点に実質的に沿って位置されている。光源710から生じるUV光は、楕円筒反射体760によって、サンプルチューブを介して、ワークピースの表面に実質的に向けられている。サンプルチューブ730は、石英、ガラス、または他の材料で構成されており、円筒形状または他の形状を有している。サンプルチューブ730の外部表面上に向けられたUV光は、実質的な屈折、反射または吸収なく、サンプルチューブ730を通る。
反射体の組立ベースプレート720は、反射体の組立フェイスプレートに接続されている。それは、楕円筒反射体760のいずれかの端部に機械的に留められている。サンプルチューブ730は、反射体の組立フェイスプレート724に機械的に留められている。このように、搭載ブラケット718と、反射体の組立フェイスプレート724と、反射体の組立ベースプレート720とは、光源710と、楕円筒反射体760と、サンプルチューブ730とを一直線に並べるようにしている。光源710から生じる光は、楕円筒反射体760の第1の焦点に実質的に位置されている。サンプルチューブは、楕円筒反射体760の第2の焦点に実質的に位置されている。光源710から生じるUV光は、楕円筒反射体760によって、サンプルチューブ730を通って、ワークピースの表面に実質的に向けられている。反射体の組立フェイスプレート724は、調節機構728を含んでいる。サンプルチューブ730の配列および/または位置は、反射体の組立フェイスプレート724と、反射体の組立ベースプレート720と、楕円筒反射体760と、サンプルチューブ730とがともに組み立てられた後、調整される。反射体の組立ベースプレート720は、反射体の組立搭載プレート740に対して一方の側に沿って接続されている。反射体の組立搭載プレート740は、1または2以上の搭載スロット744と、UV硬化システム700が搭載されることができる1または2以上の搭載孔748とを提供する。
UV硬化システム700は、電気ワイヤー管を接続する目的やセンサーを搭載する目的などのような他の目的のために、接続ポート722および750をさらに含んでいる。
ここに記載された構成は、実際、一例に過ぎず、これらの特定の実施形態は、限定解釈されるべきではない。なぜなら、種々の変形が可能であるからである。例えば、上記実施形態は、光ファイバー、ケーブルおよびリボン以外のワークピースに適用できる。また、上述されたUV硬化デバイスとシステムは、従来の製造設備と一体化されてもよく、特定の光源のために設計されていなくてもよい。上述したように、適切な光エンジン(light engine)がマイクロ波動力ランプ、LED、LEDアレイおよび水銀アークランプのように使用されてもよい。本明細書の発明は、ここに開示された、種々の構成と、他の特徴、機能、および/または性質との新規かつ非自明なコンビネーションおよびサブコンビネーションの全てを含む。
ここに記載された処理フローの例は、種々のUV硬化デバイスおよびUV硬化システム構成で使用されることができる。ここに記載された処理フローは、連続処理、バッチ処理、セミバッチ処理、セミ連続処理などのような1または2以上の任意の数の処理ストラテジーを表していてもよい。また、図示された、種々の行為、操作または機能は、同時に、図示された順で実行されてもよく、いくつかの場合においては省略されてもよい。同様に、処理の順番は、ここに記載された実施形態の例の特徴や利点を成し遂げるために必ずしも必要とされるわけではないが、図と説明を簡単にするために提供されている。1または2以上の図示された行為または機能は、使用される特別なストラテジーに依存して繰り返し実行されてもよい。ここに記載された構成および一連の決められた方法は、実際、典型例に過ぎず、これらの特定の実施形態は、限定解釈されるべきではない。なぜなら、多数の変形が可能であるからである。本明細書の発明は、ここに開示された、種々のシステムおよび構成と、他の特徴、機能、および/または性質との新規かつ非自明なコンビネーションおよびサブコンビネーションの全てを含む。
以下のクレームは、特に、新規かつ非自明とみなされるコンビネーションおよびサブコンビネーションを指摘する。これらのクレームは、「1つ」のエレメント、「第1の」エレメントまたはその等価物に言及する。そのようなクレームは、1または2以上のエレメントを含むように理解すべきであり、2以上のエレメントを要求し、除外するように理解すべきではない。記載された、特徴、機能、エレメントおよび/または性質の他のコンビネーションおよびサブコンビネーションは、本クレームの補正によりクレームされるかもしれないし、関連出願またはこの出願における新しいクレームの存在によってクレームされるかもしれない。当初クレームの範囲に対して、より広いクレーム、より狭いクレーム、等価のクレームまたは異なるクレームは、本明細書の発明の範囲内に含まれるとみなされる。

Claims (20)

  1. 共同設置焦点である第1の焦点と、第2の焦点とをそれぞれ有する少なくとも2つの楕円筒反射体と、
    少なくとも2つのカップリング電子機器にそれぞれ結合され、前記少なくとも2つの楕円筒反射体のそれぞれの前記第2の焦点に位置された少なくとも2つのUV光源と、を含み、
    前記少なくとも2つの楕円筒反射体の前記第1の焦点は、前記共同設置焦点として同一場所に配置され、
    前記2つの楕円筒反射体は、重なって結合されて2つの部分楕円筒を形成し、
    前記少なくとも2つのUV光源は、複数の半導体デバイスと、複数のモニタリングデバイスとを含み、
    前記複数のモニタリングデバイスは、前記複数の半導体デバイスの温度をモニターし、
    前記少なくとも2つの楕円筒反射体は、その内部表面で光を反射し、前記反射された光は、前記共同設置点にフォーカスされることを特徴とするUV硬化デバイス。
  2. 前記少なくとも2つの楕円筒反射体は、ワークピースを受け取るように構成され、前記ワークピースに対して互いに反対側に配置されている請求項1に記載のUV硬化デバイス。
  3. 前記少なくとも2つの楕円筒反射体の楕円表面は、接触し、前記UV硬化デバイスの中間点近くでトップおよびボトムエッジを形成するように結合され、前記楕円筒反射体の軸長に沿って延在しており、
    前記少なくとも2つの楕円筒反射体の前記楕円表面は、前記UV硬化デバイスの前記トップおよびボトムエッジからいずれの側に外方に向かって延在し、
    前記楕円筒反射体は、前記少なくとも2つのUV光源のためのハウジングに取り付けられ、
    前記ハウジングは、前記光源と、冷却サブシステムの流体用の注入口および排出口と、を含む請求項1に記載のUV硬化デバイス。
  4. 前記冷却サブシステムは、前記UV硬化デバイスからの熱を消散するための循環冷却流体を含む請求項3に記載のUV硬化デバイス。
  5. 前記少なくとも2つの楕円筒反射体は、2色性反射体である請求項3に記載のUV硬化デバイス。
  6. 前記少なくとも2つのUV光源の前記複数の半導体デバイスは、LEDアレイを含む請求項3に記載のUV硬化デバイス。
  7. 前記少なくとも2つのUV光源は、マイクロ波動力UVランプを含む請求項3に記載のUV硬化デバイス。
  8. 前記少なくとも2つのUV光源は、異なるピークの波長を有するUV光を発する請求項3に記載のUV硬化デバイス。
  9. 前記冷却サブシステムは、前記楕円筒反射体の外部表面上に搭載された冷却フィンをさらに含む請求項4に記載のUV硬化デバイス。
  10. ワークピースをUV硬化する方法であって、
    少なくとも2つの楕円筒反射体の共同設置焦点に沿って前記ワークピースを引き出す工程と、
    前記ワークピースに対して互いに反対側に配置された少なくとも2つのUV光源からUV光を照射する工程と、
    前記少なくとも2つのUV光源の複数の半導体デバイスの特性をモニタリングする工程と、を含み、
    前記特性は、前記複数の半導体デバイスの温度であり、
    前記少なくとも2つの楕円筒反射体は、重なって結合されて2つの部分楕円筒を形成し、
    前記少なくとも2つの楕円筒反射体のそれぞれは、第1の焦点と、第2の焦点とを有し、
    前記少なくとも2つの楕円筒反射体の前記第1の焦点は、前記共同設置焦点として同一場所に配置され、
    前記少なくとも2つのUV光源のそれぞれは、前記少なくとも2つの楕円筒反射体の前記第2の焦点に位置され、前記照射されたUV光は、前記少なくとも2つの楕円筒反射体によって反射され、前記共同設置点に沿って、前記ワークピースの表面上にフォーカスされることを含むことを特徴とするUV硬化する方法。
  11. 前記共同設置焦点に沿って前記ワークピースを引き出す工程は、前記共同設置焦点を通して、UV硬化コーティング、UV硬化ポリマーまたはUV硬化インクのうちの少なくとも一つを有する、光ファイバー、リボンまたはケーブルの少なくとも一つを引き出す工程を含む請求項10に記載のUV硬化する方法。
  12. 前記照射されたUV光は、楕円筒2色性反射体によって反射される請求項10に記載のUV硬化する方法。
  13. 前記UV光は、LEDアレイから照射される請求項10に記載のUV硬化する方法。
  14. 前記UV光は、マイクロ波動力UVランプから照射される請求項10に記載のUV硬化する方法。
  15. 前記UV光源は、異なるピークの波長を有するUV光を発する請求項10に記載のUV硬化する方法。
  16. 外部フィンを介して前記楕円筒反射体の外部表面から熱が消散される請求項10に記載のUV硬化する方法。
  17. 前記少なくとも2つの楕円筒反射体は、前記共同設置焦点のまわりに軸方向に中心に置かれる石英チューブを有し、
    前記石英チューブは、前記ワークピースを取り囲み、不活性ガスでパージされる請求項10に記載のUV硬化する方法。
  18. 電源と、
    冷却サブシステムと、
    コントローラーと、
    発光サブシステムと、を含むUV硬化用光反応性システムであって、
    前記発光サブシステムは、
    共同設置焦点である第1の焦点と、第2の焦点とをそれぞれ有する少なくとも2つの楕円筒反射体を含み、ワークピースに対して互いに反対側に配置されたカップリング光学系と、
    前記少なくとも2つの楕円筒反射体のそれぞれの前記第2の焦点に位置された2つのUV LEDアレイ光源と、
    少なくとも2つのカップリング電子機器と、を含み、
    前記コントローラーは、前記2つのUV LEDアレイ光源からUV光を照射するための実行可能命令を含み、前記少なくとも2つのカップリング電子機器を介して前記2つのUV LEDアレイ光源と結合され、
    前記少なくとも2つの楕円筒反射体は、重なって結合されて2つの部分楕円筒を形成し、
    前記少なくとも2つの楕円筒反射体の前記第1の焦点は、前記共同設置焦点として同一場所に配置され、
    前記2つのUV LEDアレイ光源は、複数の半導体デバイスと、複数のモニタリングデバイスとを含み、
    前記照射されたUV光は、前記楕円筒反射体によって反射され、前記共同設置焦点にそって、前記ワークピースの表面にフォーカスされ
    前記コントローラーは、前記複数の半導体デバイスを冷却するための前記冷却サブシステムからのデータを送受信することを特徴とするUV硬化用光反応性システム。
  19. 前記カップリング光学系は、前記ワークピースを囲み、前記共同設置焦点に軸方向に中心に置かれた石英チューブをさらに含み、
    前記石英チューブは、不活性ガスでパージされている請求項18に記載のUV硬化用光反応性システム。
  20. 前記冷却サブシステムは、前記楕円筒反射体の外部表面に取り付けられた冷却フィンを含む請求項19に記載のUV硬化用光反応性システム。
JP2014530932A 2011-09-15 2012-09-17 デュアル楕円反射体 Active JP6309893B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161535318P 2011-09-15 2011-09-15
US61/535,318 2011-09-15
PCT/US2012/055799 WO2013040582A2 (en) 2011-09-15 2012-09-17 Dual elliptical reflector with a co-located foci for curing optical fibers

Publications (2)

Publication Number Publication Date
JP2015501271A JP2015501271A (ja) 2015-01-15
JP6309893B2 true JP6309893B2 (ja) 2018-04-11

Family

ID=47879761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014530932A Active JP6309893B2 (ja) 2011-09-15 2012-09-17 デュアル楕円反射体

Country Status (5)

Country Link
US (2) US8872137B2 (ja)
EP (1) EP2756345B1 (ja)
JP (1) JP6309893B2 (ja)
CN (1) CN103827718B (ja)
WO (1) WO2013040582A2 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314408B2 (en) 2008-12-31 2012-11-20 Draka Comteq, B.V. UVLED apparatus for curing glass-fiber coatings
EP2388239B1 (en) 2010-05-20 2017-02-15 Draka Comteq B.V. Curing apparatus employing angled UV-LEDs
US8871311B2 (en) 2010-06-03 2014-10-28 Draka Comteq, B.V. Curing method employing UV sources that emit differing ranges of UV radiation
EP2418183B1 (en) 2010-08-10 2018-07-25 Draka Comteq B.V. Method for curing coated glass fibres providing increased UVLED intensitiy
US9442007B2 (en) * 2013-05-06 2016-09-13 Phoseon Technology, Inc. Method and system for monitoring ultraviolet light for a fiber cure system
US9442008B2 (en) * 2013-05-06 2016-09-13 Phoseon Technology, Inc. Method and system for determining curing tube clarity
US9370046B2 (en) * 2013-07-23 2016-06-14 Phoseon Technology, Inc. Compound elliptical reflector for curing optical fibers
US10520251B2 (en) * 2015-01-15 2019-12-31 Heraeus Noblelight America Llc UV light curing systems, and methods of designing and operating the same
US9664371B2 (en) 2015-01-15 2017-05-30 Heraeus Noblelight America Llc Lamp head assemblies and methods of assembling the same
US9644831B2 (en) 2015-01-15 2017-05-09 Heraeus Noblelight America Llc Intelligent manifold assemblies for a light source, light sources including intelligent manifold assemblies, and methods of operating the same
US9648705B2 (en) 2015-01-15 2017-05-09 Heraeus Noblelight America Llc Intelligent lamp head assemblies, light sources including intelligent lamp head assemblies, and methods of operating the same
WO2017008042A1 (en) * 2015-07-08 2017-01-12 Air Motion Systems, Inc. Led module
US10180248B2 (en) 2015-09-02 2019-01-15 ProPhotonix Limited LED lamp with sensing capabilities
CN108367976B (zh) 2015-12-18 2021-05-04 优志旺电机株式会社 光照射装置及光照射方法
JP6878762B2 (ja) * 2015-12-18 2021-06-02 ウシオ電機株式会社 光照射装置及び光照射方法
DE102016100144A1 (de) 2016-01-05 2017-07-06 J-Fiber Gmbh Vorrichtung zum Beschichten einer Faser sowie Verfahren zum Beschichten einer Faser und Faser
JP6379118B2 (ja) 2016-01-10 2018-08-22 Hoya Candeo Optronics株式会社 光照射装置
CN105835524B (zh) * 2016-05-03 2018-09-11 东莞市雄骏电控设备有限公司 一种光源滚压投射装置
CN106838827A (zh) * 2017-01-18 2017-06-13 深圳市润沃自动化工程有限公司 一种远距离投射的线光源件固化机
JP6660317B2 (ja) * 2017-01-31 2020-03-11 Hoya Candeo Optronics株式会社 光照射装置
JP6984187B2 (ja) * 2017-06-12 2021-12-17 ウシオ電機株式会社 光照射装置、光照射方法
JP6815942B2 (ja) * 2017-06-16 2021-01-20 ウシオ電機株式会社 光照射装置、光照射方法
CN108040373B (zh) * 2017-12-11 2021-03-09 东莞市庆丰电工机械有限公司 光波辐射加热箱
CN108609868B (zh) * 2018-07-17 2024-04-30 四川乐飞光电科技有限公司 新型光纤着色固化炉
US20200062643A1 (en) * 2018-08-24 2020-02-27 Corning Incorporated Methods and apparatuses for curing optical fiber coatings
US10895649B2 (en) 2018-09-20 2021-01-19 Phoseon Technology, Inc. Methods and system for thermo-optic power monitoring
CN109548222B (zh) * 2019-01-17 2024-04-12 西南石油大学 一种加热装置及用于制备长线材超导体的综合热处理***
US20220404571A1 (en) * 2019-11-05 2022-12-22 Ofs Fitel, Llc Low-attenuation rollable optical fiber ribbon

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984726A (en) * 1975-04-25 1976-10-05 Ppg Industries, Inc. Ultraviolet light system having means for maintaining constant intensity light profile
US4411972A (en) 1981-12-30 1983-10-25 International Business Machines Corporation Integrated circuit photomask
JPH06104217B2 (ja) * 1984-08-31 1994-12-21 住友電気工業株式会社 紫外線照射装置
US4636405A (en) * 1985-12-24 1987-01-13 Corning Glass Works Curing apparatus for coated fiber
JP2571256Y2 (ja) * 1991-12-16 1998-05-18 ウシオ電機株式会社 紫外線発光ランプによる処理装置
US5237917A (en) * 1992-03-31 1993-08-24 At Information Products, Inc. Wire marking system and a method of marking an insulated wire
US5420768A (en) 1993-09-13 1995-05-30 Kennedy; John Portable led photocuring device
JPH07104217A (ja) 1993-10-06 1995-04-21 Sumitomo Electric Ind Ltd 光学装置
CA2129397C (en) 1993-12-21 2005-03-22 Mujibar M. Rahman Process for manufacturing optical fiber ribbons
DE19619155C2 (de) 1995-12-22 1998-11-12 Heraeus Kulzer Gmbh Bestrahlungsgerät zur Aushärtung von Kunststoffen, sowie Verfahren und Verwendungen
US5857767A (en) 1996-09-23 1999-01-12 Relume Corporation Thermal management system for L.E.D. arrays
DE19721311C1 (de) 1997-05-21 1998-12-03 Eka Ges Fuer Medizinisch Tech Bestrahlungsgerät zur Polymerisation von lichthärtenden Kunststoffen
US6200134B1 (en) 1998-01-20 2001-03-13 Kerr Corporation Apparatus and method for curing materials with radiation
BR9906531A (pt) * 1998-06-19 2000-08-15 Sumitomo Electric Industries Método e aparelho para cura de resina curável por ultravioleta
EP1031326A1 (fr) 1999-02-05 2000-08-30 Jean-Michel Decaudin Dispositif permettant la photo-activation de matériaux composites photosensibles utilisés notamment dans le domaine dentaire
JP2000349348A (ja) 1999-03-31 2000-12-15 Toyoda Gosei Co Ltd 短波長ledランプユニット
DE60011764T2 (de) 1999-04-07 2005-07-07 Mv Research Ltd. Werkstoffsprüfung
US6439888B1 (en) 1999-05-03 2002-08-27 Pls Liquidating Llc Optical source and method
KR100334779B1 (ko) * 1999-08-25 2002-05-02 윤종용 광섬유 다중 인출 설비
AU1433801A (en) * 1999-10-27 2001-05-08 Fusion Uv Systems, Inc. Uv oven for curing magnet wire coatings
US6419749B1 (en) * 1999-11-05 2002-07-16 Fusion Uv Systems, Inc. Apparatus for UV curing a coating on a filament or the like and method of manufacturing
US7320593B2 (en) 2000-03-08 2008-01-22 Tir Systems Ltd. Light emitting diode light source for curing dental composites
EP1158761A1 (en) 2000-05-26 2001-11-28 GRETAG IMAGING Trading AG Photographic image acquisition device using led chips
GB2365430B (en) 2000-06-08 2002-08-28 Ciba Sc Holding Ag Acylphosphine photoinitiators and intermediates
US6626561B2 (en) 2000-06-22 2003-09-30 Fusion Uv Systems, Inc. Lamp structure, having elliptical reflectors, for uniformly irradiating surfaces of optical fiber and method of use thereof
EP1891909B1 (en) 2000-08-04 2017-04-19 Kerr Corporation Apparatus for curing materials with light radiation
DE10038213A1 (de) 2000-08-04 2002-03-07 Osram Opto Semiconductors Gmbh Strahlungsquelle und Verfahren zur Herstellung einer Linsensform
US6457823B1 (en) 2001-04-13 2002-10-01 Vutek Inc. Apparatus and method for setting radiation-curable ink
US6755647B2 (en) 2001-04-26 2004-06-29 New Photonics, Llc Photocuring device with axial array of light emitting diodes and method of curing
KR20030013752A (ko) 2001-08-09 2003-02-15 박재모 자외선 수처리기
US20030043582A1 (en) 2001-08-29 2003-03-06 Ball Semiconductor, Inc. Delivery mechanism for a laser diode array
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6707048B2 (en) * 2001-10-11 2004-03-16 Uv Pure Technologies Inc. Method and apparatus for treating aqueous liquids
JP2003131090A (ja) * 2001-10-22 2003-05-08 Hitachi Cable Ltd 光ファイバの被覆方法及び被覆装置
US6561640B1 (en) 2001-10-31 2003-05-13 Xerox Corporation Systems and methods of printing with ultraviolet photosensitive resin-containing materials using light emitting devices
US6614028B1 (en) 2002-07-30 2003-09-02 Fusion Uv Systems, Inc. Apparatus for and method of treating a fluid
US20050115498A1 (en) * 2003-09-23 2005-06-02 Ingram Michael W. Reflector for UV curing systems
US7923706B2 (en) 2008-10-03 2011-04-12 Nordson Corporation Ultraviolet curing apparatus for continuous material
US8869419B2 (en) * 2009-02-13 2014-10-28 Soliduv, Inc. Efficient irradiation system using curved reflective surfaces
US8251526B2 (en) * 2009-07-01 2012-08-28 Fusion Uv Systems, Inc Spread reflector for a lamp structure
KR101819636B1 (ko) 2009-12-23 2018-01-17 헤라우스 노블라이트 아메리카 엘엘씨 컴팩트한 uv 경화 램프 어셈블리들을 위한 uv led 기반 램프
JP5574153B2 (ja) * 2010-01-15 2014-08-20 川崎化成工業株式会社 光カチオン重合性組成物
JP2011147909A (ja) * 2010-01-25 2011-08-04 Harison Toshiba Lighting Corp 紫外線照射装置

Also Published As

Publication number Publication date
EP2756345A2 (en) 2014-07-23
US9105367B2 (en) 2015-08-11
US8872137B2 (en) 2014-10-28
CN103827718A (zh) 2014-05-28
EP2756345B1 (en) 2018-05-16
JP2015501271A (ja) 2015-01-15
US20130068969A1 (en) 2013-03-21
US20150028229A1 (en) 2015-01-29
WO2013040582A3 (en) 2013-05-10
EP2756345A4 (en) 2015-06-17
CN103827718B (zh) 2018-08-31
WO2013040582A2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP6309893B2 (ja) デュアル楕円反射体
US11529646B2 (en) Compound elliptical reflector for curing optical fibers
JP6017573B2 (ja) 光ファイバーを硬化するための共同設置焦点を有する多重光収集とレンズの組合せ
KR101890938B1 (ko) 각이 형성된 uvled를 채용한 경화 장치
US9067241B2 (en) Method for curing glass-fiber coatings
US20130228707A1 (en) System, method & device for uv curing
JP2001316136A (ja) レーザ光硬化システム
US11548190B2 (en) Nested elliptic reflector for curing optical fibers
CN210876120U (zh) 一种紫外固化光源组件

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170228

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170526

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180315

R150 Certificate of patent or registration of utility model

Ref document number: 6309893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250