JP6307005B2 - Evaluation method of joining state in friction stir spot welding, and friction stir spot welding apparatus using this evaluation method - Google Patents

Evaluation method of joining state in friction stir spot welding, and friction stir spot welding apparatus using this evaluation method Download PDF

Info

Publication number
JP6307005B2
JP6307005B2 JP2014216644A JP2014216644A JP6307005B2 JP 6307005 B2 JP6307005 B2 JP 6307005B2 JP 2014216644 A JP2014216644 A JP 2014216644A JP 2014216644 A JP2014216644 A JP 2014216644A JP 6307005 B2 JP6307005 B2 JP 6307005B2
Authority
JP
Japan
Prior art keywords
joining
friction stir
tool
joint
stir spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014216644A
Other languages
Japanese (ja)
Other versions
JP2016083670A (en
Inventor
豪生 岡田
豪生 岡田
賢一 上向
賢一 上向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2014216644A priority Critical patent/JP6307005B2/en
Publication of JP2016083670A publication Critical patent/JP2016083670A/en
Application granted granted Critical
Publication of JP6307005B2 publication Critical patent/JP6307005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、摩擦攪拌点接合における接合状態の評価方法と、この評価方法を用いた摩擦攪拌点接合装置とに関し、特に、複動式の摩擦攪拌点接合において、被接合物の接合状態を良好に評価することが可能な方法と、この方法を用いた摩擦攪拌点接合装置とに関する。   The present invention relates to a method for evaluating a joining state in friction stir spot welding and a friction stir spot joining apparatus using this evaluation method, and particularly, in a double-acting type friction stir spot joining, the joining state of objects to be joined is good. And a friction stir spot welding apparatus using this method.

自動車、鉄道車両、航空機等の輸送機器においては、金属材料を連結するときには、抵抗スポット溶接またはリベット接合が用いられていた。しかしながら、近年では、摩擦攪拌接合が注目されている。この摩擦攪拌接合は、摩擦熱を利用して金属材料を接合する方法であり、先端にピン部材を有する円柱状の回転工具(接合ツール)を用いる。この回転工具は、被接合物に向かって進退移動可能に構成され、高速で回転しながら所定範囲の圧力もしくは速度等で進出移動することで、被接合物(金属材料)中に押し込まれる(圧入される)。回転工具が圧入された部位では、金属材料が軟化するため、この軟化した金属材料を攪拌することで被接合物同士が接合される。   In transportation equipment such as automobiles, railway vehicles, and aircraft, resistance spot welding or rivet joining has been used when connecting metal materials. However, in recent years, friction stir welding has attracted attention. This friction stir welding is a method of joining metal materials using frictional heat, and uses a cylindrical rotary tool (joining tool) having a pin member at the tip. This rotary tool is configured to move forward and backward toward the workpiece, and is pushed into the workpiece (metal material) by advancing and moving at a predetermined range of pressure or speed while rotating at high speed (press-fit) ) Since the metal material softens at the site where the rotary tool is press-fitted, the objects to be joined are joined together by stirring the softened metal material.

摩擦攪拌点接合法においては、回転工具として、円柱状のピン部材のみを用いる単動式と、ピン部材およびショルダ部材を用いる複動式とが知られている。複動式に用いられるショルダ部材は、ピン部材の外側に位置する円筒状であって、ピン部材と同一の軸線周りに回転するとともに当該軸線方向に進退移動可能に構成されている。   In the friction stir spot welding method, a single-acting type using only a cylindrical pin member and a double-acting type using a pin member and a shoulder member are known as rotating tools. The shoulder member used in the double-acting type has a cylindrical shape located outside the pin member, and is configured to rotate around the same axis as the pin member and to move forward and backward in the axial direction.

ところで、単動式の摩擦攪拌点接合法の分野では、被接合物の接合状態(例えば、接合強度、または接合領域等)を評価するための技術が種々提案されている。例えば、特許文献1では、加工時(摩擦攪拌点接合時)に、被接合物となる部材の発熱状態を検出し、この部材に対する回転ツールの押し込み状態を検出し、発熱状態と押し込み状態とから部材の加工状態を検出する加工管理方法が開示されている。   By the way, in the field of the single-acting friction stir spot joining method, various techniques for evaluating the joining state (for example, joining strength or joining region) of the objects to be joined have been proposed. For example, in Patent Document 1, a heat generation state of a member to be bonded is detected at the time of processing (at the time of friction stir spot welding), a pressing state of a rotary tool with respect to the member is detected, and the heat generation state and the pressing state are detected. A processing management method for detecting a processing state of a member is disclosed.

また、特許文献2では、被接合物の接合強度を推定するために、予め定められる接合条件に従って、摩擦攪拌による被接合物の変形状態を数値解析によって算出する形状算出工程と、この工程で算出される変形状態に基づいて、接合物の接合強度を算出する強度算出工程とを含む接合強度推定方法を提案している。   Moreover, in patent document 2, in order to estimate the joining strength of a to-be-joined object, the shape calculation process which calculates the deformation | transformation state of the to-be-joined object by friction stirring by numerical analysis according to predetermined joining conditions, and a calculation in this process And a strength calculation method including a strength calculation step of calculating the joint strength of the joint based on the deformed state.

特開2002−292478号公報JP 2002-292478 A 特開2005−186083号公報JP 2005-186083 A

このように、単動式の摩擦攪拌点接合法の分野では、被接合物の接合状態を評価するための技術が知られている。しかしながら、複動式の摩擦攪拌点接合法の分野では、被接合物の接合状態を評価するための技術は、今のところ、ほとんど提案されていない。   Thus, in the field of the single-acting friction stir spot welding method, a technique for evaluating the joining state of the objects to be joined is known. However, in the field of the double-acting friction stir spot welding method, a technique for evaluating the joining state of the workpieces has hardly been proposed so far.

また、複動式の摩擦攪拌点接合法では、ピン部材およびショルダ部材という2種類の回転工具によって攪拌部を埋め戻すため、外観上において接合強度を判別する方法は少ない。   Further, in the double-acting friction stir spot welding method, the stirrer is backfilled by two types of rotary tools, ie, a pin member and a shoulder member, so that there are few methods for determining the joint strength in appearance.

本発明はこのような課題を解決するためになされたものであって、複動式の摩擦攪拌点接合法において、被接合物の接合状態を良好に評価することが可能な技術を提案することを目的とする。   The present invention has been made to solve such problems, and proposes a technique capable of satisfactorily evaluating the joining state of the objects to be joined in the double-acting friction stir spot joining method. With the goal.

本発明に係る摩擦攪拌点接合における接合状態の評価方法は、前記の課題を解決するために、回転工具として、軸線周りに回転し、かつ、当該軸線方向に進退移動可能に構成されている円柱状のピン部材と、当該ピン部材の外側を囲うように位置し、当該ピン部材と同一の軸線周りに回転するとともに当該軸線方向に進退移動可能に構成されている円筒状のショルダ部材と、をそれぞれ進退移動可能な状態で用い、被接合物の表面を前記回転工具により部分的に攪拌することによって、当該被接合物を接合し、その後に、当該接合部に生じている凹み量を、少なくとも前記接合部の接合強度の指標として用いる構成である。   In the friction stir spot welding method according to the present invention, in order to solve the above-mentioned problem, a rotating tool is a circle that rotates around an axis and is movable back and forth in the axial direction. A columnar pin member, and a cylindrical shoulder member that is positioned so as to surround the outside of the pin member, rotates around the same axis as the pin member, and is movable forward and backward in the axial direction. Each is used in a state where it can be moved forward and backward, and the surface of the object to be bonded is partially agitated by the rotary tool to bond the object to be bonded, and then the amount of dent generated in the bonded part is at least It is the structure used as a parameter | index of the joint strength of the said junction part.

本発明者らの鋭意検討の結果、接合部およびその周辺に凹みが生じていると、接合部の接合強度が低下すること、並びに、特に接合部がプラグ破断する場合、凹み量と接合強度との間にリニアな関係が生じることが明らかとなった。それゆえ、前記構成によれば、凹み量を接合強度の指標として用いることで、複動式の摩擦攪拌点接合において被接合物の接合強度を評価することが可能となる。   As a result of intensive studies by the present inventors, when a dent is formed in the joint portion and its periphery, the joint strength of the joint portion is reduced, and particularly when the joint portion is plug-ruptured, the dent amount and the joint strength It became clear that there was a linear relationship between the two. Therefore, according to the said structure, it becomes possible to evaluate the joint strength of a to-be-joined object in double-acting friction stir spot joining by using a dent amount as a parameter | index of joining strength.

また、接合部およびその周辺に凹みが生じている理由は、ピン部材とショルダ部材との間に材料が入り込み接合部の材料が減少していたり、接合部の周囲に変形部が生じたり、接合部に近接する被接合物のエッジ部がある場合には、エッジ部に変形部が生じているためであることも明らかとなった。それゆえ、前記構成によれば、凹み量は、接合強度の指標だけでなく、エッジ部の変形の指標とすることもできるため、部品の変形等の品質(部品品質)も評価することが可能となる。   In addition, the reason why the joint and its periphery are indented is that the material enters between the pin member and the shoulder member, the material of the joint is reduced, the deformed part is generated around the joint, It is also clear that when there is an edge part of the object to be joined close to the part, a deformed part is generated in the edge part. Therefore, according to the above configuration, since the amount of dents can be used not only as an index of bonding strength but also as an index of deformation of the edge portion, it is possible to evaluate the quality (component quality) of component deformation and the like. It becomes.

前記構成の接合状態の評価方法においては、前記被接合物の接合後に、当該接合部の凹み量を測定し、測定した前記凹み量が予め設定される閾値未満であるときには、前記接合部の接合状態が良好であると判定し、測定した前記凹み量が前記閾値以上であるときには、前記接合部の接合状態が不良であると判定する構成であってもよい。   In the bonding state evaluation method having the above-described configuration, after bonding the objects to be bonded, the dent amount of the bonding portion is measured, and when the measured dent amount is less than a preset threshold value, the bonding portion is bonded. When the state is determined to be good and the measured dent amount is equal to or greater than the threshold value, the bonding state of the bonding portion may be determined to be poor.

また、前記構成の接合状態の評価方法においては、前記回転工具の当接面を、接合前後の前記被接合物の前記表面に当接させて、それぞれの位置を検出し、接合前の前記当接面の位置と接合後の前記当接面の位置との差分を、前記凹み量として算出する構成であってもよい。   In the method for evaluating a joining state having the above-described configuration, the contact surface of the rotary tool is brought into contact with the surface of the workpiece before and after joining, the respective positions are detected, and the contact before joining is detected. The structure which calculates the difference of the position of a contact surface and the position of the said contact surface after joining as said dent amount may be sufficient.

また、本発明に係る摩擦攪拌点接合装置は、前記の課題を解決するために、回転工具によって被接合物を部分的に攪拌することにより接合する摩擦攪拌点接合装置であって、前記回転工具として、軸線周りに回転し、かつ、当該軸線方向に進退移動可能に構成されている円柱状のピン部材と、当該ピン部材の外側を囲うように位置し、当該ピン部材と同一の軸線周りに回転するとともに当該軸線方向に進退移動可能に構成されている円筒状のショルダ部材と、を備えているとともに、前記ピン部材および前記ショルダ部材を、それぞれ前記軸線に沿って進退移動するように動作させる工具駆動部と、前記工具駆動部の動作を制御する接合制御部と、を備え、さらに、前記回転工具の当接面が前記被接合物に当接した時点の位置を検出する工具当接位置検出部と、当該工具当接位置検出部により検出された、接合前の前記当接面の位置と接合後の前記当接面の位置との差分を、接合部の凹み量として算出する凹み量算出部と、を備えている構成である。   Moreover, the friction stir spot welding device according to the present invention is a friction stir spot welding device for joining by partially stirring the workpieces with a rotary tool in order to solve the above-mentioned problem, A cylindrical pin member that rotates around the axis and is configured to be movable back and forth in the axial direction, and is positioned so as to surround the outside of the pin member, and around the same axis as the pin member. A cylindrical shoulder member configured to rotate and move forward and backward in the axial direction, and operate the pin member and the shoulder member to advance and retract along the axis, respectively. A tool that includes a tool driving unit and a joining control unit that controls the operation of the tool driving unit, and further detects a position at which the contact surface of the rotary tool contacts the workpiece. The difference between the position of the contact surface before joining and the position of the contact surface after joining, detected by the contact position detecting unit and the tool contact position detecting unit, is calculated as a dent amount of the joined portion. A dent amount calculation unit.

前記構成の摩擦攪拌点接合装置においては、前記ショルダ部材の外側に位置し、前記被接合物を表面から押圧するクランプ部材をさらに備え、前記工具当接位置検出部は、接合前後における前記クランプ部材の当接面の位置を、前記回転工具の当接面の位置と見なして検出し、前記凹み量算出部は、接合前後における前記クランプ部材の当接面の位置の差分を、前記凹み量として算出する構成であってもよい。   In the friction stir spot welding device having the above-described configuration, the friction stir spot welding device further includes a clamp member that is positioned outside the shoulder member and presses the workpiece to be joined from the surface, and the tool contact position detection unit is the clamp member before and after joining. The position of the contact surface is detected as the position of the contact surface of the rotary tool, and the dent amount calculation unit uses the difference in the position of the contact surface of the clamp member before and after joining as the dent amount. The structure to calculate may be sufficient.

本発明では、以上の構成により、複動式の摩擦攪拌点接合法において、被接合物の接合状態を良好に評価することが可能となる、という効果を奏する。   In this invention, there exists an effect that it becomes possible to evaluate the joining state of a to-be-joined object favorably in the double action type friction stir spot joining method by the above structure.

本発明の実施の形態に係る接合状態の評価方法が適用される、一般的な摩擦攪拌点接合装置の要部構成の一例を示す模式的ブロック図である。It is a typical block diagram which shows an example of the principal part structure of the general friction stir spot welding apparatus with which the evaluation method of the joining state which concerns on embodiment of this invention is applied. 摩擦攪拌点接合により接合された被接合物において、エッジディスタンス(ED)を説明する模式図である。It is a schematic diagram explaining edge distance (ED) in the to-be-joined object joined by friction stir spot joining. 図2に示す被接合物において、接合部の厚みが低下した(凹んだ)状態を説明する模式図である。In the to-be-joined object shown in FIG. 2, it is a schematic diagram explaining the state to which the thickness of the junction part fell (it was dented). 被接合物の凹み量とエッジ部の変形との関係を模式的に示す対比図である。It is a comparison figure which shows typically the relationship between the amount of dents of a to-be-joined object, and a deformation | transformation of an edge part. 本発明の実施の形態1に係る接合状態の評価方法の代表的な一例を示す工程図である。It is process drawing which shows a typical example of the evaluation method of the joining state which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る摩擦攪拌点接合装置の要部構成の一例を示す模式的ブロック図である。It is a typical block diagram which shows an example of the principal part structure of the friction stir spot welding apparatus which concerns on Embodiment 2 of this invention. 図6に示す摩擦攪拌点接合装置による、凹み量の測定の一例を示す模式図である。It is a schematic diagram which shows an example of the measurement of the amount of dents by the friction stir spot welding apparatus shown in FIG. 図6に示す摩擦攪拌点接合装置の代表的な変形例の一例を示す模式的ブロック図である。It is a typical block diagram which shows an example of the typical modification of the friction stir spot welding apparatus shown in FIG. 図6に示す摩擦攪拌点接合装置の代表的な変形例の他の例を示す模式的ブロック図である。It is a typical block diagram which shows the other example of the typical modification of the friction stir spot welding apparatus shown in FIG. 図9に示す摩擦攪拌点接合装置が備える回転工具位置センサの一例を示す模式図である。It is a schematic diagram which shows an example of the rotary tool position sensor with which the friction stir spot welding apparatus shown in FIG. 9 is provided. 本発明の代表的な実施例の結果を示すグラフである。It is a graph which shows the result of the typical Example of this invention.

以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description thereof is omitted.

(実施の形態1)
[代表的な摩擦攪拌点接合装置の構成]
まず、本発明に係る接合状態の評価方法が適用される、複動式の摩擦攪拌点接合装置の基本的な構成について、図1を参照して具体的に説明する。
(Embodiment 1)
[Configuration of typical friction stir spot welding equipment]
First, a basic configuration of a double-acting friction stir spot welding apparatus to which the joining state evaluation method according to the present invention is applied will be specifically described with reference to FIG.

図1に示すように、本実施の形態で例示される摩擦攪拌点接合装置150は、回転工具10、工具駆動部20、クランプ部材30、裏当て部材40、および接合制御部51等を備えている。   As shown in FIG. 1, the friction stir spot welding device 150 exemplified in the present embodiment includes a rotary tool 10, a tool driving unit 20, a clamp member 30, a backing member 40, a welding control unit 51, and the like. Yes.

回転工具10は、図示しない工具固定部により支持され、工具駆動部20によって進退移動および回転するように構成されている。クランプ部材30は、回転工具10の周囲に位置するように設けられ、クランプ押圧駆動部31により被接合物60を押圧するように構成されている。裏当て部材40は、回転工具10(およびクランプ部材30)に対向する位置に設けられており、回転工具10と裏当て部材40との間に被接合物60が配される。工具駆動部20およびクランプ押圧駆動部31は、接合制御部51によって制御される。   The rotary tool 10 is supported by a tool fixing unit (not shown), and is configured to advance and retreat and rotate by a tool driving unit 20. The clamp member 30 is provided so as to be positioned around the rotary tool 10, and is configured to press the workpiece 60 by the clamp pressing drive unit 31. The backing member 40 is provided at a position facing the rotary tool 10 (and the clamp member 30), and the workpiece 60 is disposed between the rotary tool 10 and the backing member 40. The tool driving unit 20 and the clamp pressing driving unit 31 are controlled by the joining control unit 51.

回転工具10は、ピン部材11およびショルダ部材12から構成されている。ピン部材11は、略円筒形または略円柱形であり、図示しない工具固定部により進退移動および回転可能に支持されている。このピン部材11は、工具駆動部20に含まれる回転駆動部23により軸線(回転軸)周りに回転し、工具駆動部20に含まれるピン駆動部21により、軸線方向(図1では上下方向)に沿って進退移動可能となっている。ショルダ部材12は、中空を有する略円筒状であり、中空内にピン部材11が内挿され、ピン部材11の外側において当該ピン部材11を囲むように工具固定部により支持されている。このショルダ部材12は、回転駆動部23によりピン部材11と同一の軸線周りに回転し、工具駆動部20に含まれるショルダ駆動部22により、軸線方向に沿って進退移動可能となっている。   The rotary tool 10 includes a pin member 11 and a shoulder member 12. The pin member 11 has a substantially cylindrical shape or a substantially columnar shape, and is supported by a tool fixing portion (not shown) so as to be able to advance and retreat and rotate. The pin member 11 is rotated about an axis (rotation axis) by a rotation driving unit 23 included in the tool driving unit 20, and is axially moved in the axial direction (vertical direction in FIG. 1) by the pin driving unit 21 included in the tool driving unit 20. It is possible to move forward and backward along. The shoulder member 12 has a substantially cylindrical shape having a hollow, and a pin member 11 is inserted into the hollow, and is supported by a tool fixing portion so as to surround the pin member 11 outside the pin member 11. The shoulder member 12 is rotated around the same axis as the pin member 11 by the rotation driving unit 23, and can be moved forward and backward along the axial direction by the shoulder driving unit 22 included in the tool driving unit 20.

このように、ピン部材11およびショルダ部材12は、いずれも工具固定部によって支持され、いずれも回転駆動部23により軸線周りに一体的に回転する。さらに、ピン部材11およびショルダ部材12は、ピン駆動部21およびショルダ駆動部22により、それぞれ軸線方向に沿って進退移動可能に構成されている。なお、ピン部材11は単独で進退移動可能であるとともに、ショルダ部材12の進退移動に伴っても進退移動可能となっている構成であってもよいし、ピン部材11およびショルダ部材12が互いに独立して進退移動可能な構成であってもよい。   As described above, both the pin member 11 and the shoulder member 12 are supported by the tool fixing portion, and both rotate integrally around the axis by the rotation driving portion 23. Further, the pin member 11 and the shoulder member 12 are configured to be movable forward and backward along the axial direction by the pin driving unit 21 and the shoulder driving unit 22, respectively. The pin member 11 can be moved forward and backward independently, and can be configured to move forward and backward as the shoulder member 12 moves forward and backward. The pin member 11 and the shoulder member 12 can be independent of each other. Thus, it may be configured to move forward and backward.

クランプ部材30は、ショルダ部材12の外側に設けられ、ショルダ部材12と同様に、中空を有する円筒状であって、中空内にショルダ部材12が内挿されている。したがって、ピン部材11の外周に略円筒状のショルダ部材12が位置し、ショルダ部材12の外周に略円筒状のクランプ部材30が位置している。言い換えれば、クランプ部材30、ショルダ部材12およびピン部材11が、それぞれ同軸芯状の入れ子構造となっている。クランプ部材30は、被接合物60を一方の面(表面60c)から押圧するものであり、本実施の形態では、裏当て部材40側に付勢され、クランプ押圧駆動部31によって駆動される。クランプ押圧駆動部31は、本実施の形態では、工具駆動部20に一体的に設けられている。   The clamp member 30 is provided on the outer side of the shoulder member 12 and, like the shoulder member 12, is a cylindrical shape having a hollow, and the shoulder member 12 is inserted into the hollow. Therefore, the substantially cylindrical shoulder member 12 is located on the outer periphery of the pin member 11, and the substantially cylindrical clamp member 30 is located on the outer periphery of the shoulder member 12. In other words, the clamp member 30, the shoulder member 12, and the pin member 11 each have a coaxial core-like nested structure. The clamp member 30 presses the workpiece 60 from one surface (the front surface 60 c). In the present embodiment, the clamp member 30 is biased toward the backing member 40 and driven by the clamp pressing drive unit 31. The clamp pressing drive unit 31 is provided integrally with the tool driving unit 20 in the present embodiment.

裏当て部材40は、前記の通り、ピン部材11およびショルダ部材12の進出方向側に位置し、その上面が被接合物60を支持する支持面となっている。裏当て部材40は、被接合物60の表面60cをピン部材11およびショルダ部材12に向けた状態で、当該被接合物60の裏面60dを支持面により支持する。図1に示す例では、支持面は、平板状の被接合物60の裏面60dに当接するように平坦な面となっている。   As described above, the backing member 40 is positioned on the advancing direction side of the pin member 11 and the shoulder member 12, and the upper surface thereof serves as a support surface that supports the workpiece 60. The backing member 40 supports the back surface 60d of the object to be bonded 60 by the support surface in a state where the surface 60c of the object to be bonded 60 faces the pin member 11 and the shoulder member 12. In the example illustrated in FIG. 1, the support surface is a flat surface so as to come into contact with the back surface 60 d of the flat plate-like object 60.

なお、前述したクランプ部材30および裏当て部材40は、本実施の形態では、被接合物60に当接することにより、接合時における被接合物60の位置を保持する、被接合物保持部材として位置づけられる。   In addition, in this Embodiment, the clamp member 30 and the backing member 40 mentioned above are positioned as to-be-joined object holding members which hold | maintain the position of the to-be-joined object 60 at the time of joining by contact | abutting to the to-be-joined object 60. It is done.

上記構成の回転工具10、工具駆動部20、クランプ押圧駆動部31、クランプ部材30および裏当て部材40の位置関係を整理すると、工具駆動部20およびクランプ押圧駆動部31の下方に回転工具10およびクランプ部材30が位置し、そのさらに下方に裏当て部材40が位置している。また、回転工具10を構成するピン部材11およびショルダ部材12、並びにクランプ部材30は、それぞれ当接面を備えている。回転工具10は工具駆動部20により進退移動し、クランプ部材30は、クランプ押圧駆動部31により押圧動作を行う。前述したとおり、回転工具10およびクランプ部材30は、裏当て部材40に対向しており、これらの間に被接合物60が配されるので、回転工具10およびクランプ部材30のそれぞれの当接面は、工具駆動部20およびクランプ押圧駆動部31により被接合物60の表面60c(第一面、一方の面)に当接可能となっている。   When the positional relationship among the rotary tool 10, the tool driving unit 20, the clamp pressing drive unit 31, the clamp member 30, and the backing member 40 having the above configuration is arranged, the rotary tool 10 and the clamp pressing driving unit 31 are arranged below the tool driving unit 20 and the clamp pressing driving unit 31. The clamp member 30 is located, and the backing member 40 is located further below. Moreover, the pin member 11, the shoulder member 12, and the clamp member 30 which comprise the rotary tool 10 are each provided with the contact surface. The rotary tool 10 moves forward and backward by the tool driving unit 20, and the clamp member 30 performs a pressing operation by the clamp pressing driving unit 31. As described above, the rotary tool 10 and the clamp member 30 face the backing member 40, and the workpiece 60 is disposed between them, so that the respective contact surfaces of the rotary tool 10 and the clamp member 30 are arranged. Can be brought into contact with the surface 60c (first surface, one surface) of the workpiece 60 by the tool driving unit 20 and the clamp pressing driving unit 31.

本実施の形態では、被接合物60は、第一板材61および第二板材62から構成されており、これら板材61,62の一部を重ね合わせた部位(重ね合わせ部)を回転工具10により接合する。第一板材61が上側に位置し、第二板材62が下側に位置するので、第一板材61の上面が被接合物60の表面60cとなり、第二板材62の下面が被接合物60の裏面60dとなる。   In the present embodiment, the workpiece 60 includes a first plate member 61 and a second plate member 62, and a portion (overlapping portion) where a part of these plate members 61, 62 is overlapped by the rotary tool 10. Join. Since the first plate material 61 is located on the upper side and the second plate material 62 is located on the lower side, the upper surface of the first plate material 61 becomes the surface 60c of the workpiece 60, and the lower surface of the second plate material 62 is the surface of the workpiece 60. It becomes the back surface 60d.

本実施の形態における回転工具10、工具固定部、工具駆動部20、クランプ部材30、クランプ押圧駆動部31、裏当て部材40、および接合制御部51の具体的な構成は特に限定されず、広く摩擦攪拌接合の分野で公知の構成を好適に用いることができる。例えば、工具駆動部20を構成するピン駆動部21、ショルダ駆動部22、および回転駆動部23は、本実施の形態では、いずれも摩擦攪拌接合の分野で公知のモータおよびギヤ機構等から構成されている。また、裏当て部材40は、摩擦攪拌点接合を実施できるように被接合物60を適切に支持することができるものであれば、その構成は特に限定されない。   The specific configurations of the rotary tool 10, the tool fixing unit, the tool driving unit 20, the clamp member 30, the clamp pressing driving unit 31, the backing member 40, and the joining control unit 51 in the present embodiment are not particularly limited, and are widely used. A configuration known in the field of friction stir welding can be suitably used. For example, the pin driving unit 21, the shoulder driving unit 22, and the rotation driving unit 23 constituting the tool driving unit 20 are all configured by a motor and a gear mechanism that are well-known in the field of friction stir welding in the present embodiment. ing. Further, the configuration of the backing member 40 is not particularly limited as long as it can appropriately support the workpiece 60 so that the friction stir spot welding can be performed.

また、クランプ押圧駆動部31は、クランプ部材30に付勢を与えたり加圧力を与えたりする構成であればよく、例えば、スプリング、ガス圧、油圧、サーボモータ等を用いた機構を好適に用いることができる。さらに、クランプ押圧駆動部31は、独立した駆動機構ではなく、ショルダ駆動部22に一体化された構成であってもよい。例えば、クランプ部材30がスプリング等を介してショルダ駆動部22に取り付けられる構成であれば、ショルダ駆動部22が、ショルダ部材12とともにクランプ部材30を進退移動させることができる。   Moreover, the clamp press drive part 31 should just be the structure which gives an urging | biasing or pressurizing force to the clamp member 30, for example, uses the mechanism using a spring, gas pressure, hydraulic pressure, a servo motor etc. suitably. be able to. Further, the clamp pressing drive unit 31 may be a configuration integrated with the shoulder drive unit 22 instead of an independent drive mechanism. For example, if the clamp member 30 is configured to be attached to the shoulder drive unit 22 via a spring or the like, the shoulder drive unit 22 can move the clamp member 30 forward and backward together with the shoulder member 12.

なお、本実施の形態に係る摩擦攪拌点接合装置150は、図1には示されない他の機構または部材等を備えてもよいことは言うまでもない。また、本発明は、図1に示す構成の摩擦攪拌点接合装置150のみに限定されず、図1に示される部材または機構の一部が含まれていなくてもよい。例えば、クランプ部材30は、本発明において備えていると好ましい構成の一つであるが、備えていなくてもよい。また、裏当て部材40も、摩擦攪拌点接合装置150の構成として備えている必要はない。この場合、裏当て部材40は、摩擦攪拌点接合装置150とは別体として準備されればよく、回転工具10による接合時に、被接合物60の裏面60dに当接させればよい。   Needless to say, the friction stir spot welding apparatus 150 according to the present embodiment may include other mechanisms or members not shown in FIG. Further, the present invention is not limited to the friction stir spot welding device 150 having the configuration shown in FIG. 1, and a part of the member or mechanism shown in FIG. 1 may not be included. For example, the clamp member 30 is one of the preferred configurations provided in the present invention, but may not be provided. Further, the backing member 40 need not be provided as a configuration of the friction stir spot welding device 150. In this case, the backing member 40 may be prepared as a separate body from the friction stir spot welding device 150, and may be brought into contact with the back surface 60 d of the workpiece 60 during joining by the rotary tool 10.

[摩擦攪拌点接合方法の一例]
次に、摩擦攪拌点接合装置150による被接合物60の接合について簡単に説明する。まず、回転工具10を被接合物60に接近させ、クランプ部材30を上側の第一板材61の表面60cに当接させるとともに、裏当て部材40を下側の第二板材62の裏面60dに当接させる。これにより、クランプ部材30と裏当て部材40とで板材61,62が挟み込まれ、クランプ部材30による押圧でクランプ力が発生する。
[Example of friction stir spot welding method]
Next, the joining of the workpiece 60 by the friction stir spot welding device 150 will be briefly described. First, the rotary tool 10 is brought close to the workpiece 60, the clamp member 30 is brought into contact with the surface 60c of the upper first plate member 61, and the backing member 40 is brought into contact with the rear surface 60d of the lower second plate member 62. Make contact. Thus, the plate members 61 and 62 are sandwiched between the clamp member 30 and the backing member 40, and a clamping force is generated by pressing by the clamp member 30.

次に、接合制御部51の制御によって工具駆動部20が制御され、工具駆動部20(ピン駆動部21およびショルダ駆動部22)により、ピン部材11およびショルダ部材12を被接合物60の表面60cに当接させる。そして、工具駆動部20(回転駆動部23)により、ピン部材11およびショルダ部材12を表面60cに当接させた状態で回転させる。これにより、第一板材61の当接領域における金属材料が摩擦により発熱することで軟化し、塑性流動部が生じる。   Next, the tool driving unit 20 is controlled by the control of the welding control unit 51, and the pin member 11 and the shoulder member 12 are attached to the surface 60 c of the workpiece 60 by the tool driving unit 20 (the pin driving unit 21 and the shoulder driving unit 22). Abut. And the pin member 11 and the shoulder member 12 are rotated by the tool drive part 20 (rotation drive part 23) in contact with the surface 60c. Thereby, the metal material in the contact region of the first plate material 61 is softened by heat generated by friction, and a plastic flow portion is generated.

次に、ピン駆動部21によりピン部材11をショルダ部材12から突き出すか、ショルダ駆動部22によりショルダ部材12をピン部材11から突き出す。これにより、ピン部材11またはショルダ部材12が、表面60cからさらに第一板材61の内部に進入(圧入)する。このとき、金属材料の軟化部位は、上側の第一板材61から下側の第二板材62にまで及び、塑性流動部が増加する。   Next, the pin member 11 protrudes from the shoulder member 12 by the pin driving unit 21, or the shoulder member 12 protrudes from the pin member 11 by the shoulder driving unit 22. Thereby, the pin member 11 or the shoulder member 12 further enters (press-fits) into the first plate member 61 from the surface 60c. At this time, the softened portion of the metal material extends from the upper first plate member 61 to the lower second plate member 62, and the plastic flow portion increases.

さらに、塑性流動部の軟化した金属材料は、一方の回転工具10(ピン部材11またはショルダ部材12)により押し退けられ、他方の回転工具10(ショルダ部材12またはピン部材11)の直下に流動するので、他方の回転工具10が後退して一方の回転工具10から見て浮き上がる。なお、必要に応じて、工具駆動部20、突き出た一方の回転工具10を徐々に後退させる(引き込ませる)とともに、この後退に伴って他方の回転工具10を第一板材61に進入(圧入)させてもよい。   Furthermore, the softened metal material in the plastic flow portion is pushed away by one rotary tool 10 (pin member 11 or shoulder member 12) and flows directly under the other rotary tool 10 (shoulder member 12 or pin member 11). The other rotary tool 10 moves backward and floats when viewed from the one rotary tool 10. If necessary, the tool driving unit 20 and the protruding one rotary tool 10 are gradually retracted (retracted), and the other rotary tool 10 enters the first plate member 61 along with the retreat (press-fit). You may let them.

その後、一方の回転工具10を徐々に引き込ませる。このとき、回転工具10は、引き込み動作中であっても、その先端による加圧力は維持されている。それゆえ、一方の回転工具10が引き込まれる間、他方の回転工具10による回転および押圧が維持されるので、塑性流動部の軟化した材料は、一方の回転工具10の直下から他方の回転工具10の直下に流動し、その結果、一方の回転工具10の圧入により生じた凹部が埋め戻されていく。その後、ピン部材11の当接面およびショルダ部材12の当接面を、互いに段差がほとんど生じない程度に合わせる(面一とする)。これにより、第一板材61の表面60cが整形され、実質的な凹部が生じない程度の略平坦な面が得られる。   Thereafter, one rotary tool 10 is gradually drawn. At this time, even when the rotary tool 10 is being pulled, the pressure applied by the tip is maintained. Therefore, since the rotation and pressing by the other rotary tool 10 are maintained while the one rotary tool 10 is pulled in, the softened material of the plastic fluidized portion is directly below the one rotary tool 10 from the other rotary tool 10. As a result, the concave portion generated by the press-fitting of one rotary tool 10 is backfilled. Thereafter, the contact surface of the pin member 11 and the contact surface of the shoulder member 12 are adjusted to such an extent that there is almost no difference in level between the contact surfaces. Thereby, the surface 60c of the 1st board | plate material 61 is shape | molded, and the substantially flat surface of the grade which does not produce a substantial recessed part is obtained.

最後に、回転工具10および裏当て部材40を板材61,62から離し、一連の摩擦攪拌点接合が終了する。このとき、回転工具10の当接による回転(および押圧)は板材61,62に加えられなくなるので、板材61,62の双方に及ぶ塑性流動部では、塑性流動が停止し、軟化した金属材料が硬化して接合部となる。これにより、2枚の板材61,62は接合部によって連結されることになる。   Finally, the rotary tool 10 and the backing member 40 are separated from the plate materials 61 and 62, and a series of friction stir spot welding is completed. At this time, the rotation (and pressing) due to the contact of the rotary tool 10 is not applied to the plate members 61 and 62. Therefore, the plastic flow is stopped at the plastic flow portion extending over both the plate members 61 and 62, and the softened metal material is removed. Cured to become a joint. Thus, the two plate members 61 and 62 are connected by the joint portion.

ここで、本発明が接合対象とする被接合物60は、代表的には、金属で構成されているものであればよく、その金属の種類は具体的に限定されない。具体的な一例としては、アルミニウム系材料(アルミニウムまたはその合金)が挙げられるが、被接合物60はアルミニウム系材料以外にも、例えば、チタン、鉄等の他の金属またはその合金で構成されているものであってもよい。さらに、本発明は、アルミニウムとチタン、またはアルミニウムと鉄等、異種金属の接合にも有効であるので、被接合物60は、複数種類の金属から構成されてもよい。加えて、被接合物60は金属に限定されず、各種樹脂等のように摩擦攪拌接合が適用可能な材料であってもよい。   Here, the to-be-joined object 60 which this invention makes the joining object should just be typically comprised with the metal, and the kind of the metal is not specifically limited. As a specific example, an aluminum-based material (aluminum or an alloy thereof) can be cited. In addition to the aluminum-based material, the object to be bonded 60 is made of, for example, another metal such as titanium or iron or an alloy thereof. It may be. Furthermore, since the present invention is also effective for joining different metals such as aluminum and titanium or aluminum and iron, the article to be joined 60 may be composed of a plurality of types of metals. In addition, the material to be bonded 60 is not limited to metal, and may be a material to which friction stir welding can be applied, such as various resins.

[接合状態の評価方法]
次に、摩擦攪拌点接合における接合状態の評価方法について、図2〜図4を参照して具体的に説明する。まず、被接合物60のエッジディスタンス(ED)について図2を参照して具体的に説明する。なお、図2は、重ね合わせ部60aの接合部60bにより第一板材61および第二板材62が連結された状態を模式的に示しており、接合部60bを中心とする部分断面図を、接合部60bを中心とする部分平面図に対応させて示している。
[Joint state evaluation method]
Next, a method for evaluating the joining state in the friction stir spot joining will be specifically described with reference to FIGS. First, the edge distance (ED) of the workpiece 60 will be specifically described with reference to FIG. FIG. 2 schematically shows a state in which the first plate member 61 and the second plate member 62 are connected by the joint portion 60b of the overlapping portion 60a, and a partial cross-sectional view around the joint portion 60b is joined. It is shown corresponding to a partial plan view centering on the part 60b.

図2の上図は、EDの標準的な最小値(リベット接合等で採用される値)を模式的に示している。EDは、接合点である接合部60bの中心から第一板材61のエッジ部61a(または第二板材62のエッジ部62a)までの距離であり、標準的なEDの最小値は、接合部60bの直径dの2倍(ED=2d)に設定される。また、接合部60bが重ね合わせ部60aの中央に位置していれば、重ね合わせ部60aの幅は4dとなる。   The upper diagram of FIG. 2 schematically shows a standard minimum value of ED (a value adopted in rivet joining or the like). ED is the distance from the center of the joint 60b, which is the joint point, to the edge 61a of the first plate 61 (or the edge 62a of the second plate 62), and the standard minimum value of ED is the joint 60b. Is set to be twice the diameter d (ED = 2d). Moreover, if the junction part 60b is located in the center of the superimposition part 60a, the width | variety of the superimposition part 60a will be 4d.

ここで、図2の下図に示すように、EDを例えば2dからdに減少させることができれば、重ね合わせ部60aの幅は2dとなるので、第一板材61および第二板材62においては、網掛けの部分が不要となる。それゆえ、ED=dが実現できれば、図2の上図に示す標準的なEDの場合に比べて、被接合物60の継手構造に必要な材料を削減することができるので、継手構造そのものの軽量化を図ることが可能になる。さらに、図2には図示しないが、EDは、例えば2dから0.5dまで減少させることも可能である。   Here, as shown in the lower diagram of FIG. 2, if the ED can be reduced from 2d to d, for example, the width of the overlapping portion 60a becomes 2d. Therefore, in the first plate 61 and the second plate 62, The hanging part becomes unnecessary. Therefore, if ED = d can be realized, the material required for the joint structure of the workpiece 60 can be reduced as compared with the standard ED shown in the upper diagram of FIG. It is possible to reduce the weight. Further, although not shown in FIG. 2, the ED can be reduced from 2d to 0.5d, for example.

後述する実施例からも明らかなように、本発明者らの鋭意検討によれば、回転工具10の直径(すなわち、ショルダ部材12の直径(ショルダ径))Dを接合点の直径dと見なした(d=D)ときに、複動式の摩擦攪拌点接合法では、EDの最小値を約1.5Dまで減少させても継手構造のせん断強度が低下しなかった。しかしながら、EDが1.5Dを下回ると、継手構造のせん断強度が低下することが確認された。ここで、本発明者らがさらに鋭意検討した結果、EDが1.5Dを下回ると、図3に模式的に示すように、特に第一板材61のエッジ部61aに変形部61bが発生し、これに伴い、接合部60bおよびその周囲に凹み61cが生じることが明らかとなった。   As will be apparent from the examples described later, according to the diligent study by the present inventors, the diameter D of the rotary tool 10 (that is, the diameter of the shoulder member 12 (shoulder diameter)) D is regarded as the diameter d of the joint point. (D = D), in the double-acting friction stir spot welding method, the shear strength of the joint structure did not decrease even when the minimum value of ED was reduced to about 1.5D. However, it was confirmed that when the ED is less than 1.5D, the shear strength of the joint structure decreases. Here, as a result of further intensive studies by the present inventors, when the ED is less than 1.5D, as shown schematically in FIG. 3, the deformed portion 61 b occurs particularly in the edge portion 61 a of the first plate member 61, In connection with this, it became clear that the recessed part 61c arises in the junction part 60b and its circumference | surroundings.

前述したように、回転工具10が被接合物60に回転しながら圧入することによって、被接合物60には塑性流動部が発生し、この塑性流動部の流動が停止することで、接合部60bが生じる。塑性流動部は、基本的には、回転工具10の直下となる位置に発生するが、塑性流動部の周囲には、塑性流動まで至らないとしても、通常よりも材料が軟化した領域(軟化領域)が生じる。図3では、重ね合わせ部60aのうち、上側の第一板材61のエッジ部61a側に位置する点線の円で示す領域が、第一板材61における模式的な軟化領域に相当する。   As described above, when the rotary tool 10 is pressed into the workpiece 60 while being rotated, a plastic flow portion is generated in the workpiece 60, and the flow of the plastic flow portion is stopped, so that the joint portion 60b. Occurs. The plastic flow part is basically generated at a position immediately below the rotary tool 10, but the area where the material is softened than usual (softening area) even if the plastic flow part does not reach the plastic flow part. ) Occurs. In FIG. 3, a region indicated by a dotted circle located on the edge portion 61 a side of the upper first plate member 61 in the overlapping portion 60 a corresponds to a schematic softened region in the first plate member 61.

EDが概ね1.5d以上であれば、軟化領域は第一板材61のエッジ部61aにまで至らないため、エッジ部61aには変形部61bが生じないと考えられる。しかしながら、EDが1.5dを下回ると、軟化領域がエッジ部61aにまで至るため、この軟化領域がエッジ部61aから外側に向かって弛緩することになり、結果として変形部61bが生じる。   If ED is approximately 1.5 d or more, the softened region does not reach the edge portion 61a of the first plate member 61, and therefore, it is considered that the deformed portion 61b does not occur in the edge portion 61a. However, when ED is less than 1.5d, the softened region reaches the edge portion 61a, and the softened region relaxes outward from the edge portion 61a, resulting in the deformed portion 61b.

しかも、変形部61bは、単にエッジ部61aの形状を変化させるだけでなく、凹み61cを生じさせる。凹み61cの発生は、第一板材61の板厚(厚み)を減少させることになり、接合部60bによる継手構造のせん断強度の低下にもつながる。図3では、第一板材61の変形部61bの変形量(エッジ部61aからの突出量)をdxとし、凹み61cの凹み量をr0としている。   In addition, the deforming portion 61b not only changes the shape of the edge portion 61a but also generates a recess 61c. Generation | occurrence | production of the dent 61c will reduce the board thickness (thickness) of the 1st board | plate material 61, and will also lead to the fall of the shear strength of the joint structure by the junction part 60b. In FIG. 3, the amount of deformation of the deformed portion 61b of the first plate member 61 (the amount of protrusion from the edge portion 61a) is dx, and the amount of recess of the recess 61c is r0.

なお、塑性流動部は、図3(あるいは図2)に示すように、第一板材61を貫通して生じ、回転工具10と被接合物60の表面60c(被接合箇所)との摩擦熱は、下側の第二板材62においても伝わるので、第二板材62にも軟化領域が生じる。それゆえ、図2および図3には図示しないが、第二板材62のエッジ部62aにおいても、同様に変形部が生じる。ただし、第二板材62では、第一板材61に比べて入熱量が少なくなる。そのため、材料の軟化領域も小さくなるので、第二板材62の変形部については、その変形の程度は変形部61bに比べて小さくなる場合が多い。そのため、図2および図3では、第二板材62の軟化領域、並びに第二板材62の変形部については図示していない。   As shown in FIG. 3 (or FIG. 2), the plastic flow portion is generated through the first plate member 61, and the frictional heat between the rotary tool 10 and the surface 60c of the workpiece 60 (joined location) is Since it is transmitted also in the lower second plate material 62, a softened region is also generated in the second plate material 62. Therefore, although not shown in FIGS. 2 and 3, a deformed portion is similarly generated in the edge portion 62 a of the second plate member 62. However, the second plate 62 has a smaller amount of heat input than the first plate 61. For this reason, since the softened region of the material is also reduced, the degree of deformation of the deformed portion of the second plate member 62 is often smaller than that of the deformed portion 61b. Therefore, in FIGS. 2 and 3, the softened region of the second plate member 62 and the deformed portion of the second plate member 62 are not shown.

さらに、後述する実施例に示すように、特に接合部60bがプラグ破断する場合には、凹み量とせん断強度との間には、実質的にリニアな関係があることが明らかとなっている(図11参照)。接合部60bの破断形態が第一板材61側のプラグ破断であると見なせば、継手としての被接合物60の接合強度は、第一板材61の板厚と接合部60bの円周長との積の大きさに関係すると見なすことが可能となる。   Furthermore, as shown in the examples described later, it is clear that there is a substantially linear relationship between the dent amount and the shear strength, particularly when the joint 60b breaks the plug ( FIG. 11). Assuming that the fracture form of the joint 60b is a plug fracture on the first plate member 61 side, the joint strength of the workpiece 60 as a joint is the thickness of the first plate 61 and the circumferential length of the joint 60b. It can be considered that it is related to the product size.

例えば、図4の上図に示すように、凹み61c(つまり変形部61b)が生じていない状態(理想状態)では、凹み量Rc=0であるので第一板材61の板厚Jt0は最大となる。これに対して、図4の中図に示すように、凹み量Rc=r1の凹み61cが生じている状態であれば、第一板材61の板厚Jt1は、板厚Jt0よりも小さくなる(Jt1=Jt0−r1<Jt0)。それゆえ、この状態では、標準状態よりも接合部60bのせん断強度が低下する。さらに、図4の下図に示すように、凹み61cの凹み量Rc=r2が、r1よりも大きい状態(r2>r1)であれば、第一板材61の板厚Jt2は、板厚Jt1よりもさらに小さくなる(Jt2=Jt0−r2<Jt1<Jt0)。それゆえ、この状態では、標準状態よりも接合部60bのせん断強度がさらに低下する。   For example, as shown in the upper diagram of FIG. 4, in the state where the dent 61c (that is, the deformed portion 61b) is not generated (ideal state), the dent amount Rc = 0, so the plate thickness Jt0 of the first plate material 61 is the maximum. Become. On the other hand, as shown in the middle diagram of FIG. 4, if the dent 61c with the dent amount Rc = r1 is generated, the plate thickness Jt1 of the first plate 61 is smaller than the plate thickness Jt0 ( Jt1 = Jt0-r1 <Jt0). Therefore, in this state, the shear strength of the joint 60b is lower than that in the standard state. Furthermore, as shown in the lower diagram of FIG. 4, if the dent amount Rc = r2 of the dent 61c is larger than r1 (r2> r1), the plate thickness Jt2 of the first plate member 61 is larger than the plate thickness Jt1. Further smaller (Jt2 = Jt0−r2 <Jt1 <Jt0). Therefore, in this state, the shear strength of the joint 60b is further lowered than in the standard state.

このように、本発明では、被接合物60を接合した後に、接合部60bに凹み61cが生じているときには、当該凹み61cの程度(凹み量Rc)を、少なくとも接合部60bの接合強度の指標として用いている。凹み61cの程度が小さければ、せん断強度の低下が小さいため、接合部60bの接合強度が高いと評価することができる。また、凹み61cの程度が小さければ、変形部61bの発生の程度も小さいため、被接合物60の部品品質が高いと評価することもできる。   Thus, in the present invention, when the dent 61c is generated in the joint 60b after the workpiece 60 is joined, the degree of the dent 61c (the dent amount Rc) is at least an index of the joint strength of the joint 60b. It is used as. If the degree of the dent 61c is small, since the decrease in shear strength is small, it can be evaluated that the joint strength of the joint portion 60b is high. Further, if the degree of the dent 61c is small, the degree of occurrence of the deformed portion 61b is also small, so that it can be evaluated that the part quality of the article 60 is high.

本発明に係る接合状態の評価方法の一例について、図5を参照して具体的に説明する。まず、図1に示すような複動式の摩擦攪拌点接合装置150を用いて、被接合物60を接合する。そして、接合が完了すれば(ステップS01)、接合部60bの凹み量Rcを測定する(ステップS02)。   An example of the bonding state evaluation method according to the present invention will be specifically described with reference to FIG. First, the workpiece 60 is joined using a double-acting friction stir spot welding device 150 as shown in FIG. And if joining is completed (step S01), the dent amount Rc of the junction part 60b will be measured (step S02).

凹み量Rcの測定方法は特に限定されず、例えば、公知の測定機器を用いて、接合部60bおよびその周辺(重ね合わせ部60a)の厚みを測定し、接合前の厚みと比較することにより算出する方法が挙げられる。このとき、接合前の厚みは、前記測定機器で接合前に実測してもよいし、実測せずに、第一板材61の厚みと第二板材62の厚みとを加算したものを採用してもよい。また、後述する実施の形態2で説明するように、接合前後における回転工具10またはクランプ部材30の当接面の位置に基づいて、被接合物60の重ね合わせ部60aの厚みを測定し、凹み量Rcの算出に利用してもよい。   The method for measuring the dent amount Rc is not particularly limited. For example, the thickness is calculated by measuring the thickness of the joint portion 60b and its periphery (overlapping portion 60a) using a known measuring device and comparing it with the thickness before joining. The method of doing is mentioned. At this time, the thickness before joining may be actually measured before joining with the measuring device, or the thickness obtained by adding the thickness of the first plate 61 and the thickness of the second plate 62 is employed without actually measuring. Also good. Further, as described in the second embodiment to be described later, the thickness of the overlapping portion 60a of the workpiece 60 is measured based on the position of the contact surface of the rotary tool 10 or the clamp member 30 before and after joining, and the dent is formed. You may utilize for calculation of quantity Rc.

次に、測定した凹み量Rcが、予め設定される閾値以上であるか否かを判定する(ステップS03)。この閾値の具体的な値は特に限定されず、第一板材61および第二板材62の厚み、接合部60bに要求される接合強度、厚み測定に利用した測定機器の性能等に応じて適宜設定することができる。   Next, it is determined whether or not the measured dent amount Rc is greater than or equal to a preset threshold value (step S03). The specific value of this threshold value is not particularly limited, and is appropriately set according to the thickness of the first plate material 61 and the second plate material 62, the bonding strength required for the bonding portion 60b, the performance of the measuring instrument used for measuring the thickness, and the like. can do.

後述する実施例では、ED=2D、ED=1.5D、ED=Dの接合サンプル、およびED=Dでエッジ部61aの変形を抑制した接合サンプルは、値にある程度のばらつきはあるものの強度と凹み量にリニアな関係が存在する。そこで、後述する実施例の条件であれば、例えば、強度要求が4400Nであれば0.040mmを閾値に設定することができる。あるいは、強度要求が4000Nであれば閾値を0.100mmに設定してもよい。   In the examples to be described later, the joined samples with ED = 2D, ED = 1.5D, and ED = D, and the joined samples in which the deformation of the edge portion 61a is suppressed with ED = D have a certain degree of variation in value. There is a linear relationship between the amount of dents. Therefore, under the conditions of the embodiment described later, for example, if the strength requirement is 4400 N, 0.040 mm can be set as the threshold value. Alternatively, if the strength request is 4000 N, the threshold value may be set to 0.100 mm.

次に、凹み量Rcが閾値以上であれば(ステップS03でYES)、接合強度または部品品質が不適であると見なすことができるので、接合状態が不良であると判定する(ステップS04)。一方、凹み量Rcが閾値以上でなければ、すなわち閾値未満であれば(ステップS03NO)、接合状態が良好であると判定し(ステップS05)、一連の評価方法を終了する。   Next, if the dent amount Rc is equal to or greater than the threshold value (YES in step S03), it can be considered that the bonding strength or the component quality is inappropriate, and therefore the bonding state is determined to be defective (step S04). On the other hand, if the dent amount Rc is not greater than or equal to the threshold value, that is, less than the threshold value (NO in step S03), it is determined that the joining state is good (step S05), and the series of evaluation methods ends.

ここで、本実施の形態では、接合状態の良否判定のみで評価方法を終了してもよいが、例えば、図5に示すように、接合状態が不良であると判定された(ステップS04)後に、さらに、凹み量Rcの大きさに基づいて、接合部60bの接合強度の低下(あるいはエッジ部61aに生じた変形部61bの変形の程度)を判定してもよい(ステップS05)。例えば、後述する実施例では、凹み量Rcとせん断強度との間に成立する実質的にリニアな関係を、例えば、「せん断強度[単位:N]=−8000×凹み量[単位:mm]+4900」という一次関数に近似できる(図11参照)ので、この一次関数に基づいて、凹み量Rcの大きさからせん断強度の近似値を推定するような判定を行うことができる。同様に、変形部61bの変形の程度も、上記のような一次関数等に近似できるのであれば、凹み量Rcから変形の程度(部品品質の程度)も判定することができる。   Here, in the present embodiment, the evaluation method may be ended only by determining whether the joining state is good or not. For example, as shown in FIG. 5, after the joining state is determined to be defective (step S04). Furthermore, a decrease in the joining strength of the joining part 60b (or the degree of deformation of the deforming part 61b generated in the edge part 61a) may be determined based on the size of the dent amount Rc (step S05). For example, in an embodiment described later, a substantially linear relationship established between the dent amount Rc and the shear strength is, for example, “shear strength [unit: N] = − 8000 × dent amount [unit: mm] +4900. Can be approximated to a linear function (see FIG. 11), and based on this linear function, a determination can be made to estimate an approximate value of shear strength from the size of the dent amount Rc. Similarly, if the degree of deformation of the deforming portion 61b can be approximated to the above-described linear function or the like, the degree of deformation (degree of part quality) can also be determined from the dent amount Rc.

このように、本発明では、凹み量Rcを少なくとも接合強度の指標として用いることで、接合部60bの接合強度を評価することが可能となるとともに、凹み量Rcをエッジ部61aの変形の指標とすることもできるので、被接合物60の部品品質も凹み量Rcで評価することが可能となる。なお、図5に示す評価方法は、公知の演算素子または論理回路を用いて実行されてもよいし、所定のマニュアルを作成して参照することにより、接合作業を行う作業者によって実行されてもよい。   Thus, in the present invention, by using the dent amount Rc as at least an index of the bonding strength, it becomes possible to evaluate the bonding strength of the bonding portion 60b, and the dent amount Rc is used as an index of deformation of the edge portion 61a. Therefore, it is possible to evaluate the part quality of the article 60 to be bonded by the dent amount Rc. Note that the evaluation method shown in FIG. 5 may be executed using a known arithmetic element or logic circuit, or may be executed by an operator who performs joining work by creating and referring to a predetermined manual. Good.

(実施の形態2)
前記実施の形態1では、本発明に係る接合状態の評価方法の基本的な構成について説明したが、本実施の形態2では、この接合状態の評価方法を適用した摩擦攪拌点接合装置の一例について、図6〜図9を参照して具体的に説明する。
(Embodiment 2)
In the first embodiment, the basic configuration of the bonding state evaluation method according to the present invention has been described. In the second embodiment, an example of a friction stir spot welding apparatus to which this bonding state evaluation method is applied is described. This will be specifically described with reference to FIGS.

図6に示すように、本実施の形態に係る摩擦攪拌点接合装置50Aは、前記実施の形態1で例示した一般的な摩擦攪拌点接合装置150と同様の構成を有しているが、工具当接位置検出部52および凹み量算出部53を備えている点が異なっている。   As shown in FIG. 6, the friction stir spot welding device 50A according to the present embodiment has the same configuration as that of the general friction stir spot welding device 150 exemplified in the first embodiment. The difference is that a contact position detector 52 and a dent amount calculator 53 are provided.

工具当接位置検出部52は、接合の前後においてピン部材11またはショルダ部材12が被接合物60に当接した時点の位置を検出するものである。   The tool contact position detector 52 detects the position when the pin member 11 or the shoulder member 12 contacts the workpiece 60 before and after joining.

接合時には、ピン部材11またはショルダ部材12は、材料が軟化するまでの間、被接合物60の表面60cで、わずかではあるが一定時間留まることになる。そこで、ショルダ部材12を例に挙げると、工具当接位置検出部52は、接合制御部51から得られるショルダ部材12の位置情報(エンコーダで得られる移動速度等)から、当該ショルダ部材12が被接合物60に当接して一定時間留まった時点の位置を、接合前位置として検出する。   At the time of joining, the pin member 11 or the shoulder member 12 stays on the surface 60c of the article 60 to be joined for a small amount of time until the material is softened. Therefore, taking the shoulder member 12 as an example, the tool contact position detection unit 52 detects the position of the shoulder member 12 from the position information of the shoulder member 12 obtained from the welding control unit 51 (such as the moving speed obtained by the encoder). The position at the time of contacting the bonded object 60 and staying for a certain time is detected as the position before bonding.

同様に、接合後には、ピン部材11またはショルダ部材12は、軟化した材料が硬化するまでの間、被接合物60の表面60cで一定時間留まることになる。そこで、ショルダ部材12を例に挙げると、当該ショルダ部材12が被接合物60に当接して一定時間留まった時点の位置を、接合後位置として検出する。   Similarly, after joining, the pin member 11 or the shoulder member 12 remains on the surface 60c of the article to be joined 60 for a certain period of time until the softened material is cured. Therefore, taking the shoulder member 12 as an example, the position at the time when the shoulder member 12 contacts the workpiece 60 and stays for a certain period of time is detected as the post-joining position.

なお、ピン部材11による接合前位置および接合後位置の検出も同様である。また、工具当接位置検出部52は、裏当て部材40の支持面(裏当て面)から、被接合物60の公称の板厚あるいは予め測定した板厚分だけオフセットされた位置を、接合前位置として検出してもよい。   The detection of the position before joining and the position after joining by the pin member 11 is the same. In addition, the tool contact position detection unit 52 detects a position offset from the support surface (backing surface) of the backing member 40 by the nominal plate thickness of the workpiece 60 or a plate thickness measured in advance. You may detect as a position.

凹み量算出部53は、工具当接位置検出部52により検出された接合前位置と接合後位置との差分から、凹み量を算出する。   The dent amount calculation unit 53 calculates the dent amount from the difference between the pre-joining position and the post-joining position detected by the tool contact position detection unit 52.

工具当接位置検出部52および凹み量算出部53の具体的な構成は特に限定されない。本実施の形態では、接合制御部51が、マイクロコンピュータのCPUであって、工具駆動部20の動作に関する演算を行うよう構成されていれば、工具当接位置検出部52および凹み量算出部53は、接合制御部51の機能構成となっていればよい。すなわち、接合制御部51としてのCPUが、図示しない記憶部等に格納されるプログラムに従って動作することにより、工具当接位置検出部52および凹み量算出部53が実現される構成であればよい。   Specific configurations of the tool contact position detection unit 52 and the dent amount calculation unit 53 are not particularly limited. In the present embodiment, if the welding control unit 51 is a CPU of a microcomputer and is configured to perform calculations related to the operation of the tool driving unit 20, the tool contact position detection unit 52 and the dent amount calculation unit 53 are configured. Need only have the functional configuration of the bonding control unit 51. In other words, the tool contact position detection unit 52 and the dent amount calculation unit 53 may be realized by the CPU as the welding control unit 51 operating according to a program stored in a storage unit (not shown).

また、工具当接位置検出部52は、接合制御部51で生成されるモータ回転情報(モータの回転角度または回転速度等)から、接合前位置および接合後位置を検出できる構成であってもよい。この場合、工具当接位置検出部52は、接合制御部51の機能構成に限定されず、公知のスイッチング素子、減算器、比較器等による論理回路等として構成されてもよい。同様に、凹み量算出部53も、接合制御部51の機能構成に限定されず、公知のスイッチング素子、減算器、比較器等による論理回路等として構成されてもよい。   Further, the tool contact position detection unit 52 may be configured to be able to detect the pre-joining position and the post-joining position from the motor rotation information (motor rotation angle or rotational speed, etc.) generated by the joining control unit 51. . In this case, the tool contact position detection unit 52 is not limited to the functional configuration of the welding control unit 51, and may be configured as a logic circuit using a known switching element, subtractor, comparator, and the like. Similarly, the dent amount calculation unit 53 is not limited to the functional configuration of the bonding control unit 51, and may be configured as a logic circuit using a known switching element, subtractor, comparator, or the like.

工具当接位置検出部52および凹み量算出部53による凹み量の算出について、具体的に説明する。図7の上図に示すように、回転工具10(ピン部材11およびショルダ部材12の少なくとも一方)の当接面を、接合前の被接合物60の表面60cに当接させる。このとき、工具当接位置検出部52は、前記の通り、接合前位置P1を検出する。次に、接合制御部51の制御によって工具駆動部20が制御され、前記実施の形態1で説明したように、被接合物60の接合が行われる。接合後、図7の下図に示すように、工具当接位置検出部52は、前記の通り、接合後位置P2を検出する。接合前位置P1および接合後位置P2は、凹み量算出部53に入力され、凹み量算出部53は、接合前位置P1と接合後位置P2との差分から、凹み量Rcを算出する(図7に示す例では、Rc=r0)。   The calculation of the dent amount by the tool contact position detection unit 52 and the dent amount calculation unit 53 will be specifically described. As shown in the upper diagram of FIG. 7, the contact surface of the rotary tool 10 (at least one of the pin member 11 and the shoulder member 12) is brought into contact with the surface 60 c of the workpiece 60 before bonding. At this time, the tool contact position detector 52 detects the pre-joining position P1 as described above. Next, the tool driving unit 20 is controlled by the control of the welding control unit 51, and the workpiece 60 is joined as described in the first embodiment. After joining, as shown in the lower diagram of FIG. 7, the tool contact position detector 52 detects the post-joining position P2 as described above. The pre-joining position P1 and the post-joining position P2 are input to the dent amount calculating unit 53, and the dent amount calculating unit 53 calculates the dent amount Rc from the difference between the pre-joining position P1 and the post-joining position P2 (FIG. 7). In the example shown, Rc = r0).

このように、本発明に係る摩擦攪拌点接合における接合状態の評価方法では、回転工具10の当接面を、接合前後の被接合物60の表面60cに当接させて、それぞれの位置を検出し、接合前の前記当接面の位置と接合後の前記当接面の位置との差分を、凹み量Rcとして算出する構成であってもよい。   Thus, in the evaluation method of the joining state in the friction stir spot joining according to the present invention, the contact surface of the rotary tool 10 is brought into contact with the surface 60c of the workpiece 60 before and after joining, and the respective positions are detected. The difference between the position of the contact surface before joining and the position of the contact surface after joining may be calculated as the dent amount Rc.

また、この構成に用いられる摩擦攪拌点接合装置50Aは、回転工具10(ピン部材11およびショルダ部材12)、工具駆動部20、並びに接合制御部51に加えて、回転工具10の当接面が被接合物60の表面60cに当接した時点の位置を検出する工具当接位置検出部52と、当該工具当接位置検出部52により検出された、接合前の当接面の位置と接合後の当接面の位置との差分を、接合部60bの凹み量として算出する凹み量算出部53とを備えている構成であればよい。   In addition, the friction stir spot welding device 50A used in this configuration has a contact surface of the rotary tool 10 in addition to the rotary tool 10 (the pin member 11 and the shoulder member 12), the tool driving unit 20, and the welding control unit 51. A tool contact position detection unit 52 that detects the position at the time of contact with the surface 60c of the workpiece 60, and the position of the contact surface before joining detected by the tool contact position detection unit 52 and after joining. What is necessary is just the structure provided with the dent amount calculation part 53 which calculates the difference with the position of this contact surface as a dent amount of the junction part 60b.

前記構成によれば、通常の接合動作時において、接合終了後の回転工具10の位置から凹み量をリアルタイムで測定することが可能となる。それゆえ、接合後に、凹み量を測定するための機器を別途用いる必要がなく、また、凹み量を測定する工程を、実質的に、一連の接合動作における一工程に含めることができる。その結果、接合動作を進めながら接合状態の評価を行うことができるので、より効率的な接合状態の評価が可能となるとともに、接合状態の評価結果を接合制御に利用することも可能となる。   According to the said structure, it becomes possible to measure the amount of dents in real time from the position of the rotary tool 10 after completion | finish of joining at the time of normal joining operation | movement. Therefore, it is not necessary to separately use a device for measuring the dent amount after joining, and the step of measuring the dent amount can be substantially included in one step in a series of joining operations. As a result, since the joining state can be evaluated while the joining operation is proceeding, the joining state can be more efficiently evaluated, and the joining state evaluation result can be used for joining control.

なお、本発明は、図6に示す構成の摩擦攪拌点接合装置50Aに限定されず、例えば、図8に示すように、クランプ部材30を備えている摩擦攪拌点接合装置50Bであってもよいし、図9に示すように、クランプ部材30に加えて回転工具位置センサ35を備えている摩擦攪拌点接合装置50Cであってもよい。   Note that the present invention is not limited to the friction stir spot welding device 50A having the configuration shown in FIG. 6, and may be, for example, a friction stir spot welding device 50 </ b> B including the clamp member 30 as shown in FIG. 8. As shown in FIG. 9, a friction stir spot welding device 50 </ b> C provided with a rotary tool position sensor 35 in addition to the clamp member 30 may be used.

図8に示す摩擦攪拌点接合装置50Bでは、工具当接位置検出部52は、前記の通り、回転工具10の当接面の位置を検出する構成であってもよいが、クランプ部材30の当接面の位置を、回転工具10の当接面の位置と見なして検出してもよい。このとき、凹み量算出部53は、接合前後におけるクランプ部材30の当接面の位置の差分を、凹み量Rcとして算出すればよい。   In the friction stir spot welding device 50B shown in FIG. 8, the tool contact position detection unit 52 may be configured to detect the position of the contact surface of the rotary tool 10 as described above. The position of the contact surface may be detected as the position of the contact surface of the rotary tool 10. At this time, the dent amount calculation unit 53 may calculate the difference in the position of the contact surface of the clamp member 30 before and after joining as the dent amount Rc.

クランプ部材30は、前述したように、ショルダ部材12の外側に位置し、被接合物60の表面60cを押圧するものである。したがって、塑性流動部が生じていない限り、接合前後においては、クランプ部材30の当接面は、実質的に回転工具10の当接面の位置と同じであるとみなすことができる。   As described above, the clamp member 30 is positioned outside the shoulder member 12 and presses the surface 60c of the workpiece 60. Therefore, as long as the plastic flow part does not occur, the contact surface of the clamp member 30 can be regarded as substantially the same as the position of the contact surface of the rotary tool 10 before and after joining.

また、図9に示す摩擦攪拌点接合装置50Cでは、工具当接位置検出部52を備えていない代わりに、回転工具位置センサ35を備えている。この構成では、図8に示す摩擦攪拌点接合装置50Bと同様に、クランプ部材30の当接面の位置を、回転工具10の当接面の位置と見なして検出しているが、回転工具10の進退移動による当接面の位置の変化pは、回転工具位置センサ35により検出している。   In addition, the friction stir spot welding device 50C shown in FIG. 9 includes a rotary tool position sensor 35 instead of the tool contact position detection unit 52. In this configuration, the position of the contact surface of the clamp member 30 is detected as the position of the contact surface of the rotary tool 10 as in the friction stir spot welding device 50B shown in FIG. The change p of the position of the contact surface due to the forward / backward movement is detected by the rotary tool position sensor 35.

回転工具位置センサ35の具体的な構成は特に限定されないが、例えば、図10に示すように、クランプ部材30に基づいて回転工具10(図10ではショルダ部材12)の当接面の位置を間接的に検出する小型センサを挙げることができる。   The specific configuration of the rotary tool position sensor 35 is not particularly limited. For example, as shown in FIG. 10, the position of the contact surface of the rotary tool 10 (the shoulder member 12 in FIG. 10) is indirectly based on the clamp member 30. And a small sensor that detects automatically.

摩擦攪拌点接合装置50Cには、図10に示すように、ショルダ部材12とともに進退移動するプレート15が設けられているが、回転工具位置センサ35(小型センサ)は、このプレート15の下面と、クランプ部材30の上面との間に設けられており、プレート15とクランプ部材30との間隔を検出する。小型センサは、コアおよびコイルを備えており、コイルがクランプ部材30の上面に位置し、コアがプレート15の下面に位置する。なお、小型センサの構成はこれに限定されず、例えば、コイルがプレート15の下面に位置し、コアがクランプ部材30の上面に位置してもよい。   As shown in FIG. 10, the friction stir spot welding device 50 </ b> C is provided with a plate 15 that moves forward and backward together with the shoulder member 12, and the rotary tool position sensor 35 (small sensor) includes a lower surface of the plate 15, It is provided between the upper surface of the clamp member 30 and detects the distance between the plate 15 and the clamp member 30. The small sensor includes a core and a coil, and the coil is located on the upper surface of the clamp member 30 and the core is located on the lower surface of the plate 15. The configuration of the small sensor is not limited to this, and for example, the coil may be located on the lower surface of the plate 15 and the core may be located on the upper surface of the clamp member 30.

図10に示す例では、プレート15とクランプ部材30との間にスプリング31a(ショルダ駆動部22に一体化されたクランプ押圧駆動部31の一例)が設けられており、プレート15とクランプ部材30との間隔(便宜上、プレート・クランプ間隔とする)を例えばc0に保持している。そして、ショルダ部材12が被接合物60の表面60cに圧入されると、スプリング31aが押さえ付けられて、プレート・クランプ間隔がc0からc1に縮小する。   In the example shown in FIG. 10, a spring 31 a (an example of a clamp pressing drive unit 31 integrated with the shoulder drive unit 22) is provided between the plate 15 and the clamp member 30. (For convenience, the plate-clamp interval) is held at c0, for example. When the shoulder member 12 is press-fitted into the surface 60c of the workpiece 60, the spring 31a is pressed and the plate-clamp interval is reduced from c0 to c1.

このとき、小型センサ(回転工具位置センサ35)のコアは、プレート15を介してショルダ部材12の進退移動とともに上下移動するため、小型センサは、前記間隔がc0からc1に変化したことを検出する。図9に示す例では、回転工具10(ピン部材11およびショルダ部材12)は被接合物60に圧入していないが、図10に示すように、ショルダ部材12が被接合物60に圧入していれば、回転工具10の位置の変化pは「圧入深さ」となる。それゆえ、ショルダ部材12の圧入深さpは、圧入前のプレート・クランプ間隔c0から圧入時のプレート・クランプ間隔c1を差し引いた値(p=c0−c1)となる。したがって、この圧入深さpは、前記の通り「回転工具10の進退移動による当接面の位置の変化」(図9参照)に相当する。図10に示すように、クランプ部材30は、被接合物60の表面60c上から移動しないので、プレート・クランプ間隔を小型センサで検出することにより、ショルダ部材12(回転工具10)の当接面の位置の変化を間接的に取得することができる。   At this time, since the core of the small sensor (rotating tool position sensor 35) moves up and down with the movement of the shoulder member 12 through the plate 15, the small sensor detects that the interval has changed from c0 to c1. . In the example shown in FIG. 9, the rotary tool 10 (the pin member 11 and the shoulder member 12) is not press-fitted into the workpiece 60, but the shoulder member 12 is press-fitted into the workpiece 60 as shown in FIG. Then, the change p of the position of the rotary tool 10 becomes “press-fit depth”. Therefore, the press-fit depth p of the shoulder member 12 is a value obtained by subtracting the plate-clamp interval c1 at the time of press-fitting from the plate-clamp interval c0 before press-fitting (p = c0-c1). Therefore, the press-fitting depth p corresponds to “change in the position of the contact surface due to the forward / backward movement of the rotary tool 10” (see FIG. 9) as described above. As shown in FIG. 10, since the clamp member 30 does not move from the surface 60c of the workpiece 60, the contact surface of the shoulder member 12 (the rotary tool 10) is detected by detecting the plate-clamp interval with a small sensor. The change in the position of can be obtained indirectly.

本発明について、実施例に基づいてより具体的に説明するが、本発明はこれに限定されるものではない。当業者は本発明の範囲を逸脱することなく、種々の変更、修正、および改変を行うことができる。   The present invention will be described more specifically based on examples, but the present invention is not limited to this. Those skilled in the art can make various changes, modifications, and alterations without departing from the scope of the present invention.

回転工具10として直径D=7.0mmの複動式のものを用いた。なお、複動式の回転工具10はピン部材11およびショルダ部材12から構成されるので、回転工具10の直径Dは、ショルダ径に相当する。この直径Dを接合部60b(接合点)の直径dと見なす(d=D)。   As the rotary tool 10, a double-acting tool having a diameter D = 7.0 mm was used. Since the double-acting rotary tool 10 includes the pin member 11 and the shoulder member 12, the diameter D of the rotary tool 10 corresponds to the shoulder diameter. This diameter D is regarded as the diameter d of the joint 60b (joint point) (d = D).

被接合物60のうち第一板材61として、25mm×125mm×1.016mm(厚さ)の7075−T6アルミニウム板を、第二板材62として、25mm×125mm×1.27mm(厚さ)の2024−T3アルミニウム板材を準備し、重ね合わせ部60aの幅が4D,3D,または2Dとなるように、第一板材61および第二板材62を重ね合わせた。この重ね合わせ部60aの中央部を回転工具10により接合して、接合サンプルを作製した。なお、重ね合わせ部60aの幅が4Dの場合、ED=2Dとなる(図2の上図参照)。また、重ね合わせ部60aの幅が3Dの場合、ED=1.5Dとなる。また、重ね合わせ部60aの幅が2Dの場合、ED=Dとなる(図3参照)。   Of the objects to be joined 60, a 7075-T6 aluminum plate of 25 mm × 125 mm × 1.016 mm (thickness) is used as the first plate material 61, and 2024 of 25 mm × 125 mm × 1.27 mm (thickness) is used as the second plate material 62. -A T3 aluminum plate was prepared, and the first plate 61 and the second plate 62 were overlapped so that the overlapping portion 60a had a width of 4D, 3D, or 2D. The center part of this overlapping part 60a was joined by the rotary tool 10, and the joining sample was produced. In addition, when the width | variety of the superimposition part 60a is 4D, it will be set to ED = 2D (refer the upper figure of FIG. 2). When the width of the overlapping portion 60a is 3D, ED = 1.5D. Further, when the width of the overlapping portion 60a is 2D, ED = D (see FIG. 3).

ED=2Dの接合サンプル(便宜上、「2Dサンプル」とする)を合計10個作製し、ED=1.5Dの接合サンプル(便宜上、「1.5Dサンプル」とする)を合計10個作製し、ED=Dの接合サンプル(便宜上、「Dサンプル」とする)を合計10個作成し、それぞれの各接合サンプルに対して、接合後1時間後にせん断引張り試験を実施することにより、接合部60bのせん断強度(単位:N)を計測した。また、それぞれの接合サンプルについて、実施の形態2で例示したように、回転工具10の当接面の接合前位置P1および接合後位置P2から凹み量(単位:mm)を算出した。   A total of 10 ED = 2D bonding samples (for convenience, referred to as “2D samples”) are manufactured, and a total of 10 ED = 1.5D bonding samples (for convenience, referred to as “1.5D samples”) are manufactured. A total of 10 joined samples with ED = D (for convenience, “D samples”) are prepared, and a shear tensile test is performed on each of the joined samples one hour after joining. Shear strength (unit: N) was measured. Further, as exemplified in the second embodiment, the dent amount (unit: mm) was calculated from each of the joining samples from the pre-joining position P1 and the post-joining position P2 of the contact surface of the rotary tool 10.

凹み量を横軸にせん断強度を縦軸にとったグラフに対して、2Dサンプルの結果を白抜きの菱形でプロットし、1.5Dサンプルの結果を黒の正方形でプロットし、Dサンプルの結果を黒の三角形でプロットした。その結果を図11に示す。   2D sample results are plotted with white diamonds, and 1.5D sample results are plotted with black squares, with the amount of dents on the horizontal axis and shear strength on the vertical axis. Was plotted with black triangles. The result is shown in FIG.

また、Dサンプルとは別に、ED=Dであり、かつ、エッジ部61aの変形を抑制した接合サンプルを作製した。具体的には、重ね合わせ部60aの幅が2Dとなるように第一板材61および第二板材62を重ね合わせ、上側の第一板材61のエッジ部61aに対して、アルミニウムブロックを当接させ、この状態で、重ね合わせ部60aの中央部を回転工具10により接合した。   Separately from the D sample, a bonded sample in which ED = D and the deformation of the edge portion 61a was suppressed was produced. Specifically, the first plate member 61 and the second plate member 62 are overlapped so that the width of the overlapping portion 60a is 2D, and the aluminum block is brought into contact with the edge portion 61a of the upper first plate member 61. In this state, the central portion of the overlapping portion 60 a is joined by the rotary tool 10.

この接合サンプルでは、エッジ部61aにアルミニウムブロックが当接しているので、エッジ部61aの変形が抑制され、その結果、凹み61cの発生も抑制されていることになる。この接合サンプル(便宜上、「(D+P)サンプル」とする)を合計10個作成し、前記と同様に引張り試験を実施するとともに凹み量を算出した。この(D+P)サンプルの結果は、白抜きの円で前記グラフにプロットした。その結果を図11に示す。   In this bonded sample, since the aluminum block is in contact with the edge portion 61a, the deformation of the edge portion 61a is suppressed, and as a result, the generation of the recess 61c is also suppressed. Ten joint samples (for convenience, “(D + P) sample”) were prepared, and the tensile test was performed in the same manner as described above, and the amount of dents was calculated. The results of this (D + P) sample were plotted in the graph as white circles. The result is shown in FIG.

図11の結果から明らかなように、2Dサンプル、1.5Dサンプル、およびDサンプルの各プロットは、実質的に一つの直線上に位置していると見なすことができる。それゆえ、せん断強度と凹み量とは、互いにリニアな関係にあることが分かる。このようなリニアな関係を一次関数的に表現すると、例えば、「せん断強度[単位:N]=−8000×凹み量[単位:mm]+4900」という関係式に近似することができる。このように、本実施例の結果によれば、凹み量に基づいて、接合部60bの接合強度を評価することが可能であることが分かる。   As is apparent from the results of FIG. 11, the plots of 2D sample, 1.5D sample, and D sample can be regarded as being substantially located on one straight line. Therefore, it can be seen that the shear strength and the dent amount are in a linear relationship with each other. If such a linear relationship is expressed by a linear function, it can be approximated to a relational expression of “shear strength [unit: N] = − 8000 × dent amount [unit: mm] +4900”, for example. Thus, according to the result of the present embodiment, it can be seen that the joint strength of the joint portion 60b can be evaluated based on the amount of the recess.

また、(D+P)サンプルは、Dサンプルに比べてエッジ部61aに生じる変形部61bの程度が小さく、そのため、凹み量も小さくなっている。そして、図11から明らかなように、(D+P)サンプルも、2Dサンプル、1.5DサンプルおよびDサンプルと同様に、実質的に一つの直線状に位置していると見なすことができる。これにより、エッジ部61aの変形の程度が小さければ、良好なせん断強度を実現できることが分かる。したがって、凹み量に基づいてエッジ部61aの変形の程度も評価できるので、凹み量が、被接合物60の部品品質の評価にも適用できることが分かる。   In addition, the (D + P) sample has a smaller degree of the deformed portion 61b generated in the edge portion 61a than the D sample, and therefore the amount of dent is also small. As can be seen from FIG. 11, the (D + P) sample can also be regarded as being positioned substantially in one straight line, like the 2D sample, the 1.5D sample, and the D sample. Thus, it can be seen that if the degree of deformation of the edge portion 61a is small, good shear strength can be realized. Therefore, since the degree of deformation of the edge portion 61a can be evaluated based on the dent amount, it can be understood that the dent amount can also be applied to the evaluation of the component quality of the article 60 to be joined.

なお、本発明は前記実施の形態の記載に限定されるものではなく、特許請求の範囲に示した範囲内で種々の変更が可能であり、異なる実施の形態や複数の変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。   It should be noted that the present invention is not limited to the description of the above-described embodiment, and various modifications are possible within the scope shown in the scope of the claims, and are disclosed in different embodiments and a plurality of modifications. Embodiments obtained by appropriately combining the technical means are also included in the technical scope of the present invention.

本発明は、複動式の摩擦攪拌点接合を用いて被接合物を接合する分野に広く好適に用いることができる。   INDUSTRIAL APPLICATION This invention can be widely used suitably in the field | area which joins a to-be-joined object using double action type friction stir spot joining.

10 回転工具
11 ピン部材(回転工具)
12 ショルダ部材(回転工具)
30 クランプ部材
35 回転工具位置センサ(小型センサ)
50A,50B 摩擦攪拌点接合装置
51 接合制御部
52 工具当接位置検出部
53 凹み量算出部
60 被接合物
60b 接合部(接合点)
61 第一板材(被接合物)
61a エッジ部
61b 変形部
61c 凹み
62 第二板材(被接合物)
62a エッジ部
10 Rotating tool 11 Pin member (Rotating tool)
12 Shoulder member (rotary tool)
30 Clamp member 35 Rotary tool position sensor (small sensor)
50A, 50B Friction stir spot welding device 51 Joining control unit 52 Tool contact position detection unit 53 Depression amount calculation unit 60 Object to be joined 60b Joining portion (joining point)
61 First plate (joint)
61a Edge part 61b Deformation part 61c Recess 62 Second plate material (joint)
62a Edge part

Claims (5)

回転工具として、
軸線周りに回転し、かつ、当該軸線方向に進退移動可能に構成されている円柱状のピン部材と、
当該ピン部材の外側を囲うように位置し、当該ピン部材と同一の軸線周りに回転するとともに当該軸線方向に進退移動可能に構成されている円筒状のショルダ部材と、
をそれぞれ進退移動可能な状態で用い、
被接合物の表面を前記回転工具により部分的に攪拌することによって、当該被接合物を接合し、その後に、当該接合部に生じている凹み量を、少なくとも前記接合部の接合強度の指標として用い
前記被接合物の接合後に、当該接合部の凹み量を測定し、
測定した前記凹み量が予め設定される閾値未満であるときには、前記接合部の接合状態が良好であると判定し、
測定した前記凹み量が前記閾値以上であるときには、前記接合部の接合状態が不良であると判定することを特徴とする、
摩擦攪拌点接合における接合状態の評価方法。
As a rotating tool,
A cylindrical pin member configured to rotate around an axis and move forward and backward in the axial direction;
A cylindrical shoulder member that is positioned so as to surround the outside of the pin member, rotates around the same axis as the pin member, and is configured to move forward and backward in the axial direction;
In a state where each can move forward and backward,
The surface of the object to be bonded is partially agitated by the rotary tool to bond the object to be bonded, and then the dent amount generated in the bonded part is at least used as an index of the bonding strength of the bonded part. using,
After joining the workpieces, measure the amount of dents in the joint,
When the measured amount of dent is less than a preset threshold, it is determined that the joint state of the joint is good,
When the recessed amount measured is equal to or larger than the threshold value, the bonding state of the joint, characterized that you determined to be defective,
The evaluation method of the joining state in friction stir spot welding.
前記回転工具の当接面を、接合前後の前記被接合物の前記表面に当接させて、それぞれの位置を検出し、
接合前の前記当接面の位置と接合後の前記当接面の位置との差分を、前記凹み量として算出することを特徴とする、
請求項に記載の摩擦攪拌点接合における接合状態の評価方法。
The contact surface of the rotary tool is brought into contact with the surface of the object to be joined before and after joining, and the respective positions are detected,
The difference between the position of the abutting surface before joining and the position of the abutting surface after joining is calculated as the dent amount,
The evaluation method of the joining state in the friction stir spot joining according to claim 1 .
前記凹み量と前記接合部とのせん断強度とは、当該接合部のプラグ破断において一次関数として近似される関係にあり、The amount of dent and the shear strength of the joint are in a relationship approximated as a linear function in the plug fracture of the joint,
前記接合部の接合強度の評価のために、算出された前記凹み量の大きさから前記一次関数に基づいて、前記接合物のプラグ破断におけるせん断強度の近似値を推定することを特徴とする、In order to evaluate the joint strength of the joint portion, based on the linear function from the calculated size of the dent amount, an approximate value of the shear strength in the plug rupture of the joint is estimated,
請求項2に記載の摩擦攪拌点接合における接合状態の評価方法。The evaluation method of the joining state in the friction stir spot joining according to claim 2.
回転工具によって被接合物を部分的に攪拌することにより接合する摩擦攪拌点接合装置であって、
前記回転工具として、
軸線周りに回転し、かつ、当該軸線方向に進退移動可能に構成されている円柱状のピン部材と、
当該ピン部材の外側を囲うように位置し、当該ピン部材と同一の軸線周りに回転するとともに当該軸線方向に進退移動可能に構成されている円筒状のショルダ部材と、
を備えているとともに、
前記ピン部材および前記ショルダ部材を、それぞれ前記軸線に沿って進退移動するように動作させる工具駆動部と、
前記工具駆動部の動作を制御する接合制御部と、
を備え、
さらに、請求項1から3のいずれか1項に記載の摩擦攪拌点接合装置における接合状態の評価方法を実行すべく、前記被接合物の接合後に、当該接合部の凹み量を測定するために、
前記回転工具の当接面が前記被接合物に当接した時点の位置を検出する工具当接位置検出部と、
当該工具当接位置検出部により検出された、接合前の前記当接面の位置と接合後の前記当接面の位置との差分を、接合部の凹み量として算出する凹み量算出部と、
を備えていることを特徴とする、
摩擦攪拌点接合装置。
A friction stir spot welding device for joining by partially stirring the workpieces with a rotary tool,
As the rotating tool,
A cylindrical pin member configured to rotate around an axis and move forward and backward in the axial direction;
A cylindrical shoulder member that is positioned so as to surround the outside of the pin member, rotates around the same axis as the pin member, and is configured to move forward and backward in the axial direction;
With
A tool driving unit that operates the pin member and the shoulder member to move forward and backward along the axis, respectively;
A joining control unit for controlling the operation of the tool driving unit;
With
Furthermore, in order to perform the evaluation method of the joining state in the friction stir spot welding apparatus according to any one of claims 1 to 3, in order to measure the dent amount of the joint after joining the objects to be joined. ,
A tool contact position detector that detects a position at which the contact surface of the rotary tool contacts the workpiece;
A dent amount calculation unit that calculates a difference between the position of the abutment surface before joining and the position of the abutment surface after joining detected by the tool contact position detection unit as a dent amount of the joining portion;
It is characterized by having,
Friction stir spot welding device.
前記ショルダ部材の外側に位置し、前記被接合物を表面から押圧するクランプ部材をさらに備え、
前記工具当接位置検出部は、接合前後における前記クランプ部材の当接面の位置を、前記回転工具の当接面の位置と見なして検出し、
前記凹み量算出部は、接合前後における前記クランプ部材の当接面の位置の差分を、前記凹み量として算出することを特徴とする、
請求項4に記載の摩擦攪拌点接合装置。
A clamp member that is positioned outside the shoulder member and presses the object to be joined from the surface;
The tool contact position detection unit detects the position of the contact surface of the clamp member before and after joining as the position of the contact surface of the rotary tool,
The dent amount calculation unit calculates a difference in the position of the contact surface of the clamp member before and after joining as the dent amount,
The friction stir spot welding device according to claim 4.
JP2014216644A 2014-10-23 2014-10-23 Evaluation method of joining state in friction stir spot welding, and friction stir spot welding apparatus using this evaluation method Active JP6307005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014216644A JP6307005B2 (en) 2014-10-23 2014-10-23 Evaluation method of joining state in friction stir spot welding, and friction stir spot welding apparatus using this evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014216644A JP6307005B2 (en) 2014-10-23 2014-10-23 Evaluation method of joining state in friction stir spot welding, and friction stir spot welding apparatus using this evaluation method

Publications (2)

Publication Number Publication Date
JP2016083670A JP2016083670A (en) 2016-05-19
JP6307005B2 true JP6307005B2 (en) 2018-04-04

Family

ID=55971991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014216644A Active JP6307005B2 (en) 2014-10-23 2014-10-23 Evaluation method of joining state in friction stir spot welding, and friction stir spot welding apparatus using this evaluation method

Country Status (1)

Country Link
JP (1) JP6307005B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11084121B2 (en) * 2017-09-08 2021-08-10 Kawasaki Jukogyo Kabushiki Kaisha Double-acting friction stir spot welding method and apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19955737B4 (en) * 1999-11-18 2005-11-10 Gkss-Forschungszentrum Geesthacht Gmbh Method and device for connecting at least two adjoining workpieces by the method of friction stir welding
JP4183964B2 (en) * 2002-04-12 2008-11-19 川崎重工業株式会社 Friction stir welding equipment
JP2008110374A (en) * 2006-10-30 2008-05-15 Nippon Steel Corp Friction stir welding method and apparatus
JP5815961B2 (en) * 2011-03-18 2015-11-17 川崎重工業株式会社 Friction stir spot welding apparatus and friction stir spot welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11084121B2 (en) * 2017-09-08 2021-08-10 Kawasaki Jukogyo Kabushiki Kaisha Double-acting friction stir spot welding method and apparatus

Also Published As

Publication number Publication date
JP2016083670A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP6244041B2 (en) Friction stir spot welding apparatus and friction stir spot welding method
US9314870B2 (en) Friction stir spot welding device and friction stir spot welding method
CN111107957B (en) Operation method of double-acting friction stir welding device and double-acting friction stir welding device
JP5815961B2 (en) Friction stir spot welding apparatus and friction stir spot welding method
JP6670317B2 (en) Friction stir spot welding apparatus and friction stir spot welding method
US9937586B2 (en) Method and device for friction stir welding materials of different thicknesses and having fillet welds
JP2017520407A (en) Method and device for quick and reliable tool change in a friction stir welding process
JP6014205B2 (en) Friction stir spot welding apparatus and friction stir spot welding method
US20080135601A1 (en) Apparatus and Method of Solid-State Welding
JP4885552B2 (en) Joining device
KR101753445B1 (en) Manufacturing method of aluminum alloy propeller shaft using friction welding process
US8052029B1 (en) Method of calibrating a friction stir spot welding system
WO2020179661A1 (en) Joining device for friction stirring point, joined article having joined friction stirring point, and shoulder member
US11839929B2 (en) Dissimilar metal welding method
JP6704996B2 (en) Friction welding method and friction welding device
CN104185531B (en) Pass through the method for two base metal sheet-like workpieces of friction and Extrusion solder joint
JP6307005B2 (en) Evaluation method of joining state in friction stir spot welding, and friction stir spot welding apparatus using this evaluation method
KR102031895B1 (en) Friction Stir Point Bonding Device and Friction Stir Point Bonding Method
JP6335096B2 (en) Friction stir spot welding apparatus and friction stir spot welding method for reducing edge distance
JP7377374B2 (en) Friction stir spot welding device and its operating method
JP2019206026A (en) Friction stir welding apparatus and manufacturing method for cooler
JP7489457B2 (en) Friction stir spot welding device and joint structure
JP5641242B2 (en) Friction stir welded joint diameter measuring method and apparatus, and friction stir weld quality inspection method and apparatus
JP2014136234A (en) Clamping device and clamping method
JP2015157302A (en) friction stir welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180309

R150 Certificate of patent or registration of utility model

Ref document number: 6307005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250