JP6304883B2 - Luminous flux control member, light emitting device, and illumination device - Google Patents

Luminous flux control member, light emitting device, and illumination device Download PDF

Info

Publication number
JP6304883B2
JP6304883B2 JP2014143320A JP2014143320A JP6304883B2 JP 6304883 B2 JP6304883 B2 JP 6304883B2 JP 2014143320 A JP2014143320 A JP 2014143320A JP 2014143320 A JP2014143320 A JP 2014143320A JP 6304883 B2 JP6304883 B2 JP 6304883B2
Authority
JP
Japan
Prior art keywords
light
region
controlling member
light flux
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014143320A
Other languages
Japanese (ja)
Other versions
JP2016018202A (en
Inventor
亜稀 稲田
亜稀 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2014143320A priority Critical patent/JP6304883B2/en
Publication of JP2016018202A publication Critical patent/JP2016018202A/en
Application granted granted Critical
Publication of JP6304883B2 publication Critical patent/JP6304883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Description

本発明は、光源から出射された光の配光を制御する光束制御部材に関し、特に光軸方向に強い光強度を有する配光特性を得るための光束制御部材に関する。   The present invention relates to a light flux control member that controls the light distribution of light emitted from a light source, and more particularly to a light flux control member for obtaining a light distribution characteristic having a strong light intensity in the optical axis direction.

従来から、発光ダイオード(Light Emitting Diode:LED)が光源として利用されている。個々のLEDチップは光量が少ないため、照明装置の光源として用いる場合、通常は複数のLEDチップをアレイ状に配列し、面光源を構成することにより所望の光量を確保している。   Conventionally, a light emitting diode (LED) has been used as a light source. Since each LED chip has a small amount of light, when it is used as a light source of an illuminating device, a plurality of LED chips are usually arranged in an array and a surface light source is configured to secure a desired light amount.

このようなLED光源は、一般には、例えば、ランバート分布に従って、比較的広い出射角をもって光を照射するように構成される。このため、LED光源を照明の用途に用いる場合、レンズなどの光束制御部材によって、広がり角が大きい光を集束させて所望の配光特性を有する光に整形する必要がある。   Such an LED light source is generally configured to irradiate light with a relatively wide emission angle, for example, according to a Lambertian distribution. For this reason, when the LED light source is used for illumination, it is necessary to focus light having a large divergence angle and shape it into light having a desired light distribution characteristic by a light flux control member such as a lens.

例えば、特許文献1には、所望の配光特性を簡便かつ確実に得ることができるとともに、得られる配光特性の多様化及びこれに伴う汎用性の向上を図ることができる光束制御部材が開示されている。特許文献1に記載の光束制御部材は、フレネル形状の突起部を有する入射領域と、凸の円錐面形状、凹のV字形状などの出射領域を有し、入射領域において第1の配光特性を形成した後、出射領域において第2の配光特性を形成する2段階の光束整形を実施することができる。   For example, Patent Document 1 discloses a light flux controlling member that can easily and surely obtain desired light distribution characteristics, and that can diversify the obtained light distribution characteristics and improve versatility associated therewith. Has been. The light flux controlling member described in Patent Document 1 has an incident region having a Fresnel-shaped protrusion, and an output region such as a convex conical surface shape or a concave V-shape, and the first light distribution characteristic in the incident region. After forming the light beam, the two-stage light beam shaping for forming the second light distribution characteristic in the emission region can be performed.

また、特許文献2には、平面状の発光面を光源とする場合に、明暗の明確なスポットライトを生成するレンズが開示されている。特許文献2に記載のレンズは、内側の中心部分と外側の中心部分とを有し、中心部分は発光面から入射した光に対するコリメータレンズとして機能する輪郭を有し、周辺部分は、入射面側に発光面から入射した光が周面において全反射してから出射面側からコリメート光を出射するように形成された輪郭を有する。   Patent Document 2 discloses a lens that generates a bright and dark spotlight when a planar light emitting surface is used as a light source. The lens described in Patent Document 2 has an inner central portion and an outer central portion, the central portion has a contour that functions as a collimator lens for light incident from the light emitting surface, and the peripheral portion is on the incident surface side. In this case, the light incident from the light emitting surface is totally reflected on the peripheral surface and then the collimated light is emitted from the emitting surface side.

また、特許文献3には、LEDからの光の方向を変える光学素子が開示されている。特許文献3に記載の光学素子は、LEDからの光の一部を通過させる光軸周りに設けられた開口を備え、光軸に対して±45°程度の範囲に広がって放射されるLEDからの光を、±15°程度の範囲に収束することができる。   Patent Document 3 discloses an optical element that changes the direction of light from an LED. The optical element described in Patent Document 3 includes an opening provided around an optical axis that allows a part of light from the LED to pass through, and is emitted from an LED that is emitted in a range of about ± 45 ° with respect to the optical axis. Can be converged in a range of about ± 15 °.

特開2012−168501JP2012-168501 特開2014−22077JP 2014-22077 A 特開平9−167515JP 9-167515 A

特許文献1に記載の光束制御部材に一例によれば、光軸方向に光度の最大値を示し、半値角が20°程度の配光特性を実現することが可能である。しかしながら、かかる光束制御部材は、微細なフレネル形状の入射領域を必要とするので、精密な加工が必要となるか高価な金型が必要であり、製造コストが高くなるという問題がある。また、入射領域においてLED光源から広い角度で放射される光を受けなくてならないため、ある程度の面積が必要となり、小型化が難しい。   According to an example of the light flux controlling member described in Patent Document 1, it is possible to realize a light distribution characteristic that shows a maximum value of luminous intensity in the optical axis direction and a half-value angle of about 20 °. However, since such a light flux controlling member requires a fine Fresnel-shaped incident region, there is a problem that precise processing is required or an expensive mold is required, and the manufacturing cost is increased. In addition, since light emitted from the LED light source at a wide angle must be received in the incident region, a certain area is required, and downsizing is difficult.

特許文献2に記載のスポットライト装置用のレンズの一例では、半値角が2.95°〜5.68°となる配光特性を実現することができる。しかしながら、出射面において、内側範囲に凸面部が形成され、外側範囲に傾斜面部が形成されているため、レンズ半径の設定にもよるが、スポット照明の被照射面において、凸面部からの中心部コリメート光と傾斜面部からの周辺部コリメート光との境界が明るさの変化点として現れるおそれがある。   In an example of the lens for a spotlight device described in Patent Document 2, it is possible to realize a light distribution characteristic with a half-value angle of 2.95 ° to 5.68 °. However, since the convex surface portion is formed in the inner range and the inclined surface portion is formed in the outer range on the exit surface, depending on the setting of the lens radius, the central portion from the convex portion on the irradiated surface of the spot illumination The boundary between the collimated light and the peripheral collimated light from the inclined surface portion may appear as a brightness change point.

さらに、スポット照明の被照射面において、最も照度が大きくなる中央領域から外縁に向けて明るさを徐々に漸減させて、やわらかな自然な照明としたい用途には不向きである。加えて、光束制御部材が光源を覆うように配置されるため、光の利用効率が低くなるとともに、光源から発生した熱が蓄積し、光束制御部材が高温になるおそれもある。   Furthermore, it is not suitable for applications in which the brightness is gradually reduced from the central region where the illuminance is the highest toward the outer edge on the surface to be illuminated by the spot illumination to provide a soft natural illumination. In addition, since the light flux controlling member is disposed so as to cover the light source, the light use efficiency is lowered, and heat generated from the light source is accumulated, and the light flux controlling member may become high temperature.

一方、特許文献3に記載の光学素子は、光軸周りの部材がくり貫かれた構造であるため、特許文献2に記載のレンズに比べて、熱の蓄積、光の利用効率の問題については改善されている。しかしながら、かかる光学素子は、上面が広く、底面に向けて尻窄まりの形状となっているため、底面側の径に対して上面側の径が比較的大きく、コンパクトに設計できない。また、底面側の開口が小さいので(実施例1では3.2mm)。比較的大きなLEDチップを実装することが難しく、強い光量を必要とする用途に適していない。面発光のLEDを採用できるか、具体的には記載されていない。   On the other hand, the optical element described in Patent Document 3 has a structure in which members around the optical axis are hollowed out. Therefore, compared with the lens described in Patent Document 2, the problem of heat accumulation and light utilization efficiency is as follows. It has been improved. However, such an optical element has a wide upper surface and a shape that is narrowed toward the bottom surface. Therefore, the diameter on the upper surface side is relatively larger than the diameter on the bottom surface side, and the optical element cannot be designed compactly. Further, the opening on the bottom side is small (3.2 mm in Example 1). It is difficult to mount a relatively large LED chip, and it is not suitable for applications requiring a strong light quantity. It is not specifically described whether a surface emitting LED can be used.

本発明は、上記問題に鑑みてなされたものであって、所望の配光特性を得らえる小型の光束制御部材を提供することを目的とする。また、従来よりも簡単に低コストで製造可能な光束制御部材を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a small luminous flux control member capable of obtaining desired light distribution characteristics. It is another object of the present invention to provide a light flux controlling member that can be manufactured more easily and at a lower cost than conventional ones.

前述した課題を解決するため、本発明の光束制御部材は、中心軸に沿って貫通孔を有し、前記貫通孔の一端側に配置された光源から出射された光の配光を制御する光束制御部材であって、前記貫通孔の内径が最小となる部分に位置する光通過部と、前記光束制御部材の内表面の少なくとも一部において、前記光通過部から前記貫通孔の前記一端側に向かって前記貫通孔の内径が拡径された入射領域と、前記内表面の少なくとも一部において、前記光通過部から前記貫通孔の他端側に向かって前記貫通孔の内径が拡径された出射領域と、前記光束制御部材の外表面の少なくとも一部に形成され、前記一端側から前記他端側に向かって外径が拡径する反射領域と、を有し、前記光通過部は、前記中心軸と前記光源の光軸とを一致させた場合に前記光源の中心から出射された光のうち、出射角が光軸を含む所定の範囲内の内側光束を、出射された時の出射角を持ったまま通過させ、前記入射領域は、前記光源の中心から出射された光のうち、出射角が前記所定の範囲よりも大きい外側光束を入射させ、前記反射領域は、前記入射領域から入射した前記外側光束を全反射させ、前記出射領域は、前記反射領域で反射した外側光束を出射し、前記出射領域から出射した外側光束は、前記中心軸にピークを有することを特徴とする。   In order to solve the above-described problems, the light flux controlling member of the present invention has a through hole along the central axis, and controls the light distribution of the light emitted from the light source arranged on one end side of the through hole. A light passing portion located at a portion where the inner diameter of the through hole is minimized, and at least a part of the inner surface of the light flux controlling member, from the light passing portion to the one end side of the through hole. The inner diameter of the through hole is increased from the light passage portion toward the other end side of the through hole in the incident region where the inner diameter of the through hole is increased toward the other end side of the through hole in at least a part of the inner surface. An emission region, and a reflection region formed on at least a part of the outer surface of the light flux controlling member and having an outer diameter increasing from the one end side toward the other end side; When the central axis and the optical axis of the light source coincide with each other, Out of the light emitted from the center of the source, an inner luminous flux having an emission angle within a predetermined range including the optical axis is allowed to pass while having the emission angle at the time of emission, and the incident region is the center of the light source Out of the light emitted from the light, an outer light beam having an emission angle larger than the predetermined range is incident, the reflection region totally reflects the outer light beam incident from the incident region, and the emission region is reflected by the reflection The outer light beam reflected by the region is emitted, and the outer light beam emitted from the emission region has a peak on the central axis.

また、本発明の他の光束制御部材は、中心軸に沿って貫通孔を有し、前記貫通孔の一端側に配置された光源から出射された光の配光を制御する光束制御部材であって、前記貫通孔の内径が最小となる部分に位置する光通過部と、前記光束制御部材の内表面の少なくとも一部において、前記光通過部から前記貫通孔の前記一端側に向かって前記貫通孔の内径が拡径された入射領域と、前記内表面の少なくとも一部において、前記光通過部から前記貫通孔の他端側に向かって前記貫通孔の内径が拡径された出射領域と、前記光束制御部材の外表面の少なくとも一部に形成され、前記一端側から前記他端側に向かって外径が拡径する反射領域と、を有し、前記光通過部は、前記中心軸と前記光源の光軸とを一致させた場合に前記光源の中心から出射された光のうち、出射角が光軸を含む所定の範囲内の内側光束を、出射された時の出射角を持ったまま通過させ、前記入射領域は、前記光源の中心から出射された光のうち、出射角が前記所定の範囲よりも大きい外側光束を入射させ、 前記反射領域は、前記入射領域から入射した前記外側光束を全反射させ、前記出射領域は、前記反射領域で反射した外側光束を出射し、前記出射領域から出射した時の外側光束の出射角が、前記所定の範囲内であることを特徴とする。   Another light flux controlling member of the present invention is a light flux controlling member that has a through hole along the central axis and controls the light distribution of light emitted from a light source disposed on one end side of the through hole. And at least a part of the inner surface of the light flux controlling member at the portion where the inner diameter of the through hole is minimized, and through the light passage from the light passing portion toward the one end side of the through hole. An incident region in which the inner diameter of the hole is increased, and an emission region in which the inner diameter of the through hole is increased from the light passing portion toward the other end side of the through hole in at least a part of the inner surface; A reflection region formed on at least a part of the outer surface of the light flux controlling member and having an outer diameter that increases from the one end side toward the other end side, and the light passage portion includes the central axis Emission from the center of the light source when the optical axis of the light source is matched Out of the emitted light, an inner luminous flux having an emission angle within a predetermined range including the optical axis is allowed to pass while maintaining the emission angle when emitted, and the incident region is light emitted from the center of the light source. Of which the outer luminous flux having an emission angle larger than the predetermined range is incident, the reflecting region totally reflects the outer luminous flux incident from the incident region, and the emitting region is an outer side reflected by the reflecting region. A light beam is emitted, and an emission angle of the outer light beam when the light beam is emitted from the emission region is within the predetermined range.

さらに、上記光束制御部材において、前記出射領域から出射した外側光束は、前記光通過部を通過した内側光束のスポット径の内側に照射されてもよい。また、前記出射領域の少なくとも一部が凹曲面により形成されてもよい。また、前記入射領域は、中心軸を含む断面において直線状に形成されてもよい。また、前記反射領域の少なくとも一部が凸曲面により形成されてもよい。また、前記入射領域よりも前記一端側の内表面の少なくとも一部と、前記反射領域よりも前記一端側の外表面の少なくとも一部とで構成される平面部を有していてもよい。   Furthermore, in the light flux controlling member, the outer light flux emitted from the emission region may be irradiated inside the spot diameter of the inner light flux that has passed through the light passage portion. Further, at least a part of the emission region may be formed by a concave curved surface. The incident area may be formed in a straight line in a cross section including the central axis. Further, at least a part of the reflection region may be formed by a convex curved surface. Moreover, you may have a plane part comprised by at least one part of the inner surface of the said one end side rather than the said incident area | region and at least one part of the outer surface of the said one end side rather than the said reflection area | region.

また、本発明の発光装置は、光源と、上記光束制御部材とを含むものである。また、本発明の照明装置の一つは、かかる発光装置と、前記光束制御部材によって配光が制御された光を受けて、ろうそくの炎を模した配光分布に制御する光学部材とを含むものである。   The light emitting device of the present invention includes a light source and the light flux controlling member. One of the lighting devices of the present invention includes such a light emitting device and an optical member that receives light whose light distribution is controlled by the light flux controlling member and controls the light distribution to simulate a candle flame. It is a waste.

本発明によれば、光軸方向に指向性の高い配光特性を実現できる簡単な構造の光束制御部材を得ることができる。また、かかる光束制御部材は、射出成型により容易に製造することができ、大量に安価で提供することができる。その他の効果については、発明を実施するための形態において述べる。   According to the present invention, it is possible to obtain a light beam control member having a simple structure capable of realizing a light distribution characteristic having high directivity in the optical axis direction. Further, such a light flux controlling member can be easily manufactured by injection molding, and can be provided in large quantities at a low cost. Other effects will be described in the mode for carrying out the invention.

(A)及び(B)は、本発明の光束制御部材の一実施形態の光束制御部材の断面図及び上面図(A) And (B) is sectional drawing and the top view of the light beam control member of one Embodiment of the light beam control member of this invention (A)〜(C)は、内側光束及び外側光束の光路を示す図(A)-(C) are figures which show the optical path of an inner side light beam and an outer side light beam. (A)及び(B)は、実施例1の光束制御部材の断面図及び斜視図(A) And (B) is sectional drawing and perspective view of the light beam control member of Example 1. (A)は光源のみの、(B)は実施例1の配光曲線の計測値を示す図(A) is only a light source, (B) is a figure which shows the measured value of the light distribution curve of Example 1. FIG. (A)は光源のみの、(B)は実施例1の配光曲線の計測値を示す図(A) is only a light source, (B) is a figure which shows the measured value of the light distribution curve of Example 1. FIG. (A)及び(B)は、実施例1の配光特性のシミュレーション結果を示す図(A) And (B) is a figure which shows the simulation result of the light distribution characteristic of Example 1. FIG. (A)は実施例2の光束制御部材の断面図、(B)及び(C)は実施例2の配光特性及び照度分布を示す図、(D)及び(E)は実施例1の配光特性及び照度分布を示す図(A) is a cross-sectional view of the light flux controlling member of Example 2, (B) and (C) are diagrams showing the light distribution characteristics and illuminance distribution of Example 2, and (D) and (E) are the distributions of Example 1. Diagram showing light characteristics and illuminance distribution 実施例3の光束制御部材の断面図Sectional drawing of the light beam control member of Example 3 (A)及び(B)は、実施例4のろうそく風照明装置の点灯状態の写真(A) And (B) is the photograph of the lighting state of the candle-like lighting apparatus of Example 4. (A)及び(B)は、実施例4のろうそく風照明装置の配光曲線の計測値を示す図(A) And (B) is a figure which shows the measured value of the light distribution curve of the candle wind illuminating device of Example 4. FIG. (A)及び(B)は、実施例4のろうそく風照明装置の配光曲線の計測値を示す図(A) And (B) is a figure which shows the measured value of the light distribution curve of the candle wind illuminating device of Example 4. FIG.

図1は、本発明の光束制御部材1の概略構成図を示すものである。図1(A)は、本光束制御部材1の中心軸に沿った断面図が光源10と共に示されている。図1(B)は、本光束制御部材1の上面図である。図1(A)に示すように、光束制御部材1は、中心軸Lに沿って貫通孔を有しており、貫通孔の一端側に配置された光源10から出射された光の配光を制御する。光源10と光束制御部材1とを含む発光装置は、指向性の高い光を供給することができ、照明用を含む様々な用途における光源として利用することができる。以下の説明においては、光束制御部材1の中心軸Lと光源10の光軸とが一致している場合を前提とし、光の出射角(放射角)、配光特性などについては、光源(面光源を含む)から射出される光のうち光軸上の点光源Oからの光について、光軸を基準として規定する。また、本明細書においては、光束制御部材1の中心軸Lに直交する方向の内径を決定する表面を「内表面」と呼び、外径を決定する表面を「外表面」と呼ぶ。さらに、光束制御部材1の中心軸と平行な軸において、光源が配置された方向を「一端側」と呼び、その反対方向を「他端側」と呼ぶ。なお、他端側は、光軸に沿った光の進行方向である。   FIG. 1 shows a schematic configuration diagram of a light flux controlling member 1 of the present invention. FIG. 1A shows a sectional view along the central axis of the light flux controlling member 1 together with the light source 10. FIG. 1B is a top view of the light flux controlling member 1. As shown in FIG. 1A, the light flux controlling member 1 has a through hole along the central axis L, and distributes the light emitted from the light source 10 arranged on one end side of the through hole. Control. The light emitting device including the light source 10 and the light flux controlling member 1 can supply light with high directivity, and can be used as a light source in various applications including illumination. In the following description, it is assumed that the center axis L of the light flux controlling member 1 is coincident with the optical axis of the light source 10, and the light emission angle (radiation angle), light distribution characteristics, etc. Of the light emitted from the light source (including the light source), the light from the point light source O on the optical axis is defined with reference to the optical axis. In the present specification, the surface that determines the inner diameter in the direction orthogonal to the central axis L of the light flux controlling member 1 is referred to as “inner surface”, and the surface that determines the outer diameter is referred to as “outer surface”. Further, the direction in which the light source is arranged on the axis parallel to the central axis of the light flux controlling member 1 is called “one end side”, and the opposite direction is called “the other end side”. The other end side is the traveling direction of light along the optical axis.

光源10としては、光源からの光が比較的広い出射角を有する光源、例えばランバート分布に従った配光状態の光源に適用することが好ましい。光源10としては、例えば面発光型のLED光源を採用することができる。   The light source 10 is preferably applied to a light source in which light from the light source has a relatively wide emission angle, for example, a light source in a light distribution state according to a Lambert distribution. As the light source 10, for example, a surface-emitting LED light source can be used.

本発明の光束制御部材1は、中心軸Lに光軸が一致するように配置された光源10からの光を所望の配光特性を有する光に整形して被照射面20に向けて出射するものであり、光源10からの光のうち比較的射出角が小さい光束(すなわち中心に照射される)については、光束制御部材1の中心軸L周りに設けられた貫通孔の内径が最小となる光通過部Aにおいて、出射された時の出射角を持ったまま通過させ、拡散光として被照射面20の中心から周辺に向けて自然な分布の配光とする。光源10からの光のうち比較的射出角が大きい光束については、光通過部Aよりも一端側に位置する内表面2の一部に形成された入射領域4に入射させた後、光束制御部材内における外表面3の反射領域5で被照射面側に全反射させ、さらに光通過部Aよりも他端側に位置する内表面2の出射領域6で他端側に向けて、中心軸(光軸)Lにピークを有するように出射する。このような光束制御部材によって、中心軸において最も強いピークを有し、中心から周辺に向けて徐々に光量が小さくなる配光を実現できる。   The light flux controlling member 1 of the present invention shapes the light from the light source 10 disposed so that the optical axis coincides with the central axis L into light having a desired light distribution characteristic and emits the light toward the irradiated surface 20. As for the light from the light source 10, the inner diameter of the through-hole provided around the central axis L of the light flux controlling member 1 is minimized for the light flux having a relatively small emission angle (that is, irradiated to the center). In the light passage portion A, the light is passed with the emission angle when it is emitted, and the light is distributed as a natural distribution from the center of the irradiated surface 20 to the periphery as diffused light. Of the light from the light source 10, a light beam having a relatively large emission angle is incident on an incident region 4 formed on a part of the inner surface 2 located on the one end side of the light passage portion A, and then a light beam control member. The inner surface 2 is totally reflected by the reflection region 5 of the outer surface 3 on the inner side, and is further directed toward the other end side by the emission region 6 of the inner surface 2 located on the other end side of the light passing part A. The light is emitted so as to have a peak at (optical axis) L. With such a light flux controlling member, it is possible to realize a light distribution that has the strongest peak in the central axis and gradually decreases in light quantity from the center toward the periphery.

本発明の光束制御部材1は、透光性を有する材料であればよく、例えば、プラスチック、ガラスなどを採用することができる。また、光束制御部材1は、中心軸L周りに回転対称であることが好ましく、特に中心軸Lを中心とした回転体であることが好ましい。図1においては、光束制御部材1の内表面及び外表面は、中心軸Lに垂直な断面において円形である。ただし、必要となる光の配光、使用される照明装置、光学部材の形状等に応じて、種々の形状とすることができ、例えば中心軸Lに垂直な断面形状が多角形、楕円形であってもよい。光束制御部材1は、中心軸Lが光源10の光軸に一致するように配置されることが好ましい。なお、光の出射角θは、光軸L(0°)を基準に時計周りの方向をプラス側、反時計回りの方向をマイナス側とする。   The light flux controlling member 1 of the present invention may be any material having translucency, and for example, plastic, glass or the like can be adopted. The light flux controlling member 1 is preferably rotationally symmetric about the central axis L, and is particularly preferably a rotating body centered on the central axis L. In FIG. 1, the inner surface and the outer surface of the light flux controlling member 1 are circular in a cross section perpendicular to the central axis L. However, depending on the required light distribution, the illuminating device used, the shape of the optical member, etc., various shapes can be used. For example, the cross-sectional shape perpendicular to the central axis L is polygonal or elliptical. There may be. The light flux controlling member 1 is preferably arranged so that the central axis L coincides with the optical axis of the light source 10. With respect to the light emission angle θ, the clockwise direction is the plus side and the counterclockwise direction is the minus side with respect to the optical axis L (0 °).

光束制御部材1には、中心軸Lを取り囲む貫通孔が形成されており、貫通孔の表面が光束制御部材の内表面2となる。貫通孔の中心軸Lに垂直な断面形状は、光束制御部材1の外表面と相似形であることが好ましい。貫通孔の一端側に光源10が配置されるが、光源10は、貫通孔の端部近傍において、貫通孔の内部又は外部に配置される。   The light flux controlling member 1 is formed with a through hole surrounding the central axis L, and the surface of the through hole becomes the inner surface 2 of the light flux controlling member. The cross-sectional shape perpendicular to the central axis L of the through hole is preferably similar to the outer surface of the light flux controlling member 1. The light source 10 is disposed on one end side of the through hole. The light source 10 is disposed inside or outside the through hole in the vicinity of the end of the through hole.

光束制御部材1は、貫通孔の中心軸方向の中間位置において、内径が最小の位置に、中心軸Lの周りに光源10から射出した光の射出角を変更せずに通過させる光通過部Aを有している。また、光束制御部材1は、光通過部Aよりも一端側に位置する内表面2の一部に入射領域Bを有しており、光通過部Aよりも他端側の内表面2の一部に出射領域Dを有している。さらに、光束制御部材1は、外表面3の一部に反射領域Cを有している。なお、光通過部Aを通過する光を「内側光束」と呼び、入射領域Bに入射する光を「外側光束」と呼ぶ。   The light flux controlling member 1 passes through the central axis L of the through hole at a position where the inner diameter is minimum, and passes through the central axis L without changing the emission angle of the light emitted from the light source 10. have. Further, the light flux controlling member 1 has an incident region B on a part of the inner surface 2 located on one end side with respect to the light passage portion A, and one part of the inner surface 2 on the other end side with respect to the light passage portion A. The part has an emission region D. Further, the light flux controlling member 1 has a reflection region C on a part of the outer surface 3. The light passing through the light passage portion A is referred to as “inner light flux”, and the light incident on the incident region B is referred to as “outer light flux”.

図2(A)は、内側光束の光路を示し、図2(B)は、外側光束の光路を示す。図2(C)は、内側光束12と外側光束13とを重ねわせた光束の光路を示す。なお、図2では、説明のため、光源10の発光面における光軸上の仮想的な点光源からの光の光路(光軸に対して左半面分)のみが示されているが、実際には、光源10の面全体から出射された光が光束制御部材1によって配光が制御される。   2A shows the optical path of the inner luminous flux, and FIG. 2B shows the optical path of the outer luminous flux. FIG. 2C shows an optical path of a light beam obtained by superimposing the inner light beam 12 and the outer light beam 13. In FIG. 2, only the optical path of light from the virtual point light source on the optical axis on the light emitting surface of the light source 10 (for the left half surface with respect to the optical axis) is shown for explanation. The light distribution of the light emitted from the entire surface of the light source 10 is controlled by the light flux controlling member 1.

光通過部Aは、図1及び図2(A)、(C)に示すように、光源10からの光11のうち、光軸を含む所定の範囲(−θ2≦θ≦θ2)の出射角の内側光束12を通過させる。内側光束12は、光源10から射出した時の射出角を有しているため、拡散光として被照射面20に照射される。所定の範囲(−θ2≦θ≦θ2)は、光源10から光通過部Aまでの距離、光通過部Aの内径等で変更することができ、必要な距離における被照射面におけるスポット径、光量、配光特性等に応じて適宜設計される。所定の範囲のθ2としては、例えば、15〜45°の範囲であることが好ましく、20〜30°程度であることがさらに好ましい。   As shown in FIG. 1 and FIGS. 2A and 2C, the light passage portion A has an emission angle within a predetermined range (−θ2 ≦ θ ≦ θ2) including the optical axis in the light 11 from the light source 10. The inner luminous flux 12 is allowed to pass through. Since the inner light beam 12 has an emission angle when emitted from the light source 10, the inner light beam 12 is irradiated to the irradiated surface 20 as diffused light. The predetermined range (−θ2 ≦ θ ≦ θ2) can be changed by the distance from the light source 10 to the light passage portion A, the inner diameter of the light passage portion A, and the like, and the spot diameter and light amount on the irradiated surface at a necessary distance. It is designed as appropriate according to the light distribution characteristics and the like. The predetermined range θ2 is, for example, preferably in the range of 15 to 45 °, and more preferably about 20 to 30 °.

光通過部Aは、光源からの光をそのまま通過するため、光の利用効率を高めることができる。特に、不自然な明るさの変化を減らすために、光通過部Aにおいて内径を最小とし、光通過部Aから連続して一端側に入射領域Bを設けることが好ましい。ただし、利用の態様、目的、機能(例えば埃、水分対策、着色、模様等)に応じて、中心軸Lに対して垂直に配置された薄い平板状の透明部材を窓として貫通孔の光通過部Aに設けてもよい。この場合、光通過部Aに設けられた窓は、一端側の表面と他端側の表面とが平行な平面で構成されているため、光源からの所定の範囲(−θ2≦θ≦θ2)の光は、窓に入射することによって一旦屈折するものの、窓から射出する際に、再び元の出射角に戻るので、出射された時の出射角を持ったまま通過させることができる。また、窓に着色したり、半透明又は不透明としたりすることで、照明の色合いや雰囲気を変化させることができる。なお、窓の着色、半透明又は不透明な部分によって、模様、文字、ロゴなどを描いてもよい。   Since the light passing part A passes the light from the light source as it is, the light use efficiency can be improved. In particular, in order to reduce unnatural brightness changes, it is preferable to minimize the inner diameter in the light passage portion A and to provide the incident region B on one end side continuously from the light passage portion A. However, depending on the mode of use, purpose, and function (for example, dust, moisture countermeasures, coloring, pattern, etc.), light passing through the through-hole using a thin flat transparent member arranged perpendicular to the central axis L as a window You may provide in the part A. In this case, since the window provided in the light passage portion A is configured by a plane in which the surface on one end side and the surface on the other end side are parallel, a predetermined range from the light source (−θ2 ≦ θ ≦ θ2). Although the light is once refracted by entering the window, it returns to the original exit angle again when exiting from the window, so that it can pass through with the exit angle when exiting. Further, by coloring the window, making it translucent or opaque, it is possible to change the color and atmosphere of illumination. In addition, you may draw a pattern, a character, a logo, etc. by the coloring of a window, a translucent, or an opaque part.

入射領域Bは、内表面2に形成され、光源10から出射された光11のうち、光通過部Aを通過する所定の範囲(−θ2≦θ≦θ2)の光12よりも大きな出射角(−θ1≦θ≦−θ2、θ2≦θ≦θ1)の外側光束13が入射する領域である(図2(B)参照)。入射領域Bは、入射した外側光束13の大半を外表面3の反射領域Cに向かうように構成されており、反射領域Cの範囲や形状にもよるが、入射領域Bの内径が、光通過部から前記一端側に向かって、徐々に大きくなっていることが好ましい。また、入射領域Bの中心軸を含む断面において、図1に示すように、入射面を直線状とすれば、配光状態を保ちつつ反射領域Cが広がり過ぎないように設計できるので好ましい。さらに、入射面を直線状に構成した場合、光束制御部材の製造に際して、加工や他部材との組付けが容易となる。外側光束13の出射角の外側の範囲±θ1は、入射領域Bの一端側の端部と光源10との位置関係によって決定され、入射領域Bの一端側の端部又は光源の配置によって設計できる。出射角の外側の範囲±θ1としては、光源10から射出される光の出射角の広がりに応じて設定すればよく、例えば、45〜90°の範囲であることが好ましく、55〜80°程度であることがさらに好ましい。   The incident region B is formed on the inner surface 2 and has a larger emission angle (−θ2 ≦ θ ≦ θ2) than the light 12 in a predetermined range (−θ2 ≦ θ ≦ θ2) that passes through the light passage portion A among the light 11 emitted from the light source 10. This is a region where the outer luminous flux 13 of −θ1 ≦ θ ≦ −θ2, θ2 ≦ θ ≦ θ1) is incident (see FIG. 2B). The incident area B is configured so that most of the incident outer light beam 13 is directed to the reflection area C of the outer surface 3. Depending on the range and shape of the reflection area C, the inner diameter of the incident area B is light passing. It is preferable that the diameter gradually increases from the portion toward the one end side. In addition, in the cross section including the central axis of the incident region B, it is preferable to make the incident surface linear as shown in FIG. 1, since the reflecting region C can be designed so as not to expand too much while maintaining the light distribution state. Furthermore, when the incident surface is configured in a straight line, processing and assembly with other members are facilitated when manufacturing the light flux controlling member. The outside range ± θ1 of the emission angle of the outer light beam 13 is determined by the positional relationship between the end of one side of the incident area B and the light source 10, and can be designed by the end of one side of the incident area B or the arrangement of the light sources. . The range ± θ1 outside the emission angle may be set according to the spread of the emission angle of the light emitted from the light source 10, and is preferably in the range of 45 to 90 °, for example, about 55 to 80 °. More preferably.

反射領域Cは、外表面3に形成され、入射領域Bから入射した外側光束13を出射領域Dに向けて全反射させる領域である(図2(B)参照)。反射領域Cは、入射領域Bから入射した外側光束の全てについて全反射することが好ましく、さらに出射領域Dにおいて他端側に出射されずに反射した一部の光を出射領域Dに向けて反射することが好ましい。反射領域Cは、後述する平面部Eを除く外表面全部であってもよいし、その一部であってもよい。反射領域Cは、一端側から他端側に向かって、その外径が徐々に大きくなっていることが好ましく、反射領域Cの少なくとも一部が凸曲面により形成されていてもよい。   The reflection region C is a region that is formed on the outer surface 3 and totally reflects the outer light beam 13 incident from the incident region B toward the output region D (see FIG. 2B). It is preferable that the reflection area C totally reflects all of the outer light flux incident from the incident area B, and further reflects a part of the light reflected without being emitted to the other end side in the emission area D toward the emission area D. It is preferable to do. The reflection region C may be the entire outer surface except for the flat portion E described later, or may be a part thereof. The reflection region C preferably has an outer diameter gradually increasing from one end side to the other end side, and at least a part of the reflection region C may be formed by a convex curved surface.

出射領域Dは、内表面2に形成され、外側光束13の少なくとも一部を屈折させて被照射面に向けて出射する領域である(図2(B)参照)。出射領域Dから出射した外側光束13の出射角は、内側光束12の出射角の範囲内(−θ2≦θ≦θ2)であることが好ましい。また、出射領域Dから出射した外側光束は、中心軸にピークを有する配光状態であることが好ましい。さらに、出射領域Dから出射した外側光束は、光通過部Aを通過した内側光束のスポット径の内側に照射されることが好ましい(図2(C)参照)。出射領域Dは、一端側から他端側に向かって、その内径が徐々に大きくなっていることが好ましく、他端側の端部における出射領域Dの内径(出射領域Dでの最大内径)は、一端側の端部における入射領域Bの内径(入射領域Bでの最大内径)よりも大きく設計されることが好ましい。出射領域Dの少なくとも一部は、凹曲面により形成されていることが好ましい。出射領域Dを凹曲面で形成すると、平面で形成した場合に比べて、反射領域Cで反射された外側光束を中心軸L側へ大きく屈性させることができ、被照射面20における照射点Pへ向けて効率よく外側光束を収束することができる。ただし、出射領域Dの中心軸を含む断面において、図7(A)に示すように、出射領域Dを直線状とすれば、多少効率は劣るが、光束制御部材の製造に際して、加工や他部材との組付けが容易となる。   The emission region D is a region that is formed on the inner surface 2 and refracts at least a part of the outer light flux 13 and emits it toward the irradiated surface (see FIG. 2B). The emission angle of the outer light beam 13 emitted from the emission region D is preferably within the range of the emission angle of the inner light beam 12 (−θ2 ≦ θ ≦ θ2). Moreover, it is preferable that the outer light beam emitted from the emission region D is in a light distribution state having a peak on the central axis. Furthermore, it is preferable that the outer light beam emitted from the emission region D is irradiated inside the spot diameter of the inner light beam that has passed through the light passage portion A (see FIG. 2C). The exit area D preferably has an inner diameter that gradually increases from one end to the other end, and the inner diameter of the exit area D at the end on the other end side (the maximum inner diameter in the exit area D) is It is preferable that the diameter is designed to be larger than the inner diameter of the incident area B at the end on one end side (the maximum inner diameter in the incident area B). It is preferable that at least a part of the emission region D is formed by a concave curved surface. When the emission region D is formed with a concave curved surface, the outer light flux reflected by the reflection region C can be greatly bent toward the central axis L side as compared with the case where it is formed with a flat surface, and the irradiation point P on the irradiated surface 20 The outer luminous flux can be converged efficiently toward the. However, in the cross section including the central axis of the emission region D, as shown in FIG. 7A, if the emission region D is linear, the efficiency is somewhat inferior. And easy assembly.

さらに、光束制御部材1は、入射領域Bよりも一端側の内表面2の少なくとも一部と、反射領域Cよりも一端側の外表面3の少なくとも一部とで構成される平面部Eを有していてもよい。平面部Eは、外側光束よりもさらに大きい出射角の光の一部を内表面から入射し、それを外表面から横方向に射出させる。平面部Eの中心軸に沿った断面は、内表面も外表面も直線状であり、内表面と外表面とが平行な円筒形状であることが好ましいが、平面部の内表面に入射した光を外表面から出射できればよく、内表面又は/及び外表面が傾斜していてもよい。平面部Eを設けることにより、光源の周囲を弱く照らすことができ、強い指向性を持たせた光と併せて、多彩な照明を行うことができる。   Further, the light flux controlling member 1 has a flat portion E constituted by at least a part of the inner surface 2 on one end side from the incident area B and at least a part of the outer surface 3 on the one end side from the reflection area C. You may do it. The flat portion E allows a part of light having an emission angle larger than that of the outer light flux to be incident from the inner surface and to be emitted laterally from the outer surface. The cross section along the central axis of the plane part E is linear in both the inner surface and the outer surface, and preferably has a cylindrical shape in which the inner surface and the outer surface are parallel, but the light incident on the inner surface of the plane part Can be emitted from the outer surface, and the inner surface and / or the outer surface may be inclined. By providing the flat surface portion E, the surroundings of the light source can be weakly illuminated, and various illuminations can be performed together with the light having strong directivity.

このように、本光束制御部材1によれば、光源10から射出された光11のうち、出射角が−θ2≦θ≦θ2の範囲の内側光束12は、光通過部Aを通過し、わずかに拡散する光として被照射面20に照射され、出射角が−θ1≦θ≦−θ2及びθ2≦θ≦θ1の範囲の外側光束13は、入射領域Bから部材本体に入射し、反射領域Cで全反射し、出射領域Dから被照射面20に向けて出射する。なお、照明の利用態様によっては、外側光束13の一部を、被照射面20に向けずに、外表面3の一部から側方へ向けて出射するように構成してもよい。   As described above, according to the light flux controlling member 1, the light flux 11 emitted from the light source 10 has the inner light flux 12 having an emission angle in the range of −θ2 ≦ θ ≦ θ2 that passes through the light passage portion A and is slightly. The outer light beam 13 having an emission angle in the range of −θ1 ≦ θ ≦ −θ2 and θ2 ≦ θ ≦ θ1 is incident on the member body from the incident region B, and is reflected on the reflection region C. And totally emitted from the emission region D toward the irradiated surface 20. Note that, depending on the use mode of illumination, a part of the outer light beam 13 may be emitted from a part of the outer surface 3 toward the side without being directed toward the irradiated surface 20.

本発明の光束制御部材では、光通過部Aの径が入射領域Bの内径や出射領域Dの内径よりも小さくなるように構成されているので、コンパクトに設計することができる。また、本発明の光束制御部材は、被照射面におけるスポット径、配光特性について種々設定することができるが、例えば、光源からの距離hが300mmの被照射面20において、100〜200mmのスポット径で、中心軸に最も強いピークを有し、半値角が10〜30°の範囲の配光特性の光に成形することができる。   In the light flux controlling member of the present invention, since the diameter of the light passage portion A is configured to be smaller than the inner diameter of the incident area B and the inner diameter of the emission area D, it can be designed compactly. In addition, the light flux controlling member of the present invention can be variously set with respect to the spot diameter and light distribution characteristics on the irradiated surface. For example, on the irradiated surface 20 whose distance h from the light source is 300 mm, the spot of 100 to 200 mm is used. It can be shaped into light with a light distribution characteristic having a strongest peak in the central axis and a half-value angle in the range of 10 to 30 °.

また、光束制御部材の光通過部Aとして、中心軸方向に貫通した開口とすることにより、内側光束が光束制御部材の材料によって減衰せず、全体として光の利用効率を向上させることができる。さらに、光源が開口によって開放されているので、放熱効果が期待できる。   Further, by forming an opening penetrating in the central axis direction as the light passage portion A of the light flux controlling member, the inner light flux is not attenuated by the material of the light flux controlling member, and the light utilization efficiency as a whole can be improved. Furthermore, since the light source is opened by the opening, a heat dissipation effect can be expected.

[実施例1]
図3(A)及び(B)は、各々、光束制御部材1として作製した盃形状のレンズの断面図及び斜視図である。レンズの高さは6.8mmであり、最大外径は7.8mmと非常に小型にすることができた。底面側の開口は3.2mmである。光通過部Aは、内径が最も狭くなる部分であり、2.7mmであり、光軸から出射角±21.5°の範囲の光を内側光束として通過させる。入射領域Bは、出射角+21.5°〜+60°及び−21.5°〜−60°の範囲の光を外側光束として入射させ、外側光束は凸曲面を有する反射領域Cによって全反射され、凹曲面を有する出射領域Dから中心軸においてピークを有するように出射される。また、レンズの一端側には、平面部Eを有している。
[Example 1]
FIGS. 3A and 3B are a cross-sectional view and a perspective view, respectively, of a bowl-shaped lens manufactured as the light flux controlling member 1. The height of the lens was 6.8 mm, and the maximum outer diameter was 7.8 mm, which was very small. The opening on the bottom side is 3.2 mm. The light passage portion A is a portion where the inner diameter is the narrowest, is 2.7 mm, and allows light in the range of the emission angle ± 21.5 ° from the optical axis to pass as an inner light flux. In the incident area B, light in the range of the emission angles + 21.5 ° to + 60 ° and −21.5 ° to −60 ° is incident as an outer light flux, and the outer light flux is totally reflected by the reflection area C having a convex curved surface, The light is emitted from the emission region D having a concave curved surface so as to have a peak in the central axis. Further, a flat surface portion E is provided on one end side of the lens.

図4(A)は、光束制御部材を使用しない場合のLED光源10の配光曲線の計測値であり、図4(B)は、図3の光束制御部材1を使用した場合の配光曲線の計測値である。LED光源10では、0°方向に14.90cdの光度を有するのに対し、本光束制御部材1を用いた場合は、0°方向に129.64cdのピークを有する指向性の高い配光を実現できた。   4A shows measured values of the light distribution curve of the LED light source 10 when the light beam control member is not used, and FIG. 4B shows the light distribution curve when the light beam control member 1 of FIG. 3 is used. Is the measured value. The LED light source 10 has a luminous intensity of 14.90 cd in the 0 ° direction, while the light flux controlling member 1 achieves a highly directional light distribution having a peak of 129.64 cd in the 0 ° direction. did it.

図5(A)及び(B)は、それぞれ図4(A)及び(B)とは表示の仕方を変えたLED光源及び光束制御部材の配光曲線の計測値であり、横軸が光源を中心とした放射角(°)であり、縦軸は、放射角度ごとの光の光度(cd)である。図5に示すように、LED光源10から出射した光は、全光束が44.2lm、半値角が120°(±60°)であるのに対して、光束制御部材1を使用した場合では、全光束が40.5lmと若干減衰したものの光利用効率92%を実現し、半値角20°(±10°)という指向性が高く、光軸にピークを有する配光に制御することができた。なお、図5(B)において、±60°〜75°の範囲において、平面部Eを通じて外側に照射した光も観察されている。   5 (A) and 5 (B) are the measured values of the light distribution curves of the LED light source and the light flux controlling member in which the display method is changed, respectively, and FIGS. 4 (A) and 4 (B) are the horizontal axes. The emission angle (°) is the center, and the vertical axis is the light intensity (cd) of each emission angle. As shown in FIG. 5, the light emitted from the LED light source 10 has a total luminous flux of 44.2 lm and a half-value angle of 120 ° (± 60 °), whereas when the luminous flux control member 1 is used, Although the total luminous flux was slightly attenuated to 40.5 lm, it achieved a light utilization efficiency of 92%, a high directivity of a half-value angle of 20 ° (± 10 °), and a light distribution with a peak on the optical axis could be controlled. . In addition, in FIG. 5B, the light irradiated outside through the plane part E is also observed in the range of ± 60 ° to 75 °.

図6(A)及び(B)は、外側光束の配光状態を確認するため、光束制御部材の光通過部を遮光した場合の配光特性と被照射面の照度分布をシミュレーションした結果(実線)である。図6(A)は、光源を中心とした放射角(°)を横軸、放射角度ごとの光の光度(cd)を縦軸で表示し、図6(B)は、光源からの距離h=300mmの被照射面における照度分布(横軸:位置(mm)、縦軸:照度(lx))である。図6(A)及び(B)において、一点鎖線は光通過部を遮光していない場合(内側光束を含む)の配光特性のシミュレーション結果である。なお、図6(A)の破線は光源の配光である。図6に示すように、外側光束は、半値角20°(±10°)という指向性が高く、光軸にピークを有する配光に制御されている。また、一点鎖線で示すように、内側光束を含む場合には、ピークが高くなるとともに、若干スポットが広がっており、内側光束のスポット内に外側光束を集光させていることが確認された。   FIGS. 6A and 6B show results of simulating the light distribution characteristics and the illuminance distribution on the irradiated surface when the light passing portion of the light beam control member is shielded in order to confirm the light distribution state of the outer light beam (solid line). ). 6A shows the radiation angle (°) centered on the light source on the horizontal axis and the luminous intensity (cd) of the light for each radiation angle on the vertical axis, and FIG. 6B shows the distance h from the light source. = Illuminance distribution (horizontal axis: position (mm), vertical axis: illuminance (lx)) on the irradiated surface of 300 mm. 6 (A) and 6 (B), the alternate long and short dash line is a simulation result of the light distribution characteristics when the light passage portion is not shielded (including the inner light flux). In addition, the broken line of FIG. 6 (A) is light distribution of a light source. As shown in FIG. 6, the outer light flux has a high directivity of a half-value angle of 20 ° (± 10 °) and is controlled to have a light distribution having a peak on the optical axis. Further, as indicated by the alternate long and short dash line, it was confirmed that when the inner luminous flux was included, the peak was increased and the spot was slightly spread, and the outer luminous flux was condensed in the spot of the inner luminous flux.

[実施例2]
実施例2は、図7(A)に示すように、図3の光束制御部材において、出射領域を凹曲面ではなく、他端側に向かって中心軸を含む断面が直線状に内径が拡径する光束制御部材である。図7(B)は、実施例2の配光特性を示し、図7(C)は、光源から300mm離れた位置の被照射面における照度分布を示すものである。また、図7(D)は実施例1の同様な配光特性を示し、図7(E)は、光源から300mm離れた位置の被照射面における照度分布を示すものである。図7(B)及び(D)は、光度を比較するため、光度のスケールを合わせて配光特性を極座標で示している。図7(C)に示すように、実施例2では、最大照度が1700lxであり、図7(E)に示す実施例1の最大照度2150lxに比べ低くなっているが、出射領域から外側光束を中心軸近辺に集光させて出射しており、所望の配光特性を得ることができている。さらに、図7(A)に示すように、出射領域の中心軸を含む断面が直線状であるので、加工等が容易であり、設計も容易である。
[実施例3]
図8は、光束制御部材1として作製した実施例3のレンズの断面図である。レンズの高さは10mmであり、最大外径は7.7mmと非常に小型にすることができた。光通過部Aは、内径が最も狭くなる部分であり、光軸から出射角±30°の範囲の光を内側光束として通過させる。入射領域Bは、出射角+30°〜+60°及び−30°〜−60°の範囲の光を外側光束として入射させ、外側光束は2段階の凸曲面を有する反射領域Cによって全反射され、凹曲面を有する出射領域Dから中心軸においてピークを有するように出射される。なお、実施例3においては、平面部Eは設けていない。
[Example 2]
In Example 2, as shown in FIG. 7A, in the light flux controlling member of FIG. 3, the exit region is not a concave curved surface, and the cross section including the central axis is linear toward the other end, and the inner diameter is increased. This is a light flux controlling member. FIG. 7B shows the light distribution characteristics of Example 2, and FIG. 7C shows the illuminance distribution on the irradiated surface at a position 300 mm away from the light source. FIG. 7D shows the same light distribution characteristic as in Example 1, and FIG. 7E shows the illuminance distribution on the irradiated surface at a position 300 mm away from the light source. FIGS. 7B and 7D show the light distribution characteristics in polar coordinates by adjusting the scale of the luminous intensity in order to compare the luminous intensity. As shown in FIG. 7C, in Example 2, the maximum illuminance is 1700 lx, which is lower than the maximum illuminance 2150 lx of Example 1 shown in FIG. The light is condensed and emitted in the vicinity of the central axis, and desired light distribution characteristics can be obtained. Further, as shown in FIG. 7A, since the cross section including the central axis of the emission region is linear, processing and the like are easy and design is easy.
[Example 3]
FIG. 8 is a cross-sectional view of the lens of Example 3 manufactured as the light flux controlling member 1. The height of the lens was 10 mm, and the maximum outer diameter was 7.7 mm. The light passage portion A is the portion where the inner diameter is the narrowest, and allows light in the range of an emission angle of ± 30 ° from the optical axis to pass as an inner light flux. In the incident area B, light in the range of emission angles + 30 ° to + 60 ° and −30 ° to −60 ° is incident as an outer light flux, and the outer light flux is totally reflected by the reflection area C having a two-stage convex curved surface, and is concave. The light is emitted from the emission region D having a curved surface so as to have a peak in the central axis. In Example 3, the plane portion E is not provided.

[実施例4]
本発明の光束制御部材は、光軸方向への強いピークを有し、半値角20°程度に指向性の高い配光特性を実現できるとともに、極めて小型に構成することができる。このため、種々の照明の用途に利用できるが、例えば、ろうそくの炎を模した照明装置用のレンズに好適である。ろうそく風照明装置は、炎を模した発光状態とするため、炎を模した形状の光学部材を利用することがあり、光学部材の中心付近に高輝度の内炎領域を形成し、その周囲に淡い明るさの外縁領域を形成することで、ろうそくの炎に近い視覚効果を実現したものである。ろくそく風照明装置には指向性の高い光源が適するが、本光束制御部材を組み合わせることにより、出射角の配光分布が広い面発光型のLED光源も採用できる。本例では、ろうそく風照明装置の光源に面発光型のLED光源と本光束制御部材を適用した。
[Example 4]
The light flux controlling member of the present invention has a strong peak in the optical axis direction, can realize a light distribution characteristic having a high directivity at a half-value angle of about 20 °, and can be configured extremely small. For this reason, although it can utilize for the use of various illuminations, it is suitable for the lens for lighting devices which imitated the flame of the candle, for example. A candle-like lighting device may use an optical member simulating a flame in order to make it emit light that simulates a flame. A high-luminance internal flame region is formed near the center of the optical member, and around it. By creating an outer edge region with a light brightness, a visual effect close to that of a candle flame is achieved. A light source with high directivity is suitable for the cork wind illuminating device, but a surface-emitting LED light source having a wide light distribution of emission angles can also be adopted by combining this light flux controlling member. In this example, the surface-emitting LED light source and the present light flux controlling member are applied as the light source of the candle-like lighting device.

図9(A)は、面発光型のLED光源のみを用いたろうそく風照明装置であり、図9(B)は、面発光型のLED光源10と実施例1の光束制御部材1とを組み合わせて用いたろうそく風照明装置を点灯した状態の写真である。   FIG. 9A shows a candle illuminator using only a surface-emitting LED light source, and FIG. 9B shows a combination of the surface-emitting LED light source 10 and the light flux controlling member 1 of the first embodiment. It is the photograph of the state which lighted the candle-like illuminating device used.

図10(A)及び(B)は、それぞれ図9(A)及び(B)に示したろうそく照明装置の配光曲線を示す図であり、図11(A)及び(B)は、それぞれ図10(A)及び(B)とは表示の仕方を変えたLED光源及び光束制御部材の配光曲線の計測値であり、横軸が光源を中心とした放射角(°)であり、縦軸は、放射角度ごとの光の光度(cd)である。   FIGS. 10A and 10B are diagrams showing light distribution curves of the candle lighting device shown in FIGS. 9A and 9B, respectively. FIGS. 11A and 11B are diagrams respectively. 10 (A) and (B) are measured values of the light distribution curve of the LED light source and the light flux controlling member with different display methods, the horizontal axis is the radiation angle (°) centered on the light source, and the vertical axis Is the luminous intensity (cd) of light at each radiation angle.

図9(A)のLED光源10のみ場合では、図10(A)及び図11(A)に示すように、0°方向の光度が約6cdであり、±30°方向の2つのピークにおいて約17cdであるのに対し、図9(B)の本光束制御部材1を用いた場合では、図10(B)及び図11(B)に示すように、0°方向の光度は約7.4cdに向上した一方で、ピークの位置が±20°付近に移動し、光度も約13cdとなった。このように、本光束制御部材1によって、図10(B)に示すろうそく照明装置の内側カバーの先端部分において高輝度の領域(内炎領域)を得ることができ、ろうそくの炎の配光により近づけることができた。   In the case of only the LED light source 10 of FIG. 9 (A), as shown in FIGS. 10 (A) and 11 (A), the luminous intensity in the 0 ° direction is about 6 cd, and about 2 peaks in the ± 30 ° direction. In contrast, when the light flux controlling member 1 shown in FIG. 9B is used, the luminous intensity in the 0 ° direction is about 7.4 cd as shown in FIGS. 10B and 11B. On the other hand, the peak position moved to around ± 20 ° and the luminous intensity was about 13 cd. In this way, the luminous flux control member 1 can obtain a high-luminance region (inner flame region) at the tip of the inner cover of the candle lighting device shown in FIG. I was able to get closer.

1 光束制御部材
2 内表面
3 外表面
A 光通過部
B 入射領域
C 反射領域
D 出射領域
10 光源
20 被照射面
DESCRIPTION OF SYMBOLS 1 Light flux control member 2 Inner surface 3 Outer surface A Light passage part B Incident area C Reflective area D Output area 10 Light source 20 Irradiation surface

Claims (9)

中心軸に沿って貫通孔を有し、前記貫通孔の一端側に配置された光源から出射された光の配光を制御する光束制御部材であって、
前記貫通孔の内径が最小となる部分に位置する光通過部と、
前記光束制御部材の内表面の少なくとも一部において、前記光通過部から前記貫通孔の前記一端側に向かって前記貫通孔の内径が拡径された入射領域と、
前記内表面の少なくとも一部において、前記光通過部から前記貫通孔の他端側に向かって前記貫通孔の内径が拡径された出射領域と、
前記光束制御部材の外表面の少なくとも一部に形成され、前記一端側から前記他端側に向かって外径が拡径する反射領域と、を有し、
前記光通過部は、前記中心軸と前記光源の光軸とを一致させた場合に前記光源の中心から出射された光のうち、出射角が光軸を含む所定の範囲内の内側光束を、出射された時の出射角を持ったまま通過させ、
前記入射領域は、前記光源の中心から出射された光のうち、出射角が前記所定の範囲よりも大きい外側光束を入射させ、
前記反射領域は、前記入射領域から入射した前記外側光束を全反射させ、
前記出射領域は、前記反射領域で反射した外側光束を出射し、
前記出射領域から出射した外側光束は、前記中心軸にピークを有することを特徴とする光束制御部材。
A light flux controlling member that has a through hole along a central axis and controls light distribution of light emitted from a light source disposed on one end side of the through hole,
A light passage portion located in a portion where the inner diameter of the through hole is minimized;
In at least a part of the inner surface of the light flux controlling member, an incident region in which an inner diameter of the through hole is increased from the light passage part toward the one end side of the through hole,
In at least a part of the inner surface, an emission region in which the inner diameter of the through hole is increased from the light passage part toward the other end side of the through hole;
A reflection region that is formed on at least a part of the outer surface of the light flux controlling member and whose outer diameter increases from the one end side toward the other end side;
The light passing portion includes an inner luminous flux within a predetermined range in which an emission angle includes the optical axis, out of light emitted from the center of the light source when the central axis and the optical axis of the light source coincide with each other. Let it pass with the exit angle when exiting,
The incident region is a light beam emitted from the center of the light source, the outer luminous flux having an emission angle larger than the predetermined range is incident,
The reflective region totally reflects the outer light flux incident from the incident region,
The emission region emits an outer light flux reflected by the reflection region,
The light flux controlling member, wherein the outer light flux emitted from the emission region has a peak at the central axis.
中心軸に沿って貫通孔を有し、前記貫通孔の一端側に配置された光源から出射された光の配光を制御する光束制御部材であって、
前記貫通孔の内径が最小となる部分に位置する光通過部と、
前記光束制御部材の内表面の少なくとも一部において、前記光通過部から前記貫通孔の前記一端側に向かって前記貫通孔の内径が拡径された入射領域と、
前記内表面の少なくとも一部において、前記光通過部から前記貫通孔の他端側に向かって前記貫通孔の内径が拡径された出射領域と、
前記光束制御部材の外表面の少なくとも一部に形成され、前記一端側から前記他端側に向かって外径が拡径する反射領域と、を有し、
前記光通過部は、前記中心軸と前記光源の光軸とを一致させた場合に前記光源の中心から出射された光のうち、出射角が光軸を含む所定の範囲内の内側光束を、出射された時の出射角を持ったまま通過させ、
前記入射領域は、前記光源の中心から出射された光のうち、出射角が前記所定の範囲よりも大きい外側光束を入射させ、
前記反射領域は、前記入射領域から入射した前記外側光束を全反射させ、
前記出射領域は、前記反射領域で反射した外側光束を出射し、
前記出射領域から出射した時の外側光束の出射角が、前記所定の範囲内であることを特徴とする光束制御部材。
A light flux controlling member that has a through hole along a central axis and controls light distribution of light emitted from a light source disposed on one end side of the through hole,
A light passage portion located in a portion where the inner diameter of the through hole is minimized;
In at least a part of the inner surface of the light flux controlling member, an incident region in which an inner diameter of the through hole is increased from the light passage part toward the one end side of the through hole,
In at least a part of the inner surface, an emission region in which the inner diameter of the through hole is increased from the light passage part toward the other end side of the through hole;
A reflection region that is formed on at least a part of the outer surface of the light flux controlling member and whose outer diameter increases from the one end side toward the other end side;
The light passing portion includes an inner luminous flux within a predetermined range in which an emission angle includes the optical axis, out of light emitted from the center of the light source when the central axis and the optical axis of the light source coincide with each other. Let it pass with the exit angle when exiting,
The incident region is a light beam emitted from the center of the light source, the outer luminous flux having an emission angle larger than the predetermined range is incident,
The reflective region totally reflects the outer light flux incident from the incident region,
The emission region emits an outer light flux reflected by the reflection region,
The light flux controlling member, wherein an outgoing angle of the outer light flux when emitted from the emission region is within the predetermined range.
前記出射領域から出射した外側光束は、前記光通過部を通過した内側光束のスポット径の内側に照射されることを特徴とする請求項1又は2に記載の光束制御部材。   3. The light flux controlling member according to claim 1, wherein the outer light flux emitted from the emission region is irradiated inside the spot diameter of the inner light flux that has passed through the light passage portion. 前記出射領域の少なくとも一部が凹曲面により形成されていることを特徴とする請求項1乃至3の何れか1項に記載の光束制御部材。   The light flux controlling member according to claim 1, wherein at least a part of the emission region is formed by a concave curved surface. 前記入射領域は、中心軸を含む断面において直線状に形成されることを特徴とする請求項1乃至4の何れか1項に記載の光束制御部材。   5. The light flux controlling member according to claim 1, wherein the incident region is formed linearly in a cross section including a central axis. 前記反射領域の少なくとも一部が凸曲面により形成されていることを特徴とする請求項1乃至5の何れか1項に記載の光束制御部材。   The light flux controlling member according to claim 1, wherein at least a part of the reflection region is formed by a convex curved surface. 前記入射領域よりも前記一端側の内表面の少なくとも一部と、前記反射領域よりも前記一端側の外表面の少なくとも一部とで構成される平面部を有することを特徴とする請求項1乃至6の何れか1項に記載の光束制御部材。   2. A flat portion constituted by at least a part of an inner surface on the one end side with respect to the incident region and at least a part of the outer surface on the one end side with respect to the reflection region. The light flux controlling member according to any one of 6. 光源と、請求項1乃至7に記載の光束制御部材とを含む発光装置。   A light emitting device including a light source and the light flux controlling member according to claim 1. 請求項8に記載の発光装置と、前記光束制御部材によって配光が制御された光を受けて、ろうそくの炎を模した配光分布に制御する光学部材とを含むことを特徴とする照明装置。
9. A lighting device comprising: the light-emitting device according to claim 8; and an optical member that receives light whose light distribution is controlled by the light flux controlling member and controls the light distribution to simulate a candle flame. .
JP2014143320A 2014-07-11 2014-07-11 Luminous flux control member, light emitting device, and illumination device Expired - Fee Related JP6304883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014143320A JP6304883B2 (en) 2014-07-11 2014-07-11 Luminous flux control member, light emitting device, and illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014143320A JP6304883B2 (en) 2014-07-11 2014-07-11 Luminous flux control member, light emitting device, and illumination device

Publications (2)

Publication Number Publication Date
JP2016018202A JP2016018202A (en) 2016-02-01
JP6304883B2 true JP6304883B2 (en) 2018-04-04

Family

ID=55233436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014143320A Expired - Fee Related JP6304883B2 (en) 2014-07-11 2014-07-11 Luminous flux control member, light emitting device, and illumination device

Country Status (1)

Country Link
JP (1) JP6304883B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112539361B (en) * 2020-12-09 2022-12-27 长春希达电子技术有限公司 High-uniformity blackboard lamp lens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138439A (en) * 1990-09-29 1992-05-12 Canon Inc Illuminator
US5592578A (en) * 1995-11-01 1997-01-07 Hewlett-Packard Company Peripheral optical element for redirecting light from an LED
US20080198604A1 (en) * 2007-02-20 2008-08-21 Sekonix Co., Ltd. Lighting apparatus using filter and condenser for led illumination
JP5547697B2 (en) * 2011-08-02 2014-07-16 トキコーポレーション株式会社 Light emitting device and lighting device
JP5952131B2 (en) * 2012-08-17 2016-07-13 日東光学株式会社 Light emitting device

Also Published As

Publication number Publication date
JP2016018202A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
JP6091789B2 (en) Luminous flux control member, light emitting device, and illumination device
CN107614964B (en) Light flux controlling member, light emitting device, and lighting device
JP4436396B2 (en) Lighting module, light source unit, and lighting fixture
KR101490065B1 (en) Lighting apparatus
JP5620285B2 (en) Luminous flux control member, light emitting device including the luminous flux control member, and illumination device including the luminous device
JP5547697B2 (en) Light emitting device and lighting device
JP2012209049A (en) Led lighting device and lens
JP6689590B2 (en) Light flux control member, light emitting device, and lighting device
JP6304883B2 (en) Luminous flux control member, light emitting device, and illumination device
JP6618074B2 (en) Light emitting device
WO2017002723A1 (en) Light flux control member, light-emitting device and illumination device
JP6290040B2 (en) Luminous flux control member, light emitting device, and illumination device
JP2014102973A (en) Lighting device
JPWO2012042833A1 (en) Light source device, light source lens, and illumination device
KR101191406B1 (en) Led lamp device with distribution pattern of luminous intensity of incandescent lamp
JP2009259448A (en) Lighting module, light source unit, and luminaire
JP7447618B2 (en) floodlight
JP7424254B2 (en) floodlight
TWI680333B (en) Light source device and light source system thereof
WO2016181789A1 (en) Light beam control member, light-emitting device, and illumination device
JP5828604B2 (en) Lighting device
JP5935996B2 (en) Lighting device
JP5820365B2 (en) Light emitting device and light irradiation device
US10072821B2 (en) Light flux controlling member and light-emitting device
JP6345539B2 (en) Luminous flux control member and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180305

R150 Certificate of patent or registration of utility model

Ref document number: 6304883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees