JP6303512B2 - Method and apparatus for treating 1,4-dioxane-containing wastewater - Google Patents

Method and apparatus for treating 1,4-dioxane-containing wastewater Download PDF

Info

Publication number
JP6303512B2
JP6303512B2 JP2014002799A JP2014002799A JP6303512B2 JP 6303512 B2 JP6303512 B2 JP 6303512B2 JP 2014002799 A JP2014002799 A JP 2014002799A JP 2014002799 A JP2014002799 A JP 2014002799A JP 6303512 B2 JP6303512 B2 JP 6303512B2
Authority
JP
Japan
Prior art keywords
dioxane
anaerobic
tank
treatment
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014002799A
Other languages
Japanese (ja)
Other versions
JP2014213320A (en
Inventor
長武 高瀬
長武 高瀬
哲文 渡辺
哲文 渡辺
ユン チュン ゼン
ユン チュン ゼン
シャン シュク チン
シャン シュク チン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Publication of JP2014213320A publication Critical patent/JP2014213320A/en
Application granted granted Critical
Publication of JP6303512B2 publication Critical patent/JP6303512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2846Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

本発明は1,4‐ジオキサン含有廃水の処理方法及びその装置に関するものであり、詳細には、廃水に1,4‐ジオキサンを嫌気性生物学的処理と好気性生物学的処理により除去するとともに、高濃度有機物を除去しながらバイオガス(メタンガス)エネルギーを生産する1,4‐ジオキサン含有廃水の処理方法及びその処理装置に関する。   The present invention relates to a method and apparatus for treating 1,4-dioxane-containing wastewater, and in particular, removes 1,4-dioxane from wastewater by anaerobic biological treatment and aerobic biological treatment. The present invention relates to a treatment method for 1,4-dioxane-containing wastewater that produces biogas (methane gas) energy while removing high-concentration organic substances, and a treatment apparatus therefor.

日本における1,4‐ジオキサンの規制は、水質汚濁物質防止法施行令の一部を改正する政令が公布され、1,4‐ジオキサン、塩化ビニルモノマー、1,2‐ジクロロエチレンがカドニウムその他の人の健康に係る被害を生じるおそれがある物質(有害物質)として追加された。1,4‐ジオキサンの排水基準値は0.5mg/Lである(平成24年5月25日施行)。   The regulation of 1,4-dioxane in Japan has been promulgated by a government ordinance that amends part of the Enforcement Ordinance of the Water Pollutant Prevention Law, and 1,4-dioxane, vinyl chloride monomer, 1,2-dichloroethylene are cadmium and others. Added as a substance (hazardous substance) that may cause health damage. The wastewater standard value for 1,4-dioxane is 0.5 mg / L (enforced on May 25, 2012).

1,4‐ジオキサンは、世界保健機構傘下の国際がん研究機関(IARC)が定めたグループ2bに属する発がん性のおそれのある物質で、動物実験でがんを発生させて突然変異を起こす物質であることが判明した。当該物質は、短期間の暴露により眼、鼻、首の炎症を誘発し、多量の暴露により神経系の損傷を招くおそれがあり、長時間の暴露により発がんの可能性もあることが知られている。   1,4-Dioxane is a substance that may cause carcinogenicity belonging to Group 2b established by the International Agency for Research on Cancer (IARC) under the World Health Organization. It turned out to be. The substance is known to cause eye, nose, and neck irritation by short-term exposure, may cause nervous system damage by large exposure, and may cause cancer by prolonged exposure. Yes.

WHOでは、成人が30年間1,4‐ジオキサンの濃度50μg/Lの水を1日2Lずつ摂取すると、10万人中の1人にがんが発生する可能性があるとみている。   According to WHO, if adults take 2 L of 1,4-dioxane at a concentration of 50 μg / L for 30 years, cancer in 1 out of 100,000 people may develop.

1,4‐ジオキサンは沸点が101℃、融点が11.8℃の化学的に安定し、常温では液体として存在しており、揮発性で特有のエーテル臭を有する。多くの有機溶媒、芳香族炭化水素等によく溶解し、トリクロロエチレン(TCE)、トリクロロエタン(TCA)、ジクロロエチレン(DCE)、塩化ビニル(vinyl chloride)等の揮発性有機化合物と比べて水に簡単に溶解し、蒸気圧が小さいため蒸発が遅く、土壌粒子に混ざらないことが知られている。また、1,4‐ジオキサンは相対する位置に二つのエーテル基を有している環状有機化合物で、生物学的分解が難しい特性を有しており、水及び廃水から1,4‐ジオキサンの除去が難しく、地表水及び地下水汚染に対する危険性が大きいことが知られている。   1,4-dioxane is chemically stable with a boiling point of 101 ° C. and a melting point of 11.8 ° C., is present as a liquid at room temperature, and has a volatile and unique ether odor. It dissolves well in many organic solvents and aromatic hydrocarbons, and easily dissolves in water compared to volatile organic compounds such as trichlorethylene (TCE), trichloroethane (TCA), dichloroethylene (DCE), and vinyl chloride (vinyl chloride). However, it is known that since the vapor pressure is low, evaporation is slow and it does not mix with soil particles. In addition, 1,4-dioxane is a cyclic organic compound having two ether groups at opposite positions, and has characteristics that are difficult to biologically decompose. Removal of 1,4-dioxane from water and wastewater It is known that the risk of surface water and groundwater contamination is high.

1,4‐ジオキサンは、電子製品の洗浄工程の洗浄剤、有機溶媒の安定剤(5%程度を含む)、繊維製造、ペイント(染料)製造、油脂製造、化粧品原料等における産業用溶媒または安定剤として広範囲に使用されており、化学繊維産業のポリエステル糸製造時の重合工程で副産物としても発生する。   1,4-Dioxane is an industrial solvent or stabilizer in electronic product cleaning processes, organic solvent stabilizers (including about 5%), textile production, paint (dye) production, oil and fat production, cosmetic raw materials, etc. It is widely used as an agent, and is also generated as a by-product in the polymerization process during the production of polyester yarn in the chemical fiber industry.

ポリエステルの製造工程は、エステル化反応と高分子化反応の過程からなり、この過程で反応副産物として1,4‐ジオキサンが生成されて水とともに排出されることにより、ポリエステル重合工程の廃水には高濃度の1,4‐ジオキサンと有機物(CODCr)が含まれている。 The polyester production process consists of an esterification reaction and a polymerization reaction. In this process, 1,4-dioxane is generated as a reaction by-product and discharged together with water. Concentrations of 1,4-dioxane and organics (COD Cr ) are included.

従来の1,4‐ジオキサンの処理方法としては、光触媒、超音波、オゾン、過酸化水素等を適用した促進酸化法(AOP)が主に採用されている(特許文献1〜3等)。   As a conventional 1,4-dioxane treatment method, an accelerated oxidation method (AOP) using a photocatalyst, ultrasonic waves, ozone, hydrogen peroxide, or the like is mainly employed (Patent Documents 1 to 3, etc.).

促進酸化法は、光触媒+オゾン、光触媒+過酸化水素、オゾン+過酸化水素、超音波+オゾン等の組み合わせからなり、処理効率は高いが、薬品及びエネルギーのコストが過度であることに加えてスラッジ発生量が多く、維持管理コストの観点から非経済的である。   The accelerated oxidation method consists of a combination of photocatalyst + ozone, photocatalyst + hydrogen peroxide, ozone + hydrogen peroxide, ultrasonic wave + ozone, etc., and the treatment efficiency is high, but in addition to excessive chemical and energy costs It generates a lot of sludge and is uneconomical in terms of maintenance costs.

特許文献1の廃水処理方法では、1,4‐ジオキサンが含まれている廃水中の有機物を生物学的前処理過程により生分解させ、有機物の濃度を1,4‐ジオキサン濃度比1.5以下に減少させた後、膜分離装置、二価鉄、オゾン、過酸化水素水、UV等を複合的に適用している。しかしながら、この方法は、分離膜のファウリング及び酸化による膜の交換周期が頻繁となり、また、膜洗浄時に洗浄薬品の使用量が多くなるので頻繁な膜洗浄に伴う膜寿命の短縮が問題となる。   In the wastewater treatment method of Patent Document 1, organic matter in wastewater containing 1,4-dioxane is biodegraded through a biological pretreatment process, and the concentration of organic matter is 1.5 or less in the concentration ratio of 1,4-dioxane. After the reduction, the membrane separator, divalent iron, ozone, hydrogen peroxide solution, UV, etc. are applied in combination. However, this method requires frequent membrane replacement cycles due to fouling and oxidation of the separation membrane, and the amount of cleaning chemicals used during membrane cleaning increases, resulting in a problem of shortening the membrane life due to frequent membrane cleaning. .

特許文献2の廃水の処理方法は、オゾン及びUVを用いた処理方法であり、一段目が連続式、二段目が回分式の処理方式を採用している。しかしながら、この方法はUV照射時間が合計140分と非常に長く、これに伴う電力費並びにUV管表面の汚染度の増加により、処理効率が低下する。この問題を回避するには周期的にUV管を洗浄しなければならない。   The wastewater treatment method of Patent Document 2 is a treatment method using ozone and UV, and employs a treatment system in which the first stage is a continuous type and the second stage is a batch type. However, this method has a very long UV irradiation time of 140 minutes in total, and the processing efficiency is lowered due to the accompanying increase in power consumption and the degree of contamination of the UV tube surface. To avoid this problem, the UV tube must be periodically cleaned.

特許文献3のジオキサン分解方法では、廃水に含まれるCODMnと1,4‐ジオキサン濃度の割合(CODMn/ジオキサン濃度)を1以下にしてオゾン処理すると、1,4‐ジオキサンを効率的、経済的に処理できるとされているが、オゾン処理のエネルギーコストが大きくなる。尚、同文献には「生物処理ではジオキサンは分解されない」の記載があり、1,4‐ジオキサンに有効な生物処理は示唆されていない。 In the dioxane decomposition method of Patent Document 3, when ozone treatment is performed with the ratio of COD Mn and 1,4-dioxane concentration (COD Mn / dioxane concentration) contained in wastewater being 1 or less, 1,4-dioxane is efficiently and economically produced. However, the energy cost of ozone treatment increases. In this document, there is a description that “dioxane is not decomposed by biological treatment”, and no effective biological treatment is suggested for 1,4-dioxane.

1,4‐ジオキサンは、酸化分解されることで除去されるという特性を有しており、この特性により、上述の通り、既存の1,4‐ジオキサン除去技術は酸化力が強いオゾン、フェントン薬品、紫外線等が使用されている。しかしながら、上記の先行技術は、経済性や技術的な側面で多くの問題点を有しており、広く実用化されるに至っていない。   1,4-Dioxane has the property of being removed by oxidative decomposition, and as described above, the existing 1,4-dioxane removal technology has strong oxidizing power such as ozone and Fenton chemicals. Ultraviolet rays are used. However, the above-described prior art has many problems in terms of economy and technical aspects, and has not been widely put into practical use.

また、1,4‐ジオキサンの生物学的処理法としては下水処理場における報告事例がある(非特許文献1)。本事例によると、0.003mg/L程度の1,4‐ジオキサンを含む下水の処理場での調査結果では計画滞留時間22時間に対して48時間の滞留時間を確保しても当該物質の除去率は8.5%に留まるとの報告がなされている。このように、従来の生物学的処理方法は、処理時間が長く、除去率も低いという問題があり、1,4‐ジオキサンの処理方法としては実用的ではない。   Moreover, as a biological treatment method of 1,4-dioxane, there is a report example in a sewage treatment plant (Non-patent Document 1). According to this case, according to the survey results at a sewage treatment plant containing about 0.003 mg / L of 1,4-dioxane, even if a retention time of 48 hours is secured against a planned residence time of 22 hours, the removal of the substance is performed. The rate is reported to remain at 8.5%. Thus, the conventional biological treatment method has a problem that the treatment time is long and the removal rate is low, and it is not practical as a treatment method for 1,4-dioxane.

特開2005−58854号公報JP 2005-58854 A 特開2005−103401号公報JP-A-2005-103401 特開2010−188306号公報JP 2010-188306 A

牧野良治、外2名,「1,4‐ジオキサンの下水処理場における除去率について」,水環境学会誌,2005年3月10日、Vol.28、No.3、p.211‐215Ryoji Makino and two others, “Removal rate at 1,4-dioxane sewage treatment plant”, Journal of Japan Society on Water Environment, March 10, 2005, Vol.28, No.3, p.211-215

本発明は、上記の事情に鑑みなされたもので、廃水に含まれている有機物並びに1,4‐ジオキサンを低コストに除去できる廃水の処理方法とその処理装置の提供を課題とする。   This invention is made | formed in view of said situation, and makes it a subject to provide the processing method of the wastewater which can remove the organic substance contained in wastewater, and 1, 4- dioxane at low cost, and its processing apparatus.

そこで、本発明の廃水の処理方法は、1,4‐ジオキサン含有廃水の処理方法であって、1,4‐ジオキサン含有廃水を上向流嫌気性スラッジブランケットまたは拡張型粒状スラッジブランケットによる嫌気生物学的処理に供して当該1,4‐ジオキサン含有廃水に含まれる有機物を除去する嫌気処理工程と、前記1,4‐ジオキサン含有廃水と前記嫌気処理工程の処理水とを混合させた液相をpH調整した後に前記嫌気処理工程に供給する工程と、前記pH調整された液相を好気生物学的処理に供して当該液相に含まれる残留有機物並びに1,4‐ジオキサンを除去する好気処理工程を有する。 Therefore, the wastewater treatment method of the present invention is a treatment method for 1,4-dioxane-containing wastewater, and the 1,4-dioxane-containing wastewater is treated with an anaerobic biology using an upflow anaerobic sludge blanket or an expanded granular sludge blanket. The anaerobic treatment step for removing organic substances contained in the 1,4-dioxane-containing wastewater by subjecting to a general treatment, and the liquid phase obtained by mixing the 1,4-dioxane-containing wastewater and the treated water of the anaerobic treatment step to pH A step of supplying to the anaerobic treatment step after adjustment, and an aerobic treatment in which the pH-adjusted liquid phase is subjected to an aerobic biological treatment to remove residual organic substances and 1,4-dioxane contained in the liquid phase Process.

また、本発明の廃水の処理装置は、1,4‐ジオキサン含有廃水の処理装置であって、1,4‐ジオキサン含有廃水を上向流嫌気性スラッジブランケットまたは拡張型粒状スラッジブランケットによる嫌気生物学的処理に供して当該1,4‐ジオキサン含有廃水に含まれる有機物を除去する嫌気槽と、前記1,4‐ジオキサン含有廃水と前記嫌気槽の嫌気処理水とを混合させた液相をpH調整した後に当該嫌気槽に供給する緩衝槽と、この緩衝槽からの前記pH調整された液相に含まれる残留有機物並びに1,4‐ジオキサンを好気生物学的処理により除去する好気槽を備える。 The wastewater treatment apparatus of the present invention is a treatment apparatus for 1,4-dioxane-containing wastewater, and the anaerobic biology using the 1,4-dioxane-containing wastewater as an upflow anaerobic sludge blanket or an expanded granular sludge blanket. PH adjustment of an anaerobic tank that removes organic substances contained in the 1,4-dioxane-containing wastewater through an environmental treatment , and a mixture of the 1,4-dioxane-containing wastewater and the anaerobic treated water in the anaerobic tank A buffer tank to be supplied to the anaerobic tank, and an aerobic tank for removing residual organic substances and 1,4-dioxane contained in the pH-adjusted liquid phase from the buffer tank by an aerobic biological treatment. .

以上の発明によれば廃水に含まれている有機物並びに1,4‐ジオキサンを低コストに除去できる。   According to the above invention, the organic matter and 1,4-dioxane contained in the wastewater can be removed at low cost.

本発明の実施形態における廃水の処理工程を示すフローチャート。The flowchart which shows the treatment process of the wastewater in embodiment of this invention. 本発明の実施形態における廃水の処理装置の概略構成図。1 is a schematic configuration diagram of a wastewater treatment apparatus in an embodiment of the present invention.

以下に図面を参照しながら本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1,図2に例示された本実施形態の廃水処理方法は、1,4-ジオキサン含有廃水の処理方法であって、高濃度の有機物(CODCr)と1,4-ジオキサンを含んでいる原水を嫌気槽1内の上向流嫌気性スラッジブランケット(Upflow Anaerobic Sludge Blanket 以下、UASBと称する)または拡張型粒状スラッジブランケット(Expanded Granular Sludge Blanket 以下、EGSBと称する)に供給して嫌気状態で前記有機物を生物学的に分解除去する嫌気処理工程(S1)と、この工程(S1)の処理水を好気槽3に供給して好気状態で残留有機物と1,4-ジオキサンを生物学的に分解除去する好気処理工程(S2)を有する。本方法によれば、廃水に含まれる1,4ジオキサン及び高濃度の有機物を最大限除去できるようになっている。 The wastewater treatment method of the present embodiment illustrated in FIG. 1 and FIG. 2 is a treatment method of wastewater containing 1,4-dioxane, which contains a high concentration of organic matter (COD Cr ) and 1,4-dioxane. The raw water is supplied to an upflow anaerobic sludge blanket (hereinafter referred to as UASB) or an expanded granular sludge blanket (hereinafter referred to as EGSB) in the anaerobic tank 1 in an anaerobic state. An anaerobic treatment step (S1) for biologically decomposing and removing organic matter, and supplying the treated water of this step (S1) to the aerobic tank 3 to biologically remove residual organic matter and 1,4-dioxane in an aerobic state. An aerobic treatment step (S2) for decomposition and removal. According to this method, 1,4 dioxane and high concentration organic substances contained in the wastewater can be removed to the maximum extent.

1,4-ジオキサンは嫌気状態では分解されず、好気状態においてのみ分解される特性を持った難分解性物質である。1,4-ジオキサンを除去するためには酸化して分解する必要があるが、廃水に有機物が高濃度に含んでいると、有機物が優先的に分解され、その後に1,4-ジオキサンが分解される特性があることが試験的に確認されている。   1,4-Dioxane is a hardly decomposable substance having a characteristic that it is not decomposed in an anaerobic state and is decomposed only in an aerobic state. In order to remove 1,4-dioxane, it is necessary to oxidize and decompose, but if the wastewater contains organic matter in high concentration, the organic matter is preferentially decomposed and then 1,4-dioxane is decomposed. It has been experimentally confirmed that there is a characteristic to be achieved.

すなわち、廃水に含まれた1,4-ジオキサンを除去するためには廃水中の有機物を除去することが必要である。   That is, in order to remove 1,4-dioxane contained in wastewater, it is necessary to remove organic substances in the wastewater.

有機物を除去する処理技術は多く存在するが、好気性処理技術の場合、長時間曝気法のように広い敷地面積と長い滞留時間(Hydraulic Retention Time)を必要とし、曝気のための空気供給量やスラッジ発生量が多いことによるスラッジ処理用の増加等により維持管理コストが高くなるという短所がある。   There are many treatment technologies for removing organic matter, but aerobic treatment technology requires a large site area and a long retention time (Hydraulic Retention Time) as in the long-term aeration method. There is a disadvantage that the maintenance cost increases due to an increase in sludge treatment due to the large amount of sludge generated.

これに対して、嫌気性処理技術は曝気のための空気供給が必要でなく、スラッジ発生量が好気性処理技術と比べて1/10程度と少なく、維持管理コストが少なくて済むという長所がある。   On the other hand, the anaerobic treatment technique does not require air supply for aeration, and has an advantage that the amount of sludge generation is as small as about 1/10 compared with the aerobic treatment technique, and the maintenance cost is low. .

しかし、一般的な嫌気スラッジを利用する嫌気消化方式は好気性処理技術と同様に長い滞留時間を必要とし、スラッジの流失に伴う処理性能の低下が発生するという問題がある。   However, the general anaerobic digestion method using anaerobic sludge requires a long residence time as in the aerobic processing technique, and there is a problem that the processing performance is reduced due to sludge loss.

嫌気処理は次ぎのような反応段階を通じて有機物を分解し、酸生成菌及びメタン生成菌の作用によって最終的にメタンガス(CH4)と二酸化炭素ガス(CO2)までに分解される。 In the anaerobic treatment, organic substances are decomposed through the following reaction steps, and finally decomposed into methane gas (CH 4 ) and carbon dioxide gas (CO 2 ) by the action of acid-producing bacteria and methanogenic bacteria.

嫌気性処理反応は以下の3段階の反応を経て達成される。   The anaerobic treatment reaction is achieved through the following three-stage reaction.

(1)有機物の加水分解の段階:タンパク質、炭水化物、そして、脂肪を加水分解して、アミノ酸、高分子脂肪酸を生成する。   (1) Stage of hydrolysis of organic substance: Protein, carbohydrate and fat are hydrolyzed to produce amino acid and high molecular weight fatty acid.

(2)酸生成の段階:アミノ酸及び高分子脂肪酸を分解して酢酸を生成する。   (2) Acid production stage: Decompose amino acids and high molecular fatty acids to produce acetic acid.

(3)メタン生成の段階:酢酸を分解してメタンと二酸化炭素を生成する。   (3) Stage of methane production: Decompose acetic acid to produce methane and carbon dioxide.

通常、加水分解の段階と酸生成の段階を総合して酸生成段階とし、上記各段階の反応には個別の微生物が作用する。   Usually, the hydrolysis stage and the acid generation stage are combined to form an acid generation stage, and individual microorganisms act on the reaction in each of the above stages.

各段階の反応をさらに詳細に説明すると、加水分解の段階、酸生成の段階では、酸生成菌が分泌する体外酵素によってタンパク質、炭水化物(多糖類)、脂肪等の高分子有機物質がアミノ酸、単糖類、脂肪酸等の可溶性の有機物に分解される。   The reaction in each stage will be described in more detail. In the hydrolysis stage and acid generation stage, macromolecular organic substances such as proteins, carbohydrates (polysaccharides), and fats are converted into amino acids, simple substances by the in vitro enzymes secreted by acid-producing bacteria. It is decomposed into soluble organic substances such as sugars and fatty acids.

生成されたアミノ酸、単糖類、脂肪酸等は酢酸生成菌の作用によって酸化されて、酢酸が生成する。   The produced amino acids, monosaccharides, fatty acids and the like are oxidized by the action of acetic acid producing bacteria to produce acetic acid.

酢酸生成反応は熱力学的に自発的な反応が起きないので外部からのエネルギー供給なしで反応が進められるには、自由エネルギーがマイナスの値(−)にならなければならない。   Since the acetic acid formation reaction does not occur spontaneously thermodynamically, the free energy must be negative (−) in order for the reaction to proceed without external energy supply.

ここで、アミノ酸、単糖類、脂肪酸等の酸化過程で生成される水素ガスを酢酸生成菌の細胞内に蓄積させないで分圧を低く維持することにより、自由エネルギーを自発的にマイナスの値となるようにできるが、このとき、メタン生成菌及び硫酸縁還元菌がこの反応を達成するようにしてくれる。   Here, free energy is negatively voluntarily maintained by keeping the partial pressure low without accumulating hydrogen gas generated in the oxidation process of amino acids, monosaccharides, fatty acids, etc. in the cells of acetic acid producing bacteria. At this time, the methanogenic bacteria and sulfate-reducing bacteria can achieve this reaction.

そして、メタン生成の段階は、酢酸や水素をメタンガスと二酸化炭素ガスに転換させる段階であり、酢酸を利用するメタン生成菌と水素を利用するメタン生成菌の作用によって、メタンガスの約70%は酢酸の分解により、残りの30%は水素の分解により生成される。   The methane production stage converts acetic acid and hydrogen into methane gas and carbon dioxide gas. About 70% of the methane gas is acetic acid by the action of methanogens using acetic acid and methanogens using hydrogen. The remaining 30% is generated by hydrogen decomposition.

本発明は、嫌気性処理技術の長所である維持管理コストが少ないながらも短所である滞留時間が長いという問題を解決し、しかも、スラッジの流失がなく、さらに、バイオガス(メタンガス)エネルギーを生産する嫌気性粒状技術を用いて高濃度有機物を除去する。   The present invention solves the problem of a long residence time, which is a disadvantage, while maintaining a low maintenance cost, which is an advantage of anaerobic treatment technology, and also eliminates sludge loss and produces biogas (methane gas) energy. High concentration organic matter is removed using anaerobic granular technology.

嫌気性粒状技術であるUASBとEGSBは、自己造粒型顆粒スラッジであるグラニュラー(Granular)を反応槽内に充填し、グラニュラーに優占化されているメタン生成菌による有機酸のメタン化反応によって有機物を分解する方式であって、有機物を分解して最終生成物であるバイオガス(メタンガス)を生産する資源生産型の処理技術である。生産されたバイオガスはボイラー及び発電機に供給され、スチームまたは電気に転換させることができる。   UASB and EGSB, which are anaerobic granule technologies, are filled with granule, which is a self-granulating granule sludge, in the reaction tank, and by methanation of organic acids by methanogens dominant in granular. It is a method for decomposing organic matter, and is a resource production type processing technology for decomposing organic matter and producing biogas (methane gas) as a final product. The biogas produced can be supplied to boilers and generators and converted to steam or electricity.

UASB法は第一世代技術、EGSB法は第二世代技術であり、有機物容積負荷はUASB法が5〜15kg‐CODCr/(m3・日)であり、EGSB法が10〜25kg‐CODCr/(m3・日)である。有機物の除去率は廃水の性状によりUASB法及びEGSB法いずれも60〜95%程度である。すなわち、UASB法、EGSB法は高濃度有機物を嫌気状態のもとで高速及び高効率に分解、除去できる特性を有する手法である。 The UASB method is the first generation technology, the EGSB method is the second generation technology, the organic substance volume load is 5-15 kg-COD Cr / (m 3 · day) for the UASB method, and 10-25 kg-COD Cr for the EGSB method. / (M 3 · day). The organic substance removal rate is about 60 to 95% in both the UASB method and the EGSB method depending on the properties of the wastewater. That is, the UASB method and the EGSB method are methods having characteristics that can decompose and remove high-concentration organic substances at high speed and high efficiency under anaerobic conditions.

本実施形態の処理方法は、1,4-ジオキサンの特性(難分解性、好気状態のみで分解可)とUASB法並びにEGSB法の特性(嫌気状態のもとで高濃度有機物を高速、高効率に分解可)を最適化して、廃水中の1,4-ジオキサンを効率的に除去するものである。   The treatment method of the present embodiment is characterized by the characteristics of 1,4-dioxane (hardly decomposable, decomposable only in an aerobic state) and the characteristics of the UASB method and the EGSB method (high concentration organic matter is rapidly and highly enhanced under an anaerobic state. Is optimized to efficiently remove 1,4-dioxane in wastewater.

すなわち、高濃度の有機物と1,4-ジオキサンを含んでいる原水を嫌気槽1内のグラニュラーに供給して嫌気状態で有機物を除去する嫌気処理工程(S1)と、この工程の処理水を好気槽3に供給して好気状態で残留有機物と1,4-ジオキサンを除去する好気処理工程(S2)とにより、廃水中の1,4-ジオキサンを最大限(検出されないレベルまで)に除去すると共に有機物を最大99%の除去率までに除去できる。   That is, an anaerobic treatment step (S1) in which raw water containing high-concentration organic matter and 1,4-dioxane is supplied to the granular in the anaerobic tank 1 to remove the organic matter in an anaerobic state, and the treated water of this step is preferred. The aerobic treatment step (S2) in which the residual organic matter and 1,4-dioxane are removed in an aerobic state after being supplied to the air tank 3 to maximize the amount of 1,4-dioxane in the wastewater (to an undetectable level). Organic substances can be removed with a removal rate of up to 99%.

以下、嫌気処理工程(S1)、好気処理工程(S2)について詳細に説明する。   Hereinafter, the anaerobic treatment step (S1) and the aerobic treatment step (S2) will be described in detail.

[嫌気処理工程(S1)]
嫌気処理工程(S1)では、高濃度の有機物と1,4-ジオキサンとを含んだ原水を嫌気槽1内に供給して嫌気状態のもとでグラニュラーと接触させて有機成分を分解する。具体的には、メタン生成菌の自己造粒型顆粒スラッジからなるグラニュラーによる嫌気的な代謝によって有機物をメタンガスと二酸化炭素ガスに転換することにより高濃度の有機物を60〜95%の除去率までに低減させる。
[Anaerobic treatment process (S1)]
In the anaerobic treatment step (S1), raw water containing high-concentration organic matter and 1,4-dioxane is supplied into the anaerobic tank 1 and brought into contact with granular under anaerobic conditions to decompose organic components. Specifically, the organic matter is converted into methane gas and carbon dioxide gas by anaerobic metabolism by a granule composed of self-granulating granular sludge of methanogens, thereby removing high concentration organic matter by 60 to 95%. Reduce.

嫌気槽1内にはグラニュラーが20〜50%充填され、同槽1の内部温度はボイラー等の熱源6から供給されたスチーム等の熱によってグラニュラーの活性化のために所定温度(32〜38℃)に加温される。   The anaerobic tank 1 is filled with 20 to 50% of granular material, and the internal temperature of the tank 1 is a predetermined temperature (32 to 38 ° C.) for the activation of the granular material by the heat of steam supplied from a heat source 6 such as a boiler. ).

前記生成されるメタンガスと二酸化炭素の比率はメタンガスが70〜85%、二酸化炭素ガスが15〜30%程度になる。   The ratio of the produced methane gas to carbon dioxide is about 70 to 85% for methane gas and about 15 to 30% for carbon dioxide gas.

嫌気槽1はUASB式またはEGSB式に準じた周知の上向流方式の嫌気槽の態様を成す。すなわち、嫌気槽1の下部には緩衝槽2から供給された原水が流入する流入部1aが具備される一方、同槽1の上部付近には嫌気処理水が排出される排出部1bが具備されている。さらに、同槽1内の上部付近には気固液分離部1cが配置されている。同槽1の上部には槽1内で発生したメタンガスまたは二酸化炭素ガスを排出させる排気管1dが接続されている。尚、気固液分離部1cはUASB式、EGSB式の嫌気槽に採用されている周知の気固液分離部材を適用すればよい。   The anaerobic tank 1 is a well-known upflow type anaerobic tank according to the UASB type or the EGSB type. That is, the lower part of the anaerobic tank 1 is provided with an inflow part 1a through which raw water supplied from the buffer tank 2 flows, while the upper part of the tank 1 is provided with a discharge part 1b from which anaerobic treated water is discharged. ing. Furthermore, a gas-solid-liquid separator 1c is disposed near the upper part in the tank 1. An exhaust pipe 1 d for discharging methane gas or carbon dioxide gas generated in the tank 1 is connected to the upper part of the tank 1. In addition, the gas-solid-liquid separation part 1c should just apply the well-known gas-solid-liquid separation member employ | adopted as the UASB type and EGSB type anaerobic tank.

緩衝槽2は原水と嫌気槽1の嫌気処理水とを混合させた液相を嫌気槽1に供給する一方で好気槽3に供給して当該槽1,3内での生物学的処理を安定化させる。緩衝槽2の底部付近には、系外から供給された原水が流入する流入部2aと、同槽2内の液相を嫌気槽1に供給するための供給部2bが具備されている。また、緩衝槽2の上部付近には同槽2内の液相を好気槽3に排出するための排出部2cが配置されている。さらに、緩衝槽2の上部には、嫌気槽1の排出部1bから排出された嫌気処理水が流入する流入部2dと、緩衝槽2内の液相にpH調整剤を注入するための注入部2eが具備されている。尚、図示省略されているが緩衝槽2には同槽2内の液相を攪拌する攪拌機が付帯される。   The buffer tank 2 supplies a liquid phase obtained by mixing raw water and anaerobic treated water in the anaerobic tank 1 to the anaerobic tank 1 while supplying the liquid phase to the aerobic tank 3 for biological treatment in the tanks 1 and 3. Stabilize. Near the bottom of the buffer tank 2, an inflow section 2a into which raw water supplied from outside the system flows and a supply section 2b for supplying the liquid phase in the tank 2 to the anaerobic tank 1 are provided. Further, a discharge part 2 c for discharging the liquid phase in the tank 2 to the aerobic tank 3 is arranged near the upper part of the buffer tank 2. Furthermore, in the upper part of the buffer tank 2, the inflow part 2d into which the anaerobic treated water discharged | emitted from the discharge part 1b of the anaerobic tank 1 flows in, and the injection part for inject | pouring a pH adjuster into the liquid phase in the buffer tank 2 2e is provided. Although not shown, the buffer tank 2 is accompanied by a stirrer that stirs the liquid phase in the tank 2.

系外から供給された原水は流入部2aから緩衝槽2内に導入されると嫌気処理水を含んだ液相と混合する。この原水が混合された液相のpHは注入部2eから滴下されたpH調節剤によって所定範囲の値(嫌気条件として好適なpH6.5〜7.5程度)に調節される。そして、緩衝槽2内の液相の一部は供給部2bからポンプPによって流入部1aを介して嫌気槽1内に移送される。   When the raw water supplied from outside the system is introduced into the buffer tank 2 from the inflow portion 2a, it is mixed with a liquid phase containing anaerobic treated water. The pH of the liquid phase in which the raw water is mixed is adjusted to a value within a predetermined range (about pH 6.5 to 7.5 suitable as anaerobic conditions) by a pH adjusting agent dropped from the injection part 2e. A part of the liquid phase in the buffer tank 2 is transferred from the supply section 2b to the anaerobic tank 1 by the pump P through the inflow section 1a.

嫌気槽1内に流入した原水はポンプPの圧送力によって同槽1内の上方に移行しこの過程でグラニュラーと接触する。このとき、原水に含まれる有機物がグラニュラーによる嫌気的な代謝によりメタンガスと二酸化炭素ガスまでに分解される。そして、嫌気槽1内の上向水流が気固液分離装置1cと接触するとグラニュラーと前記発生したガスと嫌気処理水とに分離される。嫌気処理水は嫌気槽1の排出部1bから好気槽2に移行する。   The raw water flowing into the anaerobic tank 1 is moved upward in the tank 1 by the pumping force of the pump P, and in this process, contacts with the granular material. At this time, organic substances contained in the raw water are decomposed into methane gas and carbon dioxide gas by anaerobic metabolism by granular. Then, when the upward water flow in the anaerobic tank 1 comes into contact with the gas-solid-liquid separation device 1c, it is separated into granular, the generated gas and anaerobic treated water. Anaerobic treated water moves from the discharge part 1 b of the anaerobic tank 1 to the aerobic tank 2.

前記生成されたメタンガス及び二酸化炭素ガスは嫌気槽1の排気部1dから系外に排出される。嫌気槽1から排出されたメタンガスは熱源6例えばボイラーの燃料として利用される。熱源6で発生した熱の一部は嫌気槽1内の液相を所定の温度範囲に加温するための熱媒体として利用される。   The generated methane gas and carbon dioxide gas are discharged from the exhaust system 1d of the anaerobic tank 1 to the outside of the system. The methane gas discharged from the anaerobic tank 1 is used as a heat source 6 such as a boiler fuel. Part of the heat generated by the heat source 6 is used as a heat medium for heating the liquid phase in the anaerobic tank 1 to a predetermined temperature range.

嫌気処理工程(S1)における有機物容積負荷は5〜10kg-CODCr/(m3・日)が好適であり、有機物の除去率は原水の性状に応じて60〜95%となる。 The organic substance volume load in the anaerobic treatment step (S1) is preferably 5 to 10 kg-COD Cr / (m 3 · day), and the organic substance removal rate is 60 to 95% depending on the properties of the raw water.

前記有機物容積負荷を5kg-CODCr/(m3・日)以下で運転すると、有機物の分解、除去は実行されるが、低負荷状態となり、嫌気槽1の有効容量が相対的に必要以上に増大するので、高濃度有機物を嫌気状態で高速、高効率に分解除去できるという粒状形態の嫌気性処理技術の特性を生かすことができない。 When the organic substance is loaded at a volume load of 5 kg-COD Cr / (m 3 · day) or less, decomposition and removal of the organic substance are executed, but the load becomes low and the effective capacity of the anaerobic tank 1 is relatively larger than necessary. Therefore, it is impossible to take advantage of the characteristics of the anaerobic processing technology in a granular form that high-concentration organic substances can be decomposed and removed at high speed and high efficiency in an anaerobic state.

一方、有機物容積負荷を10kg-CODCr/(m3・日)以上で運転すると、嫌気槽1内で有機物を除去するための滞留時間を確保できなくなるので、未処理の有機物が残留し、後段の好気処理工程(S2)の好気槽2に供給される嫌気処理水の有機物濃度が高くなる。好気槽2内に流入する有機物の濃度が高ければ、好気槽2にて有機物を分解除去する時間が長くなり、その結果、1,4-ジオキサンが分解される時間が不足し、1,4-ジオキサンを除去できなくなる。 On the other hand, if the organic substance is loaded at a volume load of 10 kg-COD Cr / (m 3 · day) or more, the residence time for removing the organic substance in the anaerobic tank 1 cannot be secured. The organic substance density | concentration of the anaerobic processing water supplied to the aerobic tank 2 of the aerobic processing process (S2) becomes high. If the concentration of the organic substance flowing into the aerobic tank 2 is high, the time for decomposing and removing the organic substance in the aerobic tank 2 becomes longer. As a result, the time for decomposing 1,4-dioxane is insufficient, 4-dioxane cannot be removed.

[好気処理工程(S2)]
好気処理工程(S2)では、嫌気処理工程(S1)の嫌気処理水に含まれる残留有機物並びに1,4‐ジオキサンを好気生物学的処理により除去する。
[Aerobic treatment process (S2)]
In the aerobic treatment step (S2), residual organic substances and 1,4-dioxane contained in the anaerobic treatment water of the anaerobic treatment step (S1) are removed by aerobic biological treatment.

具体的には前記嫌気処理水を緩衝槽2経由で好気槽3内に導入して長時間曝気法若しくは膜分離活性汚泥法によって当該処理水に含まれる残留有機物並びに1,4‐ジオキサンを好気生物学的処理により除去する。   Specifically, the anaerobic treated water is introduced into the aerobic tank 3 via the buffer tank 2, and the residual organic matter and 1,4-dioxane contained in the treated water are favored by the long-time aeration method or the membrane separation activated sludge method. Remove by aerobiological treatment.

好気槽3に長時間曝気法若しくは膜分離活性汚泥法を適用する趣旨は好気槽3内の生物学的反応時間及び微生物濃度を高くして生物学的処理性能を高く維持させるためである。   The purpose of applying the long-time aeration method or the membrane separation activated sludge method to the aerobic tank 3 is to increase the biological reaction time and the microorganism concentration in the aerobic tank 3 to maintain the biological treatment performance high. .

好気槽3内にはブロアBから導入した空気を同槽3内の活性汚泥に供給するための散気装置4が配置されている。尚、前記活性汚泥は残留有機物並びに1,4‐ジオキサンを好気生物学的に分解できるように予め馴養される。   In the aerobic tank 3, an air diffuser 4 for supplying air introduced from the blower B to the activated sludge in the tank 3 is arranged. The activated sludge is conditioned in advance so that residual organic matter and 1,4-dioxane can be decomposed aerobically.

好気槽3において長時間曝気法が適用される場合、同槽3の後段において活性汚泥と上澄み水とに固液分離させる沈殿槽(図示省略)が配置される。この沈殿槽には固液分離した活性汚泥を好気槽3に返送させる汚泥返送路(図示省略)が付帯される。前記分離された上澄み水は好気処理水として系外に排出される。   When a long-time aeration method is applied in the aerobic tank 3, a precipitation tank (not shown) for solid-liquid separation into activated sludge and supernatant water is disposed in the subsequent stage of the tank 3. This sedimentation tank is accompanied by a sludge return path (not shown) for returning the activated sludge separated into solid and liquid to the aerobic tank 3. The separated supernatant water is discharged out of the system as aerobic treated water.

好気槽3において膜分離活性汚泥法が適用される場合、同槽3内の液相に浸漬される内圧濾過方式または外圧濾過方式の膜モジュール5が配置される。膜モジュール5の濾過処理水は好気処理水として系外に排出される。   When the membrane separation activated sludge method is applied in the aerobic tank 3, an internal pressure filtration type or external pressure filtration type membrane module 5 immersed in a liquid phase in the tank 3 is disposed. The filtered treated water of the membrane module 5 is discharged out of the system as aerobic treated water.

膜モジュール5の膜エレメントとしては周知の有機膜、セラミック膜が例示される。有機膜は大量生産により価格が安いという長所があるが、目詰まり現象がしばしば発生し、簡単に破損するため、交換周期が短くて維持管理コストが高くなり、エネルギー消費が大きくなる。これに対して、セラミック膜は、材質の特性上、耐久性(耐熱性、耐化学薬品性等)が強く、洗浄が容易であるため、目詰まり現象が少なく、寿命が長いので、維持管理コストが安価で、有機膜に比べてエネルギー消費量が50%レベルという長所がある。したがって、初期費用を考慮する場合には有機膜が有効であるが、処理性能を重要視する場合にはセラミック膜が望ましい。   Examples of the membrane element of the membrane module 5 include known organic membranes and ceramic membranes. Organic membranes have the advantage of being cheaper due to mass production, but clogging often occurs and easily breaks, resulting in a short replacement cycle, high maintenance costs, and high energy consumption. On the other hand, the ceramic film has strong durability (heat resistance, chemical resistance, etc.) due to the characteristics of the material and is easy to clean. However, the energy consumption is 50% compared to the organic film. Therefore, an organic film is effective when considering the initial cost, but a ceramic film is desirable when processing performance is important.

好気槽3は上記の好気生物学的処理の性能を維持するために同槽3内のMLSS(微生物量)が4000〜10000mg/Lに維持される。   In the aerobic tank 3, in order to maintain the performance of the aerobic biological treatment, MLSS (microorganism amount) in the tank 3 is maintained at 4000 to 10000 mg / L.

MLSSが4000mg/L以下であると微生物量の不足により好気槽3での有機物除去性能を高く安定的に維持するのが困難となる。一方、MLSSが10000mg/L以上に維持されると、有機物除去率の向上と好気槽3容量の低減を期待できるが、現実的にはMLSSが10000mg/L以上であると、好気槽3内の液相粘度が高まり攪拌を円滑に行えなくなるので同槽3内において部分的に嫌気化が発生する等の運転上の支障が生じる。これらの問題が好気槽3内で発生すると同槽3における処理性能を安定的に維持するのが困難となる。   When the MLSS is 4000 mg / L or less, it is difficult to stably maintain the organic matter removal performance in the aerobic tank 3 at a high level due to the insufficient amount of microorganisms. On the other hand, when MLSS is maintained at 10000 mg / L or more, improvement of the organic matter removal rate and reduction of aerobic tank 3 capacity can be expected, but in reality, when MLSS is 10000 mg / L or more, aerobic tank 3 Since the liquid phase viscosity of the tank increases and stirring cannot be performed smoothly, troubles in operation such as partial anaerobic generation in the tank 3 occur. When these problems occur in the aerobic tank 3, it becomes difficult to stably maintain the processing performance in the tank 3.

MLSSの制御は、好気槽3において長時間曝気法が適用されている場合、前記沈殿槽から好気槽3への汚泥の返送量の調節によって行えばよい。一方、膜分離活性汚泥法が適用されている場合、MLSSの制御は膜モジュール5の濾過流量(吸引ポンプの流量)の調節によって行えばよい。   When the aeration method is applied to the aerobic tank 3 for a long time, the MLSS may be controlled by adjusting the amount of sludge returned from the settling tank to the aerobic tank 3. On the other hand, when the membrane separation activated sludge method is applied, the MLSS may be controlled by adjusting the filtration flow rate of the membrane module 5 (flow rate of the suction pump).

また、好気槽3の有機物MLSS負荷は0.3kg-CODCr/(kg-MLSS・日)以下に維持される。これは、当該負荷が0.3kg-CODCr/(kg-MLSS・日)を越えた場合、前記残留有機物は分解除去されるが、1,4-ジオキサンが残留してしまうからである。すなわち、1,4-ジオキサンは、難分解性であり、特に他の有機物が分解除去された後に、酸化、分解される特性がある。つまり、他の有機物が分解された後に1,4-ジオキサンが分解され始める。したがって、有機物MLSS負荷が0.3kg-CODCr/(kg-MLSS・日)を越えた場合、好気槽3の水理的滞留時間において、他の有機物の分解に多くの時間が費やされるので、結果的に1,4-ジオキサンを分解できる時間を確保できなくなる。このため、1,4-ジオキサンを残留させた処理水が系外に排出されることになるからである。尚、好気槽3の有機物MLSS負荷の制御は緩衝槽2からの液相の流入量を調節することにより行えばよい。 Moreover, the organic matter MLSS load of the aerobic tank 3 is maintained at 0.3 kg-COD Cr / (kg-MLSS · day) or less. This is because when the load exceeds 0.3 kg-COD Cr / (kg-MLSS · day), the residual organic matter is decomposed and removed, but 1,4-dioxane remains. That is, 1,4-dioxane is hardly decomposable and has a characteristic that it is oxidized and decomposed after other organic substances are decomposed and removed. That is, 1,4-dioxane begins to be decomposed after other organic substances are decomposed. Therefore, when the organic matter MLSS load exceeds 0.3 kg-COD Cr / (kg-MLSS · day), a lot of time is spent on the decomposition of other organic matter in the hydraulic residence time of the aerobic tank 3. As a result, it becomes impossible to secure time for decomposing 1,4-dioxane. For this reason, the treated water in which 1,4-dioxane remains is discharged out of the system. In addition, what is necessary is just to perform control of the organic matter MLSS load of the aerobic tank 3 by adjusting the inflow amount of the liquid phase from the buffer tank 2. FIG.

以上のように本実施形態の廃水の処理方法とその装置によれば、廃水に含まれる高濃度の有機物と共に1,4‐ジオキサンを高除去率で除去でき、さらに、バイオマスであるメタンガスを生成することによりエネルギーを生産できる。したがって、廃水に含まれている有機物並びに1,4‐ジオキサンを低コストに除去できる。   As described above, according to the wastewater treatment method and apparatus of this embodiment, 1,4-dioxane can be removed together with high-concentration organic matter contained in the wastewater with a high removal rate, and further, methane gas that is biomass is generated. Energy can be produced. Therefore, the organic matter and 1,4-dioxane contained in the wastewater can be removed at a low cost.

本処理方法とその装置は、1,4‐ジオキサンと高濃度の有機物が含まれる廃水、例えば、化学工場,石油化学工場,電子製品製造工場,ペイント(染料)製造工場,油脂製造工場,化粧品原料製造工場等の廃水や、繊維化学工場のポリエステル重合廃水等の廃水における1,4‐ジオキサンと高濃度の有機物の処理手段として有効である。   This treatment method and its apparatus are used for wastewater containing 1,4-dioxane and high-concentration organic substances, such as chemical factories, petrochemical factories, electronic product factories, paint (dye) factories, oil and fat factories, cosmetic raw materials. It is effective as a means for treating 1,4-dioxane and high-concentration organic substances in wastewater from manufacturing plants and wastewater such as polyester polymerization wastewater from textile chemical plants.

以下に本発明の実施例を示すが、本発明はこの実施例に限定されるものではない。   Although the Example of this invention is shown below, this invention is not limited to this Example.

(実施例1)
ポリエステル繊維を製造するW社の工場では、ポリエステルの重合工程で1,4‐ジオキサンが副産物として生成し、廃水には1,4‐ジオキサンと共に高濃度の他の有機物が含まれている。本実施例では、前記製造工場の廃水処理施設において嫌気処理工程(S1)と好気処理工程(S2)を有する廃水処理方法を適用して3年間運転を行った。嫌気処理工程(S1)の嫌気槽1はEGSB法を、好気処理工程(S2)の好気槽3は膜分離活性汚泥法を採用した。
Example 1
In the factory of Company W that manufactures polyester fibers, 1,4-dioxane is produced as a by-product in the polymerization process of polyester, and wastewater contains high concentrations of other organic substances along with 1,4-dioxane. In this example, the wastewater treatment facility having the anaerobic treatment step (S1) and the aerobic treatment step (S2) was applied for three years in the wastewater treatment facility of the manufacturing plant. The anaerobic tank 1 in the anaerobic treatment step (S1) employs the EGSB method, and the aerobic tank 3 in the aerobic treatment step (S2) adopts the membrane separation activated sludge method.

本実施例の廃水処理施設の廃水発生量は360t/日で、嫌気槽1の容量は800m3、好気槽3の容量は1800m3である。尚、当該処理施設では前記重合工程で発生した重合廃水のみを処理した。 The amount of wastewater generated in the wastewater treatment facility of this example is 360 t / day, the capacity of the anaerobic tank 1 is 800 m 3 , and the capacity of the aerobic tank 3 is 1800 m 3 . In the treatment facility, only the polymerization wastewater generated in the polymerization process was treated.

嫌気槽1の運転条件は有機物容積負荷9.0kg‐CODCr/(m3・日)に設定した。この嫌気槽1でのCODCr(有機物の指標)の除去率は92.5%であった。好気槽3の運転条件は有機物容積負荷0.3kg‐CODCr/(m3・日)、有機物MLSS負荷0.05kg-CODCr/(kg-MLSS・日)に設定した。3年間での原水に対する1,4‐ジオキサンの平均除去率は99.82%であった。 The operating condition of the anaerobic tank 1 was set to organic substance volume load 9.0 kg-COD Cr / (m 3 · day). The removal rate of COD Cr (indicator of organic matter) in this anaerobic tank 1 was 92.5%. Operating conditions of the aerobic tank 3 is organic volumetric loading 0.3kg-COD Cr / (m 3 · day) was set to organics MLSS load 0.05kg-COD Cr / (kg- MLSS · day). The average removal rate of 1,4-dioxane for the raw water over 3 years was 99.82%.

本実施例の原水(廃水),嫌気槽1の嫌気処理水、好気槽3の好気処理水の1,4‐ジオキサンとCODCrの3年間の平均濃度を表1に示した。 Table 1 shows the average concentrations of 1,4-dioxane and COD Cr over three years of raw water (waste water), anaerobic treated water in the anaerobic tank 1, and aerobic treated water in the aerobic tank 3 of this example.

Figure 0006303512
Figure 0006303512

(実施例2)
H社の工場でも、ポリエステルの重合工程があり、重合工程で1,4‐ジオキサンが副産物として生成されるため、廃水に1,4‐ジオキサンと高濃度の他の有機物が含まれている。本工場の廃水処理施設において嫌気処理工程(S1)と嫌気処理工程(S2)を有する廃水処理方法を適用して7年間運転を行った。実施例1と同様に、嫌気処理工程(S1)の嫌気槽1はEGSB法を、好気処理工程(S2)の好気槽3は膜分離活性汚泥法を採用した。
(Example 2)
The factory of Company H also has a polyester polymerization process, and 1,4-dioxane is produced as a by-product in the polymerization process, so that wastewater contains 1,4-dioxane and other organic substances having a high concentration. The wastewater treatment facility of this factory was operated for 7 years by applying a wastewater treatment method having an anaerobic treatment step (S1) and an anaerobic treatment step (S2). As in Example 1, the anaerobic tank 1 in the anaerobic treatment step (S1) adopted the EGSB method, and the aerobic tank 3 in the aerobic treatment step (S2) adopted the membrane separation activated sludge method.

本実施例の廃水処理施設の廃水発生量は100t/日であり、発生した廃水の全量が供給される嫌気槽1の容量は600m3である。当該処理施設では、嫌気槽1からの嫌気処理水100t/日と他の工場廃水が混合されて好気槽3に供給されるので、好気槽3の廃水流入量が550t/日となることから、好気槽3の容量は600m3に確保されている。 The amount of wastewater generated in the wastewater treatment facility of this example is 100 t / day, and the capacity of the anaerobic tank 1 to which the entire amount of generated wastewater is supplied is 600 m 3 . In the treatment facility, since 100 t / day of anaerobic treated water from the anaerobic tank 1 and other factory wastewater are mixed and supplied to the aerobic tank 3, the wastewater inflow amount of the aerobic tank 3 becomes 550 t / day. Therefore, the capacity of the aerobic tank 3 is secured at 600 m 3 .

嫌気槽1の運転条件は有機物容積負荷8.4kg‐CODCr/(m3・日)に設定した。この嫌気槽1でのCODCr(有機物の指標)の除去率は94.0%であった。好気槽3の運転条件は有機物容積負荷0.92kg‐CODCr/(m3・日)、有機物MLSS負荷0.26kg-CODCr/(kg-MLSS・日)に設定した。7年間での原水に対する1,4‐ジオキサンの平均除去率は99.87%であった。 The operating condition of the anaerobic tank 1 was set to 8.4 kg-COD Cr / (m 3 · day) of organic substance volume load. The removal rate of COD Cr (an index of organic matter) in the anaerobic tank 1 was 94.0%. The operating conditions of the aerobic tank 3 were set to an organic matter volume load of 0.92 kg-COD Cr / (m 3 · day) and an organic matter MLSS load of 0.26 kg-COD Cr / (kg-MLSS · day). The average removal rate of 1,4-dioxane relative to raw water over 7 years was 99.87%.

本実施例の原水(廃水),嫌気槽1の嫌気処理水、好気槽3の好気処理水の1,4‐ジオキサンとCODCrの7年間の平均濃度を表2に示した。 Table 2 shows the average concentrations of 1,4-dioxane and COD Cr for 7 years in raw water (waste water), anaerobic treated water in the anaerobic tank 1 and aerobic treated water in the aerobic tank 3 of this example.

Figure 0006303512
Figure 0006303512

上記の実施例に基づき本発明について説明されたが、発明の趣旨と範囲から外れることなく様々な修正及び変形が可能であることは当業者であれば容易に認識できるものであり、このような変更及び修正は本願の特許請求の範囲に属することは自明である。   Although the present invention has been described based on the above embodiments, those skilled in the art can easily recognize that various modifications and variations can be made without departing from the spirit and scope of the invention. Obviously, changes and modifications fall within the scope of the claims of this application.

1…嫌気槽
2…緩衝槽
3…好気槽
6…熱源
DESCRIPTION OF SYMBOLS 1 ... Anaerobic tank 2 ... Buffer tank 3 ... Aerobic tank 6 ... Heat source

Claims (9)

1,4‐ジオキサン含有廃水の処理方法であって、
1,4‐ジオキサン含有廃水を上向流嫌気性スラッジブランケットまたは拡張型粒状スラッジブランケットによる嫌気生物学的処理に供して当該1,4‐ジオキサン含有廃水に含まれる有機物を除去する嫌気処理工程と、
前記1,4‐ジオキサン含有廃水と前記嫌気処理工程の処理水とを混合させた液相をpH調整した後に前記嫌気処理工程に供給する工程と、
前記pH調整された液相を好気生物学的処理に供して当該液相に含まれる残留有機物並びに1,4‐ジオキサンを除去する好気処理工程と
を有することを特徴とする1,4‐ジオキサン含有廃水の処理方法。
A method of treating wastewater containing 1,4-dioxane,
Anaerobic treatment step of subjecting 1,4-dioxane-containing wastewater to anaerobic biological treatment with an upflow anaerobic sludge blanket or an expanded granular sludge blanket to remove organic matter contained in the 1,4-dioxane-containing wastewater ;
Supplying the anaerobic treatment step after adjusting the pH of the liquid phase obtained by mixing the 1,4-dioxane-containing waste water and the treated water of the anaerobic treatment step;
And aerobic treatment step of removing the residual organic substances and 1,4-dioxane contained in the liquid phase by subjecting the pH-adjusted liquid phase to an aerobic biological treatment. A method for treating dioxane-containing wastewater.
前記嫌気処理工程では有機物をメタンガスと二酸化炭素ガスまでに分解することを特徴とする請求項に記載の1,4‐ジオキサン含有廃水の処理方法。 The anaerobic treatment method of treating 1,4-dioxane containing wastewater according to claim 1 in a process characterized by decomposing the organic substances to methane gas and carbon dioxide gas. 前記メタンガスを前記嫌気生物学的処理の系を加温する熱源の燃料として利用することを特徴とする請求項に記載の1,4‐ジキサン含有廃水の処理方法。 The method for treating 1,4-dioxane-containing wastewater according to claim 2 , wherein the methane gas is used as a fuel of a heat source for heating the anaerobic biological treatment system. 前記嫌気処理工程は有機物容積負荷が5〜10kg‐CODCr/(m3・日)であることを特徴とする請求項1からのいずれか1項に記載の1,4-ジオキサン含有廃水の処理方法。 The anaerobic treatment step organic volume load 5 to 10 kg-COD Cr / of that the (m 3 · day) from claim 1, wherein 3 any one the described 1,4-dioxane containing wastewater Processing method. 前記好気処理工程は長時間曝気法または膜分離活性汚泥法によることを特徴とする請求項1からのいずれか1項に記載の1,4-ジオキサン含有廃水の処理方法。 The method for treating 1,4-dioxane-containing wastewater according to any one of claims 1 to 4 , wherein the aerobic treatment step is performed by a long-time aeration method or a membrane separation activated sludge method. 前記好気処理工程は当該工程の系のMLSSが4000〜10000mg/Lであると共に有機物MLSS負荷が0.3kg-CODCr/(kg-MLSS・日)以下であることを特徴とする請求項1からのいずれか1項に記載の1,4-ジオキサン含有廃水の処理方法。 The aerobic treatment step is characterized in that the MLSS of the system in the step is 4000 to 10,000 mg / L, and the organic matter MLSS load is 0.3 kg-COD Cr / (kg-MLSS · day) or less. The processing method of a 1, 4- dioxane containing wastewater of any one of 1-5 . 前記好気処理工程が膜分離活性汚泥法による場合、有機膜またはセラミック平膜が固液分離に供されることを特徴とする請求項5または6に記載の1,4-ジオキサン含有廃水の処理方法。 The treatment of 1,4-dioxane-containing wastewater according to claim 5 or 6 , wherein when the aerobic treatment step is based on a membrane separation activated sludge method, an organic membrane or a ceramic flat membrane is subjected to solid-liquid separation. Method. 1,4‐ジオキサン含有廃水の処理装置であって、
1,4‐ジオキサン含有廃水を上向流嫌気性スラッジブランケットまたは拡張型粒状スラッジブランケットによる嫌気生物学的処理に供して当該1,4‐ジオキサン含有廃水に含まれる有機物を除去する嫌気槽と、
前記1,4‐ジオキサン含有廃水と前記嫌気槽の嫌気処理水とを混合させた液相をpH調整した後に当該嫌気槽に供給する緩衝槽と、
この緩衝槽からの前記pH調整された液相に含まれる残留有機物並びに1,4‐ジオキサンを好気生物学的処理により除去する好気槽と
を備えたこと
を特徴とする1,4‐ジオキサン含有廃水の処理装置。
A treatment apparatus for wastewater containing 1,4-dioxane,
An anaerobic tank for subjecting 1,4-dioxane-containing wastewater to anaerobic biological treatment with an upflow anaerobic sludge blanket or an expanded granular sludge blanket to remove organic matter contained in the 1,4-dioxane-containing wastewater ;
A buffer tank to be supplied to the anaerobic tank after adjusting the pH of the liquid phase obtained by mixing the 1,4-dioxane-containing waste water and the anaerobic treated water of the anaerobic tank;
A 1,4-dioxane comprising an aerobic tank for removing residual organic substances and 1,4-dioxane contained in the pH-adjusted liquid phase from the buffer tank by an aerobic biological treatment Waste water treatment equipment.
前記好気槽はMLSSが4000〜10000mg/Lであると共に有機物MLSS負荷が0.3kg-CODCr/(kg-MLSS・日)以下であることを特徴とする請求項に記載の1,4‐ジオキサン含有廃水の処理装置。 9. The aerobic tank according to claim 8 , wherein MLSS is 4000 to 10000 mg / L and an organic matter MLSS load is 0.3 kg-COD Cr / (kg-MLSS · day) or less. -Equipment for treating dioxane-containing wastewater.
JP2014002799A 2013-04-29 2014-01-10 Method and apparatus for treating 1,4-dioxane-containing wastewater Active JP6303512B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130047224A KR101394888B1 (en) 2013-04-29 2013-04-29 1,4-dioxane-containing wastewater treatment method and disposal plant
KR10-2013-0047224 2013-04-29

Publications (2)

Publication Number Publication Date
JP2014213320A JP2014213320A (en) 2014-11-17
JP6303512B2 true JP6303512B2 (en) 2018-04-04

Family

ID=50894063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014002799A Active JP6303512B2 (en) 2013-04-29 2014-01-10 Method and apparatus for treating 1,4-dioxane-containing wastewater

Country Status (2)

Country Link
JP (1) JP6303512B2 (en)
KR (1) KR101394888B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6524646B2 (en) * 2014-11-20 2019-06-05 栗田工業株式会社 Method and apparatus for biological treatment of waste water
CN104944702B (en) * 2015-06-18 2019-02-15 北京建研环保设备有限公司 A kind for the treatment of process and system of ice cream waste water
CN105169957B (en) * 2015-10-04 2018-10-19 吕晓龙 Immersion type membrane separator and its operation method
CN105600924A (en) * 2015-12-22 2016-05-25 浙江大学 Device and method for strengthening anaerobic MBR (membrane bioreactor) process performance by adding bamboo charcoal particles
CN106007188A (en) * 2016-06-29 2016-10-12 南昌大学 Treatment method of gibberellin production wastewater
CN106045030B (en) * 2016-07-10 2019-01-04 北京工业大学 A2The apparatus and method of/O-UASB continuous flow city domestic sewage advanced nitrogen dephosphorization
CN106865757B (en) * 2017-01-24 2020-05-05 南京大学 Sewage anaerobic treatment reactor heating system based on direct-fired absorption heat pump
CN111892252B (en) * 2020-04-09 2023-01-06 朱宇浩 Traditional Chinese medicine wastewater treatment method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241596A (en) * 1994-03-01 1995-09-19 Sumitomo Heavy Ind Ltd Treatment of waste water
JP3843540B2 (en) * 1997-06-03 2006-11-08 栗田工業株式会社 Biological treatment method of effluent containing organic solids
JP3575312B2 (en) * 1999-02-10 2004-10-13 栗田工業株式会社 Organic wastewater treatment method
JP2000279987A (en) * 1999-03-29 2000-10-10 Taiyo Kagaku Kogyo Kk Treatment of organic matter-containing waste water and its device
KR100638424B1 (en) * 2005-04-01 2006-10-24 주식회사 새 한 Method of and apparatus for the treatment of wastewater
KR100991758B1 (en) * 2008-05-16 2010-11-03 인하대학교 산학협력단 Biodegradation method of 1,4-dioxane and biodegradation apparatus thereof
JP5867796B2 (en) * 2011-03-30 2016-02-24 株式会社クボタ Waste water treatment method and waste water treatment system
JP2012206040A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Treatment method and treatment apparatus of organic matter containing wastewater

Also Published As

Publication number Publication date
JP2014213320A (en) 2014-11-17
KR101394888B1 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP6303512B2 (en) Method and apparatus for treating 1,4-dioxane-containing wastewater
KR101246847B1 (en) Landfill leachate wastewater treatment system and process thereof
Sharghi et al. The biological treatment of high salinity synthetic oilfield produced water in a submerged membrane bioreactor using a halophilic bacterial consortium
Siddiqi et al. A critical review of the recently developed laboratory-scale municipal solid waste landfill leachate treatment technologies
JP2009148714A (en) Biological treatment method and apparatus of organic matter-containing water
CN203307175U (en) Deep coking wastewater treatment device by using advanced oxidation process combined with membrane bioreactor
JP6750930B6 (en) Sewage purification system
CN101402506A (en) Process for treating dimethyl sulfoxide wastewater with photocatalysis and oxidization combined film bioreactor
CN204644056U (en) A kind of organic sewage treatment device
Arvanitoyannis et al. Food waste treatment methodologies
JP5372845B2 (en) Organic wastewater treatment system and method
KR102164624B1 (en) Bio-reactor for sewage treatment and sewage treatment system comprising the same
Hao et al. The pathway of in-situ ammonium removal from aerated municipal solid waste bioreactor: nitrification/denitrification or air stripping?
CN102050547A (en) Pretreatment method of organic wastewater difficult to biochemically degrade
JP2005169304A (en) Method of treating high concentration colored organic waste water
Zheng A compact process for treating oilfield wastewater by combining hydrolysis acidification, moving bed biofilm, ozonation and biologically activated carbon techniques
CN105936571A (en) Method for processing polyurethane (PU) synthetic leather wastewater
CN108585378A (en) A kind of High-concentration organic wastewater treatment method
CN105366836A (en) Process and device for circulating multi-dimensional catalyzing advanced oxidation treatment of oily wastewater
CN204079675U (en) The device of circular treatment oily(waste)water
CN113998827A (en) Advanced oxidation treatment device and treatment method for desulfurization wastewater of oil and gas field
KR20050049437A (en) A high pollution waste water disposal plant
JP5802578B2 (en) Water treatment apparatus and water treatment method
Ebenezer et al. Coupled ozonation with aerobic sequential batch reactor for treatment of distillery wastewater
Qachach et al. Biological treatment of fuel wastewater generated from a thermal power plant by continuous and discontinuous aeration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R150 Certificate of patent or registration of utility model

Ref document number: 6303512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150