JP6303158B1 - Motor or generator and also linear motor - Google Patents

Motor or generator and also linear motor Download PDF

Info

Publication number
JP6303158B1
JP6303158B1 JP2017050538A JP2017050538A JP6303158B1 JP 6303158 B1 JP6303158 B1 JP 6303158B1 JP 2017050538 A JP2017050538 A JP 2017050538A JP 2017050538 A JP2017050538 A JP 2017050538A JP 6303158 B1 JP6303158 B1 JP 6303158B1
Authority
JP
Japan
Prior art keywords
groove
coil
pole
phase
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017050538A
Other languages
Japanese (ja)
Other versions
JP2018130005A (en
Inventor
粛 梅森
粛 梅森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CCU LINEAR MOTOR LABORATORY LTD.
Original Assignee
CCU LINEAR MOTOR LABORATORY LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CCU LINEAR MOTOR LABORATORY LTD. filed Critical CCU LINEAR MOTOR LABORATORY LTD.
Priority to JP2017050538A priority Critical patent/JP6303158B1/en
Application granted granted Critical
Publication of JP6303158B1 publication Critical patent/JP6303158B1/en
Publication of JP2018130005A publication Critical patent/JP2018130005A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Linear Motors (AREA)

Abstract

【課題】相互結合複合型梅森モータの基本構成に係るトルク脈動の低減構造の提供にある。【解決手段】トルク脈動は吸引極の回転方向先端部が鉄心14の溝部を渡るときの瞬間的な吸引力の低減とコイル電流切換時の電流変動による瞬時的な吸引力増大が主原因である。吸引力の低減は、吸引極先端部に傾斜をつけることで吸引極の溝の渡りの影響を緩和する。電流変動は、電流切換えを各相に時間差を設けて影響を分散することで有効に低減できる。【選択図】図1An object of the present invention is to provide a structure for reducing torque pulsation according to a basic configuration of a mutual coupling composite type Umemori motor. Torque pulsation is mainly caused by a momentary reduction of the attraction force when the tip end in the rotation direction of the attraction pole crosses the groove of the iron core 14 and an increase in the attraction force by current fluctuation at the time of coil current switching. . Reduction of the suction force reduces the influence of the movement of the suction pole groove by inclining the tip of the suction pole. The current fluctuation can be effectively reduced by distributing the influence of the current switching by providing a time difference in each phase. [Selection] Figure 1

Description

本発明は両側面に磁極面を持った二重リング状歯溝鉄心、相互結合するように重複して巻いたコイル、両端に対向面を持つ吸引極の組み合わせでトルク、重量比略1桁向上を実現した革新的吸引モータに関するものである。  The present invention improves the torque and weight ratio by almost one digit by combining a double ring-shaped tooth gap core with magnetic pole faces on both sides, a coil wound in an overlapping manner and attracting poles with opposing faces at both ends. The present invention relates to an innovative suction motor that realizes the above.

昭和40年代、パルス巾変調技術を用いて3相疑似正弦波の可変電圧、可変周波インバータが発明され、これと3相同期電動機、3相誘導電動機と組み合わせて広範囲な速度制御が可能なモータシステムが完成し、それ以降現在迄広く使われてきた。
地球環境保護のため、化石燃料車から電気自動車、燃料電池電気自動車に短期間にとって代わるべき情勢も生まれてきた。現在あるモータは大きく変わるべき宿命を負わされてしまった。
この様な状況のもとで本出願と同一の発明者によって特許出願2016−17506相互結合複合型梅森モータが出願された。該特許は相互結合と複合型の構成要素によって、ネオジウム磁石は使用しない、トルク・重量比が従来モータの1桁大、モータ形状が据置型、扁平型、軸中型、平型リニア駆動型が選択出来る、駆動機構がシンプルである、制動エネルギが高い効率で回収出来駆動エネルギが再利用出来る等今後の文明社会えの適応性が高い。
In 1965, a three-phase pseudo sine wave variable voltage and variable frequency inverter was invented using pulse width modulation technology, and a motor system capable of controlling a wide range of speeds in combination with this three-phase synchronous motor and three-phase induction motor. Has been completed and has been widely used since then.
In order to protect the global environment, a situation has emerged that should replace fossil fuel vehicles with electric vehicles and fuel cell electric vehicles for a short period of time. The motors that are present have been fatefully changed.
Under such circumstances, the same inventor as that of the present application has applied for a patent application 2016-17506 combined-coupling type Umemori motor. The patent uses mutual coupling and composite type components, does not use neodymium magnets, the torque / weight ratio is one digit larger than that of conventional motors, and the motor shape is stationary, flat, mid-shaft, or flat linear drive It is highly adaptable to future civilized societies, such as simple driving mechanism, recovery of braking energy with high efficiency, and reuse of driving energy.

本発明は前記既出願特許、相互結合複合型梅森モータに追加すべきトルク脈動を解決ための構成についてなされたものである。  The present invention has been made with respect to a configuration for solving the torque pulsation to be added to the aforementioned patent application and the interconnected composite type Umemori motor.

本発明のモータは転流相手のA,B相の2相構成のコイル組を複数互いに位相角を(π/重相数)ずつずらして重ね両面対向面の複数の歯溝鉄心それぞれに收納して構成した固定子と、両面或は両端に対向面を持つ複数の吸引極で対向面を構成した回転子または移動子と、二象限定電流回路からの定電流をA相,B相を切り換えながら順次に位相差(π/重相数)で各コイル組に供給して、各コイルの起磁力が集中した位置に該吸引極先端部或は後端部がくるように動作するスイッチとで構成したモータ或は発電機さらにまたリニアモータにおいて、吸引極の回転方向または移動方向先端部と後端部に傾斜をつけることと、複数の歯溝鉄心間でコイル間の転流のタイミングをずらすことの何れか或は両者でトルク脈動を低減したモータ或は発電機さらにまたリニアモータである。  In the motor according to the present invention, a plurality of coil pairs having a two-phase configuration of A and B phases of a commutation partner are stacked with their phase angles shifted from each other by (π / number of multiple phases), and stored in each of a plurality of tooth gap cores on both surfaces facing each other. The stator is configured in this way, and the rotor or moving element is configured with a plurality of attracting poles having opposing surfaces on both sides or both ends, and the constant current from the two-quadrant limited current circuit is switched between A phase and B phase. However, a switch that sequentially supplies a phase difference (π / number of multiple phases) to each coil set and operates so that the leading end or the rear end of the attracting pole comes to a position where the magnetomotive force of each coil is concentrated. In the configured motor or generator and also in the linear motor, the leading and trailing ends of the attracting pole are rotated or moved, and the commutation timing between the coils is shifted between the plurality of tooth gap cores. Motor or power generation with reduced torque pulsation by either or both Machine and also a linear motor.

従来の磁石式モータにおけるトルク脈動対策は、基本的に磁石無しモータに対しては適用出来ない。相互結合複合型梅森モータにおけるトルク脈動対策は発生原因を解明して[0004]項記載の解決策を得た。相互結合複合型梅森リニアモータはこれと同様有効に対応出来る。また相互結合複合型梅森発電機に対してはトルク脈動の影響は出力電圧脈動の形で表われるが、これに対しても脈動の低減効果が得られる。  The torque pulsation countermeasure in the conventional magnet type motor is basically not applicable to a motor without a magnet. The countermeasure for torque pulsation in the interconnected composite type Umemori motor has been solved and the solution described in [0004] has been obtained. Mutually coupled complex type Umemori linear motor can cope with this as well. In addition, the influence of torque pulsation appears in the form of output voltage pulsation for the interconnected combined type Umemori generator, but the effect of reducing pulsation can also be obtained.

本発明に係る16極6重相12面構成モータの実施例である。Aは、上記歯溝鉄心部分を含むA−A′断面である。Bは、上記吸引極部分を含むB−B′断面である。Cは、上記軸を含む横断面図である。Dは、外側から見た磁極の重なり状況図である  1 is an example of a 16-pole 6-phase 12-plane motor according to the present invention. A is an AA ′ cross section including the tooth gap core portion. B is a BB 'cross section including the above-mentioned suction pole portion. C is a transverse sectional view including the axis. D is an overlapping state diagram of magnetic poles as viewed from the outside. Aは、本発明による図1に係るコイル構成の説明図である。Bは、同図[A]に係る歯溝鉄心間の磁路を示した図である。  A is explanatory drawing of the coil structure which concerns on FIG. 1 by this invention. B is a diagram showing a magnetic path between the tooth gap cores according to FIG. Aは、本発明による固定子要素1−1に係るFFスイッチとコイルの接続構成を示した図である。Bは、固定子要素1−1各相の電流波形を示す。  FIG. 3A is a diagram showing a connection configuration of an FF switch and a coil according to the stator element 1-1 according to the present invention. B shows the current waveform of each phase of the stator element 1-1. 3組の固定子要素相互間の電流位相関係を示した図  Diagram showing the current phase relationship between the three sets of stator elements 動作説明のための基本構成図(1)  Basic configuration diagram for operation explanation (1) 動作説明のための基本構成図(2)  Basic configuration diagram for operation explanation (2) 動作説明のための基本構成図(3)  Basic configuration diagram for operation explanation (3) 本発明による先端部、後端部に傾斜をつけた吸引極を示した図  The figure which showed the attraction | suction pole which inclined the front-end | tip part and rear-end part by this invention 本発明による独立した磁束循環回路を設けた固定子要素を示す図  FIG. 3 shows a stator element with an independent magnetic flux circuit according to the invention

図1は本発明に係る実施例の16極6重相12面構成のモータを示す。同図[C]は軸に面した断面構造を示す。図において1は固定子、2は回転子、4は保持材、5は回転軸、6は空隙、7は角度位置検知器である。
固定子1は3組の固定子要素1−1、1−2、1−3に分離され、軸方向に重ねてネジ26でおさえられている。該3組の固定子要素はそれぞれ後述する大小リング状歯溝鉄心14、14′にコイル16が巻かれ該大小リング状歯溝鉄心相互間と外表面を保持材4で成形補強して円板状に作られている。図1[A]は前述した図1[C]の固定子要素1−1のA−A′断面図である。14は大リング歯溝鉄心、14′は小リング歯溝鉄心を示す。コイルは複雑さを避けるためここでは省略してある。
回転子2は、4組の回転子要素2−1、2−2、2−3、2−4に分離され軸方向に重ねてネジ26でおさえられ、回転軸5に固定されている。
図1[B]は、同図[C]の回転子2−1のB−B′断面図である。図において17−1〜17−4は吸引極を示す。該吸引極の半径方向の縁は半径方向と傾斜をつけてある。図1[D]は、この部分を外側から見た固定子要素1−1〜1−3の歯鉄心の溝と、回転子要素2−1〜2−4の吸引極の重なり状況をイメージ的に示したものである。該吸引極の角度位置は4者が一致しているが、該溝の角度位置は3者は順次にずれて設けられている。固定子の3分割と回転子の4分割はトルク脈動低減とトルク・重量比1桁増の革新に寄与している。7は回転子2の角度位置検知器である。
FIG. 1 shows a 16-pole 6-phase 12-plane motor according to an embodiment of the present invention. FIG. [C] shows a cross-sectional structure facing the shaft. In the figure, 1 is a stator, 2 is a rotor, 4 is a holding member, 5 is a rotating shaft, 6 is a gap, and 7 is an angular position detector.
The stator 1 is separated into three sets of stator elements 1-1, 1-2, 1-3, and is held by screws 26 in the axial direction. The three sets of stator elements are each formed by winding a coil 16 around large and small ring-shaped tooth spaces 14 and 14 ', which will be described later, and forming and reinforcing between the large and small ring-shaped tooth spaces and the outer surface with a holding material 4. It is made into a shape. FIG. 1A is a cross-sectional view taken along the line AA ′ of the stator element 1-1 shown in FIG. Reference numeral 14 denotes a large ring tooth core, and 14 'denotes a small ring tooth core. The coil is omitted here to avoid complexity.
The rotor 2 is separated into four sets of rotor elements 2-1, 2-2, 2-2, and 2-4, overlapped in the axial direction and held by screws 26, and fixed to the rotary shaft 5.
FIG. 1B is a cross-sectional view of the rotor 2-1 in FIG. In the figure, reference numerals 17-1 to 17-4 denote suction poles. The radial edge of the suction pole is inclined with respect to the radial direction. FIG. 1D is an image of the overlapping state of the teeth of the stator cores 1-1 to 1-3 and the attracting poles of the rotor elements 2-1 to 2-4 when this portion is viewed from the outside. It is shown in. The four angular positions of the suction poles coincide with each other, but the three angular positions of the grooves are sequentially shifted. The three divisions of the stator and the four divisions of the rotor contribute to innovations that reduce torque pulsation and increase the torque / weight ratio by one digit. Reference numeral 7 denotes an angular position detector of the rotor 2.

図2[A]はコイル構成、同図[B]は磁束循環の構成を説明するための図である。16極6重相構成より磁極ピッチは360°/16極=22.5°、歯鉄心ピッチ、溝ピッチ=22.5°/6重相=3.75°、1周の溝数は16[極]×6[重相]=96である。
図2[A]において、14−1、14−1はそれぞれ固定子要素1−1における大リング状鉄心、小リング状鉄心で、それぞれ溝15−1〜15−96、15′−1〜15′−96の一部が示してある。14−2、14′−2は同様固定子要素1−2の鉄心、14−3、14′−3は同様固定子要素1−3の鉄心を示す、回転子の回転方向は追番の方向を順方向とする。
コイル16−1Aは大リング状鉄心14−1の溝15−1と溝15−6の問の歯鉄心5個分を鉄心に向かって右回りで取り巻くように巻き該溝と同じ角度の小リング状鉄心14′−1の溝15−1′と溝15−6′を上記とは逆に溝を左回りで取り巻くようにして所定の巻数が巻いてある。図2[A]では表示していないが、上記と同様のことを2磁極ピッチ、即ち12溝ピッチで以下の通り8回繰り返す。
溝15−1、 溝15−6 と 溝15−1′、 溝15−6′
溝15−13、 溝15−18 と 溝15−13′、溝15−18′
溝15−25、 溝15−30 と 溝15−25′、溝15−30′
溝15−37、 溝15−42 と 溝15−37′、溝15−42′
溝15−49、 溝15−54 と 溝15−49′、溝15−54′
溝15−61、 溝15−66 と 溝15−61′、溝15−66′
溝15−73、 溝15−78 と 溝15−73′、溝15−78′
溝15−85、 溝15−90 と 溝15−85′、溝15−90′
以上計8組のコイルは直列接続してコイル16−1Aを構成する。
2A is a diagram illustrating a coil configuration, and FIG. 2B is a diagram illustrating a configuration of magnetic flux circulation. Due to the 16 pole 6 phase configuration, the magnetic pole pitch is 360 ° / 16 pole = 22.5 °, the tooth pitch, groove pitch = 22.5 ° / 6 phase = 3.75 °, the number of grooves per round is 16 [ Pole] × 6 [heavy phase] = 96.
In FIG. 2A, 14-1 and 14-1 are a large ring-shaped iron core and a small ring-shaped iron core in the stator element 1-1, respectively, and grooves 15-1 to 15-96, 15'-1 to 15 respectively. A portion of '-96 is shown. 14-2 and 14'-2 indicate the iron core of the stator element 1-2, and 14-3 and 14'-3 indicate the iron core of the stator element 1-3. The rotation direction of the rotor is the direction of the serial number. Is the forward direction.
The coil 16-1A is wound so that five tooth iron cores of the groove 15-1 and the groove 15-6 of the large ring-shaped iron core 14-1 are wound clockwise around the iron core, and a small ring having the same angle as the groove is formed. A predetermined number of turns are wound around the groove 15-1 'and the groove 15-6' of the iron core 14'-1 so as to surround the groove counterclockwise. Although not shown in FIG. 2 [A], the same thing as the above is repeated 8 times as follows at 2 magnetic pole pitches, that is, 12 groove pitches.
Groove 15-1, Groove 15-6 and Groove 15-1 ', Groove 15-6'
Groove 15-13, Groove 15-18 and Groove 15-13 ', Groove 15-18'
Groove 15-25, Groove 15-30 and Groove 15-25 ', Groove 15-30'
Groove 15-37, Groove 15-42 and Groove 15-37 ', Groove 15-42'
Groove 15-49, Groove 15-54 and Groove 15-49 ', Groove 15-54'
Groove 15-61, Groove 15-66 and Groove 15-61 ', Groove 15-66'
Groove 15-73, Groove 15-78 and Groove 15-73 ', Groove 15-78'
Groove 15-85, Groove 15-90 and Groove 15-85 ', Groove 15-90'
The total of eight coils are connected in series to constitute the coil 16-1A.

上記コイル16−1Aを基準にして1磁極ピッチ、即ち6溝ピッチずらしてコイル16−1Bを構成する。コイル16−1Aとコイル16−1Bとの間は1溝ピッチ分間隔を空けてあるが、コイルの転流時間のための余裕時間を設けたものである。  The coil 16-1B is configured with a shift of one magnetic pole pitch, that is, six groove pitches, based on the coil 16-1A. The coil 16-1A and the coil 16-1B are spaced apart by a pitch of one groove, but allowance time for the commutation time of the coil is provided.

再に上記コイル16−1A、コイル16−1Bを基準にして、回転方向に1溝ピッチずらしてコイル16−2A、コイル16−2Bが構成される。再にまた、最初から見て2溝ピッチずらしてコイル16−3A、コイル16−3Bが、3溝ずらしてコイル16−4A、コイル16−4Bが、4溝ずらしてコイル16−5A、16−5Bが、5溝ずらしてコイル16−6A、16−6Bが構成される。  The coil 16-2A and the coil 16-2B are configured by shifting the pitch of the groove by one groove in the rotation direction with reference to the coils 16-1A and 16-1B again. Again, when viewed from the beginning, the coils 16-3A and 16-3B are shifted by 2 grooves, the coils 16-4A and 16-4B are shifted by 3 grooves, and the coils 16-5A and 16- are shifted by 4 grooves. The coils 16-6A and 16-6B are configured with 5B shifted by 5 grooves.

コイル16の起磁力の向きは大リング状歯溝鉄心14−1と小リング状歯溝鉄心14′−1のそれぞれの内では統一して、大リング状歯溝鉄心と小リング状歯溝鉄心の間では逆向きにする。図2[A]では大リング状歯溝鉄心14−1の起磁力は鉄心面に向う方向、小リング状歯溝鉄心14−1の起磁力の向きはその逆にしてある。これよって図2[B]に示した様に対向した吸引極17を通じて矢印の点線の循環磁束19−1〜19−3が生じる。吸引極17が大小リング状歯溝鉄心14−1、14′−1のどの、角度位置にあっても同じ方向の循環磁束が生じる。  The direction of the magnetomotive force of the coil 16 is unified in each of the large ring-shaped tooth core 14-1 and the small ring-shaped tooth core 14'-1, and the large ring-shaped tooth core and the small ring-shaped tooth core. In the opposite direction. In FIG. 2A, the magnetomotive force of the large ring-shaped tooth gap core 14-1 is directed toward the iron core surface, and the direction of the magnetomotive force of the small ring-shaped tooth groove core 14-1 is reversed. As a result, as shown in FIG. 2B, circulating magnetic fluxes 19-1 to 19-3 indicated by dotted lines through the opposing attracting poles 17 are generated. A circulating magnetic flux in the same direction is generated regardless of which of the large and small ring-shaped tooth gap cores 14-1, 14'-1 is at the angular position.

固定子要素1−2、1−3のコイル構成は、固定子要素1−1と同じである。
但し、固定子要素1−2は、固定子要素1−1を基準にして回転方向に溝ピッチの1/3、固定子要素1−3は更に溝ピッチの1/3ずれる様にネジ穴26を開けてある。そのため吸引極17の先端部、或は後端部が該固定子の歯溝鉄心14、14′の溝を通過するのは固定子要素1−1、固定子要素1−2、固定子要素1−3の順にずれて生じる。
The coil configuration of the stator elements 1-2 and 1-3 is the same as that of the stator element 1-1.
However, the stator element 1-2 has a screw hole 26 so that the groove element pitch is shifted by 1/3 of the groove pitch in the rotation direction with respect to the stator element 1-1, and the stator element 1-3 is further shifted by 1/3 of the groove pitch. Is open. Therefore, it is the stator element 1-1, the stator element 1-2, and the stator element 1 that the front end portion or the rear end portion of the suction pole 17 passes through the grooves of the tooth gap cores 14 and 14 'of the stator. -3.

図1[C]を参照して、回転子2は回転子要素2−1、2−2、2−3、2−4の4組で構成される。代表的に同図[B]は回転子要素2−2のB−B′断面を表しており、8個の吸引極の17−1〜17−4か図面に表示されている。該吸引極の形状は巾が1磁極ピッチ、半径方向長さが大リング状歯溝鉄心14の外径から小リング状歯溝鉄心14′の内径を覆う扇状で積層鋼板で作られ1磁極ピッチの間隔を開けて配置している。但し該吸引極の半径方向

Figure 0006303158
傾斜でまたがる様にしてある。上記回転子要素2−2以外の回転子要素2−1、2−3、2−4に関しても、吸引極17は同じ角度位置で三つの固定子要素1−1、1−2、1−3を空隙6を介して挟む様に配置され、総ての吸引極は角度方向、軸方向の位置と強度保持のため例えばモールド構造の保持材4で保持される。Referring to FIG. 1C, the rotor 2 includes four sets of rotor elements 2-1, 2-2, 2-3, 2-4. Typically, [B] in the figure represents a BB ′ cross section of the rotor element 2-2, and eight suction poles 17-1 to 17-4 are shown in the drawing. The shape of the attracting pole is a magnetic pole pitch with a width of 1 magnetic pole pitch, and a radial length is a fan-shaped laminated steel plate covering the inner diameter of the small ring-shaped tooth space core 14 'from the outer diameter of the large ring-shaped tooth space core 14. It is arranged with a gap. However, the radial direction of the suction pole
Figure 0006303158
It is designed to straddle with an inclination. Also with respect to the rotor elements 2-1, 2-3, 2-4 other than the rotor element 2-2, the attracting pole 17 has three stator elements 1-1, 1-2, 1-3 at the same angular position. Are interposed between the gaps 6 and all the attraction poles are held by, for example, a holding member 4 having a mold structure in order to maintain the position and strength in the angular and axial directions.

図3は、本発明の図1の固定子要素1−1に係るフリップフロップ(以下FFスイッチと略称する)とコイルの接続、コイル電流波形を示すための図である。同図[A]は、二象限定電流制御回路22−1とコイル16−1A〜16−6A、コイル16−1B〜16−6BとFFスイッチ20−1A〜20−6A、20−1B〜20−6Bとの接続を説明するための図である。二象限定電流制御回路22−1は負荷起電力の正負、大小に関係なく設定した定電流Iを出力するものである。転流相手のコイル16−1Aとコイル16−1BはFFスイッチ20−1A、20−1Bを介して並列接続されてFFスイッチユニットを構成してオンした方のFFスイッチを二象限定電流制御回路22−1から定電流Iが供給される。転流相手のコイルのいずれか一方を流れた電流は一旦回路は合流して定電流Iとして、次のFFユニットへ入力しこれを全体で6回くり返す。
尚、該FFスイッチ20−1は図3では通常のスイッチ記号を使用しているか、実際はIGBT等の半導体スイッチを用い、コンデンサ等による過電圧抑制等の処理が必要である。
FIG. 3 is a diagram showing a connection between a flip-flop (hereinafter abbreviated as an FF switch) and a coil current waveform of the stator element 1-1 of FIG. 1 according to the present invention. The diagram [A] shows a two-quadrant limited current control circuit 22-1 and coils 16-1A to 16-6A, coils 16-1B to 16-6B, and FF switches 20-1A to 20-6A and 20-1B to 20. It is a figure for demonstrating the connection with -6B. The two-quadrant limited current control circuit 22-1 outputs a set constant current I regardless of whether the load electromotive force is positive or negative. The commutation counterpart coil 16-1A and coil 16-1B are connected in parallel via the FF switches 20-1A and 20-1B to configure the FF switch unit and turn on the FF switch that is turned on. The constant current I is supplied from 22-1. The current that has flowed through one of the commutation counterpart coils once joins the circuit as a constant current I and is input to the next FF unit, which is repeated six times in total.
The FF switch 20-1 uses a normal switch symbol in FIG. 3, or actually uses a semiconductor switch such as an IGBT, and requires processing such as overvoltage suppression by a capacitor or the like.

図3[B]はコイル16−1A、16−1B〜コイル16−6A、16−6Bの電流波形を示す。12相のコイル電流波形はピ−ク値かIの片振巾の台形波で波形相互は順次π/6ずつ位相がずれている。表1は同図におけるFFスイッチの動作順序を示す。表中の○印はFFスイッチオン、

Figure 0006303158
×印はFFスイッチオフを示す。動作モードを6番ずらすと制動及び逆行動作になる。FIG. 3B shows current waveforms of coils 16-1A and 16-1B to coils 16-6A and 16-6B. The 12-phase coil current waveform is a trapezoidal wave with a peak value or a single amplitude of I, and the waveforms are sequentially shifted in phase by π / 6. Table 1 shows the operation order of the FF switches in FIG. ○ in the table indicates FF switch on,
Figure 0006303158
X indicates FF switch off. If the operation mode is shifted by 6, the brake and reverse operation are performed.

図4は固定子要素1−1〜1−3に係る電流供給を説明するための図である。同図[A]はコイル16に対する電流供給系を示したものである。二象限定電流制御器22−1〜22−3は固定子要素1−1、1−2、1−3それぞれ別々にして各固定子要素間での電流変動の影響を受けない様にしてある。
同図[B]は固定子要素1−1のコイル16−1A、16−1Bの波形であり、前述した図3[B]の一部と同じである。図4[C]、[D]は、これを基準にして固定子要素1−2、1−3のコイル16−1A、16−1Bの位相関係

Figure 0006303158
FIG. 4 is a diagram for explaining current supply according to the stator elements 1-1 to 1-3. FIG. [A] shows a current supply system for the coil 16. The two-quadrant limited current controllers 22-1 to 22-3 are separated from the stator elements 1-1, 1-2, and 1-3 so as not to be affected by current fluctuations between the stator elements. .
FIG. 6B shows the waveforms of the coils 16-1A and 16-1B of the stator element 1-1, which is the same as a part of FIG. 3B described above. 4C and 4D show the phase relationship between the coils 16-1A and 16-1B of the stator elements 1-2 and 1-3 on the basis of this.
Figure 0006303158

図5は、図1に係る動作説明用基本構成である。図1の本発明による実施例は16極6重相12面構成で吸引極の対向面は全体で96あるが、図5の基本構成は1極に単純化して且つ見やすい様に直線化してある。磁路の構成は完結しておらず図中矢印19で示した磁路があることを前提にしてある。
図5を参照して、吸引極17の先端Pが溝15−5にある状態では、FFスイッチ20−1A〜20−6Aは総てオン、FFスイッチ20−1B〜20−6Bは総てオフで、コイル16−1A〜16−6Aは二象限定電流制御回路22−1からの供給電流Iが流れる。通流コイルは黒く塗りつぶしてある。各歯鉄心の磁束は下記の様に生じる。
・歯鉄心14−13の空隙はコイル16−1Aのコイル1個分の電流による磁束
・歯鉄心14−14の空隙はコイル16−1A〜16−2Aのコイル2個分の電流による磁束
・歯鉄心14−15の空隙はコイル16−1A〜16−3Aのコイル3個分の電流による磁束
・歯鉄心14−16の空隙はコイル16−1A〜16−3Aのコイル4個分の電流による磁束
・歯鉄心14−17の空隙は吸引極17の対向した局部だけコイル16−1A〜コイル16−5Aのコイル5個分の電流による磁束
吸引極17の先端Pが歯鉄心14−7を横断する間、歯鉄心14−3〜14−6の空隙磁束は変化せず、歯鉄心14−7の磁束だけか直線的に増加する。結局は吸引極17が歯鉄心14−7を移動する間に取得する磁気エネルギは該歯鉄心と吸引極とで作る対向空隙の持つ磁気エネルギと等しく、吸引極1個当り

Figure 0006303158
取得した磁気エネルギと同量の力学的エネルギが出力し、吸引極1個当り
Figure 0006303158
ここに
:磁束密度[T]
:蓄積された磁気エネルギ[J]
:発生吸引力[N]
μ:4π×10−7
g:空隙長[m]
a:歯溝鉄心巾[m]
b:歯ピッチ[m]
多相コイルの各相が独立して吸引力発生の仕事をするのではなく多相コイルの全電流が相互結合で一体化して吸引動作の仕事をする。吸引力は電流の二乗に比例するため、各相コイルを相互結合で一体化することで実効的に重相数倍の吸引力を生じさせている。FIG. 5 shows a basic configuration for explaining the operation according to FIG. The embodiment of the present invention shown in FIG. 1 has a 16-pole 6-phase 12-face configuration and 96 opposing faces of the suction pole as a whole, but the basic configuration of FIG. 5 is simplified to one pole and straightened for easy viewing. . The configuration of the magnetic path is not complete, and it is assumed that there is a magnetic path indicated by an arrow 19 in the figure.
Referring to FIG. 5, in the state where the tip P of the suction pole 17 is in the groove 15-5, all the FF switches 20-1A to 20-6A are on and all the FF switches 20-1B to 20-6B are off. Thus, the supply current I from the two-quadrant limited current control circuit 22-1 flows through the coils 16-1A to 16-6A. The flow coil is painted black. The magnetic flux of each tooth core is generated as follows.
The gap of the tooth core 14-13 is a magnetic flux generated by the current of one coil of the coil 16-1A. The gap of the tooth core 14-14 is a magnetic flux generated by the current of two coils of the coils 16-1A to 16-2A. The gap of the iron core 14-15 is a magnetic flux generated by the current of three coils of the coils 16-1A to 16-3A. The gap of the toothed iron core 14-16 is a magnetic flux generated by the current of four coils of the coils 16-1A to 16-3A. The gap of the toothed iron core 14-17 is only at the part where the attracting pole 17 is opposed, and the tip P of the magnetic flux attracting pole 17 due to the current of five coils of the coils 16-1A to 16-5A crosses the toothed iron core 14-7. Meanwhile, the gap magnetic flux of the tooth cores 14-3 to 14-6 does not change, and only the magnetic flux of the tooth core 14-7 increases linearly. Eventually, the magnetic energy acquired while the attracting pole 17 moves the tooth core 14-7 is equal to the magnetic energy of the opposing gap formed by the tooth core and the attracting pole, and per attracting pole.
Figure 0006303158
The same amount of mechanical energy as the acquired magnetic energy is output, per suction pole.
Figure 0006303158
Where B M : Magnetic flux density [T]
E M : Stored magnetic energy [J]
F M: generating a suction force [N]
μ 0 : 4π × 10 −7
g: Air gap length [m]
a: tooth gap core width [m]
b: Tooth pitch [m]
Each phase of the multi-phase coil does not work independently for generating an attractive force, but the entire current of the multi-phase coil is integrated by mutual coupling to perform the work of the suction operation. Since the attractive force is proportional to the square of the current, by integrating the respective phase coils by mutual coupling, an attractive force that is effectively several times the number of heavy phases is generated.

図6を参照して、吸引極17の先端Pが歯鉄心14−7を横断して溝15−6に達した時点で、コイル16−1Aの電流がコイル16−1Bに転流する。コイル16−1Aは、自身のコイルの自己インダクタンスにもとづく磁気エネルギと、コイル16−1Aとコイル16−2A〜16−5Aそれぞれとの相互インダクタンスにもとづく磁気エネルギを保有する。転流によって上記自己インダクタンスの磁気エネルギは転流回路を通して電源側に回収され相互インダクタンスの磁気エネルギは相手のもとでそのまま、電源側に回収される。コイル電流のオン、オフに伴う磁気エネルギは多重化の分割によって、負担は6重相化の例では1/22に低減し、過電圧発生等の問題が解消される。  Referring to FIG. 6, when the tip P of the suction pole 17 crosses the tooth core 14-7 and reaches the groove 15-6, the current of the coil 16-1A is commutated to the coil 16-1B. The coil 16-1A has magnetic energy based on the self-inductance of its own coil and magnetic energy based on the mutual inductance between the coil 16-1A and each of the coils 16-2A to 16-5A. Due to the commutation, the magnetic energy of the self-inductance is recovered to the power source side through the commutation circuit, and the magnetic energy of the mutual inductance is recovered to the power source side as it is under the other party. The magnetic energy associated with the on / off of the coil current is divided by multiplexing, and the burden is reduced to 1/22 in the case of the six-phase configuration, and problems such as overvoltage generation are solved.

図7は、前記コイル16−1Aからコイル16−1Bへの転流後の状態を示してある。この状態は図5における状態と基本的に同じで吸引極17の先端Pが、歯鉄心14−8で駆動を継続する。  FIG. 7 shows a state after commutation from the coil 16-1A to the coil 16-1B. This state is basically the same as the state shown in FIG. 5, and the tip P of the attraction pole 17 continues to be driven by the tooth core 14-8.

駆動力は吸引極先端部に、制動力は吸引極後端部に生じる。該先端部、或は後端部が溝を渡るとき吸引力が瞬間跡絶え駆動力或は制動力が減小してトルク脈動が生じる。このトルク脈動は溝の間隔が小さい程、空隙が大きい程小さくなる。また吸引極先端部或は後端部に傾斜をつけることで、吸引極の溝の渡りの影響を緩和出来トルク脈動を低減出来る。
吸引極先端部或は後端部が溝を通過するとき角度位置信号によってコイル電流を切換える所謂転流が生じる様にしてある。このときオフする側のコイル電流は一旦過渡的に変動してからオフする。これと同一の二象限定電流制御回路の全相のコイル電流は電流変動の影響を受けてトルク脈動を生じる。
この原因によるトルク脈動は転流リアクトルのリアクタンスを大きくすることで低減効果はあるが、複合機構の磁気回路が複数設けられるときは、複数の磁気回路毎に独立した二象限定電流制御回路を設けて時間差を付けて転流することでトルク脈動を更に有効に低減できる。
Driving force is generated at the front end of the suction pole, and braking force is generated at the rear end of the suction pole. When the front end portion or the rear end portion crosses the groove, the attraction force instantaneously disappears, and the driving force or the braking force is reduced to generate torque pulsation. The torque pulsation becomes smaller as the groove interval is smaller and the gap is larger. Further, by inclining the leading end portion or the trailing end portion of the attraction pole, the influence of the movement of the attraction electrode groove can be mitigated, and the torque pulsation can be reduced.
When the leading end or the rear end of the attracting pole passes through the groove, so-called commutation for switching the coil current by the angular position signal occurs. At this time, the coil current on the side to be turned off temporarily changes and then turns off. The coil current of all phases of the same two-quadrant limited current control circuit is affected by current fluctuations and generates torque pulsation.
Torque pulsation due to this cause can be reduced by increasing the reactance of the commutating reactor, but when multiple magnetic circuits of a composite mechanism are provided, an independent two-quadrant limited current control circuit is provided for each of the multiple magnetic circuits. Thus, torque pulsation can be further effectively reduced by commutation with a time difference.

図8は、本発明に係る吸引極の回転方向先端部と後端部に傾斜を付けた構造を示す。同図中の3組の固定子1−1、1−2、1−3は図1[C]同の固定子1−1、1−2、1−3に対応する。
17は吸引極、14、14′は大小のリング状歯鉄心、15、15′は溝である。吸引極17の形状を明確にするため、吸引極以外は破線で示し、コイルは省略して示してある。
FIG. 8 shows a structure in which the front end and the rear end in the rotation direction of the suction pole according to the present invention are inclined. 3 sets of stators 1-1, 1-2, and 1-3 correspond to the same stators 1-1, 1-2, and 1-3 in FIG. 1C.
Reference numeral 17 denotes a suction pole, 14 and 14 'denote large and small ring-shaped tooth cores, and 15 and 15' denote grooves. In order to clarify the shape of the attraction pole 17, the portions other than the attraction pole are indicated by broken lines, and the coil is omitted.

図9[A]は、本発明による独立した磁束循環回路を設けた固定子要素を説明した図である。参考のため、図9[B]は、既出願特許2016−17506相互結合複合型梅森モータにおける磁気回路19によるものを示した。同図[B]は回転子要素2−2、2−3、2−の吸引極はそれぞれは二つの分離しているため一つの共通磁路19だけしか存在し得ず、三組の固定子要素1−1〜1−3の電流のオン、オフは一体である必要がある。これに対して同図Aは回転子要素2−1〜2−4の吸引極はそれぞれ一体であり、回転子要素1−1〜1−3の電流のオン、オフは独立することが可能である。本発明に係る固定子要素1−1〜1−3の二象限定電流制御回路からの電流供給は、図4[A]に示す様に分離して、同図[B]、[C]、[D]に示す位相差で供給することが可能である。  FIG. 9A is a diagram illustrating a stator element provided with an independent magnetic flux circulation circuit according to the present invention. For reference, FIG. 9 [B] shows the magnetic circuit 19 in the Umemori Motor, which is an already-coupled Japanese Patent Application No. 2006-17506. In FIG. 5B, the attracting poles of the rotor elements 2-2, 2-3, 2-2 are separated from each other, so that only one common magnetic path 19 can exist, and three sets of stators are present. The current on and off of the elements 1-1 to 1-3 needs to be integrated. On the other hand, in FIG. 5A, the attracting poles of the rotor elements 2-1 to 2-4 are respectively integrated, and the on and off of the current of the rotor elements 1-1 to 1-3 can be independent. is there. The current supply from the two-quadrant limited current control circuit of the stator elements 1-1 to 1-3 according to the present invention is separated as shown in FIG. 4 [A], and [B], [C], It is possible to supply with the phase difference shown in [D].

1、固定子
1−1、1−2、1−3 固定子要素
2 回転子
2−1、2−2、2−3 回転子要素
4 保持材
5、回転軸
6、空隙
7、角度位置検出器、
8、ベアリング
14 大リング状歯溝鉄心
14′ 小リング状歯溝鉄心
14−I 固定子要素1−1における大リング状歯溝鉄心
14′−I 固定子要素1−1における小リング状歯溝鉄心
14−II 固定子要素1−2における大リング状歯溝鉄心
14′−II 固定、1−2における小リング状歯溝鉄心
14−III 固定子要素1−3における大リング状歯溝鉄心
14′−III 固定子要素1−3における小リング状歯溝鉄心
15、15−1〜96、15−1′〜96′ 溝
16、16−1A〜6A、16−1B〜6B′ コイル
17、17−1〜8 吸引極
20、20−1A〜6A、20−1B〜6B FFスイッチ
22、22−1〜3 二象限定電流制御回路
26、26′ ネジ
DESCRIPTION OF SYMBOLS 1, Stator 1-1, 1-2, 1-3 Stator element 2 Rotor 2-1, 2-2, 2-3 Rotor element 4 Holding material 5, Rotating shaft 6, Space | gap 7, Angular position detection vessel,
8. Bearing 14 Large ring tooth groove core 14 'Small ring tooth groove core 14-I Large ring tooth groove core 14'-I in stator element 1-1 Small ring tooth groove in stator element 1-1 Iron core 14-II Large ring-shaped tooth space core 14'-II fixed in the stator element 1-2 Small ring-shaped tooth space core 14-III in the stator element 1-2 Large ring-shaped tooth space core 14 in the stator element 1-3 '-III Small ring-shaped tooth gap cores 15, 15-1 to 96, 15-1' to 96 'in the stator element 1-3 Grooves 16, 16-1A to 6A, 16-1B to 6B' Coils 17 and 17 -1-8 Suction pole 20, 20-1A to 6A, 20-1B to 6B FF switch 22, 22-1 to 3 Two-quadrant limited current control circuit 26, 26 'Screw

Claims (1)

転流相手のA,B相の2相構成のコイル組を複数互いに位相角を(π/重相数)ずつずらして重ね両面対向面の複数の歯溝鉄心それぞれに收納して構成した固定子と、両面或は両端に対向面を持つ複数の吸引極で対向面を構成した回転子または移動子と、二象限定電流回路からの定電流をA相,B相を切り換えながら順次に位相差(π/重相数)で各コイル組に供給して、各コイルの起磁力が集中した位置に該吸引極先端部或は後端部がくるように動作するスイッチとで構成したモータ或は発電機さらにまたリニアモータにおいて、吸引極の回転方向または移動方向先端部と後端部に傾斜をつけることと、複数の歯溝鉄心間でコイル間の転流のタイミングをずらすことの何れか或は両者でトルク脈動を低減したモータ或は発電機さらにまたリニアモータ  A stator in which a plurality of coil sets having a two-phase configuration of A and B phases of a commutation partner are stacked with their phase angles shifted from each other by (π / number of multiple phases) and accommodated in each of a plurality of tooth gap cores on opposite surfaces. And a phase difference between the rotor or the moving element having opposite surfaces formed by a plurality of suction poles having opposite surfaces on both sides or both ends and a constant current from the two-quadrant limited current circuit while switching between the A phase and the B phase. (Π / number of heavy phases) supplied to each coil set, or a motor configured with a switch that operates so that the leading end or the rear end of the attraction pole comes to a position where the magnetomotive force of each coil is concentrated In the generator and also in the linear motor, either the rotational direction or the moving direction of the suction pole is inclined at the front and rear ends, and the commutation timing between the coils is shifted between the plurality of tooth gap cores. Motor or generator with reduced torque pulsation in both AMOTOR
JP2017050538A 2017-02-07 2017-02-07 Motor or generator and also linear motor Active JP6303158B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017050538A JP6303158B1 (en) 2017-02-07 2017-02-07 Motor or generator and also linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017050538A JP6303158B1 (en) 2017-02-07 2017-02-07 Motor or generator and also linear motor

Publications (2)

Publication Number Publication Date
JP6303158B1 true JP6303158B1 (en) 2018-04-04
JP2018130005A JP2018130005A (en) 2018-08-16

Family

ID=61828507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017050538A Active JP6303158B1 (en) 2017-02-07 2017-02-07 Motor or generator and also linear motor

Country Status (1)

Country Link
JP (1) JP6303158B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102612375B1 (en) * 2021-04-28 2023-12-11 주식회사 코베리 Motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222384A (en) * 2003-01-14 2004-08-05 Toyota Motor Corp Sr motor and its manufacturing method
JP2011125125A (en) * 2009-12-09 2011-06-23 Ev Motor Systems Co Ltd Switched reluctance motor and switched reluctance motor drive system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222384A (en) * 2003-01-14 2004-08-05 Toyota Motor Corp Sr motor and its manufacturing method
JP2011125125A (en) * 2009-12-09 2011-06-23 Ev Motor Systems Co Ltd Switched reluctance motor and switched reluctance motor drive system

Also Published As

Publication number Publication date
JP2018130005A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
KR100748789B1 (en) Motor
US7126309B1 (en) Motor
US10148159B2 (en) Magnetic rotating apparatus, electric motor, and motor generator
JP6085753B1 (en) Mutual coupling type Umemori motor
US20050151437A1 (en) Radial-axial electromagnetic flux electric motor, coaxial electromagnetic flux electric motor, and rotor for same
JP2005528074A (en) Radial-axial magnetic flux electric motor, coaxial magnetic flux electric motor and rotor thereof
US20130076159A1 (en) Winding configuration of doubly salient permanent magnet electric machine
WO2009056879A1 (en) Permanent magnet reluctance machines
JP2003009486A (en) Variable speed motor
US20090302787A1 (en) Induction and switched reluctance motor
JP5543185B2 (en) Switched reluctance motor drive system
CN108429418A (en) Motor stator, motor, linear motor stator electric and linear motor
JP2011125126A (en) Switched reluctance motor and switched reluctance motor drive system
JP6303158B1 (en) Motor or generator and also linear motor
JP5885423B2 (en) Permanent magnet rotating electric machine
JP2010028957A (en) Inductor and inductor pole-number switching system
JP2006109611A (en) Composite three-phase hybrid dynamo-electric machine
JP2017509311A (en) Hybrid electric machine
JP2004289919A (en) Permanent magnet motor
JP6481841B1 (en) Motor or generator and also linear motor [2]
CN203522358U (en) Switch reluctance motor with phase change winding
JPH08182280A (en) Generator
JP2012147623A (en) Coreless motor, robot hand mounted with coreless motor and robot
CN103475116A (en) Switched reluctance motor with phase change windings
JP7486704B2 (en) Permanent magnet brushless motor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180208

R150 Certificate of patent or registration of utility model

Ref document number: 6303158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250