JP6301591B2 - Vinyl acetate resin emulsion and method for producing the same - Google Patents

Vinyl acetate resin emulsion and method for producing the same Download PDF

Info

Publication number
JP6301591B2
JP6301591B2 JP2013105336A JP2013105336A JP6301591B2 JP 6301591 B2 JP6301591 B2 JP 6301591B2 JP 2013105336 A JP2013105336 A JP 2013105336A JP 2013105336 A JP2013105336 A JP 2013105336A JP 6301591 B2 JP6301591 B2 JP 6301591B2
Authority
JP
Japan
Prior art keywords
vinyl acetate
resin emulsion
monomer
emulsion
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013105336A
Other languages
Japanese (ja)
Other versions
JP2014227422A (en
Inventor
達也 野杁
達也 野杁
多和田 英樹
英樹 多和田
司 松本
司 松本
Original Assignee
高圧ガス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高圧ガス工業株式会社 filed Critical 高圧ガス工業株式会社
Priority to JP2013105336A priority Critical patent/JP6301591B2/en
Publication of JP2014227422A publication Critical patent/JP2014227422A/en
Application granted granted Critical
Publication of JP6301591B2 publication Critical patent/JP6301591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、酢酸ビニル系樹脂エマルションおよびその製造方法に関する。   The present invention relates to a vinyl acetate resin emulsion and a method for producing the same.

近年、酢酸ビニル系樹脂エマルションを用いた被覆剤あるいは接着剤を利用する分野においても市場のニーズからこれらを塗工する際の精密さや緻密さが非常に重要な因子になりつつある。塗布量や塗布厚みの制御、および塗工面の平滑性や表面性といった塗工性の向上が求められている。塗工性に関しては酢酸ビニル系樹脂エマルションのレオロジー特性の制御が重要であり、そのレオロジー特性には、酢酸ビニル系樹脂エマルションの粒子径及び粒子径分布が大きな影響を与えることが知られている。   In recent years, in the field of using a coating agent or an adhesive using a vinyl acetate resin emulsion, the precision and density when coating these are becoming very important factors due to market needs. Control of coating amount and coating thickness, and improvement in coating properties such as smoothness and surface properties of the coated surface are required. With respect to coating properties, it is important to control the rheological properties of the vinyl acetate resin emulsion, and it is known that the particle size and particle size distribution of the vinyl acetate resin emulsion have a great influence on the rheological properties.

酢酸ビニル系樹脂エマルションの製造方法としては、乳化剤の様な界面活性剤やポリビニルアルコール等の保護コロイドの水溶液中に所定量の単量体を添加し、これに重合開始剤を添加して反応を開始させる事により系中に粒子を生成させた上で、更に単量体を逐次添加して粒子を成長させる一般的な乳化重合手法の他に、シード重合法が知られている。シード重合法は、既に通常の乳化重合により製造されたエマルション粒子(シード)を予め反応前の重合槽に存在させ、これに更に単量体を添加しつつ新たにポリマーを生成させる重合方法である。初期に添加されたエマルション粒子の内部あるいは表層で再び乳化重合を行うことにより、初期に添加したエマルション粒子より大きな粒子を作製する事ができる乳化重合手法として知られている。このようなシード重合法は、アクリル樹脂系エマルションをはじめとして既に各分野で広く利用されている。エチレン酢酸ビニル系樹脂エマルションをシードとしてシード重合を行う方法も知られている(特許文献1〜5)。   As a method for producing a vinyl acetate resin emulsion, a predetermined amount of monomer is added to an aqueous solution of a surfactant such as an emulsifier or a protective colloid such as polyvinyl alcohol, and a polymerization initiator is added thereto to react. A seed polymerization method is known in addition to a general emulsion polymerization method in which particles are generated in a system by starting, and then a monomer is further added successively to grow the particles. The seed polymerization method is a polymerization method in which emulsion particles (seed) already produced by ordinary emulsion polymerization are previously present in a polymerization tank prior to the reaction, and a polymer is newly generated while further adding monomers thereto. . It is known as an emulsion polymerization technique that can produce particles larger than emulsion particles added initially by performing emulsion polymerization again in the emulsion particles added initially or on the surface layer. Such a seed polymerization method has already been widely used in various fields including acrylic resin emulsions. A method of performing seed polymerization using an ethylene vinyl acetate resin emulsion as a seed is also known (Patent Documents 1 to 5).

特許文献1には、エチレン含量が10〜40wt%のエチレン酢酸ビニル共重合樹脂エマルションを用い、これにけん化度が80〜99mol%で重合度が200〜3500であるポリビニルアルコールを添加した後、酢酸ビニル単量体を含む単量体を、酢酸ビニルを含む単量体とエチレン酢酸ビニル樹脂エマルションの固形分の比が10〜200/100となるように添加して乳化重合せしめる事によりシード重合樹脂エマルションを得る方法が記載されている。特許文献2には、エチレン含量が10〜55wt%のエチレン酢酸ビニル共重合樹脂エマルションを用い、これにけん化度が90〜98mol%で数平均分子量が400〜2000であるポリビニルアルコールを添加した後、酢酸ビニル単量体を含む単量体を、酢酸ビニルを含む単量体とエチレン酢酸ビニル樹脂エマルションの固形分の比が100/5〜40となるように添加して乳化重合せしめる事によりシード重合樹脂エマルションを得る方法が記載されている。特許文献3には、エチレン含量が10〜30wt%のエチレン酢酸ビニル共重合樹脂エマルションを用い、これにけん化度が80〜89mol%で重合度が300〜2300であるポリビニルアルコールを5〜15重量部添加した後、酢酸ビニル単量体を含む単量体を、酢酸ビニルを含む単量体とエチレン酢酸ビニル樹脂エマルションの固形分の比が100/8〜30となるように添加して乳化重合せしめる事によりシード重合樹脂エマルションを得る方法が記載されている。特許文献4には、エチレン含量が15〜35wt%のエチレン酢酸ビニル共重合樹脂エマルションを用い、これに酢酸ビニル系樹脂エマルションの固形分に対して9〜20重量%となる量のポリビニルアルコールを添加した後、エチレン酢酸ビニル共重合体系樹脂の含有量がエチレン酢酸ビニル共重合体系樹脂と酢酸ビニルの合計に対して固形分として50重量%以下となる割合で酢酸ビニルを添加してシード重合を行う事で得られる可塑剤を含まない酢酸ビニル樹脂系エマルションを含有する木と木を接着する木工用接着剤が記載されている。また、特許文献5には、ポリビニルアルコールを保護コロイドとして用い、酢酸ビニルモノマーおよびアクリル酸系モノマーを用いたコアシェル型エマルション重合を行うに際して、酢酸ビニルモノマーを用いてコア部のエマルション重合を行い、続いて酢酸ビニルモノマーおよびアクリル酸系モノマーを用いてシェル部のエマルション重合を行う事を特徴とする酢酸ビニル系樹脂エマルションの作製方法が記載されている。   In Patent Document 1, an ethylene vinyl acetate copolymer resin emulsion having an ethylene content of 10 to 40 wt% is used, and after adding polyvinyl alcohol having a saponification degree of 80 to 99 mol% and a polymerization degree of 200 to 3500, acetic acid is added. A seed polymerization resin is prepared by adding a monomer containing a vinyl monomer and emulsion polymerization by adding a vinyl acetate monomer and an ethylene vinyl acetate resin emulsion so that the solid content ratio is 10 to 200/100. A method for obtaining an emulsion is described. Patent Document 2 uses an ethylene vinyl acetate copolymer resin emulsion having an ethylene content of 10 to 55 wt%, and after adding polyvinyl alcohol having a saponification degree of 90 to 98 mol% and a number average molecular weight of 400 to 2000, Seed polymerization by adding a monomer containing vinyl acetate monomer so that the solid content ratio of the monomer containing vinyl acetate and the ethylene vinyl acetate resin emulsion is 100/5 to 40, followed by emulsion polymerization. A method for obtaining a resin emulsion is described. Patent Document 3 uses an ethylene vinyl acetate copolymer resin emulsion having an ethylene content of 10 to 30 wt%, and 5 to 15 parts by weight of polyvinyl alcohol having a saponification degree of 80 to 89 mol% and a polymerization degree of 300 to 2300. After the addition, the monomer containing the vinyl acetate monomer is added so that the ratio of the solid content of the vinyl acetate-containing monomer to the ethylene vinyl acetate resin emulsion is 100 / 8-30, and emulsion polymerization is performed. A method for obtaining a seed polymerized resin emulsion is described. In Patent Document 4, an ethylene vinyl acetate copolymer resin emulsion having an ethylene content of 15 to 35 wt% is used, and polyvinyl alcohol in an amount of 9 to 20 wt% is added to the solid content of the vinyl acetate resin emulsion. After that, seed polymerization is carried out by adding vinyl acetate in a proportion that the content of ethylene vinyl acetate copolymer resin is 50% by weight or less as a solid content with respect to the total of ethylene vinyl acetate copolymer resin and vinyl acetate. A woodworking adhesive for adhering wood to wood containing a vinyl acetate resin emulsion that does not contain a plasticizer is obtained. In Patent Document 5, when polyvinyl alcohol is used as a protective colloid and core-shell emulsion polymerization is performed using a vinyl acetate monomer and an acrylic acid monomer, emulsion polymerization of the core portion is performed using the vinyl acetate monomer. A method for producing a vinyl acetate resin emulsion is described in which emulsion polymerization of a shell portion is performed using a vinyl acetate monomer and an acrylic acid monomer.

また、非特許文献1には、エチレン酢酸ビニル共重合樹脂エマルションをシードとした酢酸ビニル系樹脂シード重合エマルションの成膜機構について、このシード重合の過程で新たに生成した酢酸ビニル樹脂エマルションを極めて細かい粒子として生成させることにより、低温での成膜性を良好にコントロールでき、更にこれらの酢酸ビニル系樹脂エマルションについてのレオロジー的考察の結果から10−1のずり速度領域のずり応力とせん断速度10−3〜10−1−1の領域での貯蔵弾性率G’とを一定の範囲に制御すれば、ノズルからの押し出し性と垂れ性を両立できることが開示されている。 Further, Non-Patent Document 1 describes the film formation mechanism of a vinyl acetate resin seed polymerization emulsion using an ethylene vinyl acetate copolymer resin emulsion as a seed. By forming as particles, the film-forming property at low temperature can be controlled well, and further, the shear stress and shear rate in the shear rate region of 10 2 s −1 are obtained from the results of rheological considerations on these vinyl acetate resin emulsions. It is disclosed that if the storage elastic modulus G ′ in the region of 10 −3 to 10 −1 s −1 is controlled within a certain range, both extrudability from the nozzle and sagging property can be achieved.

特開昭60−235875号公報JP-A-60-235875 特開昭60−31349号公報JP-A-60-31349 特開昭61−252280号公報JP-A-61-252280 特許第3420920号明細書Japanese Patent No. 3420920 特開2001−302709号公報JP 2001-302709 A

日本接着学会誌 Vol.41 No.11(2005)P.430〜P.435Journal of the Adhesion Society of Japan Vol.41 No. 11 (2005) P.430-P.435

しかしながら、上記の特許文献1〜4に記載された方法では、いずれの場合においても低重合度のポリビニルアルコールが添加されており、このような場合にはシード重合において、これらのポリビニルアルコールと添加された単量体との反応により系中に新たなエマルション粒子が極めて形成され易い。即ち、けん化度が80〜89mol%である低けん化度のポリビニルアルコールは一般に高い界面活性能を有している事が知られており、これらの中でも重合度が低いポリビニルアルコールは酢酸ビニル等の単量体の存在下で重合触媒による反応が起こると水中でこれらのポリビニルアルコールを保護コロイドとする新たなエマルション粒子を極めて容易に形成する。また、けん化度が90〜98mol%である高けん化度のポリビニルアルコールは、それほど高い界面活性能を有するわけではないが、特許文献2に記載されているような極めて低重合度のポリビニルアルコールでは、同様にこれらのポリビニルアルコールを保護コロイドとするエマルション粒子を形成し易い。更には、けん化度が比較的高い事により界面活性能が低いため重合時のエマルションの安定性が低くなり、重合時に粒子凝集してゲル化したり、粘性異常を示す場合が極めて多い。また、たとえ重合できたとしても低温時の増粘等により極めて取扱いしにくいエマルションを生成する場合が多い。用いるエチレン酢酸ビニル共重合樹脂エマルション中にも遊離のこれらポリビニルアルコールが含まれている事が多く、上記の特許文献1〜4にはシードエマルションとして用いるエチレン酢酸ビニル共重合樹脂エマルション中の遊離のポリビニルアルコールに関する制限もないことから、これら特許文献に記載された従来のエチレン酢酸ビニル共重合樹脂エマルションをシードとするシード重合方法においては、いずれの場合にもシード重合を行う際に新たなエマルション粒子の生成を防止しつつ安定性の高いエマルション得る事は困難である。   However, in the methods described in Patent Documents 1 to 4 above, polyvinyl alcohol having a low polymerization degree is added in any case. In such a case, these polyvinyl alcohols are added in seed polymerization. New emulsion particles are very easily formed in the system by reaction with the monomer. That is, it is known that polyvinyl alcohol with a low saponification degree having a saponification degree of 80 to 89 mol% generally has a high surface activity, and among these, a polyvinyl alcohol with a low polymerization degree is a simple substance such as vinyl acetate. When a reaction by a polymerization catalyst occurs in the presence of a monomer, new emulsion particles having these polyvinyl alcohols as protective colloids are very easily formed in water. Further, polyvinyl alcohol with a high saponification degree having a saponification degree of 90 to 98 mol% does not have so high surface activity, but with a polyvinyl alcohol with a very low polymerization degree as described in Patent Document 2, Similarly, it is easy to form emulsion particles having these polyvinyl alcohols as protective colloids. Furthermore, since the degree of surface activity is low due to the relatively high degree of saponification, the stability of the emulsion at the time of polymerization is lowered, and in many cases, the particles aggregate to form a gel at the time of polymerization or exhibit abnormal viscosity. Moreover, even if polymerization is possible, an emulsion that is extremely difficult to handle is often generated due to thickening at a low temperature. The ethylene vinyl acetate copolymer resin emulsion to be used often contains these free polyvinyl alcohols, and the above Patent Documents 1 to 4 disclose free polyvinyl in the ethylene vinyl acetate copolymer resin emulsion used as a seed emulsion. Since there is no restriction on alcohol, in the seed polymerization method using the conventional ethylene vinyl acetate copolymer resin emulsion as a seed described in these patent documents, in any case, new emulsion particles are added when seed polymerization is performed. It is difficult to obtain a highly stable emulsion while preventing formation.

即ち、これら特許文献1〜4に記載されたエチレン酢酸ビニル共重合樹脂エマルションをシードとする重合法によれば、重合を進行させる過程において系中に新たなエマルション粒子を生成させている事に他ならず、これにより、シード以外の新たなエマルション粒子が最終的に製造される酢酸ビニル系樹脂エマルションの粒子径および粒子径分布を変化させることになり、酢酸ビニル系樹脂エマルションの粒子径および粒子径分布の制御は困難となる。このことから、これらの方法によって得られたエマルションのレオロジー特性はその時の各種重合条件や用いるポリビニルアルコール系樹脂の組成などによって様々な特性を示すものと考えられる。このことは、これらの方法により製造された酢酸ビニル系樹脂エマルションでは塗工性の制御が極めて困難である事を意味する。   That is, according to the polymerization method using the ethylene-vinyl acetate copolymer resin emulsion described in Patent Documents 1 to 4 as a seed, new emulsion particles are generated in the system in the course of proceeding polymerization. However, this will change the particle size and particle size distribution of the vinyl acetate resin emulsion in which new emulsion particles other than the seed are finally produced. Distribution control becomes difficult. From this, it is considered that the rheological properties of the emulsions obtained by these methods show various properties depending on various polymerization conditions and the composition of the polyvinyl alcohol resin used. This means that it is extremely difficult to control the coatability with vinyl acetate resin emulsions produced by these methods.

また、特許文献5に記載された重合方法においてもコア部の重合の際にはポリビニルアルコールを保護コロイドとする粒子を生成させており、これらの粒子生成過程ではシードを用いたシード重合ではないため、生成する粒子径が制御できているとは到底言い難い。特許文献5では、コアシェル型エマルションを作製する事でコア側に生成させたポリマーの高凝集力と粒子表面のシェル側に生成させた柔軟なポリマーによる粒子の融着性とをコントロールする重合手法を主眼に置いており、粒子径および粒子径分布の制御については何らコントロールできないものである。   Further, in the polymerization method described in Patent Document 5, particles having polyvinyl alcohol as a protective colloid are generated at the time of polymerization of the core portion, and seed polymerization using seeds is not used in these particle generation processes. It is hard to say that the particle size to be generated can be controlled. In Patent Document 5, a polymerization technique for controlling the high cohesion force of the polymer produced on the core side by preparing a core-shell emulsion and the fusing property of the particles by the flexible polymer produced on the shell side of the particle surface is disclosed. The main focus is on the control of particle size and particle size distribution.

また、非特許文献1にはシード重合過程において極めて細かな酢酸ビニル樹脂系の粒子を生成させる重合条件に関する記載はなく、どのような手法によれば新たに生成する粒子を細かく制御できるかについては全く明らかではない。また、仮にこの新たに生成する酢酸ビニル樹脂系エマルションの粒子径を制御できたとしてもその重合条件を見出す作業は極めて綿密かつ緻密な重合実験を数多く実施する必要があり、経済的にも容易にでき得るものではない。更に、シード重合過程において新たに粒子が生成する事自体が一般的には系のレオロジー特性に与える影響が極めて大きいものと考えられ、このシード重合過程における新たな粒子の生成により、レオロジー的考察も極めて複雑かつ不明瞭になるため、この系ではレオロジー特性の分析結果と重合組成との相関関係の把握には多大な労力を強いられるものと考えられる。即ち、これらの技術によれば実質的には重合組成によりレオロジー特性を自由にしかも容易な手法でコントロールでき得るものとは考えにくい。   In addition, Non-Patent Document 1 does not describe the polymerization conditions for generating very fine vinyl acetate resin-based particles in the seed polymerization process, and what method can be used to finely control newly generated particles. Not clear at all. Even if the particle size of the newly produced vinyl acetate resin emulsion can be controlled, the work of finding out the polymerization conditions must be carried out in a number of extremely detailed and precise polymerization experiments, which is economically easy. It can't be done. In addition, the formation of new particles in the seed polymerization process itself is considered to have an extremely large influence on the rheological properties of the system. The generation of new particles in the seed polymerization process also leads to rheological considerations. Since this system is extremely complicated and unclear, it is considered that this system will require a great deal of effort to grasp the correlation between the analysis result of the rheological properties and the polymerization composition. That is, according to these techniques, it is hardly considered that rheological characteristics can be controlled freely and easily by a polymerization composition.

以上のように、未だ酢酸ビニル系樹脂エマルションの粒子径および粒子径分布の制御は十分とは言えず、塗工性向上のために一層の粒子径および粒子径分布の制御が必要であるという問題がある。   As described above, the particle size and particle size distribution of the vinyl acetate resin emulsion is still not sufficiently controlled, and it is necessary to further control the particle size and particle size distribution in order to improve coatability. There is.

また、酢酸ビニル系樹脂エマルションが接着剤として多用されている紙用や木工用の接着剤用途においては、火災に対する作業の安全性や労働安全性、また地球環境保護などの観点から可塑剤や高沸点溶剤、造膜助剤などの溶剤類を含まない安全性の高い接着剤であって、しかも冬季など5℃以下での低温下でも成膜性に優れる接着剤に高い関心が集まっているばかりか、更には最終的な接着製品の耐久接着性能の向上の観点から、特に酢酸ビニル系樹脂エマルション接着剤の弱点である高度の耐水性・耐熱性を有する事やあるいは接着作業の効率アップの観点からプレス時間や養生時間の短縮に対しても要望が強く、これに見合うような耐水性と初期接着性(接着強度の立ち上がり)に優れる酢酸ビニル樹脂系エマルション接着剤が強く求められているという問題もある。   Also, in paper and woodworking adhesive applications where vinyl acetate resin emulsions are frequently used as adhesives, plasticizers and high-level plasticizers are required from the viewpoints of fire safety and occupational safety, and protection of the global environment. Highly safe adhesives that do not contain solvents such as boiling point solvents and film-forming aids, and have high interest in adhesives that have excellent film-forming properties even at low temperatures of 5 ° C or below, such as in winter. In addition, from the viewpoint of improving the durable adhesive performance of the final adhesive product, in particular, it has high water resistance and heat resistance, which is a weak point of vinyl acetate resin emulsion adhesives, or from the viewpoint of improving the efficiency of the adhesive work Therefore, there is a strong demand for shortening the press time and curing time, and there is a strong demand for a vinyl acetate resin emulsion adhesive that is excellent in water resistance and initial adhesiveness (adhesion strength rise) commensurate with this. Is there is also a problem that is.

また、接着作業現場では、一般的に接着剤を塗工する際に多用されるロール塗工機のロール部分を作業終了後に洗浄する。この際のロールの洗いやすさは接着剤の種類によって影響を受け、実用的な観点では生産効率上重要な因子の一つである。しかしながら、ロールに接着剤が残留して生産性が低下するという問題がある。   Moreover, in the bonding work site, a roll part of a roll coating machine, which is generally used when applying an adhesive, is washed after the work is completed. The ease of washing of the roll at this time is influenced by the type of adhesive, and is one of the important factors in production efficiency from a practical viewpoint. However, there is a problem that the adhesive remains on the roll and the productivity is lowered.

そこで、本発明は、上記の課題を解決するため、塗工性やロール洗浄性を向上させるとともに、耐水性・耐熱性や初期接着性、更には安全性にも優れた酢酸ビニル樹脂系エマルションおよびその製造方法を提供することを目的とした。   Therefore, in order to solve the above problems, the present invention improves the coatability and roll washability, and also provides a vinyl acetate resin emulsion excellent in water resistance, heat resistance, initial adhesiveness, and safety. An object of the present invention is to provide a manufacturing method thereof.

本発明者らは、上記課題を解決するために、鋭意検討した結果、水溶出率が10%以下であるエチレン酢酸ビニル樹脂エマルションをシードとし、少なくとも酢酸ビニルを単量体として含み、ポリビニルアルコール系樹脂としてけん化度が90mol%未満で平均重合度が2500以下のポリビニルアルコール系樹脂以外のポリビニルアルコール系樹脂を含み、エマルションの粒径分布に関するスパン演算値として所定の値を有する酢酸ビニル系樹脂エマルションが上記課題を解決できることを見出して本発明を完成させたものである。   As a result of diligent studies to solve the above problems, the inventors of the present invention used an ethylene vinyl acetate resin emulsion having a water elution rate of 10% or less as a seed, containing at least vinyl acetate as a monomer, A vinyl acetate resin emulsion comprising a polyvinyl alcohol resin other than a polyvinyl alcohol resin having a saponification degree of less than 90 mol% and an average polymerization degree of 2500 or less as a resin, and having a predetermined value as a span calculation value relating to the particle size distribution of the emulsion. The present invention has been completed by finding that the above problems can be solved.

すなわち、本発明の酢酸ビニル系樹脂エマルションは、エチレン酢酸ビニル共重合樹脂エマルションをシードとし、少なくとも1種のポリビニルアルコール系樹脂存在下で少なくとも1種の単量体を重合してなる酢酸ビニル系樹脂エマルションであって、前記エチレン酢酸ビニル共重合樹脂エマルションの被膜の水溶出率が10%以下であり、前記の単量体が酢酸ビニルであり、前記のポリビニルアルコール系樹脂が、けん化度が90mol%未満で平均重合度が2500以下のポリビニルアルコール系樹脂以外のポリビニルアルコール系樹脂であり、以下の式(1)で定義されるスパン演算値が1.0以下であることを特徴とする。
スパン演算値=|累積頻度%径A−累積頻度%径B|÷メジアン径(μm) (1)
ここで、累積頻度%径Aは、測定中の累積頻度が10%となった時の酢酸ビニル系樹脂エマルションの粒子径(μm)、累積頻度%径Bは測定中の累積頻度が90%となった時の酢酸ビニル系樹脂エマルションの粒子径(μm)、メジアン径は累積頻度が50%となった時のポリ酢酸ビニル樹脂エマルションの粒子径(μm)を示し、式内記号||は絶対値を示す。
That is, the vinyl acetate resin emulsion of the present invention is a vinyl acetate resin obtained by polymerizing at least one monomer in the presence of at least one polyvinyl alcohol resin, using ethylene vinyl acetate copolymer resin emulsion as a seed. The water-elution rate of the coating of the ethylene vinyl acetate copolymer resin emulsion is 10% or less, the monomer is vinyl acetate, and the polyvinyl alcohol resin has a saponification degree of 90 mol%. It is a polyvinyl alcohol resin other than the polyvinyl alcohol resin having an average polymerization degree of 2500 or less and a span calculation value defined by the following formula (1) is 1.0 or less.
Span calculation value = | cumulative frequency% diameter A−cumulative frequency% diameter B | ÷ median diameter (μm) (1)
Here, the cumulative frequency% diameter A is the particle diameter (μm) of the vinyl acetate resin emulsion when the cumulative frequency during measurement is 10%, and the cumulative frequency% diameter B is 90% of the cumulative frequency during measurement. The particle diameter (μm) and median diameter of the vinyl acetate resin emulsion at the time when the accumulative frequency is 50% indicate the particle diameter (μm) of the polyvinyl acetate resin emulsion, and the symbol || Indicates the value.

本発明によれば、塗工性を向上させるとともに、耐水性・耐熱性や初期接着性およびロール洗浄性にも優れた酢酸ビニル樹脂系エマルションを提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the vinyl acetate resin-type emulsion which was excellent in water resistance and heat resistance, initial adhesiveness, and roll washability while improving coatability.

以下、本発明の実施の形態について詳細に説明する。
本発明の酢酸ビニル系樹脂エマルションは、エチレン酢酸ビニル共重合樹脂エマルションをシードとし、少なくとも1種のポリビニルアルコール系樹脂存在下で少なくとも1種の単量体を重合してなる酢酸ビニル系樹脂エマルションを対象とするものである。
Hereinafter, embodiments of the present invention will be described in detail.
The vinyl acetate resin emulsion of the present invention is a vinyl acetate resin emulsion obtained by polymerizing at least one monomer in the presence of at least one polyvinyl alcohol resin, using ethylene vinyl acetate copolymer resin emulsion as a seed. It is intended.

本発明に用いるシードは、エチレン酢酸ビニル共重合樹脂エマルションである。エチレン酢酸ビニル共重合樹脂エマルションのエチレン含有率は、10〜50重量%、好ましくは15〜40重量%である。10重量%より少ないと、シード重合によって生成するエマルションの成膜性が得られにくく、50重量%を超えるとシード重合によって生成するエマルションの常態接着強度や耐熱接着強度が低下するからである。   The seed used in the present invention is an ethylene vinyl acetate copolymer resin emulsion. The ethylene content of the ethylene vinyl acetate copolymer resin emulsion is 10 to 50% by weight, preferably 15 to 40% by weight. If the amount is less than 10% by weight, the film formability of the emulsion produced by seed polymerization is difficult to obtain, and if it exceeds 50% by weight, the normal adhesive strength and heat resistant adhesive strength of the emulsion produced by seed polymerization are reduced.

また、エチレン酢酸ビニル共重合樹脂エマルションの固形分は、単量体が酢酸ビニルのみの場合、本シード重合法によって製造される酢酸ビニル系樹脂エマルションの全固形分の50重量%以上、好ましくは、55〜65重量%である。エチレン酢酸ビニル共重合樹脂エマルションの固形分が50重量%より少ないと、シード重合により生成したエマルションの低温下での成膜性が低下し、更には可塑剤等の添加が必要となり安全性も低下するからである。単量体が酢酸ビニルと共重合可能な単量体であって、その単量体のホモポリマーのTgが−45℃以下であり、該共重合可能な単量体が、該共重合可能な単量体と酢酸ビニルを合わせた単量体全体の25重量%以上である場合、用いるエチレン酢酸ビニル共重合樹脂エマルションの固形分は、本シード重合法によって製造される酢酸ビニル系樹脂エマルションの全固形分の10重量%以上、好ましくは、20〜60重量%である。エチレン酢酸ビニル共重合樹脂エマルションの固形分が10重量%より少ないと、シード重合により生成したエマルションの粒子径が大きくなりやすく、重合安定性が低下したり、貯蔵安定性が低下するためである。   Further, the solid content of the ethylene vinyl acetate copolymer resin emulsion is 50% by weight or more of the total solid content of the vinyl acetate resin emulsion produced by the present seed polymerization method when the monomer is only vinyl acetate, preferably, 55 to 65% by weight. If the solid content of the ethylene-vinyl acetate copolymer resin emulsion is less than 50% by weight, the film-forming property of the emulsion produced by seed polymerization is lowered at low temperatures, and the addition of a plasticizer and the like is further reduced, resulting in reduced safety. Because it does. The monomer is a monomer copolymerizable with vinyl acetate, and the homopolymer Tg of the monomer is −45 ° C. or less, and the copolymerizable monomer can be copolymerized When the total amount of the monomer and vinyl acetate is 25% by weight or more, the solid content of the ethylene vinyl acetate copolymer resin emulsion used is the total content of the vinyl acetate resin emulsion produced by this seed polymerization method. It is 10 weight% or more of solid content, Preferably it is 20-60 weight%. This is because if the solid content of the ethylene vinyl acetate copolymer resin emulsion is less than 10% by weight, the particle size of the emulsion produced by seed polymerization tends to be large, the polymerization stability is lowered, and the storage stability is lowered.

また、エチレン酢酸ビニル共重合樹脂エマルションは、その被膜の水溶出率が10%以下、好ましくは5%以下である。ここで、水溶出率は、以下の式(1)で定義される。
水溶出率(%)={(水浸漬処理前の皮膜の絶乾重量g−水浸漬処理後の皮膜の絶乾重量g)/水浸漬処理前の皮膜の絶乾重量g}×100 (1)
具体的には、乾燥後の皮膜の厚みが均等に約1mmとなる様にエチレン酢酸ビニル共重合樹脂エマルションを取り、50±3℃の熱風循環式恒温器中で3日以上乾燥させて皮膜を作製する。乾燥させた皮膜から2cm×2cmの正方形状に正確に各サンプルにつき5個切り出して試験片とする。各試験片を105±3℃の熱風循環式乾燥器内で3時間以上熱処理した直後に皮膜の重量(g)を少数点以下4桁まで測定して水浸漬処理前の絶乾重量とする。次いで、乾燥した試験片を蒸留水中に完全浸漬し、これを23±3℃の恒温室中で2週間放置して水浸漬処理を行う。水浸漬処理後の皮膜について上記と同様にして絶乾重量を測定して水浸漬処理後の皮膜の絶乾重量とする。水溶出率が10%より大きいと、シード重合により生成するエマルションの粒子径分布が広くなり、塗工性の制御が困難になったり、初期接着性能やロール洗浄性が低下する。なお、ポリビニルアルコールを保護コロイドとして用いている一般的なエチレン酢酸ビニル共重合樹脂エマルションにおいて、水浸漬処理時には、水に溶解し易い低けん化度でかつ低重合度のポリビニルアルコールが蒸留水中に溶解して除去されるので、水溶出率が大きいことは、低けん化度でかつ低重合度の遊離のポリビニルアルコールを多く含むことを意味する。
The ethylene vinyl acetate copolymer resin emulsion has a water elution rate of 10% or less, preferably 5% or less. Here, the water elution rate is defined by the following equation (1).
Water elution rate (%) = {(absolute dry weight g of film before water immersion treatment−absolute dry weight g of film after water immersion treatment) / absolute dry weight g of film before water immersion treatment} × 100 (1 )
Specifically, the ethylene vinyl acetate copolymer resin emulsion is taken so that the thickness of the dried film is approximately 1 mm, and dried in a hot air circulating thermostat at 50 ± 3 ° C. for 3 days or more. Make it. Exactly 5 pieces are cut out from each dried sample into a 2 cm × 2 cm square shape to form test pieces. Immediately after heat-treating each test piece in a hot air circulating drier at 105 ± 3 ° C. for 3 hours or more, the weight (g) of the coating is measured to 4 digits after the decimal point to obtain the absolute dry weight before the water immersion treatment. Next, the dried test piece is completely immersed in distilled water, and this is left in a constant temperature room at 23 ± 3 ° C. for 2 weeks for water immersion treatment. With respect to the film after the water immersion treatment, the absolute dry weight is measured in the same manner as described above to obtain the absolute dry weight of the film after the water immersion treatment. When the water elution rate is larger than 10%, the particle size distribution of the emulsion produced by seed polymerization becomes wide, and it becomes difficult to control the coating property, and the initial adhesion performance and roll cleaning property are lowered. In general ethylene vinyl acetate copolymer resin emulsions using polyvinyl alcohol as a protective colloid, polyvinyl alcohol with a low saponification degree and a low polymerization degree, which is easily dissolved in water, dissolves in distilled water during water immersion treatment. Therefore, a large water elution rate means that it contains a large amount of free polyvinyl alcohol having a low saponification degree and a low polymerization degree.

また、シードエマルションとして用いるエチレン酢酸ビニル共重合樹脂エマルション自体も、スパン演算値が1.0以下であることが好ましい。また、本発明により生成する酢酸ビニル系樹脂エマルションの粒子径は、メジアン径で0.5〜4.0μmの範囲にあるのが好ましく、更に好ましくは、0.8〜3.0μmの範囲にあるのが好ましい。粒子径がメジアン径で0.5μmより小さいと初期接着性と洗浄性および塗工性が低下しやすくなり、粒子径がメジアン径で4.0μmより大きいと粒子沈降などによりエマルションの貯蔵安定性が低下しやすくなるためである。   The ethylene vinyl acetate copolymer resin emulsion itself used as a seed emulsion preferably has a span calculation value of 1.0 or less. Further, the particle diameter of the vinyl acetate resin emulsion produced by the present invention is preferably in the range of 0.5 to 4.0 μm in median diameter, and more preferably in the range of 0.8 to 3.0 μm. Is preferred. If the particle size is less than 0.5 μm in median size, the initial adhesiveness, detergency and coatability are likely to deteriorate, and if the particle size is greater than 4.0 μm in median size, the storage stability of the emulsion is increased due to particle sedimentation. This is because it tends to decrease.

シードエマルションに添加する単量体は、酢酸ビニルであり、さらに必要に応じて酢酸ビニルと共重合可能な他の単量体を用いることができる。他の単量体としては、(メタ)アクリル酸、マレイン酸、フマル酸、クロトン酸などのカルボキシル基含有モノマーおよびその無水物、マレイン酸モノメチル、イタコン酸モノメチル等の不飽和二塩基酸モノアルキルエステル、ダイアセトンアクリルアミド、アクリルアミド、ジメチルアクリルアミド、N−メチロールアクリルアミド、N−ビニル−2−ピロリドン等のアミド基含有単量体、アリルアルコール、ジメチルアリルアルコール、イソプロペニルアリルアセテート等のアセチル基含有単量体、塩化ビニル、塩化ビニリデン、フッ化ビニル等のハロゲン化ビニル、エチレン等のα―オレフィン、アリルスルホン酸ナトリウム、メタリルスルホン酸ナトリウム、スチレンスルホン酸ナトリウム等のスルホン酸基含有単量体、エチレングリコールジメタクリレート、ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等の架橋性モノマー、(メタ)アクリル酸エステル、ビニルエステル、ビニルエーテル、不飽和結合を有するアルコキシシラン等を1種または2種以上用いることができる。(メタ)アクリル酸エステルとしては、従来公知の(メタ)アクリル酸エステルを用いることができる。具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル等の(メタ)アクリル酸ヒドロキシアルキル、(メタ)アクリル酸メトキメチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸プロポキシメチル等の(メタ)アクリル酸アルコキシアルキル、(メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステルを挙げることができる。   The monomer added to the seed emulsion is vinyl acetate, and other monomers copolymerizable with vinyl acetate can be used as necessary. Other monomers include carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, fumaric acid, and crotonic acid, and anhydrides thereof, and unsaturated dibasic acid monoalkyl esters such as monomethyl maleate and monomethyl itaconate. Amide group-containing monomers such as diacetone acrylamide, acrylamide, dimethyl acrylamide, N-methylol acrylamide, N-vinyl-2-pyrrolidone, acetyl group-containing monomers such as allyl alcohol, dimethylallyl alcohol, isopropenyl allyl acetate , Vinyl halides such as vinyl chloride, vinylidene chloride, vinyl fluoride, α-olefins such as ethylene, sodium allyl sulfonate, sodium methallyl sulfonate, sodium styrene sulfonate, etc. One or two kinds of crosslinkable monomers such as cold dimethacrylate, hexanediol (meth) acrylate, trimethylolpropane tri (meth) acrylate, (meth) acrylic acid ester, vinyl ester, vinyl ether, and alkoxysilane having an unsaturated bond More than one species can be used. As the (meth) acrylic acid ester, a conventionally known (meth) acrylic acid ester can be used. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, ( (Meth) acrylic acid alkyl esters such as octyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxy (meth) acrylate Alkoxyalkyl (meth) acrylates such as ethyl, hydroxyalkyl (meth) acrylates such as hydroxypropyl (meth) acrylate, methoxymethyl (meth) acrylate, ethoxymethyl (meth) acrylate, propoxymethyl (meth) acrylate , Glycidyl (meth) acrylate, etc. Glycidyl group-containing (meth) acryl acid ester.

また、ビニルエステルとしては、酢酸ビニル以外の公知のビニルエステルを用いることができる。具体例としては、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、オクチル酸ビニル等の脂肪族カルボン酸ビニルエステルや、安息香酸ビニル等の芳香族カルボン酸エステルを挙げることができる。   As the vinyl ester, a known vinyl ester other than vinyl acetate can be used. Specific examples include aliphatic formic acid vinyl esters such as vinyl formate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl octylate, and benzoic acid. Mention may be made of aromatic carboxylic acid esters such as vinyl.

また、ビニルエーテルとしては、従来公知のビニルエーテルを用いることができる。具体例としては、メチルビニルエーテル、エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル等のアルキルビニルエーテルを挙げることができる。   Moreover, conventionally well-known vinyl ether can be used as vinyl ether. Specific examples include alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, and isopropyl vinyl ether.

不飽和結合を有するアルコキシシランとしては、ビニルアセトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン等のビニルアルコキシシラン、γ―(メタ)アクリロキシプロピルトリメトキシシラン、γ―(メタ)アクリロキシプロピルトリエトキシシラン、γ―(メタ)アクリロキシプロピルトリエトキシシラン等の(メタ)アクリロキシアルキルアルコキシシランを挙げることができる。   Examples of the alkoxysilane having an unsaturated bond include vinylacetoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, and other vinylalkoxysilanes, γ- (meth) acryloxypropyltrimethoxysilane, Examples thereof include (meth) acryloxyalkylalkoxysilanes such as γ- (meth) acryloxypropyltriethoxysilane and γ- (meth) acryloxypropyltriethoxysilane.

酢酸ビニル以外の他の単量体は、そのホモポリマーのTg(ガラス転移温度)が−45℃以下、好ましくは−50℃以下である。ガラス転移温度が−45℃より高くなると、低温下での成膜性が低下するため、可塑剤等の添加が必要となり安全性が低下するからである。また、ホモポリマーのTg(ガラス転移温度)が−45℃以下である単量体を用いる事によって紙や木質材料以外の材料への密着性が向上するが、ホモポリマーのガラス転移温度が−45℃より高くなると、プラスチックフィルムなどの紙や木質材料以外の材料への密着性も低下するためである。   The monomer other than vinyl acetate has a homopolymer Tg (glass transition temperature) of −45 ° C. or lower, preferably −50 ° C. or lower. This is because when the glass transition temperature is higher than −45 ° C., the film formability at a low temperature is lowered, so that a plasticizer or the like needs to be added and the safety is lowered. In addition, the use of a monomer having a Tg (glass transition temperature) of the homopolymer of −45 ° C. or lower improves adhesion to materials other than paper and wood, but the homopolymer has a glass transition temperature of −45. This is because, when the temperature is higher than 0 ° C., the adhesion to materials other than paper and wood materials such as plastic films also decreases.

酢酸ビニル以外の他の単量体としては、好ましくは、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アルコキシアルキル、グリシジル基含有(メタ)アクリル酸エステル、ビニルアルコキシシランおよび(メタ)アクリロキシアルキルアルコキシシランの少なくとも1種、より好ましくは、(メタ)アクリル酸アルキルエステル、グリシジル基含有(メタ)アクリル酸エステルおよびビニルアルコキシシランの少なくとも1種、さらに好ましくは、(メタ)アクリル酸アルキルエステルとグリシジル基含有(メタ)アクリル酸エステルの組み合わせ、または(メタ)アクリル酸アルキルエステルとビニルアルコキシシランの組み合わせである。ビニルアルコキシシランや(メタ)アクリロキシアルキルアルコキシシランを共重合させることにより、酢酸ビニル系樹脂エマルションの塗膜の耐水性や耐熱性をさらに向上させることができる。なお、ビニルアルコキシシランは、他の単量体と共重合し、アルコキシシラン基がシード重合ポリマー鎖にペンダントする構造となり、アルコキシシラン基同士が更に反応して最終的にはポリマー鎖間の架橋構造を形成する。シード重合中にアルコキシ基の加水分解が起きると、ポリマー鎖間に架橋が形成され成膜性が低下する。そのため、ビニルアルコキシシランには、加水分解しにくいアルコキシ基を有するものが好ましい。そのようなビニルアルコキシシランには、アルコキシ基として、例えばメトキシエトキシ基やプロポキシ基を有するものが好ましい。そのようなビニルアルコキシシランとして、例えば、ビニルトリス(2−メトキシエトキシ)シランを挙げることができる。   As monomers other than vinyl acetate, (meth) acrylic acid alkyl ester, (meth) acrylic acid alkoxyalkyl, glycidyl group-containing (meth) acrylic acid ester, vinylalkoxysilane and (meth) acryloxy At least one of alkylalkoxysilanes, more preferably (meth) acrylic acid alkyl ester, glycidyl group-containing (meth) acrylic acid ester and at least one of vinylalkoxysilane, more preferably (meth) acrylic acid alkyl ester and A combination of a glycidyl group-containing (meth) acrylic acid ester, or a combination of a (meth) acrylic acid alkyl ester and a vinylalkoxysilane. By copolymerizing vinyl alkoxysilane or (meth) acryloxyalkylalkoxysilane, the water resistance and heat resistance of the coating film of the vinyl acetate resin emulsion can be further improved. Vinylalkoxysilane is copolymerized with other monomers so that the alkoxysilane group is pendant to the seed polymerization polymer chain, and the alkoxysilane group further reacts to form a crosslinked structure between the polymer chains. Form. When hydrolysis of the alkoxy group occurs during seed polymerization, cross-linking is formed between polymer chains, resulting in a decrease in film formability. Therefore, the vinyl alkoxysilane preferably has an alkoxy group that is difficult to hydrolyze. Such vinyl alkoxysilane preferably has, for example, a methoxyethoxy group or a propoxy group as an alkoxy group. Examples of such vinyl alkoxysilane include vinyl tris (2-methoxyethoxy) silane.

また、酢酸ビニル以外の他の単量体は、酢酸ビニルと該他の単量体を合わせた単量体全体の25重量%以上80重量%以下、好ましくは30重量%以上60重量%以下である。25重量%より少ないと、低温での成膜性が低下するためである。また、紙や木質材料以外のプラスチックフィルムへの密着性も低下するためである。   The monomer other than vinyl acetate is 25% by weight or more and 80% by weight or less, preferably 30% by weight or more and 60% by weight or less, based on the total amount of monomers including vinyl acetate and the other monomers. is there. This is because if it is less than 25% by weight, the film formability at a low temperature is lowered. Moreover, it is because the adhesiveness to plastic films other than paper and a woody material also falls.

また、酢酸ビニルと該他の単量体を合わせた単量体全体の固形分が、エチレン酢酸ビニル共重合樹脂エマルションの固形分の5倍以下、好ましくは2.5倍以下である。5倍より多いと、シード重合により生成するエマルションの常態接着強度や耐熱接着強度が低下するからである。   Moreover, the solid content of the whole monomer which combined vinyl acetate and this other monomer is 5 times or less of the solid content of an ethylene vinyl acetate copolymer resin emulsion, Preferably it is 2.5 times or less. This is because when the amount is more than 5 times, the normal state adhesive strength and heat resistant adhesive strength of the emulsion produced by seed polymerization are lowered.

本発明の酢酸ビニル系樹脂エマルションの保護コロイドには、ポリビニルアルコール系樹脂を用いる。ポリビニルアルコール系樹脂には、ポリ酢酸ビニルをけん化して得られるポリビニルアルコールと、該ポリビニルアルコールをアセトアセチル化して得られるアセトアセチル基変性ポリビニルアルコール、エチレン基変性ポリビニルアルコール、およびカルボキシル基変性ポリビニルアルコール等の変性ポリビニルアルコールが含まれる。本発明に用いるポリビニルアルコール系樹脂は、けん化度が90mol%未満で平均重合度が2500以下のポリビニルアルコール系樹脂以外のポリビニルアルコール系樹脂であれば特に限定されないが、好ましくは、けん化度が90mol%未満で平均重合度が2500より大きいポリビニルアルコール系樹脂および/またはけん化度が90mol%以上のポリビニルアルコール系樹脂を用いることができる。   For the protective colloid of the vinyl acetate resin emulsion of the present invention, a polyvinyl alcohol resin is used. Polyvinyl alcohol resins include polyvinyl alcohol obtained by saponifying polyvinyl acetate, acetoacetyl group-modified polyvinyl alcohol obtained by acetoacetylating the polyvinyl alcohol, ethylene group-modified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, etc. Modified polyvinyl alcohol. The polyvinyl alcohol resin used in the present invention is not particularly limited as long as it is a polyvinyl alcohol resin other than a polyvinyl alcohol resin having a saponification degree of less than 90 mol% and an average polymerization degree of 2500 or less, but preferably has a saponification degree of 90 mol%. A polyvinyl alcohol resin having an average polymerization degree of less than 2500 and / or a saponification degree of 90 mol% or more can be used.

ポリビニルアルコール系樹脂の量は、酢酸ビニル系樹脂エマルション全体(全固形分)の0.1〜19.9重量%、好ましくは0.3〜10.0重量%である。0.1重量%より少ないと、エマルションの安定性が低下し、19.9重量%より多いとエマルションの粘度が増大し塗工性が低下し、更には耐水接着強度も低下しやすくなるためである。   The amount of the polyvinyl alcohol resin is 0.1 to 19.9% by weight, preferably 0.3 to 10.0% by weight, based on the entire vinyl acetate resin emulsion (total solid content). If it is less than 0.1% by weight, the stability of the emulsion is lowered, and if it is more than 19.9% by weight, the viscosity of the emulsion is increased, the coating property is lowered, and the water-resistant adhesive strength is also liable to be lowered. is there.

本発明の酢酸ビニル系樹脂エマルションは、上記の条件以外は特に制限されず、公知のシード重合法を用いて製造することができる。例えば、エチレン酢酸ビニル共重合樹脂エマルションを予め反応前の重合槽に存在させ、1種以上のポリビニルアルコール系樹脂存在下、これに酢酸ビニルおよび必要に応じて共重合可能な単量体を重合開始剤とともに添加して乳化重合を行う方法を用いることができる。重合開始剤には、アゾ系重合開始剤、過酸化水素、過硫酸アンモニウム等の重合開始剤を用いることができる。また、これらの重合開始剤を還元剤と併用し、レドックス系重合開始剤として用いてもよい。例えば、過酸化水素を酒石酸、L−アスコルビン酸等と用い、過硫酸アンモニウムは亜硫酸水素ナトリウムや炭酸水素ナトリウム等と用いることができる。   The vinyl acetate resin emulsion of the present invention is not particularly limited except for the above conditions, and can be produced using a known seed polymerization method. For example, an ethylene vinyl acetate copolymer resin emulsion is previously present in the polymerization tank before the reaction, and in the presence of one or more types of polyvinyl alcohol resin, polymerization of vinyl acetate and a copolymerizable monomer is started. A method of performing emulsion polymerization by adding together with an agent can be used. As the polymerization initiator, a polymerization initiator such as an azo polymerization initiator, hydrogen peroxide, or ammonium persulfate can be used. Further, these polymerization initiators may be used in combination with a reducing agent and used as a redox polymerization initiator. For example, hydrogen peroxide can be used with tartaric acid, L-ascorbic acid, and the like, and ammonium persulfate can be used with sodium hydrogen sulfite, sodium hydrogen carbonate, and the like.

得られる酢酸ビニル系樹脂エマルションの固形分濃度は、特に制限されないが、30〜70重量%、好ましくは40〜60重量%である。30重量%より少ないとシード重合により生成するエマルションの粘度が低くなり、所望とする粘度が得られにくくなったり、安定性が低下して二相に分離しやすくなり、70重量%より多いとエマルションが増粘しやすくなったり、安定性の高いエマルションが得られにくくなるからである。   The solid content concentration of the resulting vinyl acetate resin emulsion is not particularly limited, but is 30 to 70% by weight, preferably 40 to 60% by weight. If it is less than 30% by weight, the viscosity of the emulsion produced by seed polymerization becomes low and it becomes difficult to obtain the desired viscosity, or the stability is lowered and it is easy to separate into two phases. This is because it becomes difficult to increase the viscosity of the emulsion and it is difficult to obtain a highly stable emulsion.

得られる酢酸ビニル系樹脂エマルションの最低造膜温度(MFT)は、30℃以下、好ましくは20℃以下である。更に好ましくは2℃以下である。2℃以下であれば可塑剤などの溶剤類を添加する事なく低温下での成膜性が確保できる。逆に30℃より高いと十分な強度を有する塗膜が得られにくくなったり、室温付近での使用環境下において可塑剤などの溶剤類の添加が必要となり安全性の高いエマルションが得られにくくなるからである。   The minimum film-forming temperature (MFT) of the resulting vinyl acetate resin emulsion is 30 ° C. or lower, preferably 20 ° C. or lower. More preferably, it is 2 degrees C or less. If it is 2 degrees C or less, the film formability in low temperature can be ensured, without adding solvents, such as a plasticizer. On the other hand, if it is higher than 30 ° C., it is difficult to obtain a coating film having sufficient strength, or it is difficult to obtain a highly safe emulsion because it is necessary to add a solvent such as a plasticizer in a use environment near room temperature. Because.

得られる酢酸ビニル系樹脂エマルションの粘度は、23℃で、100〜200,000mPa・s、好ましくは1,000〜100,000mPa・sである。100mPa・sより小さいと塗膜の平滑性の確保や厚さの制御が困難となり、200,000mPa・sより大きいと製造や移送が困難となり、また塗膜の平滑性の確保や厚さの制御も困難になるからである。   The resulting vinyl acetate resin emulsion has a viscosity of 100 to 200,000 mPa · s at 23 ° C., preferably 1,000 to 100,000 mPa · s. If it is less than 100 mPa · s, it will be difficult to ensure the smoothness of the coating film and control the thickness, and if it is more than 200,000 mPa · s, it will be difficult to produce and transport, and also to ensure the smoothness of the coating film and control the thickness. Because it becomes difficult.

また、得られる酢酸ビニル系樹脂エマルションは、以下の式で表される粘性指標が、3以上、好ましくは4〜8である。
粘性指標=せん断速度7000(1/s)のせん断応力(Pa)/せん断速度500(1/s)のせん断応力(Pa)
この粘性指標は、チキソトロピック指数に相当するものであり、構造粘性の程度を表す指標である。本発明では3より小さいと、高せん断速度下における粘度が低くなり作業性は向上するものの、塗膜の平滑性や膜厚の制御が困難となり好ましくない。特に、高速での塗工に際しては膜厚の確保が困難となりやすい。
In addition, the obtained vinyl acetate resin emulsion has a viscosity index represented by the following formula of 3 or more, preferably 4 to 8.
Viscosity index = shear stress (Pa) at a shear rate of 7000 (1 / s) / shear stress (Pa) at a shear rate of 500 (1 / s)
This viscosity index corresponds to the thixotropic index and is an index representing the degree of structural viscosity. In the present invention, if it is less than 3, the viscosity under a high shear rate is lowered and the workability is improved, but it becomes difficult to control the smoothness of the coating film and the film thickness, which is not preferable. In particular, it is difficult to ensure the film thickness during high-speed coating.

また、本発明の酢酸ビニル系樹脂エマルションには、必要に応じて従来公知の添加剤を添加してもよい。例えば、可塑剤、pH調整剤、増粘剤、防腐剤、消泡剤、濡れ剤、充填剤、沈殿防止剤等を挙げることができる。なお、本発明の酢酸ビニル系樹脂エマルションは、前述のように、可塑剤を添加しなくても30℃以下のMFTを有しているが、必要に応じて可塑剤を添加してもよい。   Moreover, you may add a conventionally well-known additive to the vinyl acetate type-resin emulsion of this invention as needed. For example, a plasticizer, a pH adjuster, a thickener, an antiseptic, an antifoaming agent, a wetting agent, a filler, a suspending agent and the like can be mentioned. As described above, the vinyl acetate resin emulsion of the present invention has an MFT of 30 ° C. or less without adding a plasticizer, but a plasticizer may be added as necessary.

また、添加剤として、シランカップリング剤を添加してもよい。単量体にグリシジル基含有(メタ)アクリル酸エステルを用いた場合、シード重合後のポリマーに対して、グリシジル基との反応性を有する単官能の官能基を有するシランカップリング剤を添加することにより、グリシジル基とシランカップリング剤が反応し、アルコキシシラン基がシード重合ポリマー鎖にペンダントする構造となり、アルコキシシラン基同士が更に反応して最終的にはポリマー鎖間の架橋構造を形成する。これにより、塗膜の耐水性を向上させることができる。シランカップリング剤には、グリシジル基と反応可能なものを用いる。例えば、3−メルカプトプロピルトリメトキシシランや3−メルカプトプロピルトリエトキシシラン等のメルカプト基を有するアルコキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−(2−アミノエチル)アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルトリエトキシシラン等のアミノ基を有するアルコキシシラン、3−(N−フェニル)アミノプロピルトリメトキシシラン等のイミノ基を有するアルコキシシランを挙げることができる。必要に応じて、上記のようなグリシジル基との反応性を有しないシランカップリング剤も発明の効果を妨げない範囲で自由に用いる事ができる。   Moreover, you may add a silane coupling agent as an additive. When a glycidyl group-containing (meth) acrylic acid ester is used as a monomer, a silane coupling agent having a monofunctional functional group having reactivity with a glycidyl group is added to the polymer after seed polymerization. Thus, the glycidyl group and the silane coupling agent react to form a structure in which the alkoxysilane group is pendant to the seed polymerization polymer chain, and the alkoxysilane group further reacts to finally form a crosslinked structure between the polymer chains. Thereby, the water resistance of a coating film can be improved. A silane coupling agent that can react with a glycidyl group is used. For example, alkoxysilane having a mercapto group such as 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (2-aminoethyl) Examples include alkoxysilanes having amino groups such as aminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltriethoxysilane, and alkoxysilanes having imino groups such as 3- (N-phenyl) aminopropyltrimethoxysilane. be able to. If necessary, a silane coupling agent having no reactivity with the glycidyl group as described above can be freely used as long as the effect of the invention is not hindered.

以下、実施例を用いて本発明を説明するが、本発明は以下の実施例に限定されるものではない。以下の「部」とは、特に断らない限り「重量部」である。用いた材料を以下の表1に示す。   EXAMPLES Hereinafter, although this invention is demonstrated using an Example, this invention is not limited to a following example. The “parts” below are “parts by weight” unless otherwise specified. The materials used are shown in Table 1 below.

Figure 0006301591
Figure 0006301591

参考例1.
攪拌器を備えた反応容器に水558部を入れ、これにJポバール JP−33の42部を分散させながら添加した後、反応容器を90℃まで加熱した。このまま90分攪拌してポリビニルアルコール水溶液を得た。これを50℃まで冷却した後、スミカフレックス450HQを170部添加した。更にこれに酢酸ナトリウム0.5部とL−酒石酸0.5部を添加して溶解させた後に酢酸ビニルモノマー50部を添加して15分間以上攪拌した。これを80℃まで加熱しながら、内部の温度が55〜60℃になったところで触媒(35%過酸化水素0.05部と水10部を混合したもの)を添加して反応を開始した。10〜20分間反応させた後、内部の温度が77〜83℃となるように温度調節しながら、更に酢酸ビニルモノマー570部と触媒(35%過酸化水素0.12部を水100部と混合したもの)を約3時間30分かけて滴下して反応させた。滴下終了後に85℃まで加熱して2時間熟成させた後に室温になるまで冷却し、濃度49.7%、23℃での粘度が18,720mPa・s、pHが4.7のエマルションを得た。
Reference Example 1
558 parts of water was placed in a reaction vessel equipped with a stirrer, and 42 parts of J Poval JP-33 were added thereto while being dispersed, and then the reaction vessel was heated to 90 ° C. The mixture was stirred for 90 minutes to obtain an aqueous polyvinyl alcohol solution. After cooling to 50 ° C., 170 parts of Sumikaflex 450HQ was added. Further, 0.5 parts of sodium acetate and 0.5 part of L-tartaric acid were added and dissolved, and then 50 parts of vinyl acetate monomer was added and stirred for 15 minutes or more. While heating this to 80 ° C., when the internal temperature reached 55-60 ° C., a catalyst (a mixture of 0.05 part of 35% hydrogen peroxide and 10 parts of water) was added to initiate the reaction. After reacting for 10 to 20 minutes, 570 parts of vinyl acetate monomer and catalyst (0.12 part of 35% hydrogen peroxide are mixed with 100 parts of water while adjusting the temperature so that the internal temperature becomes 77 to 83 ° C. Were added dropwise over about 3 hours and 30 minutes to cause a reaction. After completion of dropping, the mixture was heated to 85 ° C. and aged for 2 hours, and then cooled to room temperature to obtain an emulsion having a concentration of 49.7%, a viscosity at 23 ° C. of 18,720 mPa · s, and a pH of 4.7. .

(評価方法)
以下に評価方法について説明するが、以降の実施例および比較例についても同様に行った。
水溶出率の測定
水溶出率は前述の方法を用いて測定した。すなわち、乾燥後の皮膜の厚みが均等に約1mmとなる様にエチレン酢酸ビニル共重合樹脂エマルションを取り、50±3℃の熱風循環式恒温器中で3日以上乾燥させて皮膜を作製した。乾燥させた皮膜から2cm×2cmの正方形状に正確に各サンプルにつき5個切り出して試験片とした。次いで各試験片を105±3℃の熱風循環式乾燥器内で3時間以上熱処理した直後に皮膜の重量(g)を少数点以下4桁まで測定して水浸漬処理前の絶乾重量とした。次いで、乾燥した試験片を蒸留水中に完全浸漬し、これを23±3℃の恒温室中で2週間放置して水浸漬処理を行った。水浸漬処理後の皮膜について上記と同様にして絶乾重量を測定して水浸漬処理後の皮膜の絶乾重量とした。そして、前述の式(1)を用いて水溶出率を算出した。
(Evaluation method)
Although an evaluation method is demonstrated below, it carried out similarly about the following Example and the comparative example.
Measurement of water elution rate The water elution rate was measured using the method described above. That is, an ethylene-vinyl acetate copolymer resin emulsion was taken so that the thickness of the dried film was approximately 1 mm, and the film was dried in a hot air circulating thermostat at 50 ± 3 ° C. for 3 days or more. Five test pieces were cut out from each dried sample exactly into a 2 cm × 2 cm square shape. Next, immediately after each test piece was heat-treated in a hot air circulating drier at 105 ± 3 ° C. for 3 hours or more, the weight (g) of the film was measured to 4 digits after the decimal point to obtain the absolute dry weight before the water immersion treatment. . Subsequently, the dried test piece was completely immersed in distilled water, and this was left in a constant temperature room at 23 ± 3 ° C. for 2 weeks to perform a water immersion treatment. With respect to the film after the water immersion treatment, the absolute dry weight was measured in the same manner as described above to obtain the absolute dry weight of the film after the water immersion treatment. And the water elution rate was computed using the above-mentioned Formula (1).

2.平均粒子径および粒子径分布の測定
サンプルの平均粒子径は、レーザー回折/散乱式粒子径分布測定装置LA−950V2(株式会社堀場製作所製)を用いて測定したメジアン径をもって平均粒子径とした。また、この際に粒子径分布を示す指標として以下の式で示されるスパン演算を行い、この値が1.0未満の場合を粒子径分布の狭いエマルションとし、1.0以上の場合を粒子径分布の広いエマルションとして判定した。尚、測定にはポリ酢酸ビニル樹脂の屈折率を用いた。
スパン演算値=|累積頻度%径A−累積頻度%径B|÷メジアン径(μm)
ここで、累積頻度%径Aは測定中の累積頻度が10%となった時の酢酸ビニル系樹脂エマルション(サンプルともいう)の粒子径(μm)、累積頻度%径Bは測定中の累積頻度が90%となった時の酢酸ビニル系樹脂エマルションの粒子径(μm)、メジアン径は累積頻度が50%となった時の酢酸ビニル系樹脂エマルションの粒子径(μm)を示し、式内記号||は絶対値を示す。
2. Measurement of average particle size and particle size distribution The average particle size of the sample was defined as the median size measured using a laser diffraction / scattering particle size distribution measuring apparatus LA-950V2 (manufactured by Horiba, Ltd.). In addition, a span calculation represented by the following formula is performed as an index indicating the particle size distribution at this time, and when this value is less than 1.0, an emulsion having a narrow particle size distribution is obtained, and when the value is 1.0 or more, the particle size is represented. It was determined as an emulsion having a wide distribution. In addition, the refractive index of the polyvinyl acetate resin was used for the measurement.
Span calculation value = | cumulative frequency% diameter A−cumulative frequency% diameter B | ÷ median diameter (μm)
Here, the cumulative frequency% diameter A is the particle diameter (μm) of the vinyl acetate resin emulsion (also referred to as a sample) when the cumulative frequency during measurement is 10%, and the cumulative frequency% diameter B is the cumulative frequency during measurement. The particle diameter (μm) of the vinyl acetate resin emulsion when 90% is reached, and the median diameter is the particle diameter (μm) of the vinyl acetate resin emulsion when the cumulative frequency is 50%. || indicates an absolute value.

3.粘性指標の測定
サンプルの粘性指標として、HAAKE回転粘度計RV20型(英弘精機株式会社製)を用い、23℃の試料液温で2分30秒でせん断速度が0から10000(1/s)まで上昇する条件にて粘度グラフを測定した。以下の式で表される、その際のせん断速度500(1/s)のせん断応力(Pa)とせん断速度7000(1/s)のせん断応力(Pa)の比をもってそのサンプルの粘性指標とした。
粘性指標=せん断速度7000(1/s)のせん断応力(Pa)/せん断速度500(1/s)のせん断応力(Pa)
3. Measurement of viscosity index HAAKE rotational viscometer RV20 type (manufactured by Eihiro Seiki Co., Ltd.) is used as a viscosity index of the sample, and the shear rate is 0 to 10,000 (1 / s) at a sample liquid temperature of 23 ° C. for 2 minutes and 30 seconds. The viscosity graph was measured under increasing conditions. The ratio of the shear stress (Pa) at a shear rate of 500 (1 / s) and the shear stress (Pa) at a shear rate of 7000 (1 / s), represented by the following formula, was used as the viscosity index of the sample. .
Viscosity index = shear stress (Pa) at a shear rate of 7000 (1 / s) / shear stress (Pa) at a shear rate of 500 (1 / s)

4.MFT測定
MFT測定装置(テスター産業株式会社製)を用いて、サンプルのMFT(最低造膜温度)を測定した。尚、測定は各サンプルが成膜した透明皮膜の下限の温度をMFTとした。
4). MFT measurement The MFT (minimum film-forming temperature) of the sample was measured using an MFT measuring device (manufactured by Tester Sangyo Co., Ltd.). In addition, the measurement made MFT the temperature of the minimum of the transparent film which each sample formed into a film.

5.塗工性
サンプルをエマルション状態での塗布厚みが25μmとなるアプリケーターを用いて、幅5cmで長さが30cmの面積で市販の塩化ビニルフィルム上に約1秒の速度で塗工した。各サンプルについて5回の塗工を行い、それぞれを室温下で乾燥させて試験体とした。また、乾燥後の塗工サンプルの膜厚(μm)について、マイクロメーターを用いて塩化ビニルシートと塗工サンプル皮膜を合わせた厚さから塩化ビニルシートの厚さを差し引くことによって各試験体につき6点測定し、5枚の試験体全てで計30点のこれらの測定値の平均値を算出することにより求めた。以下の式で示される理論塗布厚(μm)と実際にマイクロメーターを用いて測定した各サンプルの塗工皮膜の膜厚(μm)との差が理論塗布厚(μm)に対して20%以内であったサンプルを膜厚の制御が可能な塗工性良好なサンプルとして○とした。他に20〜40%となったサンプルを△、また40%より大きな差となったサンプルを×として塗工性が不良なサンプルとした。

理論塗布厚(μm)={アプリケーターの間隙25(μm)×各サンプルの比重×各サンプルのそれぞれの固形分(%)}
ただし、各サンプルの比重は全て1.07として計算した。
また、各サンプルの固形分は105℃の乾燥器を用いて1時間乾燥させることにより測定した値をそのまま用いた。
5. Coating property The sample was coated on a commercially available vinyl chloride film at a speed of about 1 second in an area of 5 cm in width and 30 cm in length using an applicator having a coating thickness of 25 μm in an emulsion state. Each sample was applied five times, and each sample was dried at room temperature to obtain a test specimen. Moreover, about the film thickness (micrometer) of the coating sample after drying, by subtracting the thickness of a vinyl chloride sheet from the thickness which combined the vinyl chloride sheet and the coating sample film | membrane using the micrometer, it is 6 for each test body. It was determined by measuring the points and calculating the average of these measured values for a total of 30 points on all five test specimens. The difference between the theoretical coating thickness (μm) shown by the following formula and the coating film thickness (μm) of each sample actually measured using a micrometer is within 20% of the theoretical coating thickness (μm). The sample that was a good coating property that can control the film thickness was marked as ◯. In addition, a sample having 20 to 40% was evaluated as Δ, and a sample having a difference larger than 40% was evaluated as ×, thereby indicating a sample having poor coatability.

Theoretical coating thickness (μm) = {Gap of applicator 25 (μm) × Specific gravity of each sample × Solid content (%) of each sample}
However, the specific gravity of each sample was calculated as 1.07.
Moreover, the solid content of each sample used the value measured by making it dry for 1 hour using a 105 degreeC dryer.

6.ロール洗浄性の評価
アプリケーターを用いて125μmの厚みで幅5cm、長さ15cmとなるようにガラス板上に各サンプルを塗工した。直後に高さ5cmの所から1分間に1800〜2200mlの垂直に落下する流水(水温20〜25℃)に対してガラス板が水平面から55〜65°の角度で接触する様に設置した。塗工したサンプルが水に接触した直後からガラス板上に塗工したサンプルが全て洗い流されるまでの時間(秒)をストップウォッチを用いて計測した。これらの時間(秒)が、各サンプルの23℃下、20rpmの回転数で測定した各粘度(mPa・s)に応じて設定した以下の時間未満の場合を○、この時間以上の場合を×として評価した。

Figure 0006301591
6). Evaluation of roll washability Each sample was coated on a glass plate using an applicator so that the thickness was 125 μm, the width was 5 cm, and the length was 15 cm. Immediately after that, the glass plate was placed at an angle of 55 to 65 ° from the horizontal plane with respect to flowing water (water temperature 20 to 25 ° C.) falling vertically from 1800 to 2200 ml per minute from a height of 5 cm. The time (seconds) from immediately after the coated sample was brought into contact with water until all the sample coated on the glass plate was washed was measured using a stopwatch. The case where these times (seconds) are less than the following times set according to the respective viscosity (mPa · s) measured at 23 rpm and 20 rpm is ×, As evaluated.

Figure 0006301591

7.初期接着性の評価
サンプルについて、初期接着試験機ASM−01・05(JTトーシ株式会社製)を用いて以下の条件で初期接着性能を測定した。プレス時間が5秒以内に接着強度が20N/cm以上に達し、更に紙破が生じた場合を○、それ以外の場合を×として評価した。但し、MFTが10℃以上のサンプルにはフェニルグリコール系可塑剤フェニルグリコールHをサンプルの固形分100重量部あたり6重量部を、また、MFTが5〜10℃のサンプルにはフェニルグリコールHをサンプルの固形分100重量部あたり3重量部添加して測定を行い、MFTが0〜5℃のサンプルはそのままで測定を行った。
(1)測定条件 測定温度:23〜26℃雰囲気下
被着体:クラフト紙/クラフト紙
塗布量:40(g/m
オープンタイム:0.5(秒)
プレス圧:0.05(MPa)
プレス時間:1〜6(秒)
(2)評価 プレス時間1〜6秒の6水準でそれぞれにせん断接着強度測定と目視による紙破の有無の確認を実施した。
7). Evaluation of initial adhesion The initial adhesion performance of the sample was measured under the following conditions using an initial adhesion tester ASM-01 / 05 (manufactured by JT Toshi Co., Ltd.). The case where the adhesive strength reached 20 N / cm 2 or more within 5 seconds and paper breakage occurred was evaluated as “◯”, and the other cases were evaluated as “X”. However, for samples with an MFT of 10 ° C or higher, phenylglycol plasticizer phenylglycol H is 6 parts by weight per 100 parts by weight of the solid content of the sample, and for samples with an MFT of 5-10 ° C, phenylglycol H is sampled. The measurement was performed by adding 3 parts by weight per 100 parts by weight of the solid content of the sample, and the sample having an MFT of 0 to 5 ° C. was measured as it was.
(1) Measurement conditions Measurement temperature: 23-26 ° C atmosphere
Substrate: Kraft paper / Craft paper
Application amount: 40 (g / m 2 )
Open time: 0.5 (seconds)
Press pressure: 0.05 (MPa)
Press time: 1-6 (seconds)
(2) Evaluation Each of 6 levels with a press time of 1 to 6 seconds was measured for shear adhesive strength and visually checked for paper breakage.

8.常態接着性の評価
サンプルについて、JIS規格に適合するカバブロック(長さ30mm×幅25mm×厚さ10mm)を用いて、接着面積が6.25cmとなるよう、以下の接着条件で接着した試験片を各サンプルについて5個ずつ作製した。この試験片を養生直後にそのまま引張り試験機AG−5000B型(株式会社島津製作所製)を用いてクロスヘッドスピード3mm/分の速度で圧縮試験を行った。その際の最大強度(N)を接着面積で除した値をそのサンプルの常態接着強度(N/mm)とした。但し、MFTが10℃以上のサンプルにはフェニルグリコールHをサンプルの固形分100重量部あたり6重量部を、また、MFTが5〜10℃のサンプルにはフェニルグリコールHをサンプルの固形分100重量部あたり3重量部添加して測定を行い、MFTが0〜5℃のサンプルはそのままで測定を行った。
接着条件
塗布量:各面75g/m2の両面塗布 開放堆積時間・閉鎖堆積時間:30秒以下
圧締:20〜25℃下 1.0MPa 16時間
養生:20〜25℃、相対湿度50〜60%下 1週間
8). Evaluation of normal adhesiveness Using a cover block (length 30 mm x width 25 mm x thickness 10 mm) conforming to JIS standards, the sample was bonded under the following bonding conditions so that the bonding area was 6.25 cm 2 Five pieces were made for each sample. The test piece was subjected to a compression test at a crosshead speed of 3 mm / min using a tensile tester AG-5000B type (manufactured by Shimadzu Corporation) immediately after curing. The value obtained by dividing the maximum strength (N) at that time by the adhesion area was defined as the normal adhesion strength (N / mm 2 ) of the sample. However, for samples with an MFT of 10 ° C. or higher, phenyl glycol H is 6 parts by weight per 100 parts by weight of the solid content of the sample, and for samples with an MFT of 5 to 10 ° C., phenyl glycol H is 100 weight parts of the sample. Measurement was performed by adding 3 parts by weight per part, and the measurement was performed with the sample having an MFT of 0 to 5 ° C. as it was.
Adhesion condition Application amount: Application on both sides of 75 g / m2 on each side Open deposition time / Closed deposition time: 30 seconds or less Clamping: 20-25 ° C. 1.0 MPa 16 hours Curing: 20-25 ° C., relative humidity 50-60% Below 1 week

9.耐水接着性の評価
常態接着性の評価と同様にしてカバブロックを接着した試験片を各サンプルについて5個ずつ作製した。この試験片を60±3℃のウォーターバス中に3時間浸せきした後、直ぐに20〜25℃の水中に15分間浸して冷却した。その後引張り試験機(AG−5000型:株式会社島津製作所製)を用いてクロスヘッドスピード3mm/分の速度で圧縮試験を行った。その際の最大強度(N)を接着面積で除した値をそのサンプルの耐水接着強度(N/mm)とした。但し、MFTが10℃以上のサンプルにはフェニルグリコールHをサンプルの固形分100重量部あたり6重量部を、また、MFTが5〜10℃のサンプルにはフェニルグリコールHをサンプルの固形分100重量部あたり3重量部添加して測定を行い、MFTが0〜5℃のサンプルはそのままで測定を行った。
9. Evaluation of water-resistant adhesion Five test pieces each having a cover block adhered thereto were prepared in the same manner as in the evaluation of normal adhesion. The test piece was immersed in a water bath at 60 ± 3 ° C. for 3 hours, and then immediately immersed in water at 20 to 25 ° C. for 15 minutes to cool. Thereafter, a compression test was performed at a crosshead speed of 3 mm / min using a tensile tester (AG-5000 type: manufactured by Shimadzu Corporation). The value obtained by dividing the maximum strength (N) at that time by the adhesion area was taken as the water-resistant adhesion strength (N / mm 2 ) of the sample. However, for samples with an MFT of 10 ° C. or higher, phenyl glycol H is 6 parts by weight per 100 parts by weight of the solid content of the sample, and for samples with an MFT of 5 to 10 ° C., phenyl glycol H is 100 weight parts of the sample. Measurement was performed by adding 3 parts by weight per part, and the measurement was performed with the sample having an MFT of 0 to 5 ° C. as it was.

10.耐熱接着性の評価
常態および耐水接着性の評価と同様にしてカバブロックを接着した試験片を各サンプルについて5個ずつ作製した。この試験片を80℃の恒温ボックスAGS−100A付属品(株式会社島津製作所製)に1時間放置した。取出した直後に耐水接着性の評価と同様に引張り試験機AG−5000型(株式会社島津製作所製)を用いてクロスヘッドスピード3mm/分の速度で圧縮試験を行った。その際の最大強度(N)を接着面積で除した値をそのサンプルの耐熱接着強度(N/mm)とした。但し、MFTが10℃以上のサンプルにはフェニルグリコールHをサンプルの固形分100重量部あたり6重量部を、また、MFTが5〜10℃のサンプルにはフェニルグリコールHをサンプルの固形分100重量部あたり3重量部添加して測定を行い、MFTが0〜5℃のサンプルはそのままで測定を行った。
10. Evaluation of heat-resistant adhesion Five test pieces each having a cover block bonded thereto were prepared for each sample in the same manner as in the evaluation of normal and water-resistant adhesive properties. This test piece was left in an 80 ° C. constant temperature box AGS-100A accessory (manufactured by Shimadzu Corporation) for 1 hour. Immediately after taking out, a compression test was performed at a crosshead speed of 3 mm / min using a tensile tester AG-5000 type (manufactured by Shimadzu Corporation) in the same manner as the evaluation of water-resistant adhesion. The value obtained by dividing the maximum strength (N) at that time by the adhesion area was defined as the heat-resistant adhesion strength (N / mm 2 ) of the sample. However, for samples with an MFT of 10 ° C. or higher, phenyl glycol H is 6 parts by weight per 100 parts by weight of the solid content of the sample, and for samples with an MFT of 5 to 10 ° C., phenyl glycol H is 100 weight parts of the sample. Measurement was performed by adding 3 parts by weight per part, and the measurement was performed with the sample having an MFT of 0 to 5 ° C. as it was.

11.貯蔵安定性の評価
サンプル250gを密閉できるガラス瓶に取り、50±3℃の熱風循環式乾燥機中に4週間放置した。この処理前後の粘度とpHを測定し、以下の式により粘度変化率およびpH変化率を算出した。この時の粘度変化率が0.7〜1.3の範囲にあり、尚且つpH変化率が0.8〜1.2の範囲になったものを貯蔵安定性の良好なエマルションとして○とし、粘度変化率とpH変化率いずれか一方でも上記の範囲に入らなかったものを貯蔵安定性不良のエマルションとして×とした。尚、粘度測定は液温23℃下、BH型回転粘度計による10rpmで行い、pHは液温23℃下でpHメータを用いて測定を行った。
粘度変化率=貯蔵安定性処理後のサンプル粘度(mPa・s)/貯蔵安定性処理前のサンプル粘度(mPa・s)
pH変化率=貯蔵安定性処理後のサンプルpH/貯蔵安定性処理前のサンプルpH
11. Evaluation of Storage Stability 250 g of a sample was taken in a glass bottle that could be sealed and left in a hot air circulating dryer at 50 ± 3 ° C. for 4 weeks. The viscosity and pH before and after this treatment were measured, and the viscosity change rate and the pH change rate were calculated according to the following formulas. The viscosity change rate at this time is in the range of 0.7 to 1.3, and the pH change rate is in the range of 0.8 to 1.2. Those that did not fall within the above range in either the viscosity change rate or the pH change rate were evaluated as x as an emulsion having poor storage stability. The viscosity was measured at a liquid temperature of 23 ° C. at 10 rpm with a BH type rotational viscometer, and the pH was measured using a pH meter at a liquid temperature of 23 ° C.
Viscosity change rate = sample viscosity after storage stability treatment (mPa · s) / sample viscosity before storage stability treatment (mPa · s)
pH change rate = sample pH after storage stability treatment / sample pH before storage stability treatment

参考例2.
スミカフレックス450HQに代えてペガール1900を用いた以外は参考例1と同様の方法を用いて製造し、濃度49.9%、23℃での粘度が26,850mPa・s、pHが4.8のエマルションを得た。
Reference Example 2
Manufactured using the same method as in Reference Example 1 except that Pegar 1900 is used instead of Sumikaflex 450HQ, and the concentration is 49.9%, the viscosity at 23 ° C. is 26,850 mPa · s, and the pH is 4.8. An emulsion was obtained.

参考例3.
スミカフレックス450HQを340部添加した以外は参考例1と同様の方法を用いて製造し、濃度50.3%、23℃での粘度が11,220mPa・s、pHが4.7のエマルションを得た。
Reference Example 3
Manufactured using the same method as in Reference Example 1 except that 340 parts of Sumikaflex 450HQ was added, and an emulsion having a concentration of 50.3%, a viscosity of 11220 mPa · s at 23 ° C., and a pH of 4.7 was obtained. It was.

参考例4.
スミカフレックス450HQに代えてパンフレックスOM−4200NTを用いた以外は参考例1と同様の方法を用いて製造し、濃度49.6%、23℃での粘度が33,900mPa・s、pHが4.8のエマルションを得た。
Reference Example 4
Manufactured using the same method as in Reference Example 1 except that Panflex OM-4200NT was used instead of Sumikaflex 450HQ, the concentration was 49.6%, the viscosity at 23 ° C. was 33,900 mPa · s, and the pH was 4. .8 emulsion was obtained.

参考例5.
スミカフレックス450HQに代えてスミカフレックス400HQを用いた以外は参考例1と同様の方法を用いて製造し、濃度49.7%、23℃での粘度が24,350mPa・s、pHが4.7のエマルションを得た。
Reference Example 5
Manufactured using the same method as in Reference Example 1 except that Sumikaflex 400HQ was used instead of Sumikaflex 450HQ, the concentration was 49.7%, the viscosity at 23 ° C. was 24,350 mPa · s, and the pH was 4.7. An emulsion was obtained.

参考例6.
スミカフレックス450HQに代えて前処理を施したポリゾールAD56を用いた以外は参考例1と同様の方法を用いて製造し、濃度50.5%、23℃での粘度が29,400mPa・s、pHが4.8のエマルションを得た。
Reference Example 6
Manufactured using the same method as in Reference Example 1 except that pre-treated Polysol AD56 was used instead of Sumikaflex 450HQ, and the viscosity at a concentration of 50.5% and 23 ° C. was 29,400 mPa · s, pH. Gave an emulsion of 4.8.

参考例7.
スミカフレックス450HQに代えて前処理を施したスミカフレックス355HQを用いた以外は参考例1と同様の方法を用いて製造し、濃度49.8%、23℃での粘度が9,920mPa・s、pHが4.7のエマルションを得た。
Reference Example 7
Manufactured using the same method as in Reference Example 1 except that Sumikaflex 355HQ was used instead of Sumikaflex 450HQ, and the viscosity at a concentration of 49.8% and 23 ° C. was 9,920 mPa · s, An emulsion having a pH of 4.7 was obtained.

参考例8.
Jポバール JP−33 42部に代えてJポバール JP−33を21部とPVA CSTを21部用いた以外は参考例1と同様の方法を用いて製造し、濃度49.8%、23℃での粘度が13,560mPa・s、pHが4.7のエマルションを得た。
Reference Example 8
J POVAL JP-33 Manufactured using the same method as in Reference Example 1 except that 21 parts of J POVAL JP-33 and 21 parts of PVA CST were used instead of 42 parts, and the concentration was 49.8% at 23 ° C. An emulsion having a viscosity of 13,560 mPa · s and a pH of 4.7 was obtained.

参考例9.
Jポバール JP−33 42部に代えてJポバール JP−33を21部とJポバール JM−23を21部用いた以外は参考例1と同様の方法を用いて製造し、濃度49.9%、23℃での粘度が15,800mPa・s、pHが4.7のエマルションを得た。
Reference Example 9
Manufactured using the same method as in Reference Example 1 except that 21 parts of J Poval JP-33 and 21 parts of J Poval JM-23 were used instead of 42 parts of J Poval JP-33, and the concentration was 49.9%. An emulsion having a viscosity at 23 ° C. of 15,800 mPa · s and a pH of 4.7 was obtained.

参考例10
Jポバール JP−33 42部に代えてJポバール JP−33を21部とJポバール JM−26を21部用いた以外は参考例1と同様の方法を用いて製造し、濃度49.8%、23℃での粘度が18,800mPa・s、pHが4.7のエマルションを得た。
Reference Example 10
J POVAL JP-33 Manufactured using the same method as in Reference Example 1 except that 21 parts of J POVAL JP-33 and 21 parts of J POVAL JM-26 were used instead of 42 parts, and the concentration was 49.8%. An emulsion having a viscosity at 23 ° C. of 18,800 mPa · s and a pH of 4.7 was obtained.

参考例11.
Jポバール JP−33 42部に代えてJポバール JP−33を5.3部とPVA CSTを36.7部用いた以外は参考例1と同様の方法を用いて製造し、濃度49.9%、23℃での粘度が10,820mPa・s、pHが4.7のエマルションを得た。
Reference Example 11
J Poval JP-33 Manufactured in the same manner as in Reference Example 1 except that 5.3 parts of J Poval JP-33 and 36.7 parts of PVA CST were used instead of 42 parts, and the concentration was 49.9%. An emulsion having a viscosity at 23 ° C. of 10,820 mPa · s and a pH of 4.7 was obtained.

参考例12.
Jポバール JP−33 42部に代えてJポバール JP−33を5.3部とJポバール JM−26を36.7部用いた以外は参考例1と同様の方法を用いて製造し、濃度49.8%、23℃での粘度が7,480mPa・s、pHが4.7のエマルションを得た。
Reference Example 12.
Manufactured using the same method as in Reference Example 1 except that 5.3 parts of J Poval JP-33 and 36.7 parts of J Poval JM-26 were used instead of 42 parts of J Poval JP-33. An emulsion having a viscosity of 8%, a viscosity at 23 ° C. of 7,480 mPa · s, and a pH of 4.7 was obtained.

Figure 0006301591
Figure 0006301591

比較例1.
反応容器に水389.5部を入れ、これにJポバール JP−33に代えてPVA 217を10.5部添加した以外は参考例1と同様の方法を用いて製造し、濃度55.1%、23℃での粘度が280mPa・s、pHが4.5のエマルションを得た。
Comparative Example 1
A reaction vessel was charged with 389.5 parts of water, and this was prepared in the same manner as in Reference Example 1 except that 10.5 parts of PVA 217 was added instead of J Poval JP-33. The concentration was 55.1%. An emulsion having a viscosity at 23 ° C. of 280 mPa · s and a pH of 4.5 was obtained.

比較例2.
反応容器に水389.5部を入れ、Jポバール JP−33の42部に代えて10.5部を用い、スミカフレックス450HQに代えてペガール1901を用いた以外は参考例1と同様の方法を用いて製造し、濃度55.7%、23℃での粘度が6,630mPa・s、pHが4.6のエマルションを得た。
Comparative Example 2
The same method as in Reference Example 1 except that 389.5 parts of water was placed in a reaction vessel, 10.5 parts were used instead of 42 parts of J POVAL JP-33, and Pegar 1901 was used instead of SUMIKAFLEX 450HQ. An emulsion having a concentration of 55.7%, a viscosity at 23 ° C. of 6,630 mPa · s, and a pH of 4.6 was obtained.

比較例3.
反応容器に水389.5部を入れ、Jポバール JP−33の42部に代えて10.5部を用い、スミカフレックス450HQに代えてペガール1902を用いた以外は参考例1と同様の方法を用いて製造し、濃度55.8%、23℃での粘度が17,680mPa・s、pHが4.7のエマルションを得た。
Comparative Example 3
The same method as in Reference Example 1 except that 389.5 parts of water was placed in a reaction vessel, 10.5 parts were used instead of 42 parts of J Poval JP-33, and Pegar 1902 was used instead of Sumikaflex 450HQ. An emulsion having a concentration of 55.8%, a viscosity at 23 ° C. of 17,680 mPa · s, and a pH of 4.7 was obtained.

比較例4.
Jポバール JP−33に代えてPVA 217を用いた以外は参考例1と同様の方法を用いて製造し、濃度49.7%、23℃での粘度が10,040mPa・s、pHが4.8のエマルションを得た。
Comparative Example 4
Manufactured using the same method as in Reference Example 1 except that PVA 217 was used instead of J-Poval JP-33, the concentration was 49.7%, the viscosity at 23 ° C. was 10,040 mPa · s, and the pH was 4. An emulsion of 8 was obtained.

比較例5.
Jポバール JP−33に代えてPVA 224を用いた以外は実施例1と同様の方法を用いて製造し、濃度49.9%、23℃での粘度が12,540mPa・s、pHが4.7のエマルションを得た。
Comparative Example 5
Manufactured using the same method as in Example 1 except that PVA 224 was used instead of J Poval JP-33, the concentration was 49.9%, the viscosity at 23 ° C. was 12,540 mPa · s, and the pH was 4. An emulsion of 7 was obtained.

比較例6.
Jポバール JP−33に代えてPVA 224を用い、スミカフレックス450HQに代えてペガール1901を用いた以外は参考例1と同様の方法を用いて製造し、濃度50.1%、23℃での粘度が13,620mPa・s、pHが4.7のエマルションを得た。
Comparative Example 6
Manufactured using the same method as in Reference Example 1 except that PVA 224 was used in place of J-Poval JP-33 and Pegar 1901 was used in place of Sumikaflex 450HQ. Viscosity at a concentration of 50.1% at 23 ° C Was an emulsion having a pH of 4.7.

比較例7.
Jポバール JP−33に代えてPVA CSTを用い、スミカフレックス450HQに代えてペガール1901を用いた以外は参考例1と同様の方法を用いて製造し、濃度49.1%、23℃での粘度が5,440mPa・s、pHが4.7のエマルションを得たが、ダイラタンシーな粘性を示し、粘性異常であった。
Comparative Example 7
Manufactured using the same method as in Reference Example 1 except that PVA CST was used instead of J-Poval JP-33 and Pegar 1901 was used instead of Sumikaflex 450HQ, and the viscosity at a concentration of 49.1% at 23 ° C. Of 5,440 mPa · s and a pH of 4.7 were obtained, but it showed dilatant viscosity and was abnormal in viscosity.

比較例8.
Jポバール JP−33に代えてJポバール JP−23を用い、スミカフレックス450HQに代えてペガール1901を用いた以外は参考例1と同様の方法を用いて製造した。室温になるまで冷却したところ、エマルションが凝集した。
Comparative Example 8.
Using J Poval JP-23 in place of the J Poval JP-33, except for using Pegaru 1901 instead of Sumikaflex 450HQ was prepared in the same manner as in Reference Example 1. When cooled to room temperature, the emulsion aggregated.

Figure 0006301591
Figure 0006301591

表2、3から明らかなように、参考例1〜12のようなエチレン酢酸ビニル共重合樹脂エマルションの被膜の水溶出率が10%以下であるエチレン酢酸ビニル共重合樹脂エマルションを用い、けん化度が90mol%未満で平均重合度が2500以下のポリビニルアルコール系樹脂以外のポリビニルアルコール系樹脂のみを使用して酢酸ビニルを単量体として用いてシード重合法により製造された例では、いずれの例においてもMFTが高い値を示し、耐水および耐熱接着性能がやや低い値を示したものの、スパン演算値で示される粒子径分布が非常に狭く、粘性指標が高い値を示した。また塗工性やロール洗浄性、初期接着性のいずれの評価でも合格であった。これに対し、比較例1〜8のようなエチレン酢酸ビニル共重合樹脂エマルションの被膜の水溶出率が10%を超えるエチレン酢酸ビニル共重合樹脂エマルションを用いたり、けん化度が90mol%未満で平均重合度が2500以下のポリビニルアルコール系樹脂を含んでシード重合法により製造された製造例においては、けん化度が90mol%以上のポリビニルアルコール系樹脂のみを添加して製造された例で重合安定性が極めて悪く、安定性の良好なエマルションが得られなかった。また、これら以外の例では粘性指標がいずれも低い値を示し、スパン演算値で示される粒子径分布は、全ての例で1.0より大きな値を示しており、粒子径分布が広いエマルションが生成した。また、MFTはいずれも高く、塗工性やロール洗浄性、初期接着性のいずれの評価でも不合格であった。更には、常態接着性こそ高い値を示したものの、耐水および耐熱性能も低い値を示した。
As is clear from Tables 2 and 3, using the ethylene vinyl acetate copolymer resin emulsion in which the water elution rate of the coating of the ethylene vinyl acetate copolymer resin emulsion as in Reference Examples 1 to 12 is 10% or less, the degree of saponification is In an example produced by a seed polymerization method using only a polyvinyl alcohol resin other than a polyvinyl alcohol resin having an average polymerization degree of 2500 or less and less than 90 mol%, using vinyl acetate as a monomer, Although MFT showed a high value and water resistance and heat-resistant adhesion performance showed a slightly low value, the particle size distribution indicated by the span calculation value was very narrow and the viscosity index showed a high value. Moreover, all evaluations of coating property, roll cleaning property, and initial adhesiveness were acceptable. On the other hand, an ethylene vinyl acetate copolymer resin emulsion having a water elution rate of more than 10% in the film of the ethylene vinyl acetate copolymer resin emulsion as in Comparative Examples 1 to 8 is used, or the average polymerization is performed with a saponification degree of less than 90 mol%. In the production example produced by the seed polymerization method including a polyvinyl alcohol resin having a degree of 2500 or less, the polymerization stability is extremely high in an example produced by adding only a polyvinyl alcohol resin having a saponification degree of 90 mol% or more. It was bad and an emulsion with good stability could not be obtained. Further, in all other examples, the viscosity index shows a low value, and the particle size distribution indicated by the span calculation value shows a value larger than 1.0 in all examples, and an emulsion having a wide particle size distribution is obtained. Generated. Moreover, all MFT was high and it was unsuccessful in any evaluation of coating property, roll washability, and initial stage adhesiveness. Furthermore, although normal adhesiveness showed a high value, water resistance and heat resistance performance also showed low values.

参考例13.
攪拌器を備えた反応容器に水538.5部を入れ、これにJポバール JP−33を31.5部分散させながら添加した後、反応容器を90℃まで加熱した。このまま90分攪拌してポリビニルアルコール水溶液を得た。これを50℃まで冷却した後、スミカフレックス450HQを340部添加した。更にこれに酢酸ナトリウム0.5部とL−酒石酸0.5部を添加して溶解させた後に酢酸ビニルモノマー50部を添加して15分間以上攪拌した。これを80℃まで加熱しながら、内部の温度が55〜60℃になったところで触媒(35%過酸化水素0.05部と水10部を混合したもの)を添加して反応を開始した。10〜20分間反応させた後、内部の温度が77〜83℃となるように温度調節しながら、更に酢酸ビニルモノマー550部と触媒(35%過酸化水素0.12部を水100部と混合したもの)を約3時間30分かけて滴下して反応させた。滴下終了後に85℃まで加熱して2時間熟成させた後に室温になるまで冷却し、濃度50.0%、23℃での粘度が5,460mPa・s、pHが4.9のエマルションを得た。
Reference Example 13
In a reaction vessel equipped with a stirrer, 538.5 parts of water was added, and 31.5 parts of J Poval JP-33 was added thereto while being dispersed, and then the reaction vessel was heated to 90 ° C. The mixture was stirred for 90 minutes to obtain an aqueous polyvinyl alcohol solution. After cooling this to 50 ° C., 340 parts of SUMIKAFLEX 450HQ were added. Further, 0.5 parts of sodium acetate and 0.5 part of L-tartaric acid were added and dissolved, and then 50 parts of vinyl acetate monomer was added and stirred for 15 minutes or more. While heating this to 80 ° C., when the internal temperature reached 55-60 ° C., a catalyst (a mixture of 0.05 part of 35% hydrogen peroxide and 10 parts of water) was added to initiate the reaction. After reacting for 10 to 20 minutes, 550 parts of vinyl acetate monomer and catalyst (0.12 part of 35% hydrogen peroxide are mixed with 100 parts of water while adjusting the temperature so that the internal temperature becomes 77 to 83 ° C. Were added dropwise over about 3 hours and 30 minutes to cause a reaction. After completion of dropping, the mixture was heated to 85 ° C. and aged for 2 hours, and then cooled to room temperature to obtain an emulsion having a concentration of 50.0%, a viscosity at 23 ° C. of 5,460 mPa · s, and a pH of 4.9. .

参考例14.
反応容器に入れる水を258.5部とし、酢酸ビニルモノマー550部と触媒を約3時間30分かけて滴下したのに代えて酢酸ビニルモノマー200部と触媒を約2時間かけて滴下した以外は参考例13と同様の方法を用いて製造し、濃度46.6%、23℃での粘度が13,060mPa・s、pHが4.9のエマルションを得た。
Reference Example 14
The reaction vessel was charged with 258.5 parts of water, except that 550 parts of vinyl acetate monomer and catalyst were added dropwise over about 3 hours and 30 minutes, but 200 parts of vinyl acetate monomer and catalyst were added dropwise over about 2 hours. An emulsion having a concentration of 46.6%, a viscosity at 23 ° C. of 13,060 mPa · s, and a pH of 4.9 was obtained using the same method as in Reference Example 13.

参考例15.
スミカフレックス450HQを340部に代えて400部添加した以外は参考例14と同様の方法を用いて製造し、濃度47.4%、23℃での粘度が7,730mPa・s、pHが4.9のエマルションを得た。
Reference Example 15.
It was manufactured using the same method as in Reference Example 14 except that 400 parts of Sumikaflex 450HQ was added instead of 340 parts, the concentration was 47.4%, the viscosity at 23 ° C. was 7,730 mPa · s, and the pH was 4. 9 emulsions were obtained.

実施例
スミカフレックス450HQを340部に代えて400部添加し、酢酸ビニルモノマー550部と触媒を約3時間30分かけて滴下したのに代えて酢酸ビニルモノマー130部と触媒を約1時間30分かけて滴下した以外は参考例14と同様の方法を用いて製造し、濃度43.4%、23℃での粘度が5,020mPa・s、pHが4.9のエマルションを得た。
Example 1 .
400 parts of Sumikaflex 450HQ was added instead of 340 parts, and 550 parts of vinyl acetate monomer and catalyst were added dropwise over about 3 hours and 30 minutes, but 130 parts of vinyl acetate monomer and catalyst were added over about 1 hour and 30 minutes. The emulsion was prepared in the same manner as in Reference Example 14 except that it was added dropwise to obtain an emulsion having a concentration of 43.4%, a viscosity at 23 ° C. of 5,020 mPa · s, and a pH of 4.9.

実施例.
Jポバール JP−33 31.5部に代えてJポバール JP−33を21部とJポバール JM−26を21部用いた以外は実施例と同様の方法を用いて製造し、濃度44.5%、23℃での粘度が14,120mPa・s、pHが4.9のエマルションを得た。
Example 2 .
J POVAL JP-33 Manufactured in the same manner as in Example 1 except that 21 parts of J POVAL JP-33 and 21 parts of J POVAL JM-26 were used instead of 31.5 parts, and the concentration was 44.5. %, An emulsion having a viscosity of 14,120 mPa · s at 23 ° C. and a pH of 4.9 was obtained.

参考例16.
Jポバール JP−33 31.5部に代えてJポバール JP−33を21部とPVA CSTを42部用いた以外は実施例と同様の方法を用いて製造し、濃度46.3%、23℃での粘度が32,050mPa・s、pHが4.9のエマルションを得た。
Reference Example 16 .
J Poval JP-33 Manufactured in the same manner as in Example 1 except that 21 parts of J Poval JP-33 and 42 parts of PVA CST were used instead of 31.5 parts, and the concentration was 46.3%, 23 An emulsion having a viscosity at 32 ° C. of 32,050 mPa · s and a pH of 4.9 was obtained.

Figure 0006301591
Figure 0006301591

比較例9.
スミカフレックス450HQ 340部に代えてペガール1901を360部用いた以外は参考例13と同様の方法を用いて製造し、濃度50.6%、23℃での粘度が12,480mPa・s、pHが4.9のエマルションを得た。
Comparative Example 9
Manufactured in the same manner as in Reference Example 13 except that 360 parts of Pegar 1901 was used instead of 340 parts of Sumikaflex 450HQ, the viscosity at 23 ° C. was 5480%, the viscosity was 12,480 mPa · s, and the pH was An emulsion of 4.9 was obtained.

比較例10.
反応容器に入れる水を368.5部とし、酢酸ビニルモノマー550部と触媒を約3時間30分かけて滴下したのに代えて酢酸ビニルモノマー200部と触媒を約2時間かけて滴下した以外は参考例13と同様の方法を用いて製造し、濃度42.9%、23℃での粘度が9,860mPa・s、pHが4.9のエマルションを得た。
Comparative Example 10
368.5 parts of water to be put into the reaction vessel was used, except that 550 parts of vinyl acetate monomer and catalyst were dropped over about 3 hours 30 minutes, but 200 parts of vinyl acetate monomer and catalyst were dropped over about 2 hours. An emulsion having a concentration of 42.9%, a viscosity at 23 ° C. of 9,860 mPa · s, and a pH of 4.9 was obtained using the same method as in Reference Example 13.

比較例11.
ペガール1901を360部に代えて420部添加した以外は比較例10と同様の方法を用いて製造し、濃度43.4%、23℃での粘度が10,360mPa・s、pHが4.9のエマルションを得た。
Comparative Example 11
It was manufactured using the same method as in Comparative Example 10 except that 420 parts of Pegar 1901 was added instead of 360 parts. The concentration was 43.4%, the viscosity at 23 ° C. was 10,360 mPa · s, and the pH was 4.9. An emulsion was obtained.

比較例12.
酢酸ビニルモノマー200部と触媒を約2時間かけて滴下したのに代えて酢酸ビニルモノマー130部と触媒を約1時間30分かけて滴下した以外は比較例11と同様の方法を用いて製造し、濃度40.3%、23℃での粘度が6,420mPa・s、pHが5.0のエマルションを得た。
Comparative Example 12
In the same manner as in Comparative Example 11, except that 200 parts of vinyl acetate monomer and the catalyst were dropped over about 2 hours, 130 parts of vinyl acetate monomer and the catalyst were dropped over about 1 hour and 30 minutes. An emulsion having a concentration of 40.3%, a viscosity at 23 ° C. of 6,420 mPa · s, and a pH of 5.0 was obtained.

比較例13.
Jポバール JP−33に代えてPVA217を用いた以外は比較例12と同様の方法を用いて製造し、濃度40.7%、23℃での粘度が2,610mPa・s、pHが4.8のエマルション得た。
Comparative Example 13
Manufactured using the same method as in Comparative Example 12, except that PVA217 was used instead of J-POVAL JP-33, the concentration was 40.7%, the viscosity at 23 ° C. was 2,610 mPa · s, and the pH was 4.8. An emulsion was obtained.

比較例14.
Jポバール JP−33に代えてPVA220を用いた以外は比較例12と同様の方法を用いて製造し、濃度41.0%、23℃での粘度が3,150mPa・s、pHが4.7のエマルションを得た。
Comparative Example 14
Manufactured using the same method as in Comparative Example 12 except that PVA220 was used instead of J-Poval JP-33, the concentration was 41.0%, the viscosity at 23 ° C. was 3,150 mPa · s, and the pH was 4.7. An emulsion was obtained.

Figure 0006301591
Figure 0006301591

表4、5から明らかなように、参考例13〜15,16と実施例1,2のようなエチレン酢酸ビニル共重合樹脂エマルションの被膜の水溶出率が10%以下であるエチレン酢酸ビニル共重合樹脂エマルションを用い、少なくともけん化度が90mol%未満で平均重合度が2500より大きなポリビニルアルコール系樹脂を使用して酢酸ビニルのみを単量体として用い、全固形分に対する単量体の比率を変化させてシード重合法により製造された例では、全固形分に対する単量体の量が少なくなるほどMFTが低下する傾向を示し、この全固形分に対する単量体の比率が50%未満となる例でMFTが低い値を示した。これらの例では、可塑剤などの溶剤類を用いる事なく5℃以下の低温下でも成膜性に優れる結果を示した。また、これらの例の常態および耐熱接着性能も表2で示したMFTが高かった製造例と比較しても遜色のない実用的な値であった。また、表4に示した全製造例では、表2で示した製造例と同様にスパン演算値が1.0以下となっており粒子径分布が非常に狭く、粘性指標は高い値を示した。また塗工性やロール洗浄性、初期接着性のいずれの評価でも合格であった。更に、表3で重合安定性に欠けるエマルションを生成したけん化度が90mol%以上のポリビニルアルコール系樹脂のみを用いた系に更にけん化度が90mol%未満で平均重合度が2500より大きなポリビニルアルコール系樹脂を少量併用した系で、重合安定性が向上し安定性の高いエマルションが生成したことがわかる。これに対し、エチレン酢酸ビニル共重合樹脂エマルションの被膜の水溶出率が10%を超えるエチレン酢酸ビニル共重合樹脂エマルションを用い、けん化度が90mol%未満で平均重合度が2500以下のポリビニルアルコール系樹脂を含んでシード重合法により製造された比較例9〜14においては、MFTの傾向こそ表4の製造例と同様の傾向を示したものの、粘性指標がいずれも低い値を示し、スパン演算値で示される粒子径分布は、全ての例で1.0より大きな値を示し粒子径分布が広いエマルションが生成した。また、塗工性やロール洗浄性、初期接着性のいずれかの評価でかならず不合格を含む結果であった。ただし、表4および5に示された製造例では、耐水および耐熱接着性能はやや低く、特に耐水接着性能はいずれも低い値を示した。
As is clear from Tables 4 and 5, ethylene vinyl acetate copolymer having a water elution rate of 10% or less of the coating of the ethylene vinyl acetate copolymer resin emulsion as in Reference Examples 13 to 15, 16 and Examples 1 and 2. Using a resin emulsion, using a polyvinyl alcohol-based resin having a saponification degree of less than 90 mol% and an average polymerization degree of greater than 2500, using only vinyl acetate as a monomer, and changing the ratio of the monomer to the total solid content In the example produced by the seed polymerization method, the MFT tends to decrease as the amount of the monomer with respect to the total solid content decreases, and the ratio of the monomer to the total solid content is less than 50%. Showed a low value. In these examples, the film forming property was excellent even at a low temperature of 5 ° C. or less without using a solvent such as a plasticizer. Further, the normal state and heat-resistant adhesion performance of these examples were practical values comparable to those of the production examples having high MFTs shown in Table 2. In all the production examples shown in Table 4, the span calculation value was 1.0 or less, the particle size distribution was very narrow, and the viscosity index showed a high value, as in the production example shown in Table 2. . Moreover, all evaluations of coating property, roll cleaning property, and initial adhesiveness were acceptable. Furthermore, in Table 3, a polyvinyl alcohol resin having a degree of saponification of less than 90 mol% and an average polymerization degree of greater than 2500 was used in a system using only a polyvinyl alcohol resin having a saponification degree of 90 mol% or more, which produced an emulsion lacking in polymerization stability. It can be seen that in a system in which a small amount of is used in combination, the polymerization stability is improved and a highly stable emulsion is produced. In contrast, an ethylene vinyl acetate copolymer resin emulsion in which the water elution rate of the ethylene vinyl acetate copolymer resin emulsion film exceeds 10% is used, and a polyvinyl alcohol resin having a saponification degree of less than 90 mol% and an average polymerization degree of 2500 or less. In Comparative Examples 9 to 14 manufactured by the seed polymerization method including the above, the MFT tendency showed the same tendency as the manufacturing example in Table 4, but the viscosity index showed a low value, and the span calculation value was The particle size distribution shown was a value greater than 1.0 in all examples, and an emulsion having a wide particle size distribution was produced. Moreover, it was a result including the rejection by any evaluation of coating property, roll washability, and initial stage adhesiveness. However, in the production examples shown in Tables 4 and 5, the water resistance and heat resistant adhesion performance were slightly low, and particularly the water resistance adhesion performance was low.

実施例
攪拌器を備えた反応容器に水458.5部を入れ、これにJポバール JP−33 31.5部を分散させながら添加した後、反応容器を90℃まで加熱した。このまま90分攪拌してポリビニルアルコール水溶液を得た。これを50℃まで冷却した後、スミカフレックス450HQを380部添加した。更にこれに酢酸ナトリウム0.5部とL−酒石酸0.5部を添加して溶解させた後に酢酸ビニルモノマー50部を添加して15分間以上攪拌した。これを80℃まで加熱しながら、内部の温度が55〜60℃になったところで触媒(35%過酸化水素0.05部と水10部を混合したもの)を添加して反応を開始した。10〜20分間反応させた後、内部の温度が77〜83℃となるように温度調節しながら、更に酢酸ビニルモノマー325部とアクリル酸n−ブチルモノマー125部の混合モノマーと触媒(35%過酸化水素0.21部を水100部と混合したもの)を約3時間かけて滴下して反応させた。滴下終了後に85℃まで加熱して2時間熟成させた後に室温になるまで冷却し、濃度49.7%、23℃での粘度が27,600mPa・s、pHが4.8のエマルションを得た。
Example 3 .
458.5 parts of water was put into a reaction vessel equipped with a stirrer, and 31.5 parts of J Poval JP-33 was added thereto while being dispersed, and then the reaction vessel was heated to 90 ° C. The mixture was stirred for 90 minutes to obtain an aqueous polyvinyl alcohol solution. After cooling this to 50 ° C., 380 parts of SUMIKAFLEX 450HQ was added. Further, 0.5 parts of sodium acetate and 0.5 part of L-tartaric acid were added and dissolved, and then 50 parts of vinyl acetate monomer was added and stirred for 15 minutes or more. While heating this to 80 ° C., when the internal temperature reached 55-60 ° C., a catalyst (a mixture of 0.05 part of 35% hydrogen peroxide and 10 parts of water) was added to initiate the reaction. After reacting for 10 to 20 minutes, while adjusting the temperature so that the internal temperature becomes 77 to 83 ° C., a mixed monomer of 325 parts of vinyl acetate monomer and 125 parts of n-butyl acrylate monomer and a catalyst (35% excess) Hydrogen oxide (0.21 part mixed with 100 parts water) was added dropwise over about 3 hours to react. After completion of dropping, the mixture was heated to 85 ° C. and aged for 2 hours, and then cooled to room temperature to obtain an emulsion having a concentration of 49.7%, a viscosity at 23 ° C. of 27,600 mPa · s, and a pH of 4.8. .

実施例
反応容器に入れる水を558.5部とし、スミカフレックス450HQの380部に代えて260部添加し、酢酸ビニルモノマー325部とアクリル酸n−ブチルモノマー125部の混合モノマーと触媒を約3時間かけて滴下したのに代えて酢酸ビニルモノマー400部とアクリル酸n−ブチルモノマー150部の混合モノマーと触媒を約3時間30分かけて滴下した以外は実施例と同様の方法を用いて製造し、濃度49.4%、23℃での粘度が36.750mPa・s、pHが4.6のエマルションを得た。
Example 4 .
Add 558.5 parts of water to the reaction vessel, add 260 parts instead of 380 parts of SUMIKAFLEX 450HQ, and add about 325 parts of vinyl acetate monomer and 125 parts of n-butyl acrylate monomer and catalyst over about 3 hours The mixture was prepared in the same manner as in Example 3 except that a mixed monomer of 400 parts of vinyl acetate monomer and 150 parts of n-butyl acrylate monomer and a catalyst were dropped over about 3 hours 30 minutes. An emulsion having a concentration of 49.4%, a viscosity at 23 ° C. of 36.750 mPa · s, and a pH of 4.6 was obtained.

実施例
スミカフレックス450HQの380部に代えて340部添加し、酢酸ビニルモノマー325部とアクリル酸n−ブチルモノマー125部の混合モノマーと触媒を約3時間かけて滴下したのに代えて酢酸ビニルモノマー285部とアクリル酸n−ブチルモノマー165部の混合モノマーと触媒を約2時間かけて滴下した以外は実施例と同様の方法を用いて製造し、濃度47.7%、23℃での粘度が76,400mPa・s、pHが4.7のエマルションを得た。
Example 5 .
In addition to 380 parts of Sumikaflex 450HQ, 340 parts were added, and instead of adding a mixed monomer of 325 parts of vinyl acetate monomer and 125 parts of n-butyl acrylate monomer and the catalyst over about 3 hours, 285 parts of vinyl acetate monomer And 165 parts of a mixed monomer of n-butyl acrylate monomer and a catalyst were added dropwise over about 2 hours, using the same method as in Example 3 , with a concentration of 47.7% and a viscosity at 23 ° C. of 76 , 400 mPa · s, and an emulsion having a pH of 4.7.

Figure 0006301591
Figure 0006301591

比較例15.
反応容器に入れる水を518.5部とし、スミカフレックス450HQ 380部に代えてペガール1901を400部添加し、酢酸ビニルモノマーとアクリル酸n−ブチルモノマーの混合モノマーと触媒を約3時間かけて滴下したことに代えて約3時間30分かけて滴下した以外は、実施例と同様の方法を用いて製造し、濃度48.6%、23℃での粘度が61,000mPa・s、pHが4.8のエマルションを得た。
Comparative Example 15
518.5 parts of water to be added to the reaction vessel was added, 400 parts of Pegal 1901 was added instead of 380 parts of Sumikaflex 450HQ, and a mixed monomer of vinyl acetate monomer and n-butyl acrylate monomer and catalyst were dropped over about 3 hours. It was manufactured using the same method as in Example 3 except that it was dropped over about 3 hours and 30 minutes instead of, and the viscosity at a concentration of 48.6%, 23 ° C. was 61,000 mPa · s, and the pH was An emulsion of 4.8 was obtained.

比較例16.
反応容器に入れる水を618.5部とし、スミカフレックス450HQ 380部に代えてペガール1901を280部添加し、酢酸ビニルモノマー325部とアクリル酸n−ブチルモノマー125部の混合モノマーと触媒を約3時間かけて滴下したのに代えて酢酸ビニルモノマー400部とアクリル酸n−ブチルモノマー150部の混合モノマーと触媒を約2時間かけて滴下した以外は実施例と同様の方法を用いて製造し、濃度48.1%、23℃での粘度が94,600mPa・s、pHが4.8のエマルションを得た。
Comparative Example 16.
618.5 parts of water to be added to the reaction vessel was added, 280 parts of Pegal 1901 were added instead of 380 parts of Sumikaflex 450HQ, and about 3 parts of a mixed monomer of 325 parts of vinyl acetate monomer and 125 parts of n-butyl acrylate monomer and the catalyst were added. It was manufactured using the same method as in Example 3 except that instead of the dropwise addition over time, a mixed monomer of 400 parts of vinyl acetate monomer and 150 parts of n-butyl acrylate monomer and a catalyst were dropped over about 2 hours. An emulsion having a concentration of 48.1%, a viscosity at 23 ° C. of 94,600 mPa · s, and a pH of 4.8 was obtained.

比較例17.
反応容器に入れる水を478.5部とし、スミカフレックス450HQ 380部に代えてペガール1901を360部添加し、酢酸ビニルモノマー325部とアクリル酸n−ブチルモノマー125部の混合モノマーと触媒を約3時間かけて滴下したのに代えて酢酸ビニルモノマー285部とアクリル酸n−ブチルモノマー165部の混合モノマーと触媒を約2時間かけて滴下した以外は実施例と同様の方法を用いて製造し、濃度49.7%、23℃での粘度が105,800mPa・s、pHが4.8のエマルションを得た。
Comparative Example 17
478.5 parts of water to be added to the reaction vessel was added, 360 parts of Pegal 1901 were added instead of 380 parts of Sumikaflex 450HQ, and about 3 parts of a mixed monomer of 325 parts of vinyl acetate monomer and 125 parts of n-butyl acrylate monomer and the catalyst were added. In place of the dropwise addition over time, a mixture of 285 parts of vinyl acetate monomer and 165 parts of n-butyl acrylate monomer and a catalyst were added in the same manner as in Example 3 except that the mixture was dropped over about 2 hours. An emulsion having a concentration of 49.7%, a viscosity at 23 ° C. of 105,800 mPa · s, and a pH of 4.8 was obtained.

比較例18.
Jポバール JP−33に代えてPVA217を用いた以外は比較例17と同様の方法を用いて製造し、濃度48.2%、23℃での粘度が48,800mPa・s、pHが4.4のエマルションを得た。
Comparative Example 18.
Manufactured using the same method as in Comparative Example 17 except that PVA217 was used instead of J-Poval JP-33, the concentration was 48.2%, the viscosity at 23 ° C. was 48,800 mPa · s, and the pH was 4.4. An emulsion was obtained.

比較例19.
Jポバール JP−33に代えてPVA220を用いた以外は比較例17と同様の方法を用いて製造し、濃度49.6%、23℃での粘度が62,400mPa・s、pHが4.5のエマルションを得た。
Comparative Example 19.
Manufactured using the same method as in Comparative Example 17 except that PVA220 was used instead of JPOVAL JP-33, the concentration was 49.6%, the viscosity at 23 ° C. was 62,400 mPa · s, and the pH was 4.5. An emulsion was obtained.

Figure 0006301591
Figure 0006301591

表6、7から明らかなように、エチレン酢酸ビニル共重合樹脂エマルションの被膜の水溶出率が10%以下であるエチレン酢酸ビニル共重合樹脂エマルションを用い、少なくともけん化度が90mol%未満で平均重合度が2500より大きなポリビニルアルコール系樹脂を含み、酢酸ビニルおよび酢酸ビニルと共重合可能な単量体を含み、該共重合可能な単量体のホモポリマーのTgが−45℃以下であり、該共重合可能な単量体が、該共重合可能な単量体と酢酸ビニルを合わせた単量体全体の25重量%以上であり、該単量体全体の固形分が、前記エチレン酢酸ビニル共重合樹脂エマルションの固形分の3倍以下となるようにしてシード重合法により製造された実施例およびで、MFTが低い値を示した。これらの例では、可塑剤などの溶剤類を用いる事なく5℃以下の低温下でも成膜性に優れる結果を示した。単量体全体の固形分が、前記エチレン酢酸ビニル共重合樹脂エマルションの固形分の3倍以上となるようにして製造された実施例20ではMFTが4℃まで上昇し低温下での成膜性が低下した。これらの例の常態および耐熱接着性能も表2および表4で示した製造例と比較しても遜色のない実用的な値であった。また、表6に示した全製造例では、表2および表4で示した製造例と同様にスパン演算値が1.0以下となっており粒子径分布が非常に狭く、粘性指標は高い値を示した。また塗工性やロール洗浄性、初期接着性のいずれの評価でも合格であった。これに対し、エチレン酢酸ビニル共重合樹脂エマルションの被膜の水溶出率が10%を超えるエチレン酢酸ビニル共重合樹脂エマルションを用い、けん化度が90mol%未満で平均重合度が2500以下のポリビニルアルコール系樹脂を含んでシード重合法により製造された比較例15〜19においては、MFTこそ表6の製造例以下の値を示し、いずれのサンプルでも5℃以下の低温下での成膜性に優れた結果を示したものの、粘性指標がいずれも低い値を示し、スパン演算値で示される粒子径分布は、全ての例で1.0より大きな値を示し粒子径分布が広いエマルションが生成した。また、塗工性やロール洗浄性、初期接着性のいずれかの評価でかならず不合格を含む結果であった。また、表6に示された製造例では、耐水および耐熱接着性能が若干向上したのに対し、表7に示された製造例では耐熱および耐水接着性能に大きな向上は認められなかった。
As is clear from Tables 6 and 7, an ethylene vinyl acetate copolymer resin emulsion having a water elution rate of 10% or less of the coating film of the ethylene vinyl acetate copolymer resin emulsion was used, and the average degree of polymerization was at least less than 90 mol%. Includes a polyvinyl alcohol resin larger than 2500, and includes vinyl acetate and a monomer copolymerizable with vinyl acetate, and the copolymerizable monomer homopolymer has a Tg of −45 ° C. or less. The polymerizable monomer is 25% by weight or more of the total monomer including the copolymerizable monomer and vinyl acetate, and the solid content of the whole monomer is the ethylene vinyl acetate copolymer. In Examples 3 and 5 produced by the seed polymerization method so that the solid content of the resin emulsion was 3 times or less, the MFT showed a low value. In these examples, the film forming property was excellent even at a low temperature of 5 ° C. or less without using a solvent such as a plasticizer. In Example 20, where the solid content of the whole monomer was 3 times or more of the solid content of the ethylene-vinyl acetate copolymer resin emulsion, the MFT increased to 4 ° C. and the film formability at a low temperature. Decreased. The normal state and heat-resistant adhesion performance of these examples were practical values comparable to the production examples shown in Tables 2 and 4. In all the production examples shown in Table 6, the span calculation value is 1.0 or less, the particle size distribution is very narrow, and the viscosity index is a high value as in the production examples shown in Table 2 and Table 4. showed that. Moreover, all evaluations of coating property, roll cleaning property, and initial adhesiveness were acceptable. In contrast, an ethylene vinyl acetate copolymer resin emulsion in which the water elution rate of the ethylene vinyl acetate copolymer resin emulsion film exceeds 10% is used, and a polyvinyl alcohol resin having a saponification degree of less than 90 mol% and an average polymerization degree of 2500 or less. In Comparative Examples 15 to 19 manufactured by the seed polymerization method including MFT, MFT is a value less than that of the manufacturing examples in Table 6, and any sample has excellent film forming properties at a low temperature of 5 ° C. or lower. However, all of the viscosity indexes showed a low value, and the particle size distribution indicated by the span calculation value showed a value larger than 1.0 in all examples, and an emulsion having a wide particle size distribution was produced. Moreover, it was a result including the rejection by any evaluation of coating property, roll washability, and initial stage adhesiveness. In addition, in the production examples shown in Table 6, water resistance and heat resistant adhesion performance were slightly improved, whereas in the production examples shown in Table 7, no significant improvement was observed in heat resistance and water resistance adhesion performance.

実施例
攪拌器を備えた反応容器に水608.5部を入れ、これにJポバール JP−33を21部とゴーセファイマー Z320を10.5部分散させながら添加した後、反応容器を90℃まで加熱した。このまま90分攪拌してポリビニルアルコール水溶液を得た。これを50℃まで冷却した後、スミカフレックス450HQを380部添加した。更にこれに酢酸ナトリウム0.5部と無水重亜硫酸ナトリウム0.3部を添加して溶解させた後に酢酸ビニルモノマー50部を添加して15分間以上攪拌した。これを80℃まで加熱しながら、内部の温度が50〜55℃になったところで触媒(過硫酸アンモニウム0.35部と水10部を混合したもの)を添加して反応を開始した。10〜20分間反応させた後、内部の温度が77〜83℃となるように温度調節しながら、更に酢酸ビニルモノマー325部とアクリル酸n−ブチルモノマー125部の混合モノマーと触媒(過硫酸アンモニウム0.35部を水100部と混合したもの)を約3時間かけて滴下して反応させた。滴下終了後に85℃まで加熱して2時間熟成させた後に室温になるまで冷却し、更に無水重亜硫酸ナトリウム0.5部を添加して1時間攪拌を継続し濃度45.0%、23℃での粘度が63,200mPa・s、pHが4.7のエマルションを得た。
Example 6 .
Into a reaction vessel equipped with a stirrer, 608.5 parts of water was added, and 21 parts of J-Poval JP-33 and 10.5 parts of Goosephimer Z320 were added thereto, and then the reaction vessel was heated to 90 ° C. did. The mixture was stirred for 90 minutes to obtain an aqueous polyvinyl alcohol solution. After cooling this to 50 ° C., 380 parts of SUMIKAFLEX 450HQ was added. Further, 0.5 part of sodium acetate and 0.3 part of anhydrous sodium bisulfite were added and dissolved, and then 50 parts of vinyl acetate monomer was added and stirred for 15 minutes or more. While heating this to 80 ° C., when the internal temperature reached 50 to 55 ° C., a catalyst (a mixture of 0.35 part ammonium persulfate and 10 parts water) was added to initiate the reaction. After reacting for 10 to 20 minutes, while adjusting the temperature so that the internal temperature becomes 77 to 83 ° C., a mixed monomer of 325 parts of vinyl acetate monomer and 125 parts of n-butyl acrylate monomer and a catalyst (ammonium persulfate 0 .About.35 parts mixed with 100 parts water) was added dropwise over about 3 hours to react. After completion of the dropwise addition, the mixture was heated to 85 ° C. and aged for 2 hours and then cooled to room temperature. Further, 0.5 part of anhydrous sodium bisulfite was added, and stirring was continued for 1 hour to obtain a concentration of 45.0% at 23 ° C. An emulsion having a viscosity of 63,200 mPa · s and a pH of 4.7 was obtained.

参考例17
攪拌器を備えた反応容器に水608.5部を入れ、これにJポバール JP−33を21部とゴーセファイマー Z320を10.5部を分散させながら添加した後、反応容器を90℃まで加熱した。このまま90分攪拌してポリビニルアルコール水溶液を得た。これを50℃まで冷却した後、スミカフレックス450HQを380部添加した。更にこれに酢酸ナトリウム0.5部と無水重亜硫酸ナトリウム0.3部を添加して溶解させた後に酢酸ビニルモノマー50部を添加して15分間以上攪拌した。これを80℃まで加熱しながら、内部の温度が50〜55℃になったところで触媒(過硫酸アンモニウム0.35部と水10部を混合したもの)を添加して反応を開始した。10〜20分間反応させた後、内部の温度が77〜83℃となるように温度調節しながら、更に酢酸ビニルモノマー450部と触媒(過硫酸アンモニウム0.35部を水100部と混合したもの)を約3時間30分かけて滴下して反応させた。滴下終了後に85℃まで加熱して2時間熟成させた後、可塑剤としてPHG−Hを40部と無水重亜硫酸ナトリウム0.5部を添加して1時間攪拌を継続して室温になるまで冷却し、濃度46.4%、23℃での粘度が35,400mPa・s、pHが4.6のエマルションを得た。
Reference Example 17
Into a reaction vessel equipped with a stirrer, 608.5 parts of water was added, and 21 parts of J-Poval JP-33 and 10.5 parts of Gohsephimer Z320 were added thereto, and then the reaction vessel was heated to 90 ° C. Heated. The mixture was stirred for 90 minutes to obtain an aqueous polyvinyl alcohol solution. After cooling this to 50 ° C., 380 parts of SUMIKAFLEX 450HQ was added. Further, 0.5 part of sodium acetate and 0.3 part of anhydrous sodium bisulfite were added and dissolved, and then 50 parts of vinyl acetate monomer was added and stirred for 15 minutes or more. While heating this to 80 ° C., when the internal temperature reached 50 to 55 ° C., a catalyst (a mixture of 0.35 part ammonium persulfate and 10 parts water) was added to initiate the reaction. After reacting for 10 to 20 minutes, while adjusting the temperature so that the internal temperature becomes 77 to 83 ° C., 450 parts of vinyl acetate monomer and catalyst (mixed with 0.35 part of ammonium persulfate and 100 parts of water) Was added dropwise over about 3 hours 30 minutes to react. After completion of dropping, the mixture was heated to 85 ° C. and aged for 2 hours, and then 40 parts of PHG-H and 0.5 part of anhydrous sodium bisulfite were added as a plasticizer, and stirring was continued for 1 hour and cooled to room temperature. An emulsion having a concentration of 46.4%, a viscosity at 23 ° C. of 35,400 mPa · s, and a pH of 4.6 was obtained.

実施例
攪拌器を備えた反応容器に水258.5部を入れ、これにJポバール JP−33を21部とゴーセファイマー Z320を10.5部分散させながら添加した後、反応容器を90℃まで加熱した。このまま90分攪拌してポリビニルアルコール水溶液を得た。これを50℃まで冷却した後、スミカフレックス450HQを400部添加した。更にこれに酢酸ナトリウム0.5部と無水重亜硫酸ナトリウム0.3部を添加して溶解させた後に酢酸ビニルモノマー50部を添加して15分間以上攪拌した。これを80℃まで加熱しながら、内部の温度が50〜55℃になったところで触媒(過硫酸アンモニウム0.35部と水10部を混合したもの)を添加して反応を開始した。10〜20分間反応させた後、内部の温度が77〜83℃となるように温度調節しながら、更に酢酸ビニルモノマー130部と触媒(過硫酸アンモニウム0.35部を水100部と混合したもの)を約2時間かけて滴下して反応させた。滴下終了後に85℃まで加熱して2時間熟成させた後に室温になるまで冷却し、更に無水重亜硫酸ナトリウム0.5部を添加して1時間攪拌を継続して濃度43.1%、23℃での粘度が10,280mPa・s、pHが4.8のエマルションを得た。
Example 7 .
Into a reaction vessel equipped with a stirrer, 258.5 parts of water was added, 21 parts of J Poval JP-33 and 10.5 parts of Gohsephimer Z320 were added thereto, and then the reaction vessel was heated to 90 ° C. did. The mixture was stirred for 90 minutes to obtain an aqueous polyvinyl alcohol solution. After cooling this to 50 ° C., 400 parts of Sumikaflex 450HQ was added. Further, 0.5 part of sodium acetate and 0.3 part of anhydrous sodium bisulfite were added and dissolved, and then 50 parts of vinyl acetate monomer was added and stirred for 15 minutes or more. While heating this to 80 ° C., when the internal temperature reached 50 to 55 ° C., a catalyst (a mixture of 0.35 part ammonium persulfate and 10 parts water) was added to initiate the reaction. After reacting for 10 to 20 minutes, 130 parts of vinyl acetate monomer and catalyst (mixed with 0.35 part of ammonium persulfate and 100 parts of water) while adjusting the temperature so that the internal temperature becomes 77 to 83 ° C. Was reacted dropwise over about 2 hours. After completion of the dropwise addition, the mixture was heated to 85 ° C. and aged for 2 hours, and then cooled to room temperature. Further, 0.5 part of anhydrous sodium bisulfite was added and stirring was continued for 1 hour to obtain a concentration of 43.1%, 23 ° C. An emulsion having a viscosity of 10,280 mPa · s and a pH of 4.8 was obtained.

Figure 0006301591
Figure 0006301591

比較例20.
スミカフレックス450HQ 380部に代えてペガール1901を400部添加した以外は実施例と同様の方法を用いて製造し、濃度45.7%、23℃での粘度が59,600mPa・s、pHが4.8のエマルションを得た。
Comparative Example 20.
Manufactured using the same method as in Example 6 except that 400 parts of Pegar 1901 were added instead of 380 parts of Sumikaflex 450HQ, the viscosity was 59,600 mPa · s, and the pH at 23 ° C. was 55.7%. An emulsion of 4.8 was obtained.

比較例21.
スミカフレックス450HQ 380部に代えてペガール1901を400部添加した以外は参考例17と同様の方法を用いて製造し、濃度46.9%、23℃での粘度が37,300mPa・s、pHが4.6のエマルションを得た。
Comparative Example 21.
Manufactured using the same method as in Reference Example 17 except that 400 parts of Pegar 1901 were added instead of 380 parts of Sumikaflex 450HQ, the viscosity was 46.9%, the viscosity at 23 ° C. was 37,300 mPa · s, and the pH was An emulsion of 4.6 was obtained.

比較例22.
スミカフレックス450HQ 400部に代えてペガール1901を420部添加した以外は実施例と同様の方法を用いて製造し、濃度44.5%、23℃での粘度が11,560mPa・s、pHが4.8のエマルションを得た。
Comparative Example 22.
Manufactured using the same method as in Example 7 except that 420 parts of Pegar 1901 were added instead of 400 parts of SUMIKAFLEX 450HQ, the viscosity was 44.5%, the viscosity at 23 ° C. was 11,560 mPa · s, and the pH was An emulsion of 4.8 was obtained.

Figure 0006301591
Figure 0006301591

表8、9から明らかなように、エチレン酢酸ビニル共重合樹脂エマルションの被膜の水溶出率が10%以下であるエチレン酢酸ビニル共重合樹脂エマルションを用い、けん化度が90mol%未満で平均重合度が2500以下であるポリビニルアルコール系樹脂以外のポリビニルアルコール樹脂とけん化度が90mol%以上のアセトアセチル基変性ポリビニルアルコール系樹脂を含んでシード重合法により製造された実施例6,7と参考例17では表4および表6で示した製造例と同様にMFTが低い値を示した。これらの例では、5℃以下の低温下でも成膜性に優れる結果を示した。これらの例の常態および耐熱接着性能も表2および表4で示した製造例と比較しても遜色のない実用的な値であった。また、表8に示した全製造例では、表2、表4および表6で示した製造例と同様にスパン演算値が1.0以下となっており粒子径分布が非常に狭く、粘性指標は高い値を示した。また塗工性やロール洗浄性、初期接着性のいずれの評価でも合格であった。これに対し、エチレン酢酸ビニル共重合樹脂エマルションの被膜の水溶出率が10%を超えるエチレン酢酸ビニル共重合樹脂エマルションを用い、それ以外は表8に示した例と同様にして製造された比較例20〜22においては、MFTこそ表8の製造例と同様に低い値を示し、いずれのサンプルでも5℃以下の低温下での成膜性に優れた結果を示したものの、粘性指標がいずれも低い値を示し、スパン演算値で示される粒子径分布は、全ての例で1.0より大きな値を示し粒子径分布が広いエマルションが生成した。また、塗工性やロール洗浄性、初期接着性のいずれかの評価でかならず不合格を含む結果であった。また、表8に示された製造例では、耐水および耐熱接着性能が若干向上したのに対し、表9に示された製造例では耐水接着性能はいずれも低い値を示した。但し、参考例17と比較例21では可塑剤を含んでいるため安全性が低い事がわかる。これらの製造例以外では可塑剤を含まない点で安全性が高い。
As is apparent from Tables 8 and 9, an ethylene vinyl acetate copolymer resin emulsion having a water elution rate of 10% or less of the coating film of the ethylene vinyl acetate copolymer resin emulsion was used, and the average polymerization degree was less than 90 mol%. In Examples 6 and 7 and Reference Example 17 , which were produced by seed polymerization including polyvinyl alcohol resin other than polyvinyl alcohol resin of 2500 or less and acetoacetyl group-modified polyvinyl alcohol resin having a saponification degree of 90 mol% or more 4 and MFT showed the low value like the manufacture example shown in Table 6. In these examples, the film forming property was excellent even at a low temperature of 5 ° C. or lower. The normal state and heat-resistant adhesion performance of these examples were practical values comparable to the production examples shown in Tables 2 and 4. Further, in all the production examples shown in Table 8, the span calculation value is 1.0 or less as in the production examples shown in Table 2, Table 4, and Table 6, the particle size distribution is very narrow, and the viscosity index Showed a high value. Moreover, all evaluations of coating property, roll cleaning property and initial adhesiveness were acceptable. On the other hand, the comparative example manufactured using the ethylene vinyl acetate copolymer resin emulsion in which the water elution rate of the coating film of the ethylene vinyl acetate copolymer resin emulsion exceeds 10%, and other than the examples shown in Table 8 In 20-22, although MFT showed the low value similarly to the manufacture example of Table 8, and although all the samples showed the result excellent in the film formability in the low temperature of 5 degrees C or less, all the viscosity index | exponents The particle size distribution indicated by a low value and indicated by the calculated span value was greater than 1.0 in all examples, and an emulsion having a wide particle size distribution was produced. Moreover, it was a result including the rejection by any evaluation of coating property, roll washability, and initial stage adhesiveness. Further, in the production examples shown in Table 8, the water resistance and heat resistant adhesion performance were slightly improved, whereas in the production examples shown in Table 9, the water resistance adhesion performance was low. However, it can be seen that Reference Example 17 and Comparative Example 21 have a low safety because they contain a plasticizer. Safety other than these production examples is high in that it does not contain a plasticizer.

実施例.
攪拌器を備えた反応容器に水608.5部を入れ、これにJポバール JP−33の31.5部を分散させながら添加した後、反応容器を90℃まで加熱した。このまま90分攪拌してポリビニルアルコール水溶液を得た。これを50℃まで冷却した後、スミカフレックス450HQを380部添加した。更にこれに酢酸ナトリウム0.5部と無水重亜硫酸ナトリウム0.2部を添加して溶解させた後に酢酸ビニルモノマー50部を添加して15分間以上攪拌した。これを80℃まで加熱しながら、内部の温度が50〜55℃になったところで触媒(過硫酸アンモニウム0.35部と水10部を混合したもの)を添加して反応を開始した。10〜20分間反応させた後、内部の温度が77〜83℃となるように温度調節しながら、更に酢酸ビニルモノマー295部とアクリル酸n−ブチルモノマー125部とメタクリル酸グリシジルモノマー30部の混合モノマーと触媒(過硫酸アンモニウム0.35部を水100部と混合したもの)を約3時間かけて滴下して反応させた。滴下終了後に85℃まで加熱して2時間熟成させた後に室温になるまで冷却し、更に無水重亜硫酸ナトリウム0.2部を添加して1時間攪拌を継続し濃度45.4%、23℃での粘度が19,800mPa・s、pHが4.5のエマルションを得た。更にこのエマルション100部に対して1.5部のA−189を室温(20〜25℃)下で添加して濃度45.7%、23℃での粘度が15,400mPa・s、pHが4.5のエマルションを得た。
Example 8 .
Into a reaction vessel equipped with a stirrer, 608.5 parts of water was added, and 31.5 parts of J Poval JP-33 was added thereto while being dispersed, and then the reaction vessel was heated to 90 ° C. The mixture was stirred for 90 minutes to obtain an aqueous polyvinyl alcohol solution. After cooling this to 50 ° C., 380 parts of SUMIKAFLEX 450HQ was added. Further, 0.5 part of sodium acetate and 0.2 part of anhydrous sodium bisulfite were added and dissolved, and then 50 parts of vinyl acetate monomer was added and stirred for 15 minutes or more. While heating this to 80 ° C., when the internal temperature reached 50 to 55 ° C., a catalyst (a mixture of 0.35 part ammonium persulfate and 10 parts water) was added to initiate the reaction. After reacting for 10 to 20 minutes, mixing 295 parts of vinyl acetate monomer, 125 parts of n-butyl acrylate monomer and 30 parts of glycidyl methacrylate monomer while adjusting the temperature so that the internal temperature becomes 77 to 83 ° C. A monomer and a catalyst (a mixture of 0.35 part of ammonium persulfate and 100 parts of water) were dropped over about 3 hours to be reacted. After completion of the dropwise addition, the mixture was heated to 85 ° C. and aged for 2 hours, and then cooled to room temperature. Further, 0.2 part of anhydrous sodium bisulfite was added and stirring was continued for 1 hour to obtain a concentration of 45.4% at 23 ° C. An emulsion having a viscosity of 19,800 mPa · s and a pH of 4.5 was obtained. Further, 1.5 parts of A-189 is added to 100 parts of this emulsion at room temperature (20-25 ° C.), the concentration is 45.7%, the viscosity at 23 ° C. is 15,400 mPa · s, and the pH is 4. .5 emulsion was obtained.

実施例
A−189に代えてA−1891を1.9部用いた以外は実施例と同様の方法を用いて製造し、濃度45.8%、23℃での粘度が16,850mPa・s、pHが4.5のエマルションを得た。
Example 9 .
Manufactured using the same method as in Example 8 except that 1.9 parts of A-1891 was used instead of A-189, the viscosity at a concentration of 45.8%, 23 ° C. was 16,850 mPa · s, pH An emulsion of 4.5 was obtained.

実施例10
A−189に代えてY−9669を2.0部用いた以外は実施例と同様の方法を用いて製造し、濃度46.1%、23℃での粘度が19,150mPa・s、pHが5.3のエマルションを得た。
Example 10 .
Manufactured using the same method as in Example 8 except that 2.0-9 parts of Y-9669 was used instead of A-189, the viscosity at a concentration of 46.1% and 23 ° C. was 19,150 mPa · s, pH. An emulsion of 5.3 was obtained.

実施例11
A−189に代えてY−9669を1.0部用いた以外は実施例と同様の方法を用いて製造し、濃度45.9%、23℃での粘度が18,650mPa・s、pHが5.0のエマルションを得た。
Example 11
Manufactured using the same method as in Example 8 except that 1.0 part of Y-9669 was used instead of A-189, the viscosity at a concentration of 45.9%, 23 ° C. was 18,650 mPa · s, pH Of 5.0 was obtained.

実施例12
A−189に代えてY−9669を3.0部用いた以外は実施例と同様の方法を用いて製造し、濃度46.6%、23℃での粘度が19,600mPa・s、pHが5.3のエマルションを得た。
Example 12 .
Manufactured using the same method as in Example 8 except that 3.0 parts of Y-9669 was used instead of A-189, the viscosity at a concentration of 46.6%, 23 ° C. was 19,600 mPa · s, pH An emulsion of 5.3 was obtained.

実施例13
攪拌器を備えた反応容器に水608.5部を入れ、これにJポバール JP−33を分散させながら添加した後、反応容器を90℃まで加熱した。このまま90分攪拌してポリビニルアルコール水溶液を得た。これを50℃まで冷却した後、スミカフレックス450HQを380部添加した。更にこれに酢酸ナトリウム0.5部と無水重亜硫酸ナトリウム0.2部を添加して溶解させた後に酢酸ビニルモノマー50部を添加して15分間以上攪拌した。これを80℃まで加熱しながら、内部の温度が50〜55℃になったところで触媒(過硫酸アンモニウム0.35部と水10部を混合したもの)を添加して反応を開始した。10〜20分間反応させた後、内部の温度が77〜83℃となるように温度調節しながら、更に酢酸ビニルモノマー320部とアクリル酸n−ブチルモノマー130部とA−172が10部の混合モノマーと触媒(過硫酸アンモニウム0.35部を水100部と混合したもの)を約3時間かけて滴下して反応させた。滴下終了後に85℃まで加熱して2時間熟成させた後に室温になるまで冷却し、更に無水重亜硫酸ナトリウム0.2部を添加して1時間攪拌を継続し濃度44.5%、23℃での粘度が15,140mPa・s、pHが4.5のエマルションを得た。
Example 13 .
Into a reaction vessel equipped with a stirrer, 608.5 parts of water was added, and J Poval JP-33 was added thereto while being dispersed, and then the reaction vessel was heated to 90 ° C. The mixture was stirred for 90 minutes to obtain an aqueous polyvinyl alcohol solution. After cooling this to 50 ° C., 380 parts of SUMIKAFLEX 450HQ was added. Further, 0.5 part of sodium acetate and 0.2 part of anhydrous sodium bisulfite were added and dissolved, and then 50 parts of vinyl acetate monomer was added and stirred for 15 minutes or more. While heating this to 80 ° C., when the internal temperature reached 50 to 55 ° C., a catalyst (a mixture of 0.35 part ammonium persulfate and 10 parts water) was added to initiate the reaction. After reacting for 10 to 20 minutes, while adjusting the temperature so that the internal temperature becomes 77 to 83 ° C., a mixture of 320 parts of vinyl acetate monomer, 130 parts of n-butyl acrylate monomer and 10 parts of A-172 A monomer and a catalyst (a mixture of 0.35 part of ammonium persulfate and 100 parts of water) were dropped over about 3 hours to be reacted. After completion of the dropwise addition, the mixture was heated to 85 ° C. and aged for 2 hours and then cooled to room temperature. Further, 0.2 part of anhydrous sodium bisulfite was added and stirring was continued for 1 hour to obtain a concentration of 44.5% at 23 ° C. An emulsion having a viscosity of 15,140 mPa · s and a pH of 4.5 was obtained.

Figure 0006301591
Figure 0006301591

比較例23.
スミカフレックス450HQに代えてペガール1901を400部用いた以外は実施例と同様の方法を用いて製造し、濃度47.1%、23℃での粘度が28,950mPa・s、pHが4.7のエマルションを得た。
Comparative Example 23.
Manufactured using the same method as in Example 8 except that 400 parts of Pegar 1901 was used instead of Sumikaflex 450HQ, the concentration was 47.1%, the viscosity at 23 ° C. was 28,950 mPa · s, and the pH was 4. An emulsion of 7 was obtained.

比較例24.
スミカフレックス450HQに代えてペガール1901を400部用いた以外は実施例と同様の方法を用いて製造し、濃度47.4%、23℃での粘度が31,450mPa・s、pHが4.5のエマルションを得た。
Comparative Example 24.
Manufactured using the same method as in Example 9 except that 400 parts of Pegar 1901 was used instead of Sumikaflex 450HQ, the concentration was 47.4%, the viscosity at 23 ° C. was 31,450 mPa · s, and the pH was 4. An emulsion of 5 was obtained.

比較例25.
スミカフレックス450HQに代えてペガール1901を400部用いた以外は実施例10と同様の方法を用いて製造し、濃度47.6%、23℃での粘度が32,100mPa・s、pHが5.0のエマルションを得た。
Comparative Example 25.
Manufactured using the same method as in Example 10 except that 400 parts of Pegar 1901 was used instead of Sumikaflex 450HQ, the concentration was 47.6%, the viscosity at 23 ° C. was 32,100 mPa · s, and the pH was 5. An emulsion of 0 was obtained.

比較例26.
スミカフレックス450HQに代えてペガール1901を400部用いた以外は実施例11と同様の方法を用いて製造し、濃度47.3%、23℃での粘度が28,400mPa・s、pHが5.0のエマルションを得た。
Comparative Example 26.
Manufactured using the same method as in Example 11 except that 400 parts of Pegar 1901 was used instead of Sumikaflex 450HQ, the concentration was 47.3%, the viscosity at 23 ° C. was 28,400 mPa · s, and the pH was 5. An emulsion of 0 was obtained.

比較例27.
スミカフレックス450HQに代えてペガール1901を400部用いた以外は実施例12と同様の方法を用いて製造し、濃度47.8%、23℃での粘度が29,500mPa・s、pHが5.2のエマルションを得た。
Comparative Example 27.
Manufactured using the same method as in Example 12 except that 400 parts of Pegal 1901 was used instead of Sumikaflex 450HQ, the concentration was 47.8%, the viscosity at 23 ° C. was 29,500 mPa · s, and the pH was 5. An emulsion of 2 was obtained.

比較例28.
スミカフレックス450HQに代えてペガール1901を400部用いた以外は実施例13と同様の方法を用いて製造し、濃度46.0%、23℃での粘度が26,450mPa・s、pHが4.6のエマルションを得た。
Comparative Example 28.
Manufactured using the same method as in Example 13 except that 400 parts of Pegar 1901 was used instead of Sumikaflex 450HQ, the concentration was 46.0%, the viscosity at 23 ° C. was 26,450 mPa · s, and the pH was 4. 6 emulsions were obtained.

Figure 0006301591
Figure 0006301591

表10、11から明らかなように、エチレン酢酸ビニル共重合樹脂エマルションの被膜の水溶出率が10%以下であるエチレン酢酸ビニル共重合樹脂エマルションを用い、けん化度が90mol%未満で平均重合度が2500以下であるポリビニルアルコール系樹脂以外のポリビニルアルコール樹脂を含み、酢酸ビニルおよび酢酸ビニルと共重合可能な単量体としてグリシジル基含有単量体やアルコキシシリル基含有単量体を含む単量体を用いてシード重合法により製造され、グリシジル基含有単量体を含んで製造された酢酸ビニル系樹脂エマルションには更にグリシジル基と反応し得る官能基を有するシラン化合物を添加して製造された実施例13では表4、表6および表8で示した製造例と同様にMFTが低い値を示した。これらの例では、可塑剤などの溶剤類を用いる事なく5℃以下の低温下でも成膜性に優れる結果を示した。これらの例の常態および耐熱接着性能は、表2、表4、表6および表8で示した製造例と比較して、耐熱接着性能が極めて高い値であった。また、表10に示した全製造例では、表2、表4、表6および表8で示した製造例と同様にスパン演算値が1.0以下となっており粒子径分布が非常に狭く、粘性指標は高い値を示した。また塗工性やロール洗浄性、初期接着性のいずれの評価でも合格であった。これに対し、エチレン酢酸ビニル共重合樹脂エマルションの被膜の水溶出率が10%を超えるエチレン酢酸ビニル共重合樹脂エマルションを用い、それ以外は表10に示した例と同様にして製造された比較例25〜30においては、MFTこそ表10の製造例と同様に低い値を示し、いずれのサンプルでも可塑剤などの溶剤類を用いる事なく5℃以下の低温下での成膜性に優れた結果を示したものの、粘性指標がいずれも低い値を示し、スパン演算値で示される粒子径分布は、全ての例で1.0より大きな値を示し粒子径分布が広いエマルションが生成した。また、塗工性やロール洗浄性、初期接着性のいずれかの評価でかならず不合格を含む結果であった。また、表10に示された製造例では、耐熱接着性能が極めて向上し、耐水接着性能も向上したのに対し、表11に示された製造例では耐熱接着性能は向上したが、耐水接着性能はいずれも低い値を示した。また、表10に示された通り、グリシジル基含有単量体を含んでシード重合法により製造された酢酸ビニル系樹脂エマルションに添加されるグリシジル基と反応し得る官能基を有するシラン化合物の添加量を変化させても各種性能が大きく変化せず、いずれの評価項目においても優れた結果が得られている事がわかる。

As is apparent from Tables 10 and 11, an ethylene vinyl acetate copolymer resin emulsion having a water elution rate of 10% or less of the coating film of the ethylene vinyl acetate copolymer resin emulsion is used, and the average polymerization degree is less than 90 mol%. A polyvinyl alcohol resin other than a polyvinyl alcohol resin that is 2500 or less, and a monomer containing a vinyl acetate and a monomer containing an alkoxysilyl group-containing monomer as a monomer copolymerizable with vinyl acetate. Example in which a silane compound having a functional group capable of reacting with a glycidyl group is further added to a vinyl acetate resin emulsion produced by a seed polymerization method and containing a glycidyl group-containing monomer. 8-13 in Table 4, showed a MFT lower values in the same manner as in the production example shown in Table 6 and Table 8. In these examples, the film forming property was excellent even at a low temperature of 5 ° C. or less without using a solvent such as a plasticizer. The normal state and heat-resistant adhesion performance of these examples were extremely high values as compared with the production examples shown in Table 2, Table 4, Table 6, and Table 8. In all the production examples shown in Table 10, the span calculation value is 1.0 or less and the particle size distribution is very narrow as in the production examples shown in Tables 2, 4, 6, and 8. The viscosity index showed a high value. Moreover, all evaluations of coating property, roll cleaning property and initial adhesiveness were acceptable. On the other hand, the comparative example manufactured using the ethylene vinyl acetate copolymer resin emulsion in which the water elution rate of the film of the ethylene vinyl acetate copolymer resin emulsion exceeds 10%, and otherwise manufactured in the same manner as shown in Table 10 In 25-30, MFT shows a low value like the manufacture example of Table 10, and the result which was excellent in the film formability in the low temperature of 5 degrees C or less without using solvents, such as a plasticizer, in any sample. However, all of the viscosity indexes showed a low value, and the particle size distribution indicated by the span calculation value showed a value larger than 1.0 in all examples, and an emulsion having a wide particle size distribution was produced. Moreover, it was a result including the rejection by any evaluation of coating property, roll washability, and initial stage adhesiveness. In addition, in the production example shown in Table 10, the heat-resistant adhesion performance was extremely improved and the water-resistant adhesion performance was improved, whereas in the production example shown in Table 11, the heat-resistant adhesion performance was improved, but the water-resistant adhesion performance was improved. All showed low values. Further, as shown in Table 10, the addition amount of the silane compound having a functional group capable of reacting with the glycidyl group added to the vinyl acetate resin emulsion produced by the seed polymerization method including the glycidyl group-containing monomer. It can be seen that various performances do not change greatly even when the value is changed, and excellent results are obtained in any of the evaluation items.

以上の通り、実施例では塗工性、初期接着性およびロール洗浄性に優れていた。これに対し、比較例では、それらの特性が不十分であった。   As described above, in the examples, the coating property, the initial adhesiveness, and the roll cleaning property were excellent. On the other hand, in the comparative example, those characteristics were inadequate.

本発明の酢酸ビニル系樹脂エマルションは塗工性やロール洗浄性に優れるとともに、耐水性・耐熱性や初期接着性にも優れているため、スクリーン印刷用乳剤のベースエマルション用途やガラス繊維集束剤・セラミック類のバインダー用途、更には紙用あるいは木工用接着剤など多岐にわたる分野に用いることができる。   The vinyl acetate resin emulsion of the present invention has excellent coating properties and roll cleaning properties, as well as excellent water resistance, heat resistance, and initial adhesiveness. It can be used in a wide variety of fields such as ceramic binders, and paper or woodworking adhesives.

Claims (8)

エチレン酢酸ビニル共重合樹脂エマルションをシード粒子とし、少なくとも1種のポリビニルアルコール系樹脂存在下で少なくとも1種の単量体を重合してなる酢酸ビニル系樹脂エマルションであって、
前記エチレン酢酸ビニル共重合樹脂エマルションの被膜の水溶出率が10%以下であり、
前記の単量体が酢酸ビニルと、酢酸ビニルと共重合可能な単量体とを含み、
前記のポリビニルアルコール系樹脂が、けん化度が90mol%未満で平均重合度が2500以下のポリビニルアルコール系樹脂以外のポリビニルアルコール系樹脂であり、
以下の式(1)で定義されるスパン演算値が1.0以下であり、
前記酢酸ビニル系樹脂エマルションの粒子径がメジアン径で0.5〜4.0μmの範囲であり、
前記のポリビニルアルコール系樹脂の濃度が全固形分の0.1〜19.9重量%であり、
酢酸ビニルと前記共重合可能な単量体とを合わせた単量体全体の固形分が、前記エチレン酢酸ビニル共重合樹脂エマルションの固形分の5倍以下である、酢酸ビニル系樹脂エマルション。
スパン演算値=|累積頻度%径A−累積頻度%径B|÷メジアン径(μm) (1)
(ここで、累積頻度%径Aは、測定中の累積頻度が10%となった時の酢酸ビニル系樹脂エマルションの粒子径(μm)、累積頻度%径Bは測定中の累積頻度が90%となった時の酢酸ビニル系樹脂エマルションの粒子径(μm)、メジアン径は累積頻度が50%となった時のポリ酢酸ビニル樹脂エマルションの粒子径(μm)を示し、式内記号||は絶対値を示す。)
A vinyl acetate resin emulsion obtained by polymerizing at least one monomer in the presence of at least one polyvinyl alcohol resin, using ethylene vinyl acetate copolymer resin emulsion as seed particles,
The water elution rate of the film of the ethylene vinyl acetate copolymer resin emulsion is 10% or less,
The monomer includes vinyl acetate and a monomer copolymerizable with vinyl acetate,
The polyvinyl alcohol resin is a polyvinyl alcohol resin other than a polyvinyl alcohol resin having a saponification degree of less than 90 mol% and an average polymerization degree of 2500 or less,
The span calculation value defined by the following formula (1) is 1.0 or less,
The particle diameter of the vinyl acetate resin emulsion is in the range of 0.5 to 4.0 μm in terms of median diameter,
The concentration of the polyvinyl alcohol-based resin is 0.1 to 19.9% by weight of the total solid content,
A vinyl acetate resin emulsion in which the solid content of the whole monomer, which is a combination of vinyl acetate and the copolymerizable monomer, is 5 times or less the solid content of the ethylene vinyl acetate copolymer resin emulsion.
Span calculation value = | cumulative frequency% diameter A−cumulative frequency% diameter B | ÷ median diameter (μm) (1)
(Here, the cumulative frequency% diameter A is the particle diameter (μm) of the vinyl acetate resin emulsion when the cumulative frequency during measurement is 10%, and the cumulative frequency% diameter B is 90% of the cumulative frequency during measurement. The particle diameter (μm) and median diameter of the vinyl acetate resin emulsion when the cumulative frequency becomes 50%, the particle diameter (μm) of the polyvinyl acetate resin emulsion when the cumulative frequency reaches 50%. Indicates absolute value.)
少なくともけん化度が90mol%未満で平均重合度が2500より大きいポリビニルアルコール系樹脂を含む請求項1記載の酢酸ビニル系樹脂エマルション。 Claim 1 Symbol placement of vinyl acetate resin emulsion containing an average degree of polymerization of at least saponification degree is less than 90 mol% is 2500 greater than polyvinyl alcohol resins. さらにけん化度が90mol%以上のポリビニルアルコール系樹脂を含む請求項記載の酢酸ビニル系樹脂エマルション。 The vinyl acetate resin emulsion according to claim 2 , further comprising a polyvinyl alcohol resin having a saponification degree of 90 mol% or more. 前記のけん化度が90mol%以上のポリビニルアルコール系樹脂が、アセトアセチル基変性ポリビニルアルコールである請求項記載の酢酸ビニル系樹脂エマルション。 The vinyl acetate resin emulsion according to claim 3, wherein the polyvinyl alcohol resin having a saponification degree of 90 mol% or more is acetoacetyl group-modified polyvinyl alcohol. 前記の共重合可能な単量体のホモポリマーのTgが−45℃以下であり、該共重合可能な単量体が、該共重合可能な単量体と酢酸ビニルを合わせた単量体全体の25重量%以上であり、前記エチレン酢酸ビニル共重合樹脂エマルションの固形分が前記酢酸ビニル系樹脂エマルションの全固形分の10重量%以上である、請求項記載の酢酸ビニル系樹脂エマルション。 Tg of the homopolymer of the copolymerizable monomer is −45 ° C. or less, and the copolymerizable monomer is the entire monomer including the copolymerizable monomer and vinyl acetate. 25 is a weight% or more, the solid content of the ethylene-vinyl acetate copolymer resin emulsion is not less than 10% by weight of total solids of the vinyl acetate resin emulsion, according to claim 1, wherein the vinyl acetate resin emulsion. 前記の酢酸ビニル以外の単量体として、(メタ)アクリル酸エステルおよび/またはグリシジル基含有単量体を含む請求項記載の酢酸ビニル系樹脂エマルション。 Wherein as monomer other than vinyl acetate, (meth) acrylic acid ester and / or claim 1, wherein the vinyl acetate resin emulsion containing a glycidyl group-containing monomer. さらに、クリシジル基含有単量体と反応可能なシランカップリング剤を含んでなる請求項記載の酢酸ビニル系樹脂エマルション。 The vinyl acetate resin emulsion according to claim 6 , further comprising a silane coupling agent capable of reacting with a monomer containing a clicidyl group. 請求項1に記載の酢酸ビニル系樹脂エマルションの製造方法であって、
前記エチレン酢酸ビニル共重合樹脂エマルションとして被膜の水溶出率が10%以下であるエチレン酢酸ビニル樹脂エマルションを用い、前記の単量体に酢酸ビニルと、酢酸ビニルと共重合可能な単量体とを用い、前記のポリビニルアルコール系樹脂に、けん化度が90mol%未満で平均重合度が2500以下のポリビニルアルコール系樹脂以外のポリビニルアルコール系樹脂を用いる、酢酸ビニル系樹脂エマルションの製造方法。
A method for producing the vinyl acetate resin emulsion according to claim 1 ,
An ethylene vinyl acetate resin emulsion having a water elution rate of 10% or less as the ethylene vinyl acetate copolymer resin emulsion is used, and vinyl acetate and a monomer copolymerizable with vinyl acetate are used as the monomers. A method for producing a vinyl acetate resin emulsion, wherein a polyvinyl alcohol resin other than a polyvinyl alcohol resin having a saponification degree of less than 90 mol% and an average polymerization degree of 2500 or less is used as the polyvinyl alcohol resin.
JP2013105336A 2013-05-17 2013-05-17 Vinyl acetate resin emulsion and method for producing the same Active JP6301591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013105336A JP6301591B2 (en) 2013-05-17 2013-05-17 Vinyl acetate resin emulsion and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013105336A JP6301591B2 (en) 2013-05-17 2013-05-17 Vinyl acetate resin emulsion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014227422A JP2014227422A (en) 2014-12-08
JP6301591B2 true JP6301591B2 (en) 2018-03-28

Family

ID=52127601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013105336A Active JP6301591B2 (en) 2013-05-17 2013-05-17 Vinyl acetate resin emulsion and method for producing the same

Country Status (1)

Country Link
JP (1) JP6301591B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5869165B1 (en) * 2014-10-14 2016-02-24 アイカ工業株式会社 Method for producing water-based adhesive

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL159681B (en) * 1967-03-13 1979-03-15 Air Prod & Chem METHOD OF ASSOCIATING AN ARTICLE WITH A SUBSTRATE USING AN ADHESIVE CONSISTING OF AN AQUICAL EMULSION CONTAINING VINYL ACETATE ETHENE COPOLYMER.
JPS60235875A (en) * 1984-05-07 1985-11-22 Shoei Kagaku Kogyo Kk Water-base adhesive
US5143966A (en) * 1990-11-07 1992-09-01 Air Products And Chemicals, Inc. Vinyl acetate/ethylene copolymer emulsions having improved wet tack properties
JP3901385B2 (en) * 1999-04-19 2007-04-04 電気化学工業株式会社 Ethylene-vinyl acetate copolymer emulsion and method for producing the same
JP3934936B2 (en) * 2000-12-27 2007-06-20 埼玉県 Molding method
JP2002308939A (en) * 2001-04-09 2002-10-23 Kuraray Co Ltd Method for manufacturing ethylene/vinyl acetate resin emulsion
JP3522263B2 (en) * 2002-05-14 2004-04-26 コニシ株式会社 Water-based adhesive and coating method using the same
JP3970101B2 (en) * 2002-06-13 2007-09-05 電気化学工業株式会社 Emulsion for foam material and emulsion composition for foam material
JP4408772B2 (en) * 2004-08-27 2010-02-03 コニシ株式会社 Vinyl acetate resin emulsion and method for producing the same

Also Published As

Publication number Publication date
JP2014227422A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP6370073B2 (en) Polyvinyl acetal resin composition
JP6815493B2 (en) Solution composition for surface treatment of steel sheet and steel sheet surface-treated using it
TWI521004B (en) Aqueous organic silicon fluoro-containing polymer dispersion and method for manufacturing the same
JP5548971B2 (en) Thermoplastic organic-inorganic hybrid material
JP2002167403A (en) Method for producing vinylester resin emulsion
JP6364215B2 (en) Modified polyvinyl acetal resin
JP2015067804A (en) Polyvinyl acetal resin composition
JP2014031487A (en) Modified polyvinyl acetate
JP6301591B2 (en) Vinyl acetate resin emulsion and method for producing the same
JP5122137B2 (en) Graft copolymer, coating agent, and method for forming coating film
JP6224987B2 (en) Wood paint and method for producing the same
JP4542934B2 (en) Resin emulsion and its use
JP3602180B2 (en) Emulsion for finishing paint of ceramic cement exterior material
JP5976697B2 (en) Manufacturing method of adhesive
JPH08231645A (en) Use of fluorinated copolymer improved in heat resistance as protective covering material
JP4544852B2 (en) Vinyl acetate resin emulsion and method for producing the same
JP6202378B2 (en) Emulsion composition for one-component aqueous sealer and method for producing emulsion composition for one-component aqueous sealer
Gadhave Water-resistant wood adhesive without plasticizers: synthesis and characterization
JPS60235875A (en) Water-base adhesive
JP6097184B2 (en) adhesive
JP2000034308A (en) Production of aqueous emulsion
JP5824479B2 (en) Modified polyvinyl acetate and adhesive
JP2015187215A (en) modified polyvinyl acetate
JPH0860098A (en) Coating composition
WO2023171798A1 (en) Laminate for damping material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180301

R150 Certificate of patent or registration of utility model

Ref document number: 6301591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250