JP6297234B1 - 複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体 - Google Patents

複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体 Download PDF

Info

Publication number
JP6297234B1
JP6297234B1 JP2017549829A JP2017549829A JP6297234B1 JP 6297234 B1 JP6297234 B1 JP 6297234B1 JP 2017549829 A JP2017549829 A JP 2017549829A JP 2017549829 A JP2017549829 A JP 2017549829A JP 6297234 B1 JP6297234 B1 JP 6297234B1
Authority
JP
Japan
Prior art keywords
resolution
image
imaging
images
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017549829A
Other languages
English (en)
Other versions
JPWO2019003258A1 (ja
Inventor
康平 栗原
康平 栗原
善隆 豊田
善隆 豊田
大祐 鈴木
大祐 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6297234B1 publication Critical patent/JP6297234B1/ja
Publication of JPWO2019003258A1 publication Critical patent/JPWO2019003258A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/42Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by switching between different modes of operation using different resolutions or aspect ratios, e.g. switching between interlaced and non-interlaced mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

高解像度撮像領域(15a)と複数の低解像度撮像領域(15b、15c、…)に、互いに同じ視野の画像を結像させる。撮像領域間で、異なる種類の情報を表す画像が得られるように光学フィルター(13a、13b、…)を設ける。複数の互いに異なる種類の情報を取得することができ、しかも優先度の高い情報を、高解像度撮像領域(15a)で取得することができる。高解像度撮像領域で取得した画像の高解像度成分を用いて、低解像度撮像領域(15b、15c、…)で取得した画像を高解像度化(30)することもできる。

Description

本発明は、複眼撮像装置及び画像処理方法に関する。
本発明は特に、複数の撮像領域に同じ視野の画像を結像させ、複数の撮像領域で異なる種類の情報を表す複数の画像を取得するカメラ装置で取得される複数の画像を高解像度化するプロセッサーを備えた複眼撮像装置に関する。本発明はさらに上記の複眼撮像装置で実施される画像処理方法に関する。
本発明はさらに上記の複眼撮像装置又は画像処理方法における処理をコンピュータに実行させるプログラム、及び該プログラムを記録した記録媒体に関する。
近年、撮像装置に対する要求はますます多様化し、例えば、RGB可視画像だけでなく、付加的な情報の取得が望まれるようになってきている。特に近赤外光は、大気光に対する透過率が高く、また不可視であるといった特徴のため、監視、被写体認識等に適しており、監視用カメラ、車載用カメラ等の分野で注目されている。また特定の偏光方向の光のみから得られた画像は、窓ガラス、路面等での反射光の除去、黒色の物体、透明の物体など見辛い物体の認識に有用であり、車載用カメラ、FA(factory automation)で用いられる検査用カメラの分野で注目されている。
これら異種情報は、従来は、通常のカラー画像の代わりとして取得するのが一般的であった。カラー画像と異種情報を同時に取得する最も単純な方法として、複数台のカメラを並べるカメラアレイがあるが、カメラの位置決めを正確に行う必要がある点や装置の大型化、設置コスト、維持コストの増大と言った課題がある。
また、近年ではRGB−Xセンサ、つまりカラーフィルターアレイ中に近赤外光のみを透過するフィルターなどを設けることで異種情報を同時に取得できるセンサーも登場している。しかしながら、このようなセンサーは、設計開発に多くのコストや時間を要し、製造の面でも多くの課題を有する。
これらの課題を解決する小型の装置として、撮像素子が複数の撮像領域に分割され、複数の撮像領域にそれぞれ画像を結像させるものが提案されている(特許文献1)。この装置では、複数の撮像領域に対して、異なる光学フィルターを設けることにより、異種情報を同時に取得できるようにしている。特許文献1の装置は、一つの撮像素子上にレンズアレイを配置することで製造可能であり、小型化が容易であるという利点を有する。
特開2001−61109号公報(段落0061、0064)
特許文献1の装置では、撮像素子を分割することで一つの撮像素子から複数の画像を同時に取得することができるが、撮像領域を増やすほど一つの撮像領域当たりの画素数、即ち解像度が低下すると言う問題がある。
本発明は上記の問題を解決するためになされたものであり、本発明の目的は、複数の互いに異なる種類の情報を取得することができ、しかも優先度の高い情報を、高い解像度で取得することができる複眼カメラを提供することにある。
本発明の一つの態様の複眼撮像装置は、
複数の撮像領域を有する撮像素子と、
前記複数の撮像領域に対応して設けられ、対応する撮像領域に互いに同じ視野の画像を結像させる複数のレンズと、
複数の光学フィルターとを有し、
前記複数の撮像領域は、少なくとも一つの第1種の撮像領域と、前記第1種の撮像領域よりも小さく、且つ互いに同じ大きさの複数の第2種の撮像領域とを含み、
前記複数のレンズのうち、より大きい撮像領域に対応するレンズはより長い焦点距離を有し、
前記複数の光学フィルターは、前記第2種の撮像領域の各々で取得される画像が、前記第1種の撮像領域の各々で取得される画像とは異なる種類の情報を表すものとなるように設けられているカメラ装置と、
少なくとも一つの高解像度化部を備えたプロセッサーとを備え、
前記少なくとも一つの高解像度化部は、
前記第2種の撮像領域のいずれかで取得された画像を低解像度画像として受けて、前記低解像度画像からその低周波成分及び高周波成分を抽出する第1のフィルター処理部と、
前記第1種の撮像領域のいずれかで取得された画像を参照画像として受け、前記参照画像からその低周波成分及び高周波成分を抽出する第2のフィルター処理部と、
前記低解像度画像の低周波成分を前記参照画像と同じ解像度まで拡大し、拡大された低周波成分と前記参照画像の低周波成分とを、重み付け加算により合成して、合成低周波成分を生成する低周波成分合成部と、
前記低解像度画像の高周波成分を前記参照画像と同じ解像度まで拡大し、拡大された高周波成分と前記参照画像の高周波成分とを、重み付け加算により合成して、合成高周波成分を生成する高周波成分合成部と、
前記合成低周波成分と前記合成高周波成分とを合成し、高解像度画像を生成する成分合成部と
を有する
本発明の他の態様の複眼撮像装置は、
複数の撮像領域を有する撮像素子と、
前記複数の撮像領域に対応して設けられ、対応する撮像領域に互いに同じ視野の画像を結像させる複数のレンズと、
複数の光学フィルターとを有し、
前記複数の撮像領域は、少なくとも一つの第1種の撮像領域と、前記第1種の撮像領域よりも小さく、且つ互いに同じ大きさの複数の第2種の撮像領域とを含み、
前記複数のレンズのうち、より大きい撮像領域に対応するレンズはより長い焦点距離を有し、
前記複数の光学フィルターは、前記第2種の撮像領域の各々で取得される画像が、前記第1種の撮像領域の各々で取得される画像とは異なる種類の情報を表すものとなるように設けられているカメラ装置と、
少なくとも一つの高解像度化部を備えたプロセッサーとを備え、
前記少なくとも一つの高解像度化部は、
前記第1種の撮像領域のいずれかで取得された画像を参照画像として受け、前記参照画像を縮小して、前記第2種の撮像領域のいずれかで取得された低解像度画像と同じ解像度の縮小参照画像を生成する縮小処理部と、
前記縮小参照画像と、前記低解像度画像との線形関係を近似する線形係数を計算する係数計算部と、
前記係数計算部により計算された線形係数から成る係数マップを前記参照画像と同じ解像度まで拡大する係数マップ拡大部と、
拡大された係数マップの線形係数と前記参照画像とを元に、前記低解像度画像により表される情報を持つ高解像度画像を生成する線形変換部と
を有する。
本発明の一つの態様の画像処理方法は、
同じ視野の画像が結像される複数の撮像領域での撮像で得られる、互いに異なる種類の情報を有し、互いに解像度が異なる複数の画像を取得するステップと、
前記互いに解像度が異なる複数の画像のうち、比較的解像度の高い画像に含まれる高解像度成分を用いて比較的解像度が低い複数の画像に対して高解像度化処理を行って、互いに異なる種類の情報を持つ高解像度画像を生成する高解像度化ステップと
前記複数の互いに異なる種類の情報を持つ高解像度画像を合成して、一つ以上の合成高解像度画像を生成する合成ステップとを
を有し、
前記高解像度化ステップは、
前記比較的解像度が低い複数の画像からその低周波成分及び高周波成分を抽出し、
前記比較的解像度の高い画像からその低周波成分及び高周波成分を抽出し、
前記比較的解像度が低い複数の画像の低周波成分を前記比較的解像度の高い画像と同じ解像度まで拡大し、拡大された低周波成分と前記比較的解像度の高い画像の低周波成分とを、重み付け加算により合成して、合成低周波成分を生成し、
前記比較的解像度が低い複数の画像の高周波成分を前記比較的解像度の高い画像と同じ解像度まで拡大し、拡大された高周波成分と前記比較的解像度の高い画像の高周波成分とを、重み付け加算により合成して、合成高周波成分を生成し、
前記合成低周波成分と前記合成高周波成分とを合成し、前記高解像度画像を生成する
ことを特徴とする。
本発明によれば、カメラ装置が複数の撮像領域を有するので、複数の互い異なる種類の情報を表す画像を取得することができる。また、複数の撮像領域が、少なくとも一つの第1種の撮像領域と、第1種の撮像領域よりも面積が小さく画素数が少ない複数の第2種の撮像領域とを含むので、複数の互いに異なる種類の情報のうち、優先度の高い情報、即ち高い解像度での取得がより強く望まれる画像に、比較的大きい撮像領域を割り当てることで、そのような画像の高い解像度での取得が可能となる。
さらに、高解像度化部により低解像度画像の高解像度化が行われるので、撮像領域が比較的小さくても、高解像度の画像を得ることができる。
(a)は、本発明の実施の形態1に係るカメラ装置を構成する複眼カメラの構成を示す分解斜視図であり、(b)は、上記の複眼カメラで取得される画像の大きさを示す図である。 (a)〜(d)は、図1(a)の複眼カメラの撮像素子の撮像面の分割方法の異なる例を示す模式図である。 (e)及び(f)は、図1(a)の複眼カメラの撮像素子の撮像面の分割方法の異なる例を示す模式図である。 本発明の実施の形態2に係る複眼撮像装置を示すブロック図である。 実施の形態2で用いられる高解像度化部の一例を示すブロック図である。 実施の形態2で用いられる高解像度化部の他の例を示すブロック図である。 実施の形態2で用いられるプロセッサーの他の例を示すブロック図である。 実施の形態2で用いられるプロセッサーの他の例を示すブロック図である。 本発明の実施の形態3で用いられるプロセッサーの一例を示すブロック図である。 実施の形態3で用いられる合成部の一例を示すブロック図である。 実施の形態3で用いられるプロセッサーの他の例を示すブロック図である。 本発明の実施の形態4で用いられるプロセッサーを示すブロック図である。 (a)及び(b)は、実施の形態4のプロセッサーによる画像情報の補間の例を示す図である。 本発明の実施の形態5で用いられるプロセッサーを示すブロック図である。 本発明の実施の形態6に係る複眼撮像装置を示すブロック図である。 実施の形態6に係る複眼カメラ及び単眼カメラの構成を示す分解斜視図である。 (a)及び(b)は、図16の複眼カメラの撮像素子の撮像面の分割方法の一例を示す模式図である。 本発明の実施の形態7に係る画像処理方法における処理の手順を示すフロー図である。
実施の形態1.
図1(a)は、本発明の実施の形態1に係るカメラ装置1の概要を示す分解斜視図である。
図1(a)に示されるカメラ装置1は、複眼カメラ10で構成されている。複眼カメラ10は、撮像素子11と、レンズアレイ12と、フィルターアレイ13と、隔壁14とを有する。
撮像素子11は矩形の撮像面11aを有し、該撮像面11aは例えば図2(a)に示されるように、複数の矩形の撮像領域15a〜15fに分割されている。
レンズアレイ12は、それぞれの撮像領域15a、15b、…に対応して設けられた複数のレンズ12a、12b、…を含む。複数のレンズ12a、12b、…によりレンズ群が構成される。
レンズ12a、12b、…は、それぞれ対応する撮像領域15a、15b、…に、互いに同じ視野の画像が結像するように構成されている。
異なる大きさの撮像領域に同じ視野の画像を結像させるため、例えばより大きい撮像領域に対応するレンズはより長い焦点距離を有する。
フィルターアレイ13は、複数の撮像領域のうちの一つ以上の撮像領域に対してそれぞれ設けられた光学フィルター13a、13b、…を含む。
隔壁14は、撮像領域15a、15b、…相互間に設けられ、各撮像領域に、対応するレンズ以外のレンズからの光が入射するのを防ぐ。
撮像素子11は、得られた画像信号を画素毎に外部に読み出すことが可能なCMOS構造またはCCD構造のセンサーであるのが望ましい。分割の都合上、像流れの生じないグローバルシャッター(同時露光一括読み出し)方式の撮像素子が望ましい。
撮像領域のうち、最も大きいもの、即ち画素数が最も多い撮像領域15aを高解像度撮像領域と呼び、それ以外の撮像領域15b、15c、…を低解像度撮像領域と呼ぶ。図2(a)に示される例では、撮像面11aが正方形であり(縦方向の画素数と横方向の画素数が同じであり)、撮像領域15a〜15fも正方形であり、撮像領域15b〜15fは互いに同じ大きさ、従って同じ画素数を有し、撮像領域15aは、撮像領域15b〜15fの各々に対して縦方向及び横方向の寸法がともに2倍である。
高解像度撮像領域15aは低解像度撮像領域15b、15c、…の各々に対し縦方向及び横方向の画素数が2倍であるので、図1(b)に示されるように、高解像度撮像領域で得られる画像(高解像度画像)D0は各低解像度撮像領域で得られる画像(低解像度画像)D1に対し2倍の大きさ(画素数)を有する。
上記のように、高解像度撮像領域と低解像度撮像領域とは解像度が互いに異なる撮像領域であり、前者の方が解像度が高い。区別のため前者を第1種の撮像領域と言い、後者を第2種の撮像領域と言うことがある。
フィルターアレイ13を構成する光学フィルター13a、13b、…には、異なる光学特性の光学フィルターが含まれ、それによってそれぞれの撮像領域からは互いに異なる種類の情報(異なる種類の情報を表す画像)が得られるようになっている。
例えば、撮像領域15a、15b、…のうちの一つ以上の撮像領域に、互いに異なる光学特性を有する光学フィルター13a、13b、…が設けられ、これにより、撮像領域毎に、異なる種類の情報を表す画像が取得される。
異なる光学特性を有する光学フィルターとしては、例えば、分光フィルター、偏光フィルター、及びNDフィルター(Neutral Density Filter)の少なくとも一つが用いられ、これらの使用により、撮像領域毎に、異なる波長帯の光による画像、異なる偏光方向の光による画像、異なる露光量での撮像による画像が取得される。
これらの光学フィルターは、単独で用いても良く、組み合わせて用いても良い。
上記の「異なる波長帯の光による画像」は、特定の波長帯の光を光電変換することで得られる画像を意味し、「異なる偏光方向の光による画像」は、特定の偏光方向の光を光電変換することで得られる画像を意味する。
例えば、高解像度撮像領域15aに対して、透過率の高いG(緑)透過フィルター、赤外光カットフィルター、又は補色系の光学フィルターを設けることとしても良く、或は光学フィルターを設けない(モノクロ領域とする)こととしても良い。
補色系の光学フィルターは一般に光透過率が高いので、その点で好ましい。
ここで、光学フィルターを設けないとは、異なる種類の画像を取得することを目的とする光学フィルターを設けないということを意味し、他の目的の光学フィルターは設けられていても良い。
またレンズ設計によっては高解像度撮像領域に対して設けられたレンズの開口が低解像度撮像領域よりも大きいため、高解像度撮像領域では露光量が大きくなる場合がある。NDフィルターのような透過光量を減少させる光学フィルターを高解像度撮像領域に対して設ければ、高解像度撮像領域と低解像度撮像領域とで露光量に差が大きくならないようにすることができ、高解像度撮像領域の露光量飽和と低解像度撮像領域の露光量不足を解消することができる。
撮像面11aの撮像領域への分割の方法は図2(a)の例に限定されない。
撮像領域が大きいほど、より解像度の高い画像が得られる。一方、撮像領域の数を増やせば、異なる光学特性のフィルター、或いは異なる光学特性のフィルターの異なる組合せの数を増やすことができ、従って、撮像素子11で得られる情報の種類を増やすことができる。
図2(b)〜(d)並びに図3(a)及び(b)は、図2(a)とは異なる分割の方法を示す。
図2(b)の例では、撮像面11aが長方形であり、縦方向の寸法と横方向の寸法の比が3:4であり、撮像面11aが、一つの高解像度撮像領域15aと3つの低解像度撮像領域15b〜15dとに分割されている。これらの撮像領域15a〜15dの各々は正方形である。撮像面11aのうちの左側の1/4を占める帯状の部分に低解像度撮像領域15b〜15dが縦方向に順に配列され、残りの部分に高解像度撮像領域15aが配置されている。
縦方向の中央に位置する低解像度撮像領域15cの中心と高解像度撮像領域15aの中心とは横方向に並んでいる。このような配置であると、低解像度撮像領域15cで得られる画像と高解像度撮像領域15aで得られる画像との視差による位置ずれを用いてステレオマッチングを行うことにより、奥行き情報を取得することが可能である。
図2(c)及び(d)並びに図3(a)及び(b)の例では、撮像面11aと撮像領域15a、15b、…とがともに正方形である。
図2(c)の例では、撮像面11aが、1つの高解像度撮像領域15aと7つの低解像度撮像領域15b〜15hとに分割されている。具体的には、撮像面11aのうちの左側の1/4を占める帯状の部分及び下側の1/4を占める帯状の部分に低解像度撮像領域15b〜15hが配列され、残りの部分に高解像度撮像領域15aが配置されている。
図2(c)の撮像面11aは、図2(a)の撮像面11aよりも大きく、図2(c)の高解像度撮像領域15aは、図2(a)の高解像度撮像領域15aよりも大きく、より高い解像度の画像D0が取得できる。また、左側の帯状の部分において上から2番目に位置する低解像度撮像領域15cの中心と高解像度撮像領域15aの中心とは横方向に並んでおり、また下側の帯状の部分において右から2番目に位置する低解像度撮像領域15gの中心と高解像度撮像領域15aの中心とは縦方向に並んでおり、多視点ステレオマッチングを実施することで横方向と縦方向の両方で精度の高い奥行き情報を取得することができる。
図2(d)の例では、撮像面11aが1つの高解像度撮像領域15aと12個の低解像度撮像領域15b〜15mとに分割されている。具体的には、撮像面11aのうちの左側の1/4を占める帯状の部分、下側の1/4を占める帯状の部分、右側の1/4を占める帯状の部分、及び上側の1/4を占める帯状の部分に、縦方向に低解像度撮像領域15b〜15mが順に配列され、残りの部分に高解像度撮像領域15aが配置されている。
図2(c)の例と図2(d)の例とで、撮像面11aの大きさが同じであれば、図2(d)の高解像度撮像領域15aは図2(c)の高解像度撮像領域15aよりも小さい。代わりに、より多くの低解像度撮像領域15b〜15mが設けられており、より多くの、互いに異なる種類の情報を持つ画像D1を取得することが可能である。
また図3(a)の例では、撮像領域が複数の高解像度撮像領域と複数の低解像度撮像領域とを有する。具体的には撮像面11aが3つの高解像度撮像領域15a〜15cと、4つの低解像度撮像領域15d〜15gとに分割されている。
このような分割のため、撮像面11aが縦方向及び横方向にそれぞれ2つずつに分けられ、左上、右上及び右下の各1/4の部分に高解像度撮像領域15a〜15cが配置されている。さらに左下の1/4の部分が、縦方向及び横方向にそれぞれ2つずつに分けられ、それぞれの分割領域で4つの低解像度撮像領域15d〜15gが構成されている。
図3(a)の例は、例えば、高解像度撮像領域15a〜15cで基本的な色情報であるRGB情報を取得し、低解像度撮像領域15d〜15gで他の狭帯域の波長情報、或いは偏光情報を取得したりするために利用することができる。このようにすることで、より自然な色味でかつ色情報を持つ、解像度が高い画像を取得することができる。なお、高解像度撮像領域15a〜15cでRGB情報を取得するには、高解像度撮像領域15a〜15cにR透過フィルター、G透過フィルター、B透過フィルターを設ければ良い。同様に狭帯域の波長情報を取得するには狭帯域透過フィルターを設ければ良く、特定方向の偏光情報を取得には、当該方向の偏光成分を透過させ、他の方向の偏光成分を減衰させる光学フィルターを設ければ良い。
図3(b)の例では、撮像領域が、高解像度撮像領域15aのほかに、互いに大きさの異なる2種類の撮像領域を含む。即ち、第1群の撮像領域15b〜15iに対して第2群の撮像領域15j〜15yの各々は縦方向及び横方向の寸法が1/2である。
区別のため、第1群の撮像領域15b〜15iを中間解像度撮像領域と呼び、第2群の撮像領域15j〜15yを低解像度撮像領域と呼ぶことがある。
また、第1群の撮像領域15b〜15i及び第2群の撮像領域15j〜15yは、高解像度撮像領域15aに比べて解像度が低いので、これらをまとめて低解像度撮像領域と呼ぶこともある。
図3(b)の構成における、撮像領域の配置を以下に詳しく述べる。即ち、撮像面11aが縦方向及び横方向にそれぞれ2つずつに分けられ、右上の1/4の部分に高解像度撮像領域15aが配置されている。左上の1/4の部分が、縦方向及び横方向にそれぞれ2つずつに分けられ、それぞれの分割領域で4つの低解像度撮像領域15b〜15eが構成されている。また右下の1/4の部分が、縦方向及び横方向にそれぞれ2つずつに分けられ、それぞれの分割領域で4つの低解像度撮像領域15f〜15iが構成されている。さらに左下の1/4の部分が、縦方向及び横方向にそれぞれ4つずつに分けられ、それぞれの分割領域で16個の低解像度撮像領域15j〜15yが構成されている。
このように、多くの撮像領域を有することで、多くの異なる種類の情報を取得することができる。また、高解像度撮像領域以外の撮像領域として異なる大きさのものを有するので、情報の種類に応じて、異なる大きさの撮像領域を割り当てることができる。
例えば多数の狭帯域の画像から成るマルチスペクトル画像を取得したい場合、比較的小さい撮像領域(低解像度撮像領域)15j〜15yのうちの一つ以上の撮像領域をそれぞれ狭帯域の画像に割り当てて、これらに対して狭帯域のバンドパスフィルターを設け、一方、基本的なRGBの色情報や近赤外情報、偏光情報など、解像度もある程度高いことが求められる情報には、比較的大きい撮像領域(中間解像度撮像領域)15b〜15eのうちの一つ以上の撮像領域を割り当てて、これらに対して、それぞれの情報を取得するための光学フィルターを設ければ良い。
以上のように、図2(a)〜(d)並びに図3(a)及び(b)で示される例では、撮像領域がすべて正方形であるが、本発明はこれに限定されず、長方形であっても良い。また、高解像度撮像領域と低解像度撮像領域とは大きさが異なり、さらに低解像度撮像領域が、複数の互いに異なる大きさの撮像領域を含んでも良いが、高解像度撮像領域及び低解像度撮像領域を含めすべての撮像領域同士は縦横比が同じであることが望ましい。
図2(a)〜(d)並びに図3(a)及び(b)に例示するように撮像面11aを分割して複数の撮像領域を形成する場合、複数の撮像領域の視野を正確に一致させることは困難である。レンズの焦点距離の誤差、収差などのためである。複数の撮像領域の視野が厳密に一致しない場合には、撮像により得られる画像を切り抜いて(トリミングで画像の端の部分を除去して)使用する等すれば良い。
次に実施の形態1のカメラ装置1により得られる効果を説明する。
実施の形態1のカメラ装置1では、該カメラ装置を構成する複眼カメラ10の撮像素子の撮像面が複数の撮像領域に分割されているので、複数の互いに異なる種類の情報を表す画像を取得することができる。
また、撮像領域が比較的大きい撮像領域と、比較的小さい撮像領域とを含むので、複数の互いに異なる種類の情報のうち、優先度の高い情報、即ち高い解像度での取得がより強く望まれる画像に、比較的大きい撮像領域を割り当てることで、そのような画像の高い解像度での取得が可能となる。
これにより、例えば、RGBの可視光画像などの基本的な画像に比較的大きい撮像領域を割り当てることで、これらの画像を高い解像度で取得し、それとともに、マルチスペクトル画像を構成するための、複数の狭帯域の画像、近赤外画像、紫外線画像、さらには偏光画像、異なる露光量での画像などの付加的な情報を有する画像を多数の比較的小さい撮像領域に割り当てることでこれらの画像を数多く取得することが可能となる。
また、複数の撮像領域が一つの撮像素子に形成されるので、カメラ装置のサイズを抑制することができる。
実施の形態2.
図4は、本発明の実施の形態2に係る複眼撮像装置100を示すブロック図である。図4に示される複眼撮像装置100は、カメラ装置1と、撮像制御部17と、A/D変換部18と、プロセッサー20とを備えている。カメラ装置1としては、実施の形態1で説明したものを用いることができる。
撮像制御部17は、カメラ装置1による撮像を制御する。例えば、撮像タイミング、露光時間の制御を行う。
カメラ装置1から出力された撮像信号は、図示しないアナログ処理部で増幅等の処理を受けたのち、A/D変換部18でデジタル画像信号に変換されて、プロセッサー20に入力される。
プロセッサー20は、画像メモリ22と、少なくとも一つの高解像度化部30とを有する。
画像メモリ22は、カメラ装置1を構成する複眼カメラ10の複数の撮像領域にそれぞれ対応する複数の記憶領域22−1、22−2、…を有するのが望ましい。この場合、各記憶領域に記憶されるデジタル画像信号により、対応する撮像領域で取得された画像が表される。
画像メモリ22のそれぞれの記憶領域22−1、22−2、…に記憶された画像のうち、解像度が互いに異なる2つの撮像領域で取得された画像が高解像度化部30に供給される。
例えば、図2(a)の撮像領域15aで取得され高解像度画像と、撮像領域15bで取得された低解像度画像とが高解像度化部30に供給される。以下では、撮像領域15aで取得され高解像度画像を符号D0で示し、撮像領域15bで取得された低解像度画像を符号D1で示す。
高解像度化部30は、高解像度画像D0を参照画像として用いて、低解像度画像D1を高解像度化して、高解像度画像D30を生成する。
高解像度化部30は、生成しようとする高解像度画像D30の各々と参照画像D0とが画像特徴(局部における勾配、パターンなど)において互いに相関を有するという仮定に基づき、参照画像D0に含まれる被写体の高解像度成分を、低解像度画像D1に転移させる(反映させる)ことにより、被写体の高解像度成分を含む高解像度画像D30を生成する処理を行う。さらに、低解像度画像D1と参照画像D0とを比較し、相関が強いと考えられる撮像領域では高解像度成分の転移を促進し、相関が弱いと考えられる撮像領域では高解像度成分の転移を抑制するように、画像中の位置に応じて適応的な処理を行ってもよい。これは、低解像度画像D1と参照画像D0は、撮像条件(波長、偏光方向、露光量等)が異なるため、被写体の反射特性によっては必ずしも低解像度画像D1の高解像度成分と参照画像D0とが相関を有するとは限らないからである。
高解像度化部30の一つの構成例(符号30aで示す)を図5に示す。
図5の高解像度化部30aは、フィルターリングにより、低解像度画像D1及び参照画像D0の各々から低周波成分及び高周波成分を分離し、それぞれの成分ごとに合成する方法で高解像度化を行う。
図5に示される高解像度化部30aは、フィルター処理部311、312、低周波成分合成部313、高周波成分合成部314、及び成分合成部315を有する。
フィルター処理部(第1のフィルター処理部)311は、低解像度画像D1からその低周波成分D1Lと、高周波成分D1Hとを抽出する。フィルター処理部311は例えば低解像度画像D1に対して平滑化フィルター処理を行い、低周波成分D1Lを抽出し、抽出された低周波成分D1Lと元の画像D1との差分を求めることで当該画像の高周波成分D1Hを生成する。
フィルター処理部(第2のフィルター処理部)312は、参照画像D0からその低周波成分D0Lと、高周波成分D0Hとを抽出する。フィルター処理部312は例えば、参照画像D0に対して平滑化フィルター処理を行い、低周波成分D0Lを抽出し、抽出された低周波成分D0Lと元の画像D0との差分を求めることで当該画像の高周波成分D0Hを生成する。
フィルター処理部311、312における平滑化フィルター処理においては、ガウシアンフィルター、バイラテラルフィルター等を用いることができる。
低周波成分合成部313は、低周波成分D1Lを参照画像D0と同じ解像度まで拡大し、拡大された低周波成分と低周波成分D0Lとを、重み付け加算により合成して、合成低周波成分D313を生成する。
高周波成分合成部314は、高周波成分D1Hを参照画像D0と同じ解像度まで拡大し、該拡大された高周波成分と高周波成分D0Hとを、重み付け加算により合成して、合成高周波成分D314を生成する。
成分合成部315は、合成低周波成分D313と合成高周波成分D314とを合成し、高解像度画像D30を生成する。
図5に示される構成においては、高周波成分合成部314における合成において、高解像度画像D0に含まれる高解像度の高周波成分D0Hの重みを大きくして合成することにより、解像感の向上を図ることができる。
高解像度化部30の他の構成例(符号30bで示す)を図6に示す。
図6に示される高解像度化部30bは、低解像度画像D1と参照画像D0とを入力として、参照画像D0の情報を元に低解像度画像D1を高解像度化する、ガイデッドフィルターを用いたものである。
図6に示される高解像度化部30bは、縮小処理部321、係数計算部322、係数マップ拡大部323、及び線形変換部324を有する。
縮小処理部321は、参照画像D0を縮小して、低解像度画像D1と同じ解像度の縮小参照画像D0bを生成する。
係数計算部322は、縮小参照画像D0bと低解像度画像D1との線形関係を近似する線形係数a、bを計算する。
係数計算部322は、まず、画素位置xを中心とした局所領域Ω(x)における縮小参照画像D0bの画素値I(y)の分散varI(x)を式(1)により求める。
Figure 0006297234
式(1)で
I(x)は、縮小参照画像D0bの画素位置xの画素の画素値である。
I(y)は、縮小参照画像D0bの画素位置yの画素の画素値である。
ここで画素位置yは、画素位置xを中心とした局所領域Ω(x)内の画素位置である。
係数計算部322はまた、画素位置xを中心とした局所領域Ω(x)における、縮小参照画像D0bの画素値I(y)と入力画像D1の画素値p(y)との共分散covIp(x)を式(2)により求める。
Figure 0006297234
式(2)で、I(x)及びI(y)は、式(1)に関して説明した通りのものである。
p(y)は、入力画像D1の画素位置yの画素の画素値である。
係数計算部322は、さらに式(1)で求めた分散varI(x)及び式(2)で求めた共分散covIp(x)から、式(3)により、係数aを算出する。
Figure 0006297234
式(3)でepsはエッジ保存の度合いを決定する定数であり、予め定められる。
係数計算部322はさらに、式(3)で求めた係数a(x)を用いて、式(4)により係数b(x)を算出する。
Figure 0006297234
係数a(x)及びb(x)は線形回帰係数と呼ばれる。
係数計算部322はさらに、式(3)及び式(4)で得られた係数a(x)及びb(x)を式(5)により平均化することで線形係数a(x)、b(x)を算出する。
Figure 0006297234
係数マップ拡大部323は、係数計算部322において式(5)で求められた線形係数a(x)から成る係数マップ及び線形係数b(x)から成る係数マップを、参照画像D0と同じ解像度まで拡大する。拡大された係数マップにおける線形係数をそれぞれamb(x)、bmb(x)で表す。係数マップは、画像を構成するすべての画素に対応する係数を、対応する画素と同じ位置に配置したものである。
線形変換部324は、拡大された係数マップにおける線形係数amb、bmbと参照画像D0とを元に、低解像度画像D1により表される情報を持つ高解像度画像D30を生成する。
即ち、線形変換部324は、拡大された係数マップにおける線形係数amb、bmbを用いて式(6)により、ガイデッドフィルター出力値qを導出する。
Figure 0006297234
q(x)は高解像度画像D30の画素位置xの画素の画素値である。
J(x)は、参照画像D0の画素位置xの画素の画素値である。
式(6)は、ガイデッドフィルターの出力(画像D30の画素値)q(x)と、参照画像D0の画素値J(x)とは、線形関係を有することを示す。
図6に示される構成のうち、係数計算部322及び線形変換部324とがガイデッドフィルターによる処理の基本的構成部分であり、縮小処理部321及び係数マップ拡大部323は、係数計算部322における処理の負荷を減らすために付加されたものである。
上記のようにして高解像度画像D30の画素値を算出することで、縮小参照画像D0bの分散varI(x)の値が小さい領域のみ平滑化処理を行い、その他の領域のテクスチャを保存するようにすることができる。
上記の高解像度化部30bは、ガイデッドフィルターを用いた処理を行うが、本発明はこれに限定されない。高解像度化部30bは、例えば、ジョイントバイラテラルフィルターを用いた方法など、高解像度画像のエッジや勾配情報を基に互いに異なる種類の情報を持つ画像を高解像度化する手法など、他の手法を用いるものであっても良い。
図7は、実施の形態2で用いられるプロセッサー20の他の例(符号20bで示す)を示す。図7に示されるプロセッサー20bは、画像メモリ22及び高解像度化部30に加えて、位置合わせ部25を有する。
位置合わせ部25は、カメラ装置1から出力される低解像度画像D1と高解像度画像D0との間で位置ずれを有する場合、高解像度化部30における高解像度化の前に位置合わせ処理を行う。この位置合わせ処理としては、初期位置ずれ(校正)情報を利用した固定値の位置合わせ、レジストレーション(画像マッチング)を含む動的な位置合わせ等を行うことができる。
高解像度化部30は、位置合わせ部25で位置合わせされた画像を入力として、高解像度化を行う。
図5又は図6で説明した高解像度化部(30a、30b)或いはそれらの変形例として説明した高解像度化部を複数個設け、それぞれに異なる低解像度画像を入力し、各高解像度化部で、入力された低解像度画像に対して、高解像度画像を参照画像として用いて高解像度化を行うこととしても良い。
複数の高解像度化部間で、参照画像として用いる高解像度画像は互いに同じものであっても良く、異なるものであっても良い。
また、図7で説明した位置合わせ部25と高解像度化部30の組み合わせを複数個設けても良い。
図8は、実施の形態2で用いられるプロセッサーの他の例(符号20cで示す)を示す。
図8に示されるプロセッサー20cは、画像メモリ22と、高解像度化部30cと、画像拡大部31r、31bとを有する。
図8の例は、撮像面11aが例えば図2(a)のように、一つの高解像度撮像領域15aと3つ以上の低解像度撮像領域とを有し、高解像度撮像領域15aでG情報を取得し、3つの低解像度撮像領域(例えば15b、15c、15d)でそれぞれR画像、G画像、B画像を取得する場合を想定している。
この場合、3つの低解像度画像D1−r、D1−g、D1−bがそれぞれ低解像度のR画像、G画像、B画像を表す。また高解像度撮像領域15aで取得されたG画像を符号D0で表す。
画像拡大部31r、31bはそれぞれ、画像D1−r、D1−bを、高解像度画像D0と同じ解像度まで拡大処理して拡大画像D31−r、D31−bを生成する。
高解像度化部30cは、画像D1−gを画像D0で置き換え、置き換えにより得られた画像を高解像度画像D30−gとして出力する。
このような処理を行う場合、画像処理のための演算量或いは演算時間を大幅に削減でき、プロセッサーにかかるハードウエアコストを削減することができる。
図8の構成においても、高解像度化部30cの前段に位置合わせ部25(図7に示したもの)を設けても良い。さらに、画像拡大部31r、31bの前段にも同様の位置合わせ部を設けても良い。
次に実施の形態2の複眼撮像装置100により得られる効果を説明する。
実施の形態2の複眼撮像装置100では、カメラ装置の複数の撮像領域から、互いに異なる種類の情報を持つ複数の画像が得られ、これらの画像が比較的解像度の低い画像と比較的解像度の高い画像とを含み、比較的解像度の高い画像の高解像度成分を用いて比較的解像度の低い画像を高解像度化するので、互いに異なる種類の情報を持ち、解像度の高い複数の画像を得ることができる。
したがって、互いに異なる種類の情報を持つ画像の取得のための撮像領域が小さくても、高解像度の画像を生成することができ、カメラ装置のサイズを抑制しながら、互いに異なる種類の情報を持つ画像を高解像度で得ることができる。
実施の形態3.
図9は、本発明の実施の形態3に係る複眼撮像装置で用いられるプロセッサー20の一例(符号20dで示す)を示す。図9に示されるプロセッサー20dは、画像メモリ22と、複数の、即ち第1乃至第N(Nは2以上の整数)の高解像度化部30−1〜30−Nと、合成部40とを有する。実施の形態3の複眼撮像装置のうち、プロセッサー20d以外の部分は、例えば図4と同様に構成されている。
第1乃至第Nの高解像度化部30−1〜30−Nは、それぞれN個の低解像度撮像領域(例えば図2(a)の例の15b、15c、…)に対応して設けられ、それぞれ対応する低解像度撮像領域で取得された低解像度画像D1−1〜D1−Nを受けるとともに、高解像度撮像領域15aで取得された高解像度画像D0を受ける。
高解像度化部30−n(nは1からNのいずれか)は、高解像度画像D0を参照画像として用いて、低解像度画像D1−nを高解像度化して、高解像度画像D30−nを生成する。このような処理がすべての高解像度化部30−1〜30−Nで行われ、複数の、互いに異なる種類の情報を持つ高解像度画像D30−1〜D30−Nが生成される。
高解像度化部30−1〜30−Nの各々は、例えば、図5、図6、又は図8で説明したように構成されている。
合成部40は、複数の、互いに異なる種類の情報を持つ高解像度画像D30−1〜D30−Nを入力として一つ以上の合成高解像度画像D40−a、D40−b…を生成する。
即ち、合成部40は、高解像度化部30−1〜30−Nで生成された、互いに異なる種類の情報を持つ高解像度画像D30−1〜D30−Nを合成して、合成高解像度画像D40−a、D40−b…を生成する。
合成部40における合成処理は、例えば、パンシャープン処理、画像の重み付け加算、明度合成、または領域選択で行い得る。領域選択は例えば局所分散値を指標として推定される画像の視認性に基づいて行うこととしても良い。
上記のうち、パンシャープン技術は、衛星画像処理(リモートセンシング)などで利用されているものであり、パンシャープン処理においては、RGBのカラー画像がHSI(色相、再度、明度)画像に変換され、変換で得られたHSI画像のうちのI値が高分解能画像のモノクロ画像の画素値で置き換えられ、置き換えた画素値を用いてHSI画像がRGB画像に戻される。
合成部40の一例(符号40bで示す)を図10に示す。
図10に示される合成部40bは、輝度/色分離部411、輝度分離部412、重み付け加算部413、及び輝度/色合成部414を有し、輝度の重み付け加算による合成を行う。
合成部40bには、複数の高解像度化部30−1、30−2、…(各々図5、図6、図8などで説明したのと同様のもの)で高解像度化されたR画像D30−r、G画像D30−g、B画像D30−b、偏光画像D30−p、及びNIR(近赤外線)画像D30−iが入力される。
なお、図8に示される画像拡大部31r、31bで拡大された画像D31−r、D31−bを合成部40bに入力し、高解像度画像の代わりに用いても良い。即ち、合成部40bが、一つ以上の高解像度画像と一つ以上の拡大画像とを合成するように構成されていても良い。
輝度/色分離部411は、R画像D30−r、G画像D30−g、B画像D30−bを入力として、それらを、輝度成分D411−y及びそれぞれの色成分(R色、G色、B色の成分)D411−r、D411−g、D411−bに分離する。
輝度分離部412は、偏光画像D30−pを入力として、輝度成分D412を分離する。
重み付け加算部413は、輝度/色分離部411から出力される輝度成分D411−yに対して、輝度分離部412から出力される偏光画像の輝度成分D412、合成部40bに入力されるNIR画像D30−iを重み付け加算して、合成輝度成分D413を求める。
輝度/色合成部414は、輝度/色分離部411から出力されるそれぞれの色成分D411−r、D411−g、D411−bと、重み付け加算部413で求めた合成輝度成分D413とを合成して、R画像D40−r、G画像D40−g、及びB画像D40−bを生成する。
輝度/色合成部414から出力されるR画像D40−r、G画像D40−g、及びB画像D40−bは、偏光画像D30−pの輝度成分、NIR画像D30−iにより増強された輝度情報を持つものとなる。
重み付け加算部413における重み付け加算には、画像に応じたゲインを乗算した画素値を加算する手法を用いても良い。
代わりに、それぞれの画像(輝度/色分離部411から出力される輝度成分D411−y、輝度分離部412から出力される輝度成分D412、合成部40bに入力されるNIR画像D30−i)の高周波成分をフィルター処理により抽出し、重み付け加算して加重平均を求めることとしても良い。
図11は、実施の形態3で用いられるプロセッサー20の他の例(符号20eで示す)を示す。
図11に示されるプロセッサー20eは、画像メモリ22と、複数の高解像度化部30−1〜30−Nと、合成部40を有するほか、カメラ情報入力端子23を有し、該端子23で、複眼カメラ10から、複眼カメラ情報Dinfoを受けて、高解像度化部30−1〜30−N及び合成部40に複眼カメラ情報Dinfoを伝える。
複眼カメラ情報Dinfoは、各撮像領域で取得される波長を表す情報、偏光方向を表す情報、各撮像領域の位置(撮像面内における位置)を表す情報などである。
複眼カメラ情報Dinfoを高解像度化部30−1〜30−N及び合成部40に入力することで、高解像度化、合成処理等における精度を向上させ、あるいはこれらの処理によって得られる情報を増やすことが可能である。
例えば複眼カメラ情報Dinfoが、各撮像領域に対して設けられた光学フィルターのスペクトル特性を表すものであれば、合成処理時にRGB画像とモノクロ画像から近赤外画像を抽出することができる。
以上のように本実施の形態3によれば、カメラ装置で得られた複数の互いに異なる種類の情報を持つ複数の画像を高解像度化した上で合成することで、使用目的に応じて一層有用な画像を生成することができる。
実施の形態4.
本発明の実施の形態4の複眼撮像装置で用いられるプロセッサー20の構成例(符号20fで示す)を図12に示す。図12に示されるプロセッサー20fは、画像メモリ22と、複数の、即ち第1乃至第Nの高解像度化部30−1〜30−Nと、合成部41とを有する。実施の形態4の複眼撮像装置のうち、プロセッサー20f以外の部分は、例えば図4と同様に構成されている。高解像度化部30−1〜30−Nは、例えば図9で説明したのと同様のものである。
合成部41は、高解像度化部30−1〜30−Nから出力される高解像度画像D30−1〜D30−Nを受け、これらから、これらとは別の種類の情報を表す高解像度画像D41−a、D41−b、…を補間により生成する。
この場合、複数の低解像度撮像領域(例えば図2(a)の例の15b、15c、…)で取得される画像D1−1、D1−2、…が、撮像条件を表すパラメータのうちの少なくとも一つのパラメータの種類又は値が互いに異なる複数の画像を含み、従って、これらの低解像度画像D1−1、D1−2、…から生成される高解像度画像D30−1、D30−2、…が、撮像条件を表すパラメータのうちの少なくとも一つのパラメータの種類又は値が互いに異なる複数の画像を含む場合を想定している。
合成部41は、このような複数の高解像度画像D30−1、D30−2、…から、これらのいずれとも、上記少なくとも一つのパラメータの種類又は値が異なる高解像度画像D41−a、D41−b、…を補間により生成(再構成)する。
この補間には、例えば、圧縮センシングに用いられる復元手法を適用することができる。
以下、この補間による画像の生成の例を、図13を参照して説明する。図13の例では異なる種類のパラメータが、波長及び露光量である。またパラメータの値が、波長についてはR、G、B(R波長帯の代表的波長、G波長帯の代表的波長、B波長帯の代表的波長)であり、露光量については、1/1000、1/100、1/10、1である。これらの数値は、光学フィルターを用いない場合を基準とする相対値である。
高解像度画像D30−1、D30−2、…として、図13に〇印で示すパラメータの組み合わせによる画像が合成部41に入力されるものとする。例えば高解像度画像D30−1は、R波長帯の光を透過する光学フィルターを備えた撮像領域で、露光量1/1000での撮像で得られた画像を高解像度化した画像である。同様に、高解像度画像D30−2は、B波長帯の光を透過する光学フィルターを備えた撮像領域で、露光量1/1000での撮像で得られた画像を高解像度化した画像である。
合成部41は、高解像度画像D30−1〜D30−6を元にして、補間により、△印で示すパラメータの組み合わせに対応する画像D41−a〜D41−fを生成する。例えば画像D41−aは、G波長帯の光を透過する光学フィルターを備えた撮像領域で、露光量1/1000での撮像で得られた画像を高解像度化したときに生成されると推定される画像である。
合成部41は、生成した画像D41−a〜D41−fのみならず、入力された画像D30−1〜D30−6をも出力する。
このような処理を行うことで、より多数の互いに異なる種類の情報を持つ高解像度画像D30−1〜D30−6、D40−a〜D40−fが得られる。
次に実施の形態4の複眼撮像装置により得られる効果を説明する。
実施の形態4によれば、撮像により得られた、比較的少ない、互いに異なる種類の情報を有する画像から、より多数の、互いに異なる種類の情報を有する画像を生成することができる。従って、撮像領域の数が多くなくても、多くの種類の情報を得ることができる。
実施の形態5.
本発明の実施の形態5に係る複眼撮像装置で用いられるプロセッサー20の構成例(符号20gで示す)を図14に示す。図14に示されるプロセッサー20gは、画像メモリ22と、合成部42と、高解像度化部32とを有する。実施の形態5の複眼撮像装置のうち、プロセッサー20g以外の部分は、例えば図4と同様に構成されている。
合成部42は、低解像度撮像領域(例えば図2(a)の例の15b、15c、…)で取得された互いに異なる種類の情報を持つ画像D1−1〜D1−Nに対して、合成処理を行って、一つ以上の合成画像(合成低解像度画像)D42−a、D42−b、…を生成する。
高解像度化部32は、合成部42から出力される合成画像D42−a、D42−b、…のうちの一つ以上の合成画像に対し、参照画像D0を用いて高解像度化を行い、高解像度画像(高解像度合成画像)D32−a、D32−b、…を生成する。
合成部42における合成により、入力画像D1−1〜D1−Nよりも少ない数の合成画像D42−a、D42−b、…が生成される場合には、合成の後で高解像度化を行うことで、高解像度化のための処理を減らすことができ、全体として演算量を少なくすることができる。
実施の形態6.
図15は、本発明の実施の形態6に係る複眼撮像装置102を示すブロック図である。
実施の形態6に係る複眼撮像装置102は、カメラ装置50と、撮像制御部17と、A/D変換部18、19と、プロセッサー20hとを備えている。
図16は、カメラ装置50の分解斜視図である。カメラ装置50は、複眼カメラ60と単眼カメラ70とを有する。
以下に詳しく述べるように、複眼カメラ60としては、図1(a)に示される複眼カメラ10と同様に、撮像面が複数の撮像領域に分割されたものが用いられ、一方、単眼カメラ70は、撮像面が分割されておらず、単眼カメラ70で取得された画像が、図1(a)の複眼カメラ10の高解像度撮像領域で取得された画像の代わりとして用いられる。
複眼カメラ60は、撮像素子61と、レンズアレイ62と、フィルターアレイ63と、隔壁64とを有する。
撮像素子61は矩形の撮像面61aを有し、該撮像面61aは例えば図17(a)に示されるように複数の、例えば9つの撮像領域65a〜65iに分割されている。これら9つの撮像領域65a〜65iは、互いに大きさが同じであり、3行3列に配列されている。
図17(b)は、撮像面61aの分割方法の他の例を示す。図17(b)に示す例では、複眼カメラ60の撮像素子61の撮像面61aが4つの撮像領域65a〜65dに分割されている。これら4つの撮像領域65a〜65dは、互いに大きさが同じであり、2行2列に配列されている。
複眼カメラ60の撮像領域65a、65b、…は、図17(a)及び(b)の例のように、互いに同じ大きさのものであっても良いが、本発明はこれに限定されず、撮像領域65a、65b、…は互いに異なる大きさのものであっても良い。
互いに異なる大きさのものである場合にも、縦横比が互いに同じであることが望ましい。
レンズアレイ62は、それぞれの撮像領域65a、65b、…に対応して設けられ、それぞれ対応する撮像領域に同じ視野の画像を結像させるレンズ62a、62b、…を含む。
フィルターアレイ63は、複数の撮像領域のうちの一つ以上の撮像領域に対して設けられた光学フィルター63a、63b、…を含む。
隔壁64は、撮像領域65a、65b、…相互間に設けられ、各撮像領域に、対応するレンズ以外のレンズからの光が入射するのを防ぐ。
単眼カメラ70は、撮像素子71と、レンズ72と、光学フィルター73とを有する。
撮像素子71も矩形の撮像面71aを有する。撮像面71aの全体で一つの撮像領域75が構成されている。
図17(a)及び(b)には、複眼カメラ60の撮像領域65a、65b、…に対する、単眼カメラ70の撮像領域75の位置関係の概略が示されている。
単眼カメラ70の撮像素子71の撮像面71aの全体で構成される撮像領域75は、複眼カメラ60の撮像領域65a、65b、…のうちのいずれよりも多い画素数を有する。即ち、単眼カメラ70の撮像領域75の解像度は、複眼カメラ60の撮像領域65a、65b、…のうちの最も大きい撮像領域の解像度よりも高い。
撮像領域75は、撮像領域65a、65b、…と縦横比が等しい。
単眼カメラ70の撮像領域75は、複眼カメラの撮像領域65a、65b、…とは解像度が互いに異なる撮像領域であり、前者の方が解像度が高い。区別のため、前者を第1種の撮像領域と言い、後者を第2種の撮像領域と言うことがある。
単眼カメラ70のレンズ72は、撮像領域75に、複眼カメラ60の各撮像領域と同じ視野の画像が結像されるように設けられている。
複眼カメラ60のレンズ62a、62b、…と、単眼カメラ70のレンズ72とによりレンズ群が構成される。
フィルターアレイ63を構成する光学フィルター63a、63b、…及び光学フィルター73には、異なる光学特性の光学フィルターが含まれ、それによってそれぞれの撮像領域からは互いに異なる種類の情報(異なる種類の情報を表す画像)が得られるようになっている。
例えば、実施の形態1の図2(a)の高解像度撮像領域15aが単眼カメラ70の撮像領域75に置き換わり、図2(a)の低解像度撮像領域15b、15c、…が、複眼カメラ60撮像領域65a、65b、…に置き換わったものとみて、それぞれの撮像領域に対する光学フィルターの選択を行えば良い。即ち、図2(a)の高解像度撮像領域15aに対して設けられる光学フィルターと同じ特性の光学フィルターを、実施の形態6では、単眼カメラ70の撮像領域75に対して設け、図2(a)の低解像度撮像領域15b、15c、…に対して設けられる光学フィルターと同じ特性の光学フィルターを、実施の形態6では、複眼カメラ60の撮像領域65a、65b、…に対して設ければ良い。
なお、撮像領域75、65a、65b、…のうちの一つ以上の撮像領域、例えば撮像領域75に対しては光学フィルターを設けない(モノクロ領域とする)こととしても良い。
撮像制御部17は、複眼カメラ60における撮像と、単眼カメラ70における撮像を制御する。例えば、2つのカメラにおける撮像のタイミング、露光量の制御を行う。撮像のタイミングの制御においては、2つのカメラにおける撮像がほぼ同時に行われるように制御を行う。
本実施の形態の複眼撮像装置102のプロセッサー20hには、複眼カメラ60の複数の撮像領域で取得された画像と、単眼カメラ70で取得された画像とが、それぞれA/D変換部18、19を介して供給される。
プロセッサー20hは、画像メモリ22と、少なくとも一つの高解像度化部30を有する。
画像メモリ22は、複眼カメラ60の複数の撮像領域、及び単眼カメラ70の撮像領域にそれぞれ対応する複数の記憶領域22−1、22−2、…を有するのが望ましい。
高解像度化部30は、単眼カメラ70で取得された高解像度画像D0を参照画像として受け、複眼カメラ60の撮像領域のいずれかで取得された画像D1を低解像度画像として受け、参照画像D0に含まれる高解像度成分を用いて、低解像度画像D1を高解像度化して、高解像度画像D30を生成する。
以上のように、実施の形態1のカメラ装置1が用いられる場合、該複眼カメラ10の高解像度撮像領域(15aなど)で取得される画像を参照画像として、同じ複眼カメラ10の低解像度撮像領域で取得された画像の高解像度化が行われるのに対し、実施の形態6のカメラ装置50が用いられる場合には、単眼カメラ70の撮像素子で取得された画像を参照画像として、複眼カメラ60で取得された低解像度画像の高解像度化が行われる。
上記以外の点では実施の形態6は、実施の形態2と同様である。例えば、高解像度化部30による処理は、実施の形態2で図5、図6、図8などを参照して説明したのと同様に行い得る。
なお、実施の形態6のプロセッサー20hとして、実施の形態2で説明したプロセッサーと同様のものを用いるものとして説明したが、代わりに、実施の形態3、4又は5のプロセッサーと同様のものを用いることとしても良い。いずれにしても、実施の形態1の高解像度撮像領域で得られた高解像度画像の代わりに、単眼カメラ70の撮像領域で得られた画像を参照画像として用いれば良い。
なおまた、図17(a)に示す例では、撮像面61aの中心に位置する撮像領域65iの中心と、撮像領域75の中心とは横方向に並んでいる。このような配置であると、撮像領域65iで得られる画像と撮像領域75で得られる画像との視差による位置ずれを用いて、ステレオマッチングを行うことにより奥行き情報を取得することができる。
次に実施の形態6の複眼撮像装置102により得られる効果を説明する。
実施の形態6の複眼撮像装置102では、複眼カメラ60とは別に単眼カメラ70が設けられており、単眼カメラ70で高い解像度の画像を取得することができる。従って、複眼カメラ60の各撮像領域で得られる画像をより高い解像度に高解像度化することが可能である。
また図17(a)及び(b)に示される例のように、複眼カメラ60の撮像領域65a、65b、…を全て同一形状にすることができ、そのようにすることで、製造コストを抑制することが可能である。
さらに複眼カメラ60と単眼カメラ70とは中心間の距離が比較的大きいので、単眼カメラ70で得られる画像と、複眼カメラ60で得られる画像との視差による位置ずれが、実施の形態1の複眼カメラ10の異なる撮像領域で得られる画像間における視差による位置ずれよりも大きく、この視差を活用することでより高精度の奥行き情報を取得することも可能となる。
以上実施の形態1では、カメラ装置が複眼カメラ(10)のみで構成され、実施の形態6では、カメラ装置が複眼カメラ(60)と単眼カメラ(70)とで構成されるが、要するに、カメラ装置が互いに大きさが異なる複数の撮像領域(第1種の撮像領域及び第2種の撮像領域)を有し、複数の撮像領域で異なる種類の情報を表す画像が取得されるようにフィルター群が設けられていれば良い。互いに異なる撮像領域は、実施の形態1のように一つの撮像素子(11)に形成されていても良く、実施の形態6のように複数の撮像素子(61、71)に形成されていても良い。互いに大きさが異なる複数の撮像領域は、少なくとも一つの第1種の撮像領域と、第1種の撮像領域よりも面積が小さく画素数が少ない、複数の第2種の撮像領域とを含む。
実施の形態1のように、第1種の撮像領域と第2種の撮像領域とがともに、一つ撮像素子に形成される場合には、第1種の撮像領域と第2種の撮像領域とは、上記の一つの撮像素子の撮像面を分割することで形成されたものであり、レンズ群が、上記の撮像面に対して設けられたレンズアレイに含まれるレンズを含む。
この場合、複数の撮像領域の各々に、対応するレンズ以外のレンズからの光が入射しないようにするための隔壁が設けられている。
実施の形態6のように、第1種の撮像領域と第2種の撮像領域とが互いに異なる撮像素子に形成される場合には、上記の「一つ以上の第1種の撮像領域」が第1の撮像素子(71)の撮像面の全体で構成された単一の撮像領域から成り、複数の第2種の撮像領域が第2の撮像素子(61)の撮像面を分割することで形成され、レンズ群が、第1の撮像素子の撮像面に対して設けられたレンズと、第2の撮像素子の撮像面に対して設けられたレンズアレイに含まれるレンズとを含む。
この場合、第2の撮像素子の複数の撮像領域の各々に、対応するレンズ以外のレンズからの光が入射しないようにするための隔壁が設けられる。
実施の形態7.
実施の形態2〜6で説明した複眼撮像装置のプロセッサーは、専用のハードウェアであっても、メモリに格納されるプログラムを実行する、コンピュータのCPUであっても良い。
以下、一例として、図9のプロセッサーを備えた複眼撮像装置で実施される画像処理を、コンピュータに実行させる場合の処理の手順を、図18を参照して説明する。
まずステップST1において、例えば図1(a)に示されるカメラ装置1で撮像を行い、互いに異なる種類の情報を表す複数の低解像度画像D1−1〜D1−Nと一つの高解像度画像D0とを取得し、メモリ(図9の画像メモリ22と同じ役割を持つもの)に記憶させる。ここで、低解像度画像D1−1〜D1−Nと高解像度画像D0とは、例えば、図1(a)に示されるカメラ装置1の、同じ視野の画像が結像される複数の撮像領域15a、15b、15c、…での撮像で得られる、互いに異なる種類の情報を有する画像であり、そのような画像のうち比較的解像度の低いものが低解像度画像D1−1、D1−2、…として取得され、比較的解像度の高いものが高解像度画像D0として取得される。
次にステップST2において、高解像度画像D0を参照画像として用いて複数の低解像度画像D1−1、D1−2、…の各々に対して高解像度化処理を行い、高解像度画像D30−1、D30−2、…を生成する。高解像度化処理は例えば、図5、図6又は図8の高解像度化部に関して説明したのと同様の処理である。
次にステップST3において、複数の高解像度画像D30−1、D30−2、…を合成して一つ以上の合成高解像度画像D40−a、D40−bを生成する。合成処理は、図9の合成部40に関して説明したようにして行われる。
以上で説明したように、本発明によれば、複数の撮像領域で、互いに異なる種類の情報を有する画像を、互いに異なる解像度で取得することができるとともに、取得した、比較的解像度の低い画像から、高解像度画像を得ることができる。
以上、実施の形態2〜6で複眼撮像装置について説明したが、複眼撮像装置で実施される画像処理方法もまた本発明の一部を成す。さらに、上記の複眼撮像装置又は画像処理方法における処理をコンピュータに実行させるプログラム、及びそのようなプログラムを記録した、コンピュータで読み取り可能な記録媒体も本発明の一部を成す。
1 カメラ装置、 10 複眼カメラ、 11 撮像素子、 11a 撮像面、 12 レンズアレイ、 12a,12b,… レンズ、 13 フィルターアレイ、 13a、13b、… 光学フィルター、 14 隔壁、 15a 高解像度撮像領域、 15b、15c、… 低解像度撮像領域、 17 撮像制御部、 18,19 A/D変換部、 20,20a〜20h プロセッサー、 22 画像メモリ、 25 位置合わせ部、 30,30a〜30c,30−1〜30−N 高解像度化部、 31r,31b 画像拡大部、 32 高解像度化部、 40,42 合成部、 50 カメラ装置、 60 複眼カメラ、 61 撮像素子、 61a 撮像面、 62 レンズアレイ、 62a,62b,… レンズ、 63 フィルターアレイ、 63a、63b、… 光学フィルター、 64 隔壁、 65a,65b,… 低解像度撮像領域、 70 単眼カメラ、 71 撮像素子、 71a 撮像面、 72 レンズ、 73 光学フィルター、 75 高解像度撮像領域、 100,102 複眼撮像装置、 311,312 フィルター分離部、 313 低周波成分合成部、 314 高周波成分合成部、 315 成分合成部、 321 縮小処理部、 322 係数計算部、 323 係数マップ拡大部、 324 線形変換部、 411 輝度/色分離部、 412 輝度分離部、 413 重み付け加算部、 414 輝度/色合成部。

Claims (9)

  1. 複数の撮像領域を有する撮像素子と、
    前記複数の撮像領域に対応して設けられ、対応する撮像領域に互いに同じ視野の画像を結像させる複数のレンズと、
    複数の光学フィルターとを有し、
    前記複数の撮像領域は、少なくとも一つの第1種の撮像領域と、前記第1種の撮像領域よりも小さく、且つ互いに同じ大きさの複数の第2種の撮像領域とを含み、
    前記複数のレンズのうち、より大きい撮像領域に対応するレンズはより長い焦点距離を有し、
    前記複数の光学フィルターは、前記第2種の撮像領域の各々で取得される画像が、前記第1種の撮像領域の各々で取得される画像とは異なる種類の情報を表すものとなるように設けられているカメラ装置と、
    少なくとも一つの高解像度化部を備えたプロセッサーとを備え、
    前記少なくとも一つの高解像度化部は、
    前記第2種の撮像領域のいずれかで取得された画像を低解像度画像として受けて、前記低解像度画像からその低周波成分及び高周波成分を抽出する第1のフィルター処理部と、
    前記第1種の撮像領域のいずれかで取得された画像を参照画像として受け、前記参照画像からその低周波成分及び高周波成分を抽出する第2のフィルター処理部と、
    前記低解像度画像の低周波成分を前記参照画像と同じ解像度まで拡大し、拡大された低周波成分と前記参照画像の低周波成分とを、重み付け加算により合成して、合成低周波成分を生成する低周波成分合成部と、
    前記低解像度画像の高周波成分を前記参照画像と同じ解像度まで拡大し、拡大された高周波成分と前記参照画像の高周波成分とを、重み付け加算により合成して、合成高周波成分を生成する高周波成分合成部と、
    前記合成低周波成分と前記合成高周波成分とを合成し、高解像度画像を生成する成分合成部と
    を有する複眼撮像装置
  2. 複数の撮像領域を有する撮像素子と、
    前記複数の撮像領域に対応して設けられ、対応する撮像領域に互いに同じ視野の画像を結像させる複数のレンズと、
    複数の光学フィルターとを有し、
    前記複数の撮像領域は、少なくとも一つの第1種の撮像領域と、前記第1種の撮像領域よりも小さく、且つ互いに同じ大きさの複数の第2種の撮像領域とを含み、
    前記複数のレンズのうち、より大きい撮像領域に対応するレンズはより長い焦点距離を有し、
    前記複数の光学フィルターは、前記第2種の撮像領域の各々で取得される画像が、前記第1種の撮像領域の各々で取得される画像とは異なる種類の情報を表すものとなるように設けられているカメラ装置と、
    少なくとも一つの高解像度化部を備えたプロセッサーとを備え、
    前記少なくとも一つの高解像度化部は、
    前記第1種の撮像領域のいずれかで取得された画像を参照画像として受け、前記参照画像を縮小して、前記第2種の撮像領域のいずれかで取得された低解像度画像と同じ解像度の縮小参照画像を生成する縮小処理部と、
    前記縮小参照画像と、前記低解像度画像との線形関係を近似する線形係数を計算する係数計算部と、
    前記係数計算部により計算された線形係数から成る係数マップを前記参照画像と同じ解像度まで拡大する係数マップ拡大部と、
    拡大された係数マップの線形係数と前記参照画像とを元に、前記低解像度画像により表される情報を持つ高解像度画像を生成する線形変換部と
    を有する複眼撮像装置。
  3. 前記少なくとも一つの高解像度化部が複数の高解像度化部から成り、
    前記プロセッサーは、
    前記複数の高解像度化部で生成された複数の高解像度画像を合成して、一つ以上の合成高解像度画像を生成する合成部をさらに有する
    請求項1又は2に記載の複眼撮像装置。
  4. 前記複数の高解像度化部で高解像度化される複数の低解像度画像は、撮像条件を表すパラメータのうちの少なくとも一つのパラメータの種類又は値が互いに異なるものであり、従って、前記複数の高解像度化部で生成される複数の高解像度画像は、撮像条件を表すパラメータのうちの少なくとも一つのパラメータの種類又は値が互いに異なるものであり、
    前記合成部は、前記複数の高解像度画像から、前記複数の高解像度画像のいずれとも、前記少なくとも一つのパラメータの種類又は値が異なる高解像度画像を補間により生成する
    請求項に記載の複眼撮像装置。
  5. 記プロセッサーは、
    前記複数の第2種の撮像領域で取得された複数の画像を合成して、少なくとも一つの合成低解像度画像を生成する合成部と、
    前記第1種の撮像領域のいずれかで取得された画像を参照画像として受け、前記少なくとも一つの合成低解像度画像を、前記参照画像に含まれる高解像度成分を用いて高解像度化して、少なくとも一つの高解像度合成画像を生成する高解像度化部と
    を有する請求項1に記載の複眼撮像装置。
  6. 前記第1種の撮像領域に対しては、前記異なる種類の情報を表す画像を取得するための光学フィルターが設けられていない請求項1から5のいずれか1項に記載の複眼撮像装置。
  7. 請求項1から6のいずれか1項に記載の複眼撮像装置における処理をコンピュータに実行させるためのプログラム。
  8. 請求項に記載のプログラムを記録した、コンピュータで読み取り可能な記録媒体。
  9. 同じ視野の画像が結像される複数の撮像領域での撮像で得られる、互いに異なる種類の情報を有し、互いに解像度が異なる複数の画像を取得するステップと、
    前記互いに解像度が異なる複数の画像のうち、比較的解像度の高い画像に含まれる高解像度成分を用いて比較的解像度が低い複数の画像に対して高解像度化処理を行って、互いに異なる種類の情報を持つ高解像度画像を生成する高解像度化ステップと
    前記複数の互いに異なる種類の情報を持つ高解像度画像を合成して、一つ以上の合成高解像度画像を生成する合成ステップとを有し、
    前記高解像度化ステップは、
    前記比較的解像度が低い複数の画像からその低周波成分及び高周波成分を抽出し、
    前記比較的解像度の高い画像からその低周波成分及び高周波成分を抽出し、
    前記比較的解像度が低い複数の画像の低周波成分を前記比較的解像度の高い画像と同じ解像度まで拡大し、拡大された低周波成分と前記比較的解像度の高い画像の低周波成分とを、重み付け加算により合成して、合成低周波成分を生成し、
    前記比較的解像度が低い複数の画像の高周波成分を前記比較的解像度の高い画像と同じ解像度まで拡大し、拡大された高周波成分と前記比較的解像度の高い画像の高周波成分とを、重み付け加算により合成して、合成高周波成分を生成し、
    前記合成低周波成分と前記合成高周波成分とを合成し、前記高解像度画像を生成する
    ことを特徴とする画像処理方法。
JP2017549829A 2017-06-26 2017-06-26 複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体 Active JP6297234B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023348 WO2019003258A1 (ja) 2017-06-26 2017-06-26 カメラ装置、複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体

Publications (2)

Publication Number Publication Date
JP6297234B1 true JP6297234B1 (ja) 2018-03-20
JPWO2019003258A1 JPWO2019003258A1 (ja) 2019-06-27

Family

ID=61629101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017549829A Active JP6297234B1 (ja) 2017-06-26 2017-06-26 複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体

Country Status (5)

Country Link
US (1) US10951817B2 (ja)
JP (1) JP6297234B1 (ja)
CN (1) CN110771152B (ja)
DE (1) DE112017007695T5 (ja)
WO (1) WO2019003258A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088686A (ja) * 2018-11-28 2020-06-04 株式会社アサヒ電子研究所 複眼撮像装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200137380A1 (en) * 2018-10-31 2020-04-30 Intel Corporation Multi-plane display image synthesis mechanism
CN110491890B (zh) * 2019-07-03 2022-03-15 芯盟科技有限公司 半导体结构及其形成方法
WO2021211127A1 (en) * 2020-04-16 2021-10-21 Hewlett-Packard Development Company, L.P. Light signal identification
US11999506B2 (en) * 2021-02-16 2024-06-04 Rockwell Collins, Inc. Camera core monitor using gradient filter
CN112926030B (zh) * 2021-02-25 2024-01-23 南京信息工程大学 30m分辨率插值的气象要素确定方法
CN116994075B (zh) * 2023-09-27 2023-12-15 安徽大学 一种基于复眼事件成像的小目标快速预警与识别方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061109A (ja) * 1999-08-20 2001-03-06 Japan Science & Technology Corp 画像入力装置
JP2008079172A (ja) * 2006-09-25 2008-04-03 Mitsubishi Electric Corp 2波長イメージセンサおよび2波長イメージセンサを用いた撮像方法
JP2009117976A (ja) * 2007-11-02 2009-05-28 Panasonic Corp 撮像装置
JP2013021569A (ja) * 2011-07-12 2013-01-31 Univ Of Tokyo 撮像素子およびこれを用いた撮像装置
WO2015182447A1 (ja) * 2014-05-28 2015-12-03 コニカミノルタ株式会社 撮像装置および測色方法
WO2017064760A1 (ja) * 2015-10-13 2017-04-20 オリンパス株式会社 積層型撮像素子、画像処理装置、画像処理方法およびプログラム
WO2017090437A1 (ja) * 2015-11-24 2017-06-01 ソニー株式会社 カメラモジュールおよび電子機器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7003176B1 (en) * 1999-05-06 2006-02-21 Ricoh Company, Ltd. Method, computer readable medium and apparatus for converting color image resolution
US6771835B2 (en) * 2000-06-12 2004-08-03 Samsung Electronics Co., Ltd. Two-dimensional non-linear interpolation system based on edge information and two-dimensional mixing interpolation system using the same
CN1574894A (zh) * 2003-06-02 2005-02-02 宾得株式会社 多焦距成像装置和具有该多焦距成像装置的移动装置
JP2005303694A (ja) 2004-04-13 2005-10-27 Konica Minolta Holdings Inc 複眼撮像装置
US7916180B2 (en) * 2004-08-25 2011-03-29 Protarius Filo Ag, L.L.C. Simultaneous multiple field of view digital cameras
JP4545190B2 (ja) * 2005-03-24 2010-09-15 パナソニック株式会社 撮像装置
WO2007013250A1 (ja) * 2005-07-26 2007-02-01 Matsushita Electric Industrial Co., Ltd. 複眼方式の撮像装置
JP3930898B2 (ja) * 2005-08-08 2007-06-13 松下電器産業株式会社 画像合成装置および画像合成方法
EP2518995B1 (en) * 2009-12-24 2018-08-22 Sharp Kabushiki Kaisha Multocular image pickup apparatus and multocular image pickup method
US20140192238A1 (en) * 2010-10-24 2014-07-10 Linx Computational Imaging Ltd. System and Method for Imaging and Image Processing
EP2582128A3 (en) * 2011-10-12 2013-06-19 Canon Kabushiki Kaisha Image-capturing device
US9395516B2 (en) * 2012-05-28 2016-07-19 Nikon Corporation Imaging device
JP6071374B2 (ja) * 2012-09-21 2017-02-01 キヤノン株式会社 画像処理装置、画像処理方法およびプログラムならびに画像処理装置を備えた撮像装置
US9591241B2 (en) 2012-12-11 2017-03-07 Konica Minolta, Inc. Compound eye optical system and imaging device using the same
JPWO2014156712A1 (ja) * 2013-03-26 2017-02-16 コニカミノルタ株式会社 複眼光学系及び撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001061109A (ja) * 1999-08-20 2001-03-06 Japan Science & Technology Corp 画像入力装置
JP2008079172A (ja) * 2006-09-25 2008-04-03 Mitsubishi Electric Corp 2波長イメージセンサおよび2波長イメージセンサを用いた撮像方法
JP2009117976A (ja) * 2007-11-02 2009-05-28 Panasonic Corp 撮像装置
JP2013021569A (ja) * 2011-07-12 2013-01-31 Univ Of Tokyo 撮像素子およびこれを用いた撮像装置
WO2015182447A1 (ja) * 2014-05-28 2015-12-03 コニカミノルタ株式会社 撮像装置および測色方法
WO2017064760A1 (ja) * 2015-10-13 2017-04-20 オリンパス株式会社 積層型撮像素子、画像処理装置、画像処理方法およびプログラム
WO2017090437A1 (ja) * 2015-11-24 2017-06-01 ソニー株式会社 カメラモジュールおよび電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088686A (ja) * 2018-11-28 2020-06-04 株式会社アサヒ電子研究所 複眼撮像装置
JP7096144B2 (ja) 2018-11-28 2022-07-05 株式会社アサヒ電子研究所 複眼撮像装置

Also Published As

Publication number Publication date
CN110771152A (zh) 2020-02-07
US20200177807A1 (en) 2020-06-04
JPWO2019003258A1 (ja) 2019-06-27
US10951817B2 (en) 2021-03-16
CN110771152B (zh) 2022-03-01
DE112017007695T5 (de) 2020-03-12
WO2019003258A1 (ja) 2019-01-03

Similar Documents

Publication Publication Date Title
JP6297234B1 (ja) 複眼撮像装置及び画像処理方法、並びにプログラム及び記録媒体
US8934034B2 (en) Generalized assorted pixel camera systems and methods
EP2652678B1 (en) Systems and methods for synthesizing high resolution images using super-resolution processes
KR101824290B1 (ko) 고해상도 멀티스펙트럼 이미지 캡처 기법
JP5968073B2 (ja) 画像処理装置、撮像装置、画像処理方法、および画像処理プログラム
CN110365961B (zh) 图像去马赛克装置及方法
US20130278726A1 (en) Imaging system using a lens unit with longitudinal chromatic aberrations and method of operating
WO2018070100A1 (ja) 画像処理装置、画像処理方法、及び撮影装置
CN110519493B (zh) 图像处理设备、图像处理方法和计算机可读记录介质
US8774551B2 (en) Image processing apparatus and image processing method for reducing noise
WO2010071001A1 (en) Image processing apparatus and image processing method
WO2021005098A1 (en) Signal processing apparatus and method using local length scales for deblurring
WO2017089832A1 (en) Method and system for generating an output image from a plurality of corresponding input image channels
JP5771677B2 (ja) 画像処理装置、撮像装置、プログラム及び画像処理方法
CN106507065A (zh) 拍摄装置、拍摄***、图像生成装置及滤色器
JP2012227758A (ja) 画像信号処理装置及びプログラム
JP2018107731A (ja) 画像生成装置及び撮像装置
JP7363765B2 (ja) 画像処理装置、および撮像装置、並びに画像処理方法
US20140118580A1 (en) Image processing device, image processing method, and program
JP2014146872A (ja) 画像処理装置、撮像装置、画像処理方法及びプログラム
JP5846895B2 (ja) 画像処理システム及びそれを備えた顕微鏡システム
JP2016119542A (ja) 画像処理方法、画像処理プログラム、画像処理装置および撮像装置
JP7009219B2 (ja) 画像処理方法、画像処理装置、撮像装置、画像処理プログラム、および、記憶媒体
JP2011043901A (ja) 画像処理装置、画像処理方法、画像処理プログラム、および、電子機器
JP2013187711A (ja) 画像処理装置、撮像装置及び画像処理方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170922

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170922

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R150 Certificate of patent or registration of utility model

Ref document number: 6297234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250