JP6296501B2 - Exhaust gas pipe end structure comprising a double pipe, exhaust gas pipe having the structure - Google Patents

Exhaust gas pipe end structure comprising a double pipe, exhaust gas pipe having the structure Download PDF

Info

Publication number
JP6296501B2
JP6296501B2 JP2014174920A JP2014174920A JP6296501B2 JP 6296501 B2 JP6296501 B2 JP 6296501B2 JP 2014174920 A JP2014174920 A JP 2014174920A JP 2014174920 A JP2014174920 A JP 2014174920A JP 6296501 B2 JP6296501 B2 JP 6296501B2
Authority
JP
Japan
Prior art keywords
pipe
tube
double
exhaust gas
end member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014174920A
Other languages
Japanese (ja)
Other versions
JP2016050690A (en
Inventor
芳綱 佐々木
芳綱 佐々木
清人 吉田
清人 吉田
Original Assignee
Jfeプラントエンジ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeプラントエンジ株式会社 filed Critical Jfeプラントエンジ株式会社
Priority to JP2014174920A priority Critical patent/JP6296501B2/en
Publication of JP2016050690A publication Critical patent/JP2016050690A/en
Application granted granted Critical
Publication of JP6296501B2 publication Critical patent/JP6296501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、例えば燃焼塔から排出される燃焼ガスをガスクーラに導くための排ガス管に関し、詳しくは内管と外管からなる二重管からなり管の隙間に冷却水を流す二重管の管端部の構造、該構造を備えた二重管に関する。   The present invention relates to an exhaust gas pipe for guiding, for example, combustion gas discharged from a combustion tower to a gas cooler, and more specifically, a double pipe having a double pipe made of an inner pipe and an outer pipe and flowing cooling water through the gap between the pipes. The present invention relates to an end structure and a double tube having the structure.

燃焼塔から排出される燃焼ガスをガスクーラに導くための排ガス管は、腐食性のガスが通流することがあるため、内管を耐食性のあるステンレスで、外管を安価な鋼管でそれぞれ作製し、管の隙間に冷却水を通流するようにしている。
このような二重管としては、例えば特許文献1に開示がある。
The exhaust pipes that guide the combustion gas discharged from the combustion tower to the gas cooler may cause corrosive gases to flow through. The cooling water is made to flow through the gap between the pipes.
Such a double tube is disclosed in, for example, Patent Document 1.

特開昭62−130718号公報Japanese Patent Laid-Open No. 62-130718

特許文献1では、二重管の端部にフランジを設け、内管と外管にフランジを溶接することで内管と外管の端部の隙間を閉鎖している。
しかしながら、特許文献1の二重管の管端部の構造を上記の排ガス管に適用した場合には、以下のような問題が生ずる。
In Patent Document 1, a flange is provided at the end of the double pipe, and the gap between the end of the inner pipe and the outer pipe is closed by welding the flange to the inner pipe and the outer pipe.
However, when the structure of the pipe end portion of the double pipe of Patent Document 1 is applied to the exhaust gas pipe, the following problems occur.

排ガス管の内管には高温の排ガスが通流し、高温環境になるため排ガスに接する内管には大きな熱膨張が生ずる。他方、外管は冷却水が介在しているため、内管よりも温度は低い。また、内管は耐食性がある材料であり、外管はその必要がないことから、材料の違いから熱膨張率が異なる。
このように、外管と内管では、温度環境と材料の違いから熱膨張率が違い、その端部での伸びに違いが生ずる。
そのため、特許文献1のように、フランジを溶接で接合する管端部の構造では、熱応力によって接合部分に亀裂が生じ、冷却水の漏洩に繋がるという問題がある。
High-temperature exhaust gas flows through the inner pipe of the exhaust gas pipe, resulting in a high-temperature environment, so that a large thermal expansion occurs in the inner pipe in contact with the exhaust gas. On the other hand, the temperature of the outer pipe is lower than that of the inner pipe because cooling water is interposed. Further, since the inner tube is a corrosion-resistant material and the outer tube is not necessary, the coefficient of thermal expansion differs depending on the material.
In this way, the outer tube and the inner tube have different thermal expansion coefficients due to the difference in temperature environment and material, resulting in differences in elongation at the ends.
Therefore, as in Patent Document 1, in the structure of the pipe end portion where the flange is joined by welding, there is a problem that a crack occurs in the joint portion due to thermal stress, leading to leakage of cooling water.

本発明は、かかる問題点を解決するためになされたものであり、内管と外管での素材の違いや、温度環境の違いがあっても亀裂の発生することのない二重管端部の構造、該構造を備えた二重管を提供することを目的としている。   The present invention has been made in order to solve such a problem, and the end of the double pipe is free from cracks even if there is a difference in material between the inner pipe and the outer pipe or a difference in temperature environment. It is an object of the present invention to provide a double tube having the structure.

(1)本発明に係る二重管からなる排ガス管端部の構造は、燃焼塔から排出される燃焼ガスをガスクーラに導くための排ガス管であって、熱膨張率の異なる2種類の金属によって内管と外管を形成し、前記内管と前記外管の隙間に冷却液を通流させる二重管からなる排ガス管における管端部の構造において、
前記二重管の軸方向に突出し、管軸方向の断面形状において湾曲する湾曲部を有する環状端部材を介して前記内管と前記外管の端部を接合したものであり、
前記外管が鋼管で、前記内管がステンレス管であり、前記環状端部材がステンレスであり、かつその断面形状が円弧の両側に同じ長さの直線部を有するU字形状であることを特徴とするものである。
(1) The structure of the end portion of the exhaust gas pipe comprising the double pipe according to the present invention is an exhaust gas pipe for guiding the combustion gas discharged from the combustion tower to the gas cooler, and is made of two kinds of metals having different thermal expansion coefficients. In the structure of the pipe end portion in the exhaust gas pipe comprising a double pipe that forms an inner pipe and an outer pipe and allows a coolant to flow through the gap between the inner pipe and the outer pipe ,
The inner tube and the outer tube are joined to each other through an annular end member that protrudes in the axial direction of the double tube and has a curved portion that is curved in a cross-sectional shape in the tube axis direction.
The outer tube is a steel tube, the inner tube is a stainless steel tube, the annular end member is stainless steel, and the cross-sectional shape is a U-shape having straight portions of the same length on both sides of the arc. It is what.

)また、上記(1)に記載のものにおいて、前記環状端部材は、周方向に分割することなく一体的に成形されたものであることを特徴とするものである。 ( 2 ) Further, in the above (1 ), the annular end member is formed integrally without being divided in the circumferential direction.

)また、上記(1)に記載のものにおいて、前記環状端部材は、周方向に複数に分割したものを接合して形成されていることを特徴とするものである。 ( 3 ) Further, in the above-described (1 ), the annular end member is formed by joining a plurality of parts divided in the circumferential direction.

(4)本発明に係る排ガス管は、その両端又は片側の端部において上記(1)乃至(3)のいずれかに記載の二重管からなる排ガス管端部の構造を有することを特徴とするものである。 (4) The exhaust gas pipe according to the present invention has a structure of an exhaust gas pipe end portion comprising the double pipe according to any one of the above (1) to (3) at both ends or one end portion. To do.

本発明においては、熱膨張率の異なる2種類の金属によって内管と外管を形成し、前記内管と前記外管の隙間に冷却液を通流させる二重管における管端部の構造であって、前記二重管の軸方向に突出し、管軸方向の断面形状において湾曲する湾曲部を有する環状端部材を介して前記内管と前記外管の端部を接合したことにより、内管に高温ガスが通流して内管が熱膨張した際に、その伸びが湾曲部の変形によって吸収されるので、内管及び外管と環状端部材との接合部に過大な応力が作用せず、接合部に亀裂等が発生することがない。   In the present invention, an inner tube and an outer tube are formed by two kinds of metals having different coefficients of thermal expansion, and a structure of a tube end portion in a double tube that allows a coolant to flow through a gap between the inner tube and the outer tube. The inner pipe and the outer pipe are joined to each other via an annular end member that protrudes in the axial direction of the double pipe and has a curved portion that is curved in a cross-sectional shape in the pipe axial direction. When high temperature gas flows through the inner tube and the inner tube thermally expands, the elongation is absorbed by the deformation of the curved portion, so that excessive stress does not act on the joint between the inner tube and the outer tube and the annular end member. In addition, no cracks or the like occur at the joint.

本発明の一実施の形態に係る二重管の斜視図である。It is a perspective view of the double pipe concerning one embodiment of the present invention. 図1に示した二重管の一部を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows a part of double pipe | tube shown in FIG. 図1に示した二重管の一部を分解すると共に外管を除いた状態を示す斜視図である。It is a perspective view which shows the state which decomposed | disassembled a part of double pipe | tube shown in FIG. 1, and removed the outer tube | pipe. 図1に示した二重管の環状端部材の斜視図である。It is a perspective view of the annular end member of the double pipe shown in FIG. 図1の矢視A−A線に沿う断面図である。It is sectional drawing which follows the arrow AA line of FIG. 本発明の一実施の形態に係る二重管の斜視図であり、図1と反対側の端部を前面とした図である。It is a perspective view of the double pipe which concerns on one embodiment of this invention, and is the figure which made the front part the edge part on the opposite side to FIG. 図6に示した二重管の一部を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows a part of double pipe | tube shown in FIG. 解析モデルの説明図である。It is explanatory drawing of an analysis model. 解析結果を説明する説明図である。It is explanatory drawing explaining an analysis result.

本実施の形態に係る二重管1は、図1〜図5に示すように、熱膨張率の異なる2種類の金属によって内管3と外管5を形成し、内管3と外管5の隙間に冷却液を通流させるものであって、内管3と外管5の管端部を、環状端部材7を介して接合したものである。
以下、構成を詳細に説明する。
As shown in FIGS. 1 to 5, the double pipe 1 according to the present embodiment forms an inner pipe 3 and an outer pipe 5 with two kinds of metals having different coefficients of thermal expansion, and the inner pipe 3 and the outer pipe 5. The coolant is allowed to flow through the gap, and the tube ends of the inner tube 3 and the outer tube 5 are joined via an annular end member 7.
Hereinafter, the configuration will be described in detail.

<内管>
内管3は、図3、図5に示すように、例えば円筒状に形成され、例えばステンレスのような耐腐食性に優れた材料で形成されている。
内管3の外周面には、図3に示すように、冷却水が通流するための流路11(図5参照)を形成するための流路壁9が螺旋状に設けられている。
内管3に外管5が被さることでジャケット構造となり、流路壁9と外管5及び内管3によって冷却水の流路11が形成される(図5参照)。
<Inner pipe>
As shown in FIGS. 3 and 5, the inner tube 3 is formed in a cylindrical shape, for example, and is formed of a material excellent in corrosion resistance such as stainless steel.
As shown in FIG. 3, a flow path wall 9 for forming a flow path 11 (see FIG. 5) through which cooling water flows is spirally provided on the outer peripheral surface of the inner tube 3.
A jacket structure is formed by covering the inner tube 3 with the outer tube 5, and a flow channel 11 of cooling water is formed by the flow channel wall 9, the outer tube 5 and the inner tube 3 (see FIG. 5).

<外管>
外管5は、内管3よりも径が大きい円筒状に形成され、例えば鋼管のような安価な材料で形成されている。
外管5の両端部には、冷却水配管との接続口13が設けられたヘッダ部15が設けられている。
また、外管5の端部には、隣接する他の二重管1と接続するためのフランジ17が取り付けられている。フランジ17を外管に取り付けることで、環状端部材が変形してもその影響を受けることがない。
<Outer tube>
The outer tube 5 is formed in a cylindrical shape having a larger diameter than the inner tube 3, and is formed of an inexpensive material such as a steel tube.
At both ends of the outer tube 5, header portions 15 provided with connection ports 13 for cooling water piping are provided.
A flange 17 for connecting to another adjacent double pipe 1 is attached to the end of the outer pipe 5. By attaching the flange 17 to the outer tube, even if the annular end member is deformed, it is not affected.

<環状端部材>
環状端部材7は、二重管1の軸方向に突出し、管軸方向の断面形状において湾曲する湾曲部を有する部材であって、内管3と外管5の管端部を溶接によって接合している。
図4は、環状端部材7の斜視図であり、図4(a)が主として表面側を示し、図4(b)が主として裏面側を示している。
本実施の形態の環状端部材7は、図5の断面図に示すように、管軸方向の断面形状が半円状をしている。
なお、環状端部材7の断面形状は、半円状に限られるものではなく、湾曲部を有しておればよく、例えばU字状であってもよい。より好ましい形状については後述する。
また、環状端部材7は、周方向に分割することなく一体的に成形されたものであってもよいし、あるいは周方向に複数に分割したものを接合して形成されたものでもよい。
<Annular end member>
The annular end member 7 is a member that protrudes in the axial direction of the double tube 1 and has a curved portion that is curved in a cross-sectional shape in the tube axis direction, and joins the tube ends of the inner tube 3 and the outer tube 5 by welding. ing.
4A and 4B are perspective views of the annular end member 7, in which FIG. 4A mainly shows the front surface side and FIG. 4B mainly shows the back surface side.
As shown in the sectional view of FIG. 5, the annular end member 7 of the present embodiment has a semicircular sectional shape in the tube axis direction.
In addition, the cross-sectional shape of the annular end member 7 is not limited to a semicircular shape, and may have a curved portion, for example, may be U-shaped. A more preferable shape will be described later.
Further, the annular end member 7 may be formed integrally without being divided in the circumferential direction, or may be formed by joining a plurality of pieces divided in the circumferential direction.

本実施の形態の二重管1は、図1〜5に示す端部においては、フランジ17を外管5に取り付けているが、反対側の端部においては、図6、図7に示すように、フランジ17を環状端部材7に取り付けている。   In the double pipe 1 of the present embodiment, the flange 17 is attached to the outer pipe 5 at the end shown in FIGS. 1 to 5, but as shown in FIGS. 6 and 7 at the opposite end. Further, the flange 17 is attached to the annular end member 7.

以上のように構成された二重管1の使用状態においては、内管3内に高温の排ガスが通流し、流路11には冷却水が通流する。
このため、内管3は高温になり外管5は比較的低温となり、外管5と内管3で熱膨張率に差異が生ずる。しかし、本実施の形態の二重管1は、内管3と外管5の管端部を、環状端部材7を介して接合しているので、内管3が熱膨張した際に、その伸びを湾曲部の変形によって吸収する。そのため、内管3及び外管5と環状端部材7との接合部に過大な応力が作用せず、接合部に亀裂等が発生することがない。
In the use state of the double pipe 1 configured as described above, high-temperature exhaust gas flows through the inner pipe 3, and cooling water flows through the flow path 11.
For this reason, the inner tube 3 becomes high temperature, the outer tube 5 becomes relatively low temperature, and the outer tube 5 and the inner tube 3 have different thermal expansion coefficients. However, since the double pipe 1 of the present embodiment joins the pipe ends of the inner pipe 3 and the outer pipe 5 via the annular end member 7, when the inner pipe 3 is thermally expanded, Elongation is absorbed by deformation of the curved portion. Therefore, excessive stress does not act on the joint portion between the inner tube 3 and the outer tube 5 and the annular end member 7, and a crack or the like does not occur in the joint portion.

次に、環状端部材7の形状及び材質と溶接部に作用する応力との関係を調査するシミュレーション実験を行ったので、これについて以下説明する。
実験は、図8に示すような、内外管の片端部を固定し先端部を剛体で接続するモデルによって温度差に起因して内管に発生する軸力を、環状端部材7の材料・形状を種々変更して計算し、これによって溶接部に作用する応力を求めるというものである。
実験条件は以下の通りである。
a)計算条件
・内管:SUS316L φ1924×t9.0
・外管:SS400 φ2047×t6.0
・温度: 内管平均温度 77.5℃
内管内面 110℃
内管外面 45℃
外管平均温度 45℃
Next, a simulation experiment was conducted to investigate the relationship between the shape and material of the annular end member 7 and the stress acting on the welded portion, which will be described below.
In the experiment, as shown in FIG. 8, the axial force generated in the inner tube due to the temperature difference by the model in which one end portion of the inner and outer tubes is fixed and the distal end portion is connected by a rigid body is used. Is calculated with various changes, and thereby the stress acting on the weld is obtained.
The experimental conditions are as follows.
a) Calculation conditions and inner pipe: SUS316L φ1924 × t9.0
・ Outer tube: SS400 φ2047 × t6.0
・ Temperature: Inner tube average temperature 77.5 ℃
Inner pipe inner surface 110 ℃
Inner pipe outer surface 45 ℃
Outer tube average temperature 45 ℃

計算の結果、内管に作用する作用推定軸力は132tonであり、この結果溶接部に作用する応力を図9に示す。
解析の結果を図9に示す。
図9においては、図9(a)は材料がSUS316L、板厚9mm、断面形状が半円、図9(b)は材料がSS400、板厚11.1mm、断面形状が半円、図9(C)は材料がSUS316L、板厚9mm、断面形状が半円+直線部を有するU字形状(直線部の長さ:100mm)、図9(d)は材料がSUS316L、板厚9mm、断面形状が半円+直線部を有するU字形状(直線部の長さ:50mm)の結果を示している。
また、図9には、溶接部に作用する応力、最大応力、及び環状端部材7をSS400で作製し、断面形状を半円状にした場合(図9(b))に溶接部に作用する応力を基準(=1)とした溶接部に作用する応力の比率を示している。
As a result of the calculation, the estimated action axial force acting on the inner pipe is 132 tons, and the stress acting on the welded portion as a result is shown in FIG.
The result of the analysis is shown in FIG.
9A, the material is SUS316L, the plate thickness is 9 mm, and the cross-sectional shape is a semicircle. FIG. 9B is the material SS400, the plate thickness is 11.1 mm, the cross-sectional shape is a semicircle, and FIG. ) Is made of SUS316L, plate thickness 9mm, cross-sectional shape is semi-circular + U-shape with straight part (length of straight part: 100mm), Figure 9 (d) is material SUS316L, plate thickness 9mm, cross-sectional shape The result of a U-shape having a semicircle + straight line portion (length of straight line portion: 50 mm) is shown.
Also, in FIG. 9, the stress acting on the weld, the maximum stress, and the annular end member 7 are made of SS400, and the cross-sectional shape is made semicircular (FIG. 9B), it acts on the weld. The ratio of the stress acting on the weld with the stress as the reference (= 1) is shown.

図9(a)と、図9(c)及び図9(d)を比較すると明らかなように、断面形状が半円の場合よりもU字形状の方が溶接部に作用する応力が大幅に緩和されている。また、図9(c)と図9(d)を比較すると、U字形状の場合には直線部が長い方が、応力が緩和されていることが分かる。
以上から環状端部材7の断面形状は、半円よりもU字形状が好ましい。また、U字形状の場合には直線部が長い方が好ましいが、製作容易性の観点からは直線部をあまり長くできないことから、図4(d)に示すように、半円の半径と同等程度が好ましい。
なお、U字形状にした場合には、内管3と接続する部位に直線部が存在し、この部位が内管3を通流する排ガスと接触するので、内管3と同じ材料で製作するのが好ましい。
9A, 9C, and 9D, the stress acting on the weld is significantly greater in the U shape than in the case of a semicircular cross section. It has been eased. Further, comparing FIG. 9C and FIG. 9D, it can be seen that in the case of the U-shape, the stress is relaxed when the straight line portion is long.
From the above, the cross-sectional shape of the annular end member 7 is preferably U-shaped rather than semicircular. In the case of a U-shape, it is preferable that the straight portion is long. However, from the viewpoint of ease of manufacture, the straight portion cannot be made very long, so that it is equivalent to the radius of a semicircle as shown in FIG. The degree is preferred.
In addition, when making it U shape, since a linear part exists in the site | part connected with the inner tube 3, and this site | part contacts with the waste gas which flows through the inner tube 3, it manufactures with the same material as the inner tube 3. Is preferred.

上記の説明は所定長さを有する二重管1について、その両端に本発明の管端部の構造を有する場合について説明したが、本発明の二重管の管端部の構造は、二重管のいずれか一方の端部のみに用いてもよい。   In the above description, the double tube 1 having a predetermined length has been described as having the structure of the tube end portion of the present invention at both ends. However, the structure of the tube end portion of the double tube of the present invention is a double tube. It may be used only at one end of the tube.

1 二重管
3 内管
5 外管
7 環状端部材
9 流路壁
11 流路
13 接続口
15 ヘッダ部
17 フランジ
DESCRIPTION OF SYMBOLS 1 Double pipe 3 Inner pipe 5 Outer pipe 7 Annular end member 9 Channel wall 11 Channel 13 Connection port 15 Header part 17 Flange

Claims (4)

燃焼塔から排出される燃焼ガスをガスクーラに導くための排ガス管であって、熱膨張率の異なる2種類の金属によって内管と外管を形成し、前記内管と前記外管の隙間に冷却液を通流させる二重管からなる排ガス管における管端部の構造において、
前記二重管の軸方向に突出し、管軸方向の断面形状において湾曲する湾曲部を有する環状端部材を介して前記内管と前記外管の端部を接合したものであり、
前記外管が鋼管で、前記内管がステンレス管であり、前記環状端部材がステンレスであり、かつその断面形状が円弧の両側に同じ長さの直線部を有するU字形状であることを特徴とする二重管からなる排ガス管端部の構造。
An exhaust gas pipe for guiding combustion gas discharged from a combustion tower to a gas cooler , wherein an inner pipe and an outer pipe are formed by two kinds of metals having different thermal expansion coefficients, and cooling is performed in a gap between the inner pipe and the outer pipe. In the structure of the pipe end in the exhaust pipe consisting of a double pipe through which the liquid flows ,
The inner tube and the outer tube are joined to each other through an annular end member that protrudes in the axial direction of the double tube and has a curved portion that is curved in a cross-sectional shape in the tube axis direction.
The outer tube is a steel tube, the inner tube is a stainless steel tube, the annular end member is stainless steel, and the cross-sectional shape is a U-shape having straight portions of the same length on both sides of the arc. The structure of the end of the exhaust gas pipe consisting of a double pipe.
前記環状端部材は、周方向に分割することなく一体的に成形されたものであることを特徴とする請求項1記載の二重管からなる排ガス管端部の構造。 2. The structure of an exhaust pipe end portion comprising a double pipe according to claim 1, wherein the annular end member is integrally formed without being divided in the circumferential direction. 前記環状端部材は、周方向に複数に分割したものを接合して形成されていることを特徴とする請求項1記載の二重管からなる排ガス管端部の構造。 The exhaust pipe end structure comprising a double pipe according to claim 1, wherein the annular end member is formed by joining a plurality of parts divided in the circumferential direction. 前記二重管が所定長さを有し、その両端又は片側の端部において請求項1乃至3のいずれかに記載の二重管からなる排ガス管端部の構造を有することを特徴とする排ガス管。 Exhaust gas, characterized in that the double tube has the structure given a length, an exhaust gas pipe end comprising a double tube according to any one of claims 1 to 3 at both ends or one end tube.
JP2014174920A 2014-08-29 2014-08-29 Exhaust gas pipe end structure comprising a double pipe, exhaust gas pipe having the structure Active JP6296501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014174920A JP6296501B2 (en) 2014-08-29 2014-08-29 Exhaust gas pipe end structure comprising a double pipe, exhaust gas pipe having the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014174920A JP6296501B2 (en) 2014-08-29 2014-08-29 Exhaust gas pipe end structure comprising a double pipe, exhaust gas pipe having the structure

Publications (2)

Publication Number Publication Date
JP2016050690A JP2016050690A (en) 2016-04-11
JP6296501B2 true JP6296501B2 (en) 2018-03-20

Family

ID=55658332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014174920A Active JP6296501B2 (en) 2014-08-29 2014-08-29 Exhaust gas pipe end structure comprising a double pipe, exhaust gas pipe having the structure

Country Status (1)

Country Link
JP (1) JP6296501B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729190Y2 (en) * 1975-12-01 1982-06-25
JPS5454321A (en) * 1977-10-06 1979-04-28 Babcock Hitachi Kk Castable lining piping
JPS5640084A (en) * 1979-09-10 1981-04-16 Toyo Eng Corp Heat exchanger
JPH0245653Y2 (en) * 1984-09-28 1990-12-03
JPH05231586A (en) * 1991-12-27 1993-09-07 Nkk Corp Multiple structure duct
ITMI20050847A1 (en) * 2005-05-11 2006-11-12 Olmi Spa JUNCTION BETWEEN COOLED TUBE AND NON-COOLED HOSE IN A DOUBLE PIPE HEAT EXCHANGER
DE102006017816B4 (en) * 2006-04-13 2008-04-24 Eaton Fluid Power Gmbh Inner chiller heat exchanger

Also Published As

Publication number Publication date
JP2016050690A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
JP4926892B2 (en) Flange connection structure of heat exchanger
JP5237839B2 (en) Metal sawtooth gasket and combination gasket
JP2009524004A (en) Multi-tube heat exchanger
US10309731B2 (en) Compliant heating system comprising a compressive seal expansion joint
JP2013053804A (en) Structure of triple pipe, and heat exchanger
JP6296501B2 (en) Exhaust gas pipe end structure comprising a double pipe, exhaust gas pipe having the structure
WO2016059755A1 (en) Joint structure for vacuum-heat-insulated double tube for low temperature fluid
JP7345660B2 (en) Silencer and air conditioning
JP6898200B2 (en) Heat exchanger
JP3180377U (en) Heat exchanger
KR102294972B1 (en) heat exchanger
JP6150380B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JP7144503B2 (en) Special penetration piece for low-temperature piping
JP6207833B2 (en) Heat exchanger
KR20080051115A (en) Duct for an electric furnace
US20120280496A1 (en) Joint with heat-shielding element
JP2006078017A (en) Tube type heat exchanger and water heater with this
JP6663644B2 (en) Double pipe structure and its joint
JP4121752B2 (en) Piping connection structure
US7559294B2 (en) End support configuration for steam tubes of a superheater or reheater
JP5430360B2 (en) Piping joint structure and heat exchanger
JP2009150512A (en) Method of preventing seizure at connecting point of pair of metal members and connection structure of pair of metal members
JP6818562B2 (en) Connection device
WO2013145075A1 (en) Piping for vapor
JP2016080215A (en) Heat transfer pipe repair method of heat exchanger and insertion pipe for heat transfer pipe repair

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180214

R150 Certificate of patent or registration of utility model

Ref document number: 6296501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250