JP6292664B2 - Thermoelectric conversion material - Google Patents

Thermoelectric conversion material Download PDF

Info

Publication number
JP6292664B2
JP6292664B2 JP2014013468A JP2014013468A JP6292664B2 JP 6292664 B2 JP6292664 B2 JP 6292664B2 JP 2014013468 A JP2014013468 A JP 2014013468A JP 2014013468 A JP2014013468 A JP 2014013468A JP 6292664 B2 JP6292664 B2 JP 6292664B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
mol
thermal conductivity
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014013468A
Other languages
Japanese (ja)
Other versions
JP2015141984A (en
Inventor
信男 土嶺
信男 土嶺
田▲崎▼ 雄三
雄三 田▲崎▼
隆志 田口
隆志 田口
博司 大橋
博司 大橋
矢崎 芳太郎
芳太郎 矢崎
芳彦 白石
芳彦 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshima Manufacturing Co Ltd
Denso Corp
Original Assignee
Toshima Manufacturing Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshima Manufacturing Co Ltd, Denso Corp filed Critical Toshima Manufacturing Co Ltd
Priority to JP2014013468A priority Critical patent/JP6292664B2/en
Publication of JP2015141984A publication Critical patent/JP2015141984A/en
Application granted granted Critical
Publication of JP6292664B2 publication Critical patent/JP6292664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱電変換材料に関し、特に、ビスマス・テルル系熱電変換材料に関する。   The present invention relates to a thermoelectric conversion material, and more particularly to a bismuth-tellurium-based thermoelectric conversion material.

ビスマス・テルル系熱電変換材料(Bi−Te系熱電変換材料)は、常温から200℃程度で利用される熱電素子の材料として一般に利用されている。例えば、特開平9−18061号公報には、Bi、Te、Se、Sbの何れか1種以上を主成分とする合金塊を、一軸加圧焼結することによって熱電変換材料を得る方法が記載されている。   Bismuth-tellurium-based thermoelectric conversion materials (Bi-Te-based thermoelectric conversion materials) are generally used as materials for thermoelectric elements that are used from room temperature to about 200 ° C. For example, Japanese Patent Laid-Open No. 9-18061 describes a method of obtaining a thermoelectric conversion material by uniaxially pressing and sintering an alloy lump mainly composed of at least one of Bi, Te, Se, and Sb. Has been.

特開2013−149652号公報には、Bi2Te3からなる基本組成において、Biサイトを他の元素で一部置換してBi−Te系熱電材料の組成を改良することによって良好な熱電変換性能を得ようとする熱電材料の例が記載されている。 JP 2013-149652 A discloses that, in the basic composition composed of Bi 2 Te 3 , the Bi site is partially substituted with another element to improve the composition of the Bi-Te-based thermoelectric material, thereby providing good thermoelectric conversion performance. Examples of thermoelectric materials to be obtained are described.

特開平9−18061号公報JP-A-9-18061 特開2013−149652号公報JP 2013-149652 A

しかしながら、Bi−Te系熱電変換材料は一般に熱電変換性能がそれほど高くないために応用範囲が限られている。上述の特許文献2にも記載されるように、従来はBi2Te3を用いた熱電変換材料において特性向上のために添加物を加える方法が種々検討されてきたが、例えばSe、Br、Iなどの添加物の種類によっては、特性の改善は見られるものの環境等に有害であるという問題があるため、実際の使用には適さない場合もあり、添加すべき元素に関してはまだ検討の余地がある。 However, Bi-Te-based thermoelectric conversion materials generally have a limited range of application because thermoelectric conversion performance is not so high. As described in the above-mentioned Patent Document 2, various methods for adding additives for improving characteristics in a thermoelectric conversion material using Bi 2 Te 3 have been conventionally studied. For example, Se, Br, I Depending on the type of additive, etc., there is a problem that it is harmful to the environment etc. although the improvement in characteristics is seen, so there are cases where it is not suitable for actual use, and there is still room for examination regarding the element to be added is there.

上記課題を鑑み、本発明は、環境等に有害な物質を添加することなく、Bi−Te系熱電変換材料の特性を向上可能な熱電変換材料を提供する。   In view of the above problems, the present invention provides a thermoelectric conversion material capable of improving the characteristics of a Bi-Te-based thermoelectric conversion material without adding substances harmful to the environment or the like.

本発明者は鋭意検討を重ねた結果、Bi2Te3と同様な結晶系である六方晶系の金属元素を添加することを考え、種々の六方晶系の金属を添加してその効果を検討したところ、六方晶系の金属の中でもある特定の元素を含有させることによって、Bi−Te系熱電変換材料の性能を向上できることが分かった。 As a result of intensive studies, the present inventor considered adding a hexagonal metal element, which is a crystal system similar to Bi 2 Te 3, and studied various effects by adding various hexagonal metals. As a result, it has been found that the performance of the Bi—Te thermoelectric conversion material can be improved by including a specific element among hexagonal metals.

以上の知見を基礎として完成した本発明は一側面において、Bi2Te3に対してルテニウムを0.1〜20mol%含有する熱電変換材料が提供される。 In one aspect, the present invention completed based on the above knowledge provides a thermoelectric conversion material containing 0.1 to 20 mol% of ruthenium with respect to Bi 2 Te 3 .

本発明に係る熱電変換材料は一実施態様において、ルテニウムを0.5〜10mol%含有する。   In one embodiment, the thermoelectric conversion material according to the present invention contains 0.5 to 10 mol% of ruthenium.

本発明に係る熱電変換材料は一実施態様において、20〜200℃において熱伝導率が1.0〜1.6W/mKである。   In one embodiment, the thermoelectric conversion material according to the present invention has a thermal conductivity of 1.0 to 1.6 W / mK at 20 to 200 ° C.

本発明に係る熱電変換材料は一実施態様において、20〜150℃において無次元性能指数ZTが0.8以上である。   In one embodiment, the thermoelectric conversion material according to the present invention has a dimensionless figure of merit ZT of 0.8 or more at 20 to 150 ° C.

本発明によれば、環境等に有害な物質を添加することなく、Bi−Te系熱電変換材料の特性を向上可能な熱電変換材料が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the thermoelectric conversion material which can improve the characteristic of a Bi-Te type | system | group thermoelectric conversion material can be provided, without adding a harmful substance to an environment etc.

Bi−Te系熱電変換材料において、添加物としてRuを添加した場合と添加しない場合におけるゼーベック係数の比較を表すグラフである。In Bi-Te type thermoelectric conversion material, it is a graph showing the comparison of the Seebeck coefficient in the case where Ru is added as an additive, and the case where it is not added. Bi−Te系熱電変換材料において、添加物としてRuを添加した場合と添加しない場合における抵抗率の比較を表すグラフである。In a Bi-Te type thermoelectric conversion material, it is a graph showing the comparison of the resistivity in the case where it does not add when Ru is added as an additive. Bi−Te系熱電変換材料において、添加物としてRuを添加した場合と添加しない場合における熱伝導率の比較を表すグラフである。In Bi-Te type | system | group thermoelectric conversion material, it is a graph showing the comparison of the thermal conductivity in the case where it does not add with the case where Ru is added as an additive. Bi−Te系熱電変換材料において、添加物としてRuを添加した場合と添加しない場合における無次元性能指数(ZT)の比較を表すグラフである。In a Bi-Te type thermoelectric conversion material, it is a graph showing the comparison of a dimensionless figure of merit (ZT) in the case where Ru is added as an additive, and the case where it is not added.

以下、図面を参照しながら本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の実施の形態に係る熱電変換材料は、Bi−Te系熱電変換材料であり、現在実用化されている熱電材料の中でも室温(約20℃)から200℃程度の低温域において有用な熱電変換性能を具備する材料である。   The thermoelectric conversion material according to the embodiment of the present invention is a Bi—Te-based thermoelectric conversion material, and is a thermoelectric useful in a low temperature range from room temperature (about 20 ° C.) to about 200 ° C. among thermoelectric materials currently in practical use. It is a material having conversion performance.

Bi−Te系熱電変換材料の基本組成はテルル化ビスマス(Bi2Te3)である。このBi2Te3は六方晶構造をとることができる。本発明では、Bi2Te3を基本組成(主材料)とし、この主材料に対してBi2Te3と同様の六方晶系の金属を添加物として添加することにより、熱電変換材料の種々の特性(ゼーベック係数、抵抗率、熱伝導率、無次元性能指数(ZT))の特性向上を図るものである。 The basic composition of the Bi—Te-based thermoelectric conversion material is bismuth telluride (Bi 2 Te 3 ). This Bi 2 Te 3 can have a hexagonal crystal structure. In the present invention, Bi 2 Te 3 is used as a basic composition (main material), and a hexagonal metal similar to Bi 2 Te 3 is added as an additive to the main material. The characteristics (Seebeck coefficient, resistivity, thermal conductivity, dimensionless figure of merit (ZT)) are improved.

六方晶系の金属としては、Co、Zn、Ti等が挙げられる。しかしながら、これら金属のいずれを添加したすべての場合において特性向上効果が得られるものではない。本実施形態に係る熱電変換材料においては、これら六方晶系の金属の中でも、ルテニウム(Ru)を添加元素としてBi2Te3に添加することが熱電変換材料の特性向上の観点から有利であることが見出された。 Examples of the hexagonal metal include Co, Zn, and Ti. However, the effect of improving the properties is not obtained in all cases where any of these metals is added. In the thermoelectric conversion material according to this embodiment, among these hexagonal metals, it is advantageous from the viewpoint of improving the properties of the thermoelectric conversion material that ruthenium (Ru) is added as an additive element to Bi 2 Te 3. Was found.

Ruは、Bi2Te3に対して0.1〜20mol%含有させることができる。なお、Ruの含有量は、Bi2Te3に対して(Bi2Te3を基準として)Ruが10mol%を越えると、使用想定温度域(室温〜200℃程度)において高温側で無次元性能指数(ZT)が低温側に比べて顕著に低くなり、使用想定温度域全体において安定したZT特性を得られない場合がある。一方、熱電変換材料中のRuをBi2Te3に対して0.5mol%を下回って含有させると、添加物含有による特性向上効果が得られない場合がある。 Ru can be contained in an amount of 0.1 to 20 mol% with respect to Bi 2 Te 3 . When the Ru content exceeds 10 mol% (based on Bi 2 Te 3 ) with respect to Bi 2 Te 3 , the Ru content is dimensionless on the high temperature side in the assumed temperature range (room temperature to about 200 ° C.). The index (ZT) is significantly lower than the low temperature side, and stable ZT characteristics may not be obtained over the entire assumed temperature range. On the other hand, if Ru in the thermoelectric conversion material is contained in an amount of less than 0.5 mol% with respect to Bi 2 Te 3 , the effect of improving the characteristics due to the inclusion of the additive may not be obtained.

そのため、Ruの含有量としては、Bi2Te3を基準としてルテニウムを0.5〜10mol%含有させることが好ましく、より好ましくは1〜5mol%、更に好ましくは2〜3mol%、更に好ましくは2mol%含有させる。Ruの含有量を上記範囲に調整することで、Ruを添加しない場合に比べて、ゼーベック係数を高くでき、抵抗率及び熱伝導率を下げることができ、ZT特性を向上させることができる。 Therefore, the content of Ru, is preferably contained 0.5 to 10 mol% ruthenium on the basis of the Bi 2 Te 3, more preferably 1 to 5 mol%, more preferably 2~3Mol%, more preferably 2mol % Content. By adjusting the Ru content within the above range, the Seebeck coefficient can be increased, the resistivity and the thermal conductivity can be decreased, and the ZT characteristics can be improved as compared with the case where Ru is not added.

このように、本発明の実施の形態に係る熱電変換材料によれば、Bi−Te系熱電変換材料の添加剤としてRuをBi2Te3に添加することにより、環境に有害な物質等を使用することなく、熱電変換材料の特性を向上させることができる。特に、室温〜200℃程度で使用する熱電素子への応用範囲が広がり、従来製品の小型化が実現できる。 As described above, according to the thermoelectric conversion material according to the embodiment of the present invention, a substance harmful to the environment is used by adding Ru to Bi 2 Te 3 as an additive of the Bi—Te thermoelectric conversion material. Therefore, the characteristics of the thermoelectric conversion material can be improved. In particular, the range of application to thermoelectric elements used at room temperature to about 200 ° C. is widened, and downsizing of conventional products can be realized.

本発明の実施の形態に係る熱電変換材料は、以下に制限されるものではないが、例えば下記の製造方法によって製造することができる。まず、主材とするテルル化ビスマス(Bi2Te3)の合金粉末と、添加剤として使用するRuの金属粉末を用意する。これら合金粉末と金属粉末は、予めボールミル等によって50%粒径が1〜50μmとなるように粉砕しておくのが好ましい。 Although the thermoelectric conversion material which concerns on embodiment of this invention is not restrict | limited below, it can be manufactured with the following manufacturing method, for example. First, an alloy powder of bismuth telluride (Bi 2 Te 3 ) as a main material and a Ru metal powder used as an additive are prepared. These alloy powder and metal powder are preferably pulverized in advance by a ball mill or the like so that the 50% particle size is 1 to 50 μm.

次いで、粉砕されたBi2Te3合金粉末とRu金属粉末とを混合させ、焼結用のカーボン型に入れて混合粉末を高周波誘導加熱加圧法を用いて焼結させる。焼結条件としては、例えば圧力100〜1000kgf/cm2とし、カーボン型を400〜500℃で1〜5時間加熱した後、室温まで徐冷する。これにより、本実施形態に係る焼結体が得られる。 Next, the pulverized Bi 2 Te 3 alloy powder and the Ru metal powder are mixed, put into a carbon mold for sintering, and the mixed powder is sintered using a high frequency induction heating and pressing method. As sintering conditions, for example, the pressure is set to 100 to 1000 kgf / cm 2 , the carbon mold is heated at 400 to 500 ° C. for 1 to 5 hours, and then gradually cooled to room temperature. Thereby, the sintered compact concerning this embodiment is obtained.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

Bi2Te3合金粉末に対してRu金属粉末をそれぞれ0、0.5、1、2、3、5、10、20、30mol%の割合で混合させた混合試料9種類用意し、これら混合試料を焼結用のカーボン型に入れ、高周波誘導加熱加圧法を用いて焼結体を得た。焼結条件は、例えば圧力500〜800kgf/cm2とし、カーボン型を450〜500℃で2〜3時間加熱した後、室温まで徐冷した。 Nine kinds of mixed samples prepared by mixing Ru metal powder with Bi 2 Te 3 alloy powder at a ratio of 0, 0.5, 1, 2, 3, 5, 10, 20, and 30 mol%, respectively, were prepared. Was put into a carbon mold for sintering, and a sintered body was obtained using a high frequency induction heating and pressing method. The sintering conditions were, for example, a pressure of 500 to 800 kgf / cm 2 , and the carbon mold was heated at 450 to 500 ° C. for 2 to 3 hours and then gradually cooled to room temperature.

得られた焼結体について、ゼーベック係数、電気抵抗率、熱伝導率及び無次元性能指数(ZT)を測定した。ゼーベック係数と抵抗率は、焼結体から切り出した3×3×10mmの試験片についてアルバック理工製ZEM−2装置を使用して測定した。熱伝導率は、焼結体から切り出した5×5×1mmの試験片についてレーザフラッシュ装置(京都電子製LFA−502)を使用して測定した。ZTはゼーベック係数S、電気抵抗率ρ、熱伝導率κに基づいた計算により導出(ZT=S2T/ρκ:ここでTは絶対温度T(K))した。測定結果を図1〜図4に示す。 About the obtained sintered compact, the Seebeck coefficient, the electrical resistivity, the thermal conductivity, and the dimensionless figure of merit (ZT) were measured. The Seebeck coefficient and resistivity were measured on a 3 × 3 × 10 mm test piece cut out from the sintered body using a ZEM-2 apparatus manufactured by ULVAC-RIKO. The thermal conductivity was measured using a laser flash device (LFA-502 manufactured by Kyoto Electronics Co., Ltd.) on a test piece of 5 × 5 × 1 mm cut out from the sintered body. ZT was derived by calculation based on the Seebeck coefficient S, electrical resistivity ρ, and thermal conductivity κ (ZT = S 2 T / ρκ, where T is the absolute temperature T (K)). The measurement results are shown in FIGS.

図1に示すように、温度域100℃未満の範囲においては、Ruを含まない試料(0%)に対して、Ruを0.5〜20mol%含む試料のゼーベック係数が高くなった。また、試料中のRu濃度が高いほどゼーベック係数は高くなった。温度依存性はRu濃度によって変化した。特にRu濃度が2〜3mol%よりも高濃度の場合、高温になるほどゼーベック係数が低くなった。図2に示すように、抵抗率はRu濃度が高くなるほど高くなった。Ru濃度が0.5〜10mol%の場合は、いずれの場合も高温になるにつれて抵抗値が高くなった。   As shown in FIG. 1, in the temperature range of less than 100 ° C., the Seebeck coefficient of the sample containing 0.5 to 20 mol% of Ru was higher than that of the sample not containing Ru (0%). Further, the higher the Ru concentration in the sample, the higher the Seebeck coefficient. The temperature dependence varied with the Ru concentration. In particular, when the Ru concentration was higher than 2 to 3 mol%, the Seebeck coefficient decreased as the temperature increased. As shown in FIG. 2, the resistivity increased as the Ru concentration increased. In each case where the Ru concentration was 0.5 to 10 mol%, the resistance value increased as the temperature increased.

図3に示すように、Ru濃度2〜3mol%で最も低い熱伝導率を示していた。いずれの場合も熱伝導率は温度が高くなるほど高くなった。熱伝導率は1.0〜1.6W/mKを示していた。図4に示すように、ZTはRu濃度2mol%の場合が最も高く、最大値は50℃において0.94であった。Ru濃度2mol%の場合は、20〜150℃においてZTが0.8以上となった。Ru濃度が高くなると、高温側でのZT低下が顕著となった。Ru濃度0.5〜1mol%では温度依存性があまり見られなかった。   As shown in FIG. 3, the lowest thermal conductivity was exhibited at a Ru concentration of 2 to 3 mol%. In either case, the thermal conductivity increased with increasing temperature. The thermal conductivity was 1.0 to 1.6 W / mK. As shown in FIG. 4, ZT was highest when the Ru concentration was 2 mol%, and the maximum value was 0.94 at 50 ° C. When the Ru concentration was 2 mol%, ZT was 0.8 or more at 20 to 150 ° C. As the Ru concentration increased, the ZT decrease on the high temperature side became significant. At the Ru concentration of 0.5 to 1 mol%, temperature dependence was not so much seen.

Claims (2)

Bi2Te3に対してルテニウムを0.5〜10mol%含有し、50〜200℃において熱伝導率が1.0〜1.6W/mKである熱電変換材料。 Ruthenium containing 0.5 to 10 mol% relative to the Bi 2 Te 3, the thermoelectric conversion material thermal conductivity of 1.0~1.6W / mK at 50 to 200 ° C.. 0〜150℃において無次元性能指数ZTが0.8以上となるようにルテニウムの含有量が調整されている請求項に記載の熱電変換材料。 The thermoelectric conversion material according to claim 1 in which the content of ruthenium as the dimensionless figure of merit ZT of 0.8 or higher is adjusted at 5 0 to 150 ° C..
JP2014013468A 2014-01-28 2014-01-28 Thermoelectric conversion material Active JP6292664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014013468A JP6292664B2 (en) 2014-01-28 2014-01-28 Thermoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013468A JP6292664B2 (en) 2014-01-28 2014-01-28 Thermoelectric conversion material

Publications (2)

Publication Number Publication Date
JP2015141984A JP2015141984A (en) 2015-08-03
JP6292664B2 true JP6292664B2 (en) 2018-03-14

Family

ID=53772171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013468A Active JP6292664B2 (en) 2014-01-28 2014-01-28 Thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JP6292664B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11785851B2 (en) 2019-02-01 2023-10-10 Samsung Electronics Co., Ltd. Thermoelectric composite, and thermoelectric element and device including the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125237A (en) * 1994-10-28 1996-05-17 Aisin Seiki Co Ltd Thermoelectric element
CN102257648B (en) * 2008-12-19 2018-04-27 开利公司 The thermoelectric material of the shear force detection of body processing
CN102414121A (en) * 2009-03-24 2012-04-11 巴斯夫欧洲公司 Self-organising thermoelectric materials
JP5206768B2 (en) * 2010-11-08 2013-06-12 トヨタ自動車株式会社 Nanocomposite thermoelectric conversion material, method for producing the same, and thermoelectric conversion element
JP5855876B2 (en) * 2011-08-31 2016-02-09 ダイハツ工業株式会社 Power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11785851B2 (en) 2019-02-01 2023-10-10 Samsung Electronics Co., Ltd. Thermoelectric composite, and thermoelectric element and device including the same

Also Published As

Publication number Publication date
JP2015141984A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
Bérardan et al. In2O3: Ge, a promising n-type thermoelectric oxide composite
Singh Doping-dependent thermopower of PbTe from Boltzmann transport calculations
Suzumura et al. Improvement in thermoelectric properties of Se-free Cu 3 SbS 4 compound
Bulat et al. The influence of anisotropy and nanoparticle size distribution on the lattice thermal conductivity and the thermoelectric figure of merit of nanostructured (Bi, Sb) 2 Te 3
Gao et al. The effect of Ni doping on the thermoelectric transport properties of CdO ceramics
US10818832B2 (en) Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices
US10008653B2 (en) NbFeSb based half-heusler thermoelectric materials and methods of fabrication and use
JP2015056416A (en) N-type thermoelectric conversion material, thermoelectric conversion module, method for manufacturing n-type thermoelectric conversion material
Sun et al. High performance BiSbTe alloy for superior thermoelectric cooling
Williams et al. Increasing the thermoelectric power factor of Ge17Sb2Te20 by adjusting the Ge/Sb ratio
Ye et al. The effect of structural vacancies on the thermoelectric properties of (Cu2Te) 1− x (Ga2Te3) x
Xing et al. Composition optimization of p-type AgSnmSbTem+ 2 thermoelectric materials synthesized by mechanical alloying and spark plasma sintering
JP2010118632A (en) Thermoelectric material for lower and medium temperature
JP6292664B2 (en) Thermoelectric conversion material
JP5274146B2 (en) Thermoelectric semiconductor comprising magnesium, silicon and tin and method for producing the same
Zhu et al. Composition-dependent thermoelectric properties of PbTe doped with Bi2Te3
JP2013219105A (en) Nanocomposite thermoelectric conversion material
He et al. High temperature thermoelectric properties of Bi 2− x Na x Sr 2 Co 2 O y ceramics
KR102269404B1 (en) Selenium content increased thermal element
Manettas et al. Thermoelectric performance of single phase p-type quaternary (PbTe) 0.65–x (PbSe) 0.35 (PbS) x alloys
JP2010226034A (en) Half-heusler thermoelectric material
JP2015005653A (en) Thermoelectric conversion material
Sato et al. Thermoelectric figure of merit enhancement of intermetallic compound RuGa2 by ball-milling
JPWO2018135286A1 (en) p-type thermoelectric conversion material, thermoelectric conversion module and method for producing p-type thermoelectric conversion material
KR102395296B1 (en) Thermoelectric material and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180208

R150 Certificate of patent or registration of utility model

Ref document number: 6292664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250