JP6289944B2 - Quantum dot dispersion - Google Patents

Quantum dot dispersion Download PDF

Info

Publication number
JP6289944B2
JP6289944B2 JP2014051229A JP2014051229A JP6289944B2 JP 6289944 B2 JP6289944 B2 JP 6289944B2 JP 2014051229 A JP2014051229 A JP 2014051229A JP 2014051229 A JP2014051229 A JP 2014051229A JP 6289944 B2 JP6289944 B2 JP 6289944B2
Authority
JP
Japan
Prior art keywords
quantum dot
hydroxide
ligand
quantum dots
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014051229A
Other languages
Japanese (ja)
Other versions
JP2015176956A (en
Inventor
準基 長久保
準基 長久保
平川 正明
正明 平川
智啓 永田
智啓 永田
村上 裕彦
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014051229A priority Critical patent/JP6289944B2/en
Publication of JP2015176956A publication Critical patent/JP2015176956A/en
Application granted granted Critical
Publication of JP6289944B2 publication Critical patent/JP6289944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は、量子ドット増感型太陽電池用光電極の半導体層に量子ドットを吸着させるために用いる量子ドット分散液に関する。 The present invention relates to a quantum dot dispersion used to adsorb the quantum dot semiconductor layer of the quantum dot-sensitized solar cell photoelectrode.

次世代の太陽電池として、現在主流のシリコン結晶型太陽電池と比べて理論上の光電変換効率が高い量子ドット増感型太陽電池が有望視されている。量子ドット増感型太陽電池は、光電極と対向電極とを電解質層を介して対向させてなり、光電極は、基板表面に透明電極層を形成し、透明電極層表面に光電変換材としての半導体層を形成し、半導体層の表面に増感材としての量子ドットを吸着させることにより作製される。   As a next-generation solar cell, a quantum dot-sensitized solar cell, which has a theoretically high photoelectric conversion efficiency as compared with a currently mainstream silicon crystal solar cell, is promising. A quantum dot-sensitized solar cell is formed by making a photoelectrode and a counter electrode face each other via an electrolyte layer, and the photoelectrode forms a transparent electrode layer on the surface of the substrate, and a photoelectric conversion material on the surface of the transparent electrode layer. It is produced by forming a semiconductor layer and adsorbing quantum dots as a sensitizer on the surface of the semiconductor layer.

ここで、量子ドットを吸着させる方法として、量子ドットを分散させた量子ドット分散液に、半導体層を形成した基板を浸漬させる方法が一般に知られている。量子ドットは、その分散性を高めるために長鎖アルキル基を有する界面活性剤で被覆され、溶媒に分散している。このため、半導体層に吸着した量子ドットの表面には、長鎖アルキル基を有する配位子が不可避的に付着する。長鎖アルキル基は、電解質層から量子ドットへの電子の注入を阻害するため、長鎖アルキル基が付着したまま光電極として適用すると、量子ドット増感型太陽電池の光電変換効率の低下を招く。従って、光電極の作製段階で、長鎖アルキル基を除去する必要がある。   Here, as a method of adsorbing quantum dots, a method of immersing a substrate on which a semiconductor layer is formed in a quantum dot dispersion liquid in which quantum dots are dispersed is generally known. The quantum dots are coated with a surfactant having a long-chain alkyl group in order to enhance the dispersibility and are dispersed in a solvent. For this reason, a ligand having a long-chain alkyl group inevitably adheres to the surface of the quantum dot adsorbed on the semiconductor layer. Since the long chain alkyl group inhibits the injection of electrons from the electrolyte layer to the quantum dot, when applied as a photoelectrode with the long chain alkyl group attached, the photoelectric conversion efficiency of the quantum dot sensitized solar cell is reduced. . Therefore, it is necessary to remove the long-chain alkyl group at the production stage of the photoelectrode.

量子ドットから長鎖アルキル基を除去する方法は、例えば非特許文献1で提案されている。このものでは、量子ドットに配位した長鎖アルキル基を3−メルカプトプロピオン酸(以下「MPA」という)に置換(交換)する。そして、配位子置換した量子ドットを半導体層に吸着させることにより、量子ドット増感型太陽電池の光電変換効率を向上させることができる。   For example, Non-Patent Document 1 proposes a method for removing a long-chain alkyl group from a quantum dot. In this, a long-chain alkyl group coordinated to a quantum dot is substituted (exchanged) with 3-mercaptopropionic acid (hereinafter referred to as “MPA”). And the photoelectric conversion efficiency of a quantum dot sensitized solar cell can be improved by adsorb | sucking the ligand-substituted quantum dot to a semiconductor layer.

然し、上記分散液は、数日経過すると、分散液中の量子ドットが凝集して沈殿してしまうことが判明した。一旦凝集した量子ドットは半導体層に吸着させることはできないため、量子ドットが凝集した分散液は廃棄しなければならず、生産コストが増大する問題があった。廃棄量を少なくなるには、量子ドットを吸着させる度に少量の分散液を調製すればよいが、これでは、分散液の調製回数が増えるため生産性が悪い。   However, it has been found that the quantum dots in the dispersion aggregate and precipitate after a few days. Since the quantum dots once agglomerated cannot be adsorbed to the semiconductor layer, the dispersion liquid in which the quantum dots are agglomerated must be discarded, resulting in an increase in production cost. In order to reduce the amount of waste, it is sufficient to prepare a small amount of dispersion every time the quantum dots are adsorbed. However, this increases the number of times of preparation of the dispersion, resulting in poor productivity.

Zhenxiao Pan、他5名、“Near Infrared Absorption of CdSexTe1-x Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability”、American Chemical Society、Nano letters Vol.7、No.6、5215-5222頁、2013年Zhenxiao Pan, 5 others, “Near Infrared Absorption of CdSexTe1-x Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability”, American Chemical Society, Nano letters Vol.7, No.6, pp. 5215-5222 ,2013

本発明は、以上の点に鑑み、量子ドットが安定して分散した状態を長期間に亘って保つことができ、量子ドット増感型太陽電池の光電極を生産性よく且つ低コストで作製可能な量子ドット分散液を提供することをその課題とする In view of the above points, the present invention can maintain a state where quantum dots are stably dispersed over a long period of time, and can produce a photoelectrode of a quantum dot-sensitized solar cell with high productivity and low cost. It is an object to provide a simple quantum dot dispersion .

上記課題を解決するために、量子ドット増感型太陽電池の光電極の半導体層に量子ドットを吸着させるために用いる本発明の量子ドット分散液は、半導体層に吸着される配位子が配位した量子ドットと、4.75以下の塩基解離定数pKbを有する水酸化物と、極性溶媒とを含み、前記水酸化物が、前記配位子の2〜10倍のモル量で添加され、前記配位子が、チオグリコール酸のアニオンであることを特徴とする In order to solve the above problems, the quantum dot dispersion liquid of the present invention used for adsorbing quantum dots to the semiconductor layer of the photoelectrode of a quantum dot sensitized solar cell has a ligand adsorbed on the semiconductor layer. A quantum dot having a base dissociation constant pKb of 4.75 or less, and a polar solvent, wherein the hydroxide is added in a molar amount 2 to 10 times that of the ligand, The ligand is an anion of thioglycolic acid .

本発明によれば、上記式(1)で表される配位子が量子ドットに配位したため、上記従来例の如く量子ドットにMPAが配位したものと比較して、量子ドットが安定して分散した状態を長期間に亘って保つことができる。このため、本発明の量子ドット分散液を用いて量子ドット増感型太陽電池の光電極の半導体層に量子ドットを吸着すれば、量子ドット分散液を長期間に亘って繰り返し使用できるため、生産性よく量子ドット増感型太陽電池用の光電極を作製することができる。しかも、量子ドット分散液の廃棄量を減らすことができるため、生産コストを低くすることができる。   According to the present invention, since the ligand represented by the above formula (1) is coordinated to the quantum dot, the quantum dot is more stable than that in which the MPA is coordinated to the quantum dot as in the conventional example. The dispersed state can be maintained for a long time. For this reason, if quantum dots are adsorbed to the semiconductor layer of the photoelectrode of a quantum dot sensitized solar cell using the quantum dot dispersion of the present invention, the quantum dot dispersion can be used repeatedly over a long period of time. A photoelectrode for a quantum dot-sensitized solar cell can be produced with good performance. In addition, since the amount of the quantum dot dispersion liquid discarded can be reduced, the production cost can be reduced.

本発明において、前記配位子をチオグリコール酸のアニオンとすることで、上記効果が得られることを確認した。この場合、前記水酸化物を、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム及び水酸化テトラブチルアンモニウムから選択される少なくとも1種とすることで、配位子のアニオン化を促進できてよい。   In this invention, it confirmed that the said effect was acquired by making the said ligand into the anion of thioglycolic acid. In this case, the anionization of the ligand can be promoted by making the hydroxide at least one selected from sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide and tetrabutylammonium hydroxide. Good.

本発明の量子ドット分散液を用いて作製される光電極を備える量子ドット増感型太陽電池の概略断面図。The schematic sectional drawing of a quantum dot sensitized solar cell provided with the photoelectrode produced using the quantum dot dispersion liquid of this invention. (a)〜(c)は本発明の量子ドット分散液を用いる光電極の作製方法を説明するための図。(A)-(c) is a figure for demonstrating the preparation methods of the photoelectrode using the quantum dot dispersion liquid of this invention. 本発明の実験結果を示すIRスペクトル。The IR spectrum which shows the experimental result of this invention. (a)及び(b)は2週間経過後の量子ドット分散液を示す写真。(A) And (b) is a photograph showing a quantum dot dispersion after two weeks. 量子ドットの吸着能の経時変化を示す図。The figure which shows the time-dependent change of the adsorption ability of a quantum dot. 本発明の実験結果を示すグラフ。The graph which shows the experimental result of this invention. 本発明の実験結果を示すグラフ。The graph which shows the experimental result of this invention. 本発明の実験結果を示すグラフ。The graph which shows the experimental result of this invention.

図1を参照して、SCは、量子ドット増感型太陽電池(以下「太陽電池」という)であり、太陽電池SCは、ガラス等からなる基板(基体)1表面に形成された光電極(光負極)2と、基板1表面の外周部に形成された枠状のシール部材3と、シール部材3を介して光電極2と対向配置された対向電極(光正極)4と、これら光電極2、対向電極4及びシール部材3で画成される空間に形成される電解質層5とを備える。   Referring to FIG. 1, SC is a quantum dot sensitized solar cell (hereinafter referred to as “solar cell”), and solar cell SC is a photoelectrode (on a substrate (substrate) 1 made of glass or the like). (Photo negative electrode) 2, a frame-shaped seal member 3 formed on the outer peripheral portion of the surface of the substrate 1, a counter electrode (photo positive electrode) 4 disposed opposite to the photo electrode 2 through the seal member 3, and these photo electrodes 2, and an electrolyte layer 5 formed in a space defined by the counter electrode 4 and the seal member 3.

図2(c)も参照して、光電極2は、基板1表面に形成される透明電極層21と、透明電極層21の表面に形成される金属酸化物粒子からなる半導体層22と、半導体層22の表面(空孔)に吸着される量子ドット23とを備える。半導体層22は、量子ドット23が吸着される吸着層22aと、吸着層22aを透過した光を散乱する散乱層22bとで構成される。このように半導体層22を2層で構成すれば、散乱層22bにより散乱された光の一部を、量子ドット23及び吸着層22aに吸収させることができる。尚、半導体層22を単一層(吸着層22aのみ)で構成してもよい。   2C, the photoelectrode 2 includes a transparent electrode layer 21 formed on the surface of the substrate 1, a semiconductor layer 22 made of metal oxide particles formed on the surface of the transparent electrode layer 21, and a semiconductor. And quantum dots 23 adsorbed on the surface (holes) of the layer 22. The semiconductor layer 22 includes an adsorption layer 22a on which the quantum dots 23 are adsorbed, and a scattering layer 22b that scatters light transmitted through the adsorption layer 22a. If the semiconductor layer 22 is configured in two layers in this way, a part of the light scattered by the scattering layer 22b can be absorbed by the quantum dots 23 and the adsorption layer 22a. The semiconductor layer 22 may be a single layer (only the adsorption layer 22a).

透明電極層21は、ITOやFTO等の材料で形成することができる。半導体層22を構成する金属酸化物としては、酸化チタン、酸化亜鉛、酸化スズ、酸化ニオブ等を例示することができる。この場合、吸着層22aと散乱層22bとは同一の金属酸化物で形成してもよく、異なる種類の金属酸化物で形成してもよい。例えば、吸着層22a及び散乱層22bを共に酸化チタン粒子で形成する場合、吸着層22aの粒径は、吸着面積(表面積)を増やす観点から5〜100nm(好ましくは5〜30nm)の範囲内に設定でき、散乱層22bの粒径は例えば100〜1000nm(好ましくは200〜600nm)の範囲内に設定できる。量子ドット23としては、例えば、CuInSeで構成することができる。 The transparent electrode layer 21 can be formed of a material such as ITO or FTO. Examples of the metal oxide constituting the semiconductor layer 22 include titanium oxide, zinc oxide, tin oxide, and niobium oxide. In this case, the adsorption layer 22a and the scattering layer 22b may be formed of the same metal oxide or different types of metal oxides. For example, when both the adsorption layer 22a and the scattering layer 22b are formed of titanium oxide particles, the particle size of the adsorption layer 22a is in the range of 5 to 100 nm (preferably 5 to 30 nm) from the viewpoint of increasing the adsorption area (surface area). The particle size of the scattering layer 22b can be set within a range of 100 to 1000 nm (preferably 200 to 600 nm), for example. The quantum dots 23 can be composed of, for example, CuInSe 2 .

吸着層22aに量子ドット23を吸着させるために用いる本発明の量子ドット分散液L2は、吸着層22aに吸着される配位子23aが配位した量子ドットと、水酸化物と、極性溶媒とを含む。水酸化物としては、4.75以下の塩基解離定数pKbを有するものを用いることができ、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム及び水酸化テトラブチルアンモニウムから選択される少なくとも1種を用いることができる。水酸化物の塩基解離定数pKbが4.75より大きいと、配位子末端のカルボキシル基の脱プロトン化(アニオン化)を促進することができず、配位子23aを効率よく吸着層22aに吸着させることができなくなる虞がある。量子ドット22に配位する配位子23aは、下記式(1)で表される。
M−(CH−COO ・・・(1)
(式(1)中、MはCO、S、Se、CN、SCN及びNHから選択される1種であり、nは0または1である)
The quantum dot dispersion liquid L2 of the present invention used for adsorbing the quantum dots 23 to the adsorption layer 22a includes a quantum dot coordinated by the ligand 23a adsorbed to the adsorption layer 22a, a hydroxide, a polar solvent, including. As the hydroxide, one having a base dissociation constant pKb of 4.75 or less can be used, and specifically, selected from sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide and tetrabutylammonium hydroxide. At least one of the above can be used. If the base dissociation constant pKb of the hydroxide is greater than 4.75, deprotonation (anionization) of the carboxyl group at the end of the ligand cannot be promoted, and the ligand 23a can be efficiently converted into the adsorption layer 22a. There is a possibility that it cannot be adsorbed. The ligand 23a coordinated to the quantum dot 22 is represented by the following formula (1).
M- (CH 2) n -COO - ··· (1)
(In the formula (1), M is one selected from CO, S, Se, CN, SCN and NH 2 , and n is 0 or 1)

図1を再び参照して、対向電極4としては、公知の構造を有するものを用いることができ、例えば、白金、カーボン、真鍮板等からなる基板や、ガラスやフィルム上に蒸着等の方法により白金、カーボン、真鍮を形成した基板で構成されるものを用いることができる。電解質層5としては、ポリ硫化ナトリウム溶液等の電解液や、ヨウ化銅等の化合物半導体、ポリチオフェン類縁体等の有機半導体ホール輸送層を用いることができる。   Referring again to FIG. 1, the counter electrode 4 can be one having a known structure, for example, by a method such as vapor deposition on a substrate made of platinum, carbon, brass plate, or glass or film. What is comprised with the board | substrate which formed platinum, carbon, and brass can be used. As the electrolyte layer 5, an electrolytic solution such as a sodium polysulfide solution, a compound semiconductor such as copper iodide, or an organic semiconductor hole transport layer such as a polythiophene analog can be used.

以下、図1及び図2を参照して、上記式(1)で表される配位子をチオグリコール酸(TGA)のアニオンとする場合を例に、光電極2の作製方法について説明する。   Hereinafter, with reference to FIGS. 1 and 2, a method for producing the photoelectrode 2 will be described by taking as an example the case where the ligand represented by the above formula (1) is an anion of thioglycolic acid (TGA).

先ず、ガラス基板1表面にITOまたはFTOからなる透明電極層21を100nm〜1000nmの厚みで形成し、透明電極層21の表面に半導体層22を形成する。透明電極層21の形成方法としては、公知のスパッタリング法やCVD法を用いることができるため、ここでは成膜条件等の詳細な説明は省略する。半導体層22の形成方法としては公知のスキージ法を用いることができる。この場合、粒径5nm〜30nmの半導体ナノペーストをスキージ法により塗布して焼成することで吸着層22aを形成した後、粒径200nm〜600nmの半導体ナノペーストを吸着層22a上にスキージ法により塗布して焼成することで散乱層22bを形成することにより、半導体層22が形成される。   First, the transparent electrode layer 21 made of ITO or FTO is formed on the surface of the glass substrate 1 with a thickness of 100 nm to 1000 nm, and the semiconductor layer 22 is formed on the surface of the transparent electrode layer 21. Since a known sputtering method or CVD method can be used as a method for forming the transparent electrode layer 21, detailed description of film forming conditions and the like is omitted here. A known squeegee method can be used as a method of forming the semiconductor layer 22. In this case, a semiconductor nano paste having a particle size of 5 nm to 30 nm is applied by a squeegee method and baked to form the adsorption layer 22a, and then a semiconductor nano paste having a particle size of 200 nm to 600 nm is applied to the adsorption layer 22a by a squeegee method. And the semiconductor layer 22 is formed by forming the scattering layer 22b by baking.

次に、図2(a)に示すように、オレイルアミンが配位した量子ドットを分散させてなる分散液L1を作製する。この分散液L1の作製方法としては、公知の方法(例えば特開2013−201107号公報に開示された方法)を用いることができる。即ち、Cu含有化合物とIn含有化合物とSe含有化合物とを夫々オレイルアミンに溶解させて溶液を作製し、これらの溶液を所定割合で混合し、分散剤を加えて攪拌する。この分散剤を加えた混合液を、150℃以上250℃以下の温度で加熱しながら、1〜40分間撹拌して反応させることで、CuInSeからなる量子ドット23が分散された混合液L1が作製される。そして、このように作製した混合液L1から量子ドット23を分離する。このとき、混合液L1にアルコール等を混合して量子ドット23を沈殿させ、沈殿させた量子ドット23を遠心分離すればよい。 Next, as shown in FIG. 2 (a), a dispersion liquid L1 in which quantum dots coordinated with oleylamine are dispersed is prepared. As a method for producing the dispersion L1, a known method (for example, a method disclosed in JP2013-201107A) can be used. That is, a Cu-containing compound, an In-containing compound, and a Se-containing compound are dissolved in oleylamine to prepare solutions, and these solutions are mixed at a predetermined ratio, and a dispersant is added and stirred. The mixed liquid L1 in which the quantum dots 23 made of CuInSe 2 are dispersed is obtained by stirring and reacting the mixed liquid to which the dispersant is added at a temperature of 150 ° C. or higher and 250 ° C. or lower for 1 to 40 minutes. Produced. And the quantum dot 23 is isolate | separated from the liquid mixture L1 produced in this way. At this time, alcohol or the like may be mixed with the liquid mixture L1 to precipitate the quantum dots 23, and the precipitated quantum dots 23 may be centrifuged.

分離した量子ドット23を溶媒に分散させ、配位子置換用のTGA、純水、メタノールと4.75以下の塩基解離定数pKbを有する水酸化物とを加える。ここで、水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム及び水酸化テトラブチルアンモニウムから選択される少なくとも1種を用いることができる。このとき、水酸化物をTGAの2〜10倍のモル量加えることが好ましい。この範囲外だと、TGAのアニオン化が効率よく行われず、配位子置換が効率よく行われなくなる場合がある。   The separated quantum dots 23 are dispersed in a solvent, and TGA for ligand substitution, pure water, methanol, and a hydroxide having a base dissociation constant pKb of 4.75 or less are added. Here, as the hydroxide, at least one selected from sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, and tetrabutylammonium hydroxide can be used. At this time, it is preferable to add a hydroxide in a molar amount 2 to 10 times that of TGA. Outside this range, anionization of TGA may not be performed efficiently, and ligand substitution may not be performed efficiently.

配位子置換後の量子ドット23を遠心分離し、分離した量子ドット23を極性溶媒に分散させ、量子ドット分散液L2を得る。このとき、分離した量子ドット23に付着している水酸化物が、量子ドット分散液L2にも含まれるが、更なるイオン化を促進、維持するために、上記列挙した水酸化物を添加してもよい。この場合も、水酸化物をTGAの2〜10倍のモル量加えることができる。尚、最初に加えた水酸化物と異なる種類の水酸化物を添加してもよい。   The quantum dot 23 after ligand substitution is centrifuged, and the separated quantum dot 23 is dispersed in a polar solvent to obtain a quantum dot dispersion liquid L2. At this time, hydroxides adhering to the separated quantum dots 23 are also included in the quantum dot dispersion L2, but in order to promote and maintain further ionization, the above listed hydroxides are added. Also good. Again, the hydroxide can be added in a molar amount 2-10 times that of TGA. In addition, you may add the kind of hydroxide different from the hydroxide added initially.

このようにして得た量子ドット分散液L2に、上記透明電極層21及び半導体層22形成済みの基板1を浸漬させる(図2(b)参照)。これにより、図2(c)に示すように、半導体層22の吸着層22aに量子ドット23の配位子23aが化学吸着する。浸漬時間は、例えば、30分〜24時間の範囲内で設定することができるが、生産性を考慮すると、30分〜4時間の範囲内に設定することが好ましい。このとき、上記水酸化物のモル量はTGAの2〜10倍に設定しているため、配位子のカルボキシル基の脱プロトン化(アニオン化)が促進され、その結果、半導体層22aへの量子ドット23の化学吸着が促進される。所定の浸漬時間が経過すると、量子ドット分散液L2から量子ドット23吸着済みの基板1を取り出し、該基板1を洗浄及び乾燥させることで、光電極2が作製される。このように作製した光電極2に例えば熱可塑性樹脂からなるシール部材3を介して対向電極4を対向させて配置し、内部空間に電解質(電解液)5を注入することで太陽電池セルが作製される。   The substrate 1 on which the transparent electrode layer 21 and the semiconductor layer 22 have been formed is immersed in the quantum dot dispersion L2 thus obtained (see FIG. 2B). Thereby, as shown in FIG. 2C, the ligand 23 a of the quantum dot 23 is chemically adsorbed on the adsorption layer 22 a of the semiconductor layer 22. The immersion time can be set, for example, within a range of 30 minutes to 24 hours, but is preferably set within a range of 30 minutes to 4 hours in consideration of productivity. At this time, since the molar amount of the hydroxide is set to 2 to 10 times that of TGA, deprotonation (anionization) of the carboxyl group of the ligand is promoted. The chemical adsorption of the quantum dots 23 is promoted. When a predetermined immersion time has elapsed, the substrate 1 that has already adsorbed the quantum dots 23 is taken out from the quantum dot dispersion liquid L2, and the substrate 1 is washed and dried to produce the photoelectrode 2. A photovoltaic cell is produced by arranging the counter electrode 4 so as to face the photoelectrode 2 produced in this way through a sealing member 3 made of, for example, a thermoplastic resin, and injecting an electrolyte (electrolyte) 5 into the internal space. Is done.

以上説明したように、本実施形態の量子ドット分散液L2は、TGAのような上記式(1)で表される配位子23aが量子ドット23に配位したため、上記従来例の如く量子ドットにMPAが配位したものと比較して、量子ドット23が安定して分散した状態を長期間(少なくとも3週間以上)に亘って保つことができる。このため、量子ドット分散液L2を長期間に亘って繰り返し使用できるため、生産性よく量子ドット増感型太陽電池SC用の光電極2を作製することができる。しかも、量子ドット分散液L2の廃棄量を減らすことができ、生産コストを低くすることができる。従って、量子ドット増感型太陽電池用の光電極2を生産性よく作製することができる。また、上記量子ドット分散液L2を用いて半導体層22(吸着層22a)に量子ドット23を吸着させることで、上記従来例(配位子:MPA)に比べて量子ドット23の吸着量を増やすことができる。その結果、当該光電極を量子ドット増感型太陽電池に適用したときに、量子ドット23から吸着層22aへの電子注入量を増大でき、量子ドット増感型太陽電池の変換効率を高めることができる。このような本発明の効果を確認するために、本発明者らは以下の実験を行った。この実験は、実施例をも兼ねる。   As described above, in the quantum dot dispersion liquid L2 of this embodiment, the ligand 23a represented by the above formula (1) such as TGA is coordinated to the quantum dot 23. Compared with the case where MPA is coordinated, the state in which the quantum dots 23 are stably dispersed can be maintained for a long period (at least 3 weeks or more). For this reason, since the quantum dot dispersion liquid L2 can be repeatedly used over a long period of time, the photoelectrode 2 for the quantum dot-sensitized solar cell SC can be produced with high productivity. In addition, the amount of the quantum dot dispersion L2 discarded can be reduced, and the production cost can be reduced. Therefore, the photoelectrode 2 for quantum dot-sensitized solar cells can be produced with high productivity. Further, by adsorbing the quantum dots 23 to the semiconductor layer 22 (adsorption layer 22a) using the quantum dot dispersion liquid L2, the adsorption amount of the quantum dots 23 is increased as compared with the conventional example (ligand: MPA). be able to. As a result, when the photoelectrode is applied to a quantum dot-sensitized solar cell, the amount of electrons injected from the quantum dot 23 to the adsorption layer 22a can be increased, and the conversion efficiency of the quantum dot-sensitized solar cell can be increased. it can. In order to confirm such an effect of the present invention, the present inventors conducted the following experiment. This experiment also serves as an example.

本実験では、先ず、CuI、InI及びセレノウレアを濃度が0.1Mとなるように夫々オレイルアミンに溶解させた溶液A,B,Cを作製し、これらの溶液A〜Cを0.25:1:2の割合で混合し、200℃の温度で10分間攪拌することにより、オレイルアミンが配位したCuInSeからなる量子ドット23が分散した混合液L1を得た。混合液L1にメタノールを混合して量子ドットを沈殿させ、沈殿させた量子ドットを遠心分離した。分離した量子ドットをトルエンに約0.02mol/lの濃度で分散させた。この分散させたものに、TGA0.1ml(1.8mmol)、純水0.2ml、メタノール0.7ml、40wt%の水酸化ナトリウム(5.4mmol)を予め混合し(このとき、水酸化ナトリウムのモル量はTGAの3倍)、調製した溶液を加えた。その後、30分攪拌することにより、配位子が上記オレイルアミン(長鎖アルキル鎖)からチオグリコール酸に置換され、この配位子置換された量子ドットが沈殿した。これをアセトンで希釈し、遠心分離を行い、上澄みを捨てて得た沈殿物(量子ドット)を水に再分散させた。この再分散により調製された量子ドット分散液を「発明品」とした。この発明品に対する比較のため、TGAの代わりにMPAを0.1ml加える点を除き、上記発明品と同様の方法により調製して得た量子ドット分散液を「比較品」とした。 In this experiment, first, CuI, InI 3 and selenourea the solution was dissolved in each of oleylamine to a concentration of 0.1 M A, to prepare B, and C, and these solutions A through C 0.25: 1 The mixture liquid L1 in which the quantum dots 23 made of CuInSe 2 coordinated with oleylamine were dispersed was obtained by mixing at a ratio of 2: 2 and stirring at a temperature of 200 ° C. for 10 minutes. The mixed liquid L1 was mixed with methanol to precipitate quantum dots, and the precipitated quantum dots were centrifuged. The separated quantum dots were dispersed in toluene at a concentration of about 0.02 mol / l. To this dispersion, 0.1 ml (1.8 mmol) of TGA, 0.2 ml of pure water, 0.7 ml of methanol, and 40 wt% sodium hydroxide (5.4 mmol) were mixed in advance (at this time, sodium hydroxide The molar amount was 3 times that of TGA), and the prepared solution was added. Thereafter, by stirring for 30 minutes, the ligand was replaced with thioglycolic acid from the oleylamine (long-chain alkyl chain), and the ligand-substituted quantum dots were precipitated. This was diluted with acetone, centrifuged, and the precipitate (quantum dots) obtained by discarding the supernatant was redispersed in water. The quantum dot dispersion prepared by this redispersion was designated as “invention”. For comparison with the product of the present invention, a quantum dot dispersion prepared by the same method as that of the product of the present invention except that 0.1 ml of MPA was added instead of TGA was used as a “comparative product”.

上記のように調製した発明品と比較品の透過IR測定したところ、双方とも、長鎖アルキル基に起因する吸収ピークは観察されず、配位子置換されていることが判った。また、図3に示すように、カルボキシレート基に起因する吸収ピークP,Pが双方にみられることから、発明品と比較品の双方とも、置換された配位子は、量子ドットに対してカルボキシラートイオン(アニオン)の状態で配位していることが判った。また、分散液の調製から2週間経過後の発明品と比較品を観察したところ、図4(a)に示す発明品は凝集せず安定した状態で分散しているのに対し、図4(b)に示す比較品は量子ドットが凝集して沈殿していることが確認された。 As a result of transmission IR measurement of the inventive product and the comparative product prepared as described above, it was found that no absorption peak due to the long-chain alkyl group was observed, and that the ligand was substituted. Moreover, as shown in FIG. 3, since absorption peaks P 1 and P 2 attributed to the carboxylate group are observed in both, the substituted ligands in the quantum dots are present in both the inventive product and the comparative product. On the other hand, it turned out that it coordinates in the state of carboxylate ion (anion). Further, when the invention product and the comparative product after two weeks from the preparation of the dispersion were observed, the invention product shown in FIG. 4 (a) was dispersed in a stable state without aggregation, whereas FIG. In the comparative product shown in b), it was confirmed that the quantum dots were aggregated and precipitated.

次に、1cm×1cmのサイズを有するガラス基板の表面に酸化チタンペーストをスキージ法により塗布し、450℃で30分焼成することにより、粒径20nmの酸化チタン粒子からなる半導体層を約6μmの厚みで形成した。この半導体層を形成したガラス基板に調製直後の発明品、調製から2週間経過後、3週間経過後の発明品を滴下し、30分放置した後、水洗した。水洗後の色合いを観察した結果を図5に示す。色合いが濃いほど、吸着能が高いことを示す。発明品は、3週間経過後でも調製直後と同様の色合いを示しており、3週間経過後も量子ドットの吸着能が低下していないことが確認され、これより、3週間経過後の量子ドット分散液では量子ドットの安定した分散状態が維持されることが判った。これに対して、比較品は、調製から2週間が経過すると、色合いが著しく薄くなり、量子ドットの吸着能が殆どなくなることが確認された。   Next, a titanium oxide paste is applied to the surface of a glass substrate having a size of 1 cm × 1 cm by a squeegee method and baked at 450 ° C. for 30 minutes to form a semiconductor layer made of titanium oxide particles having a particle diameter of about 6 μm. It was formed with a thickness. The inventive product immediately after preparation, the inventive product after 3 weeks from the preparation, were dropped onto the glass substrate on which the semiconductor layer was formed, and the product was allowed to stand for 30 minutes, followed by washing with water. The result of observing the color after washing with water is shown in FIG. The darker the color, the higher the adsorption capacity. The invented product shows the same hue as just after the preparation even after 3 weeks, and it was confirmed that the adsorption ability of the quantum dots did not decrease after 3 weeks. It was found that a stable dispersion state of quantum dots was maintained in the dispersion. On the other hand, it was confirmed that after 2 weeks from the preparation of the comparative product, the hue became extremely thin and the adsorption ability of the quantum dots almost disappeared.

また、調製直後の発明品及び比較品を用いて上記のように量子ドットを吸着させた半導体層の紫外可視吸収スペクトルを測定した結果を図6に示す。これによれば、発明品を用いる場合の方が、比較品を用いる場合よりも吸光度が大きく、量子ドットの吸着量が多いことが判った。   Moreover, the result of having measured the ultraviolet visible absorption spectrum of the semiconductor layer which adsorb | sucked the quantum dot as mentioned above using the invention goods and comparative goods immediately after preparation is shown in FIG. According to this, it was found that the absorbance was higher in the case of using the invention product than in the case of using the comparative product, and the adsorption amount of the quantum dots was larger.

次に、1cm×1cmのサイズを有するガラス基板1の表面にFTOからなる透明電極層21をスパッタ法により300nmの厚みで形成し、この透明電極層21の表面にスキージ法により粒径20nmの酸化チタンからなる吸着層22aを形成した。これらの層21,22aが形成された基板1を調製直後の発明品に30分浸漬させることにより、吸着層22aに量子ドット23を吸着させて光電極を得た。このようにして得た光電極を用いて量子ドット増感型太陽電池セルを作製した。対向電極4としては、市販の真鍮板を濃塩酸中で70℃、15分浸漬処理したものを用い、電解質層(電解液)5としては、ポリ硫化ナトリウムメタノール溶液を用いた。このように作製した太陽電池セルを「発明品(調製直後)」という。そして、調製から3週間後の発明品を用いる点、調製直後の比較品を用いる点、調製から3週間後の比較品を用いる点以外は、上記「発明品(調製直後)」と同様の方法で夫々作製した太陽電池セルを「発明品(3週間後)」、「比較品(調製直後)」、「比較品(3週間後)」とした。これら4つの太陽電池セルについて求めたIPCE特性を図7に示す。発明品(調製直後)と発明品(3週間後)とでは略同一の特性が得られたのに対し、比較品(3週間後)は比較品(調製直後)よりも大幅に光電変換能が低下することが確認された。   Next, a transparent electrode layer 21 made of FTO is formed on the surface of the glass substrate 1 having a size of 1 cm × 1 cm to a thickness of 300 nm by sputtering, and the surface of the transparent electrode layer 21 is oxidized by a squeegee method with a particle size of 20 nm. An adsorption layer 22a made of titanium was formed. The substrate 1 on which these layers 21 and 22a were formed was immersed in the product immediately after preparation for 30 minutes, thereby adsorbing the quantum dots 23 to the adsorption layer 22a to obtain a photoelectrode. A quantum dot-sensitized solar cell was produced using the photoelectrode thus obtained. As the counter electrode 4, a commercially available brass plate immersed in concentrated hydrochloric acid at 70 ° C. for 15 minutes was used, and as the electrolyte layer (electrolytic solution) 5, a sodium polysulfide methanol solution was used. The solar cell thus produced is referred to as “invention product (immediately after preparation)”. And the method similar to the above-mentioned “invention product (immediately after preparation)” except that the invention product after 3 weeks from the preparation, the comparative product immediately after the preparation is used, and the comparative product after 3 weeks from the preparation are used. The solar cells produced in the above were designated as “invention product (after 3 weeks)”, “comparative product (immediately after preparation)”, and “comparative product (after 3 weeks)”. The IPCE characteristics obtained for these four solar cells are shown in FIG. The product of the invention (immediately after preparation) and the product of the invention (after 3 weeks) have almost the same characteristics, whereas the comparative product (after 3 weeks) has a significantly higher photoelectric conversion capacity than the comparative product (immediately after preparation). It was confirmed that it decreased.

また、発明品(調製直後)と比較品(調製直後)について夫々求めたJV特性を図8に示す。JV特性を求めたこれらの発明品(調製直後)及び比較品(調製直後)は、吸着層22a上に粒径250nmの酸化チタンからなる散乱層22bを形成している点で、上記IPCE特性を求めたものと相違する。以下の表1に示すように、比較品(調製直後)の電流密度Jscは14.5(mA/cm)、開放電圧Vocは0.56(V)、曲線因子FFは0.37、変換効率PCEは3.0(%)であったのに対し、発明品(調製直後)の電流密度Jscは16.8(mA/cm)、開放電圧Vocは0.56(V)、曲線因子FFは0.40、変換効率PCEは3.8(%)であった。これより、発明品の量子ドット分散液(配位子:TGA)を用いることで、比較品の量子ドット分散液(配位子:MPA)を用いる場合の約1.3倍という優れた変換効率を有することが判った。 FIG. 8 shows the JV characteristics obtained for the inventive product (immediately after preparation) and the comparative product (immediately after preparation). These invention products (immediately after preparation) and comparative products (immediately after preparation) for which JV characteristics were obtained have the above IPCE characteristics in that a scattering layer 22b made of titanium oxide having a particle size of 250 nm is formed on the adsorption layer 22a. It is different from what I asked for. As shown in Table 1 below, the current density Jsc of the comparative product (immediately after preparation) is 14.5 (mA / cm 2 ), the open circuit voltage Voc is 0.56 (V), the fill factor FF is 0.37, conversion While the efficiency PCE was 3.0 (%), the current density Jsc of the inventive product (immediately after preparation) was 16.8 (mA / cm 2 ), the open circuit voltage Voc was 0.56 (V), and the fill factor The FF was 0.40, and the conversion efficiency PCE was 3.8 (%). From this, by using the quantum dot dispersion liquid of the invention (ligand: TGA), excellent conversion efficiency of about 1.3 times that when using the comparative quantum dot dispersion liquid (ligand: MPA) It was found to have

なお、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態では、透明電極層21をスパッタリング法により形成し、半導体層22をスキージ法及び焼成により形成する場合について説明したが、これ以外の方法により透明電極層21や半導体層22を形成してもよい。また、上記実施形態では、量子ドット23としてCuInSeからなるものを例に説明したが、量子ドットの材料はこれに限定されず、他の材料で形成したものであってもよい。また、上記実施形態では配位子23aがTGA(上記式(1)中のMがS、n=1)である場合を例に説明したが、配位子23aとして上記式(1)で表されるものを用いれば、TGAを用いる場合と同様の効果が得られることが確認された。 The present invention is not limited to the above embodiment. For example, in the above embodiment, the transparent electrode layer 21 is formed by the sputtering method and the semiconductor layer 22 is formed by the squeegee method and baking. However, the transparent electrode layer 21 and the semiconductor layer 22 are formed by other methods. May be. In the above-described embodiment, the quantum dots 23 are made of CuInSe 2 as an example, but the material of the quantum dots is not limited to this and may be formed of other materials. Moreover, although the case where the ligand 23a is TGA (M in the above formula (1) is S, n = 1) has been described as an example in the above embodiment, the ligand 23a is represented by the above formula (1). It was confirmed that the same effect as that obtained when TGA was used was obtained.

SC…量子ドット増感型太陽電池、L1…配位子置換前の量子ドット分散液、L2…配位子置換後の量子ドット分散液、1…基板、2…光電極、21…透明電極層、22…半導体層、23…量子ドット、23a…配位子。
SC ... Quantum dot sensitized solar cell, L1 ... Quantum dot dispersion before ligand substitution, L2 ... Quantum dot dispersion after ligand substitution, 1 ... Substrate, 2 ... Photo electrode, 21 ... Transparent electrode layer 22 ... semiconductor layer, 23 ... quantum dot, 23a ... ligand.

Claims (2)

量子ドット増感型太陽電池の光電極の半導体層に量子ドットを吸着させるために用いる量子ドット分散液において、
半導体層に吸着される配位子が配位した量子ドットと、4.75以下の塩基解離定数pKbを有する水酸化物と、極性溶媒とを含み、
前記水酸化物が、前記配位子の2〜10倍のモル量で添加され、
前記配位子が、チオグリコール酸のアニオンであることを特徴とする量子ドット分散液
In the quantum dot dispersion liquid used for adsorbing the quantum dots to the semiconductor layer of the photoelectrode of the quantum dot sensitized solar cell,
A quantum dot coordinated with a ligand adsorbed on the semiconductor layer, a hydroxide having a base dissociation constant pKb of 4.75 or less, and a polar solvent,
The hydroxide is added in a molar amount of 2 to 10 times the ligand,
The quantum dot dispersion liquid , wherein the ligand is an anion of thioglycolic acid .
記水酸化物が、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム及び水酸化テトラブチルアンモニウムから選択される少なくとも1種であることを特徴とする請求項1記載の量子ドット分散液 Before SL hydroxide, sodium hydroxide, potassium hydroxide, quantum dots dispersion of claim 1 Symbol mounting, characterized in that at least one member selected from tetramethyl ammonium and tetrabutyl ammonium hydroxide .
JP2014051229A 2014-03-14 2014-03-14 Quantum dot dispersion Active JP6289944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014051229A JP6289944B2 (en) 2014-03-14 2014-03-14 Quantum dot dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014051229A JP6289944B2 (en) 2014-03-14 2014-03-14 Quantum dot dispersion

Publications (2)

Publication Number Publication Date
JP2015176956A JP2015176956A (en) 2015-10-05
JP6289944B2 true JP6289944B2 (en) 2018-03-07

Family

ID=54255900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014051229A Active JP6289944B2 (en) 2014-03-14 2014-03-14 Quantum dot dispersion

Country Status (1)

Country Link
JP (1) JP6289944B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11758743B2 (en) 2016-07-20 2023-09-12 Sony Corporation Semiconductor film and method of producing the same, photoelectric conversion element, solid-state imaging element and electronic apparatus
CN107742581B (en) * 2017-09-15 2019-06-28 华南农业大学 A method of adsorbance is improved based on mixed solvent and prepares quantum dot solar battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377327B2 (en) * 2007-12-12 2013-12-25 シャープ株式会社 Photosensitized solar cell module and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015176956A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
Zhang et al. Highly efficient Zn–Cu–In–Se quantum dot-sensitized solar cells through surface capping with ascorbic acid
Akin Hysteresis-free planar perovskite solar cells with a breakthrough efficiency of 22% and superior operational stability over 2000 h
Ye et al. Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes
Pan et al. High-efficiency “green” quantum dot solar cells
Hod et al. Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects
Basu et al. Heterostructure of Si and CoSe2: a promising photocathode based on a non‐noble metal catalyst for photoelectrochemical hydrogen evolution
Lang et al. Perovskite solar cells with large-area CVD-graphene for tandem solar cells
McDaniel et al. Engineered CuInSe x S2–x quantum dots for sensitized solar cells
Choi et al. Metal selenides as a new class of electrocatalysts for quantum dot-sensitized solar cells: a tale of Cu1. 8Se and PbSe
Yu et al. Cu2ZnSnS4–Ag2S nanoscale p–n Heterostructures as sensitizers for photoelectrochemical water splitting
Zhang et al. Continuous size tuning of monodispersed ZnO nanoparticles and its size effect on the performance of perovskite solar cells
Zheng et al. Solid-state nanocrystalline solar cells with an antimony sulfide absorber deposited by an in situ solid–gas reaction
Wang et al. Efficient solar-driven hydrogen generation using colloidal heterostructured quantum dots
Büttner et al. Adjusting interfacial chemistry and electronic properties of photovoltaics based on a highly pure Sb2S3 absorber by atomic layer deposition
US20100252108A1 (en) Copper delafossite transparent p-type semiconductor materials for dye sensitized solar cells
Shahiduzzaman et al. Compact TiO2/Anatase TiO2 single-crystalline nanoparticle electron-transport bilayer for efficient planar perovskite solar cells
CN107973817A (en) Include the photoelectric device of the organic metal perovskite with mixed anion
Venditti et al. Electrodeposited ZnO with squaraine sentisizers as photoactive anode of DSCs
JP6489950B2 (en) Photoelectric conversion element and manufacturing method thereof
CN109980097A (en) A kind of preparation method of film and QLED device
Büttner et al. ZnS ultrathin interfacial layers for optimizing carrier management in Sb2S3-based photovoltaics
Wei et al. Recent progress of colloidal quantum dot based solar cells
JP6289944B2 (en) Quantum dot dispersion
Park et al. Enhanced photoelectrochemical response of CdSe quantum dot‐sensitized p‐type NiO photocathodes
CN106867305A (en) A kind of modified CeO in surface2Nano material and product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6289944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250