JP6288187B2 - Compound semiconductor device and manufacturing method thereof - Google Patents

Compound semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP6288187B2
JP6288187B2 JP2016161887A JP2016161887A JP6288187B2 JP 6288187 B2 JP6288187 B2 JP 6288187B2 JP 2016161887 A JP2016161887 A JP 2016161887A JP 2016161887 A JP2016161887 A JP 2016161887A JP 6288187 B2 JP6288187 B2 JP 6288187B2
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
stress relaxation
substrate
multilayer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016161887A
Other languages
Japanese (ja)
Other versions
JP2016201572A (en
Inventor
淳二 小谷
淳二 小谷
哲郎 石黒
哲郎 石黒
秀一 苫米地
秀一 苫米地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016161887A priority Critical patent/JP6288187B2/en
Publication of JP2016201572A publication Critical patent/JP2016201572A/en
Application granted granted Critical
Publication of JP6288187B2 publication Critical patent/JP6288187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、化合物半導体装置及びその製造方法に関する。   The present invention relates to a compound semiconductor device and a manufacturing method thereof.

近年、基板上方にGaN層及びAlGaN層を順次形成し、GaN層を電子走行層として用いる電子デバイス(化合物半導体装置)の開発が活発である。このような化合物半導体装置の一つとして、GaN系の高電子移動度トランジスタ(HEMT:high electron mobility transistor)が挙げられる。GaN系HEMTを電源用のインバータのスイッチとして使用すると、オン抵抗の低減及び耐圧の向上の両立が可能である。また、Si系トランジスタと比較して、待機時の消費電力を低減することも可能であり、動作周波数を向上させることも可能である。このため、スイッチングロスを低減することができ、インバータの消費電力を低減することが可能となる。また、同等の性能のトランジスタであれば、Si系トランジスタと比較して小型化が可能である。   In recent years, development of electronic devices (compound semiconductor devices) in which a GaN layer and an AlGaN layer are sequentially formed on a substrate and the GaN layer is used as an electron transit layer has been active. One of such compound semiconductor devices is a GaN-based high electron mobility transistor (HEMT). When the GaN-based HEMT is used as a switch for an inverter for power supply, both reduction of on-resistance and improvement of breakdown voltage are possible. In addition, power consumption during standby can be reduced as compared with Si-based transistors, and the operating frequency can be improved. For this reason, switching loss can be reduced and the power consumption of the inverter can be reduced. In addition, a transistor having equivalent performance can be downsized as compared with a Si-based transistor.

そして、GaN層を電子走行層として用い、AlGaNを電子供給層として用いたGaN系HEMTでは、AlGaN及びGaNの格子定数の差に起因したひずみがAlGaNに生じる。このため、ピエゾ分極が発生し、高濃度の二次元電子ガス(2DEG)が得られる。従って、このGaN系HEMTは高出力デバイスに適用される。   In a GaN-based HEMT using a GaN layer as an electron transit layer and using AlGaN as an electron supply layer, strain due to the difference in lattice constant between AlGaN and GaN occurs in AlGaN. For this reason, piezoelectric polarization occurs, and a high-concentration two-dimensional electron gas (2DEG) is obtained. Therefore, this GaN-based HEMT is applied to a high-power device.

但し、結晶性が良好なGaN基板を製造することは極めて困難である。このため、従来、主として、Si基板、サファイア基板及びSiC基板上方に、GaN層及びAlGaN層等をヘテロエピタキシャル成長によって形成している。特にSi基板は、大口径で高品質のものを低コストにて入手しやすい。このため、Si基板上方にGaN層及びAlGaN層を成長させた構造についての研究が盛んに行われている。   However, it is extremely difficult to manufacture a GaN substrate with good crystallinity. For this reason, conventionally, a GaN layer, an AlGaN layer, and the like are mainly formed by heteroepitaxial growth above the Si substrate, sapphire substrate, and SiC substrate. In particular, a Si substrate having a large diameter and high quality is easily available at low cost. For this reason, research on a structure in which a GaN layer and an AlGaN layer are grown on a Si substrate has been actively conducted.

しかし、GaN層及びAlGaN層とSi基板との間には大きな熱膨張係数の差が存在する。その一方で、GaN層及びAlGaN層のエピタキシャル成長には、高温での処理が必要とされる。このため、この高温での処理の際に、熱膨張係数の差に起因するSi基板の反り及びクラック等が発生することがある。このような熱膨張係数の差に起因する問題を解決すべく、GaN層及びAlGaN層とSi基板との間に、組成が異なる2種類の化合物半導体層を交互に積層した超格子構造のバッファ層を設ける技術についての検討も行われている。   However, there is a large difference in thermal expansion coefficient between the GaN layer and AlGaN layer and the Si substrate. On the other hand, high temperature processing is required for epitaxial growth of the GaN layer and the AlGaN layer. For this reason, during this high temperature treatment, warpage, cracks, and the like of the Si substrate due to the difference in thermal expansion coefficient may occur. In order to solve such a problem caused by the difference in thermal expansion coefficient, a buffer layer having a superlattice structure in which two types of compound semiconductor layers having different compositions are alternately stacked between a GaN layer and an AlGaN layer and a Si substrate. Studies are also underway on the technology to provide this.

しかしながら、超格子構造をバッファ層に採用した従来の化合物半導体装置によっても、十分にクラック及び反り等を抑制することは困難である。また、その上の電子走行層及び電子供給層の結晶性を良好なものとすることが困難となる。   However, it is difficult to sufficiently suppress cracks and warpage even with a conventional compound semiconductor device that employs a superlattice structure as a buffer layer. In addition, it becomes difficult to improve the crystallinity of the electron transit layer and the electron supply layer thereon.

また、Si基板の裏面に熱膨張係数がGaN系化合物半導体層と近い層を形成しておく技術についても検討が行われているが、この従来の技術では、その層を形成する際に反り等が生じてしまう。このような反りが生じると、電子走行層及び電子供給層等を形成する際の基板温度にばらつきが生じるため、所望の特性を得ることが困難となる。   In addition, a technique for forming a layer having a thermal expansion coefficient close to that of the GaN-based compound semiconductor layer on the back surface of the Si substrate has been studied, but in this conventional technique, warping or the like is caused when the layer is formed. Will occur. When such a warp occurs, the substrate temperature at the time of forming the electron transit layer, the electron supply layer, and the like varies, making it difficult to obtain desired characteristics.

特開2010−228967号公報JP 2010-228967 A 特開2011−119715号公報JP 2011-119715 A

本発明の目的は、材料の熱膨張係数の差に起因するクラック等を抑制することができる化合物半導体装置及びその製造方法を提供することにある。   An object of the present invention is to provide a compound semiconductor device capable of suppressing cracks and the like due to differences in thermal expansion coefficients of materials and a method for manufacturing the same.

化合物半導体基板の一態様には、基板と、前記基板上方に設けられた窒化物半導体積層構造と、前記基板と前記窒化物半導体積層構造との間に設けられたAlN系の応力緩和層と、前記応力緩和層と前記窒化物半導体積層構造との間に設けられたAlGaNの窒化物半導体層と、が設けられている。前記応力緩和層の前記窒化物半導体層側の面に、窪みが5nm以上の深さで2×1010cm-2以上の個数密度で設けられているか、窪みが7nm以上の深さで8×109cm-2以上の個数密度で設けられている。前記応力緩和層の前記窒化物半導体層側の面におけるスキューネスが負である。 In one aspect of the compound semiconductor substrate, a substrate, a nitride semiconductor multilayer structure provided above the substrate, an AlN-based stress relaxation layer provided between the substrate and the nitride semiconductor multilayer structure, An AlGaN nitride semiconductor layer provided between the stress relaxation layer and the nitride semiconductor multilayer structure is provided. On the surface of the stress relaxation layer on the nitride semiconductor layer side, recesses are provided at a depth of 5 nm or more with a number density of 2 × 10 10 cm −2 or more, or the recesses are 8 × with a depth of 7 nm or more. It is provided with a number density of 10 9 cm −2 or more. The skewness on the nitride semiconductor layer side surface of the stress relaxation layer is negative.

化合物半導体基板の製造方法の一態様では、基板上方にAlN系の応力緩和層を形成し、前記応力緩和層上方にAlGaNの窒化物半導体層を形成し、前記窒化物半導体層上方に窒化物半導体積層構造を形成する。前記応力緩和層を形成する際に、前記応力緩和層の前記窒化物半導体層側の面に、深さが5nm以上の窪みを2×1010cm-2以上の個数密度で形成するか、深さが7nm以上の窪みを8×109cm-2以上の個数密度で形成し、前記面のスキューネスを負とする。 In one aspect of the method for manufacturing a compound semiconductor substrate, an AlN-based stress relaxation layer is formed above the substrate, an AlGaN nitride semiconductor layer is formed above the stress relaxation layer, and a nitride semiconductor is formed above the nitride semiconductor layer. A laminated structure is formed. When forming the stress relaxation layer, a recess having a depth of 5 nm or more is formed at a number density of 2 × 10 10 cm −2 or more on the surface of the stress relaxation layer on the nitride semiconductor layer side, A recess having a thickness of 7 nm or more is formed with a number density of 8 × 10 9 cm −2 or more, and the skewness of the surface is negative.

化合物半導体装置の一態様には、基板と、前記基板上方に設けられた窒化物半導体積層構造と、前記基板と前記窒化物半導体積層構造との間に設けられたAlN系の応力緩和層と、前記応力緩和層と前記窒化物半導体積層構造との間に設けられたAlGaNの窒化物半導体層と、前記窒化物半導体積層構造の上方に設けられたゲート電極と、前記窒化物半導体積層構造の上方に前記ゲート電極を挟んで設けられた、ソース電極及びドレイン電極と、が設けられている。前記応力緩和層の前記窒化物半導体層側の面に、窪みが5nm以上の深さで2×1010cm-2以上の個数密度で設けられているか、窪みが7nm以上の深さで8×109cm-2以上の個数密度で設けられている。前記応力緩和層の前記窒化物半導体層側の面におけるスキューネスが負である。 In one aspect of the compound semiconductor device, a substrate, a nitride semiconductor multilayer structure provided above the substrate, an AlN-based stress relaxation layer provided between the substrate and the nitride semiconductor multilayer structure, An AlGaN nitride semiconductor layer provided between the stress relaxation layer and the nitride semiconductor multilayer structure, a gate electrode provided above the nitride semiconductor multilayer structure, and an upper side of the nitride semiconductor multilayer structure And a source electrode and a drain electrode provided with the gate electrode interposed therebetween. On the surface of the stress relaxation layer on the nitride semiconductor layer side, recesses are provided at a depth of 5 nm or more with a number density of 2 × 10 10 cm −2 or more, or the recesses are 8 × with a depth of 7 nm or more. It is provided with a number density of 10 9 cm −2 or more. The skewness on the nitride semiconductor layer side surface of the stress relaxation layer is negative.

化合物半導体装置の製造方法の一態様では、基板上方にAlN系の応力緩和層を形成し、前記応力緩和層上方にAlGaNの窒化物半導体層を形成し、前記窒化物半導体層上方に窒化物半導体積層構造を形成し、前記窒化物半導体積層構造上方にゲート電極を形成し、前記窒化物半導体積層構造上方に、ゲート電極を挟んでソース電極及びドレイン電極を形成する。前記応力緩和層を形成する際に、前記応力緩和層の前記窒化物半導体層側の面に、深さが5nm以上の窪みを2×1010cm-2以上の個数密度で形成するか、深さが7nm以上の窪みを8×109cm-2以上の個数密度で形成し、前記面のスキューネスを負とする。 In one aspect of the method for manufacturing a compound semiconductor device, an AlN-based stress relaxation layer is formed above a substrate, an AlGaN nitride semiconductor layer is formed above the stress relaxation layer, and a nitride semiconductor is formed above the nitride semiconductor layer. A stacked structure is formed, a gate electrode is formed above the nitride semiconductor stacked structure, and a source electrode and a drain electrode are formed above the nitride semiconductor stacked structure with the gate electrode interposed therebetween. When forming the stress relaxation layer, a recess having a depth of 5 nm or more is formed at a number density of 2 × 10 10 cm −2 or more on the surface of the stress relaxation layer on the nitride semiconductor layer side, A recess having a thickness of 7 nm or more is formed with a number density of 8 × 10 9 cm −2 or more, and the skewness of the surface is negative.

上記の化合物半導体装置等によれば、適切な窪みが形成された応力緩和層が設けられているため、材料の熱膨張係数の差に起因するクラック等を抑制することができる。   According to the above compound semiconductor device and the like, since the stress relaxation layer in which appropriate depressions are formed is provided, it is possible to suppress cracks and the like due to the difference in the thermal expansion coefficients of the materials.

第1の実施形態に係る化合物半導体装置の構造を示す図である。It is a figure which shows the structure of the compound semiconductor device which concerns on 1st Embodiment. 第1の実施形態に係る化合物半導体装置の作用を示す図である。It is a figure which shows the effect | action of the compound semiconductor device which concerns on 1st Embodiment. 表面性状とスキューネスRskとの関係を示す図である。It is a figure which shows the relationship between surface property and skewness Rsk. 第2の実施形態に係るGaN系HEMTの構造を示す図である。It is a figure which shows the structure of GaN-type HEMT which concerns on 2nd Embodiment. 第2の実施形態に係るGaN系HEMTの製造方法を工程順に示す断面図である。It is sectional drawing which shows the manufacturing method of GaN-type HEMT which concerns on 2nd Embodiment to process order. 第2の実施形態の変形例を示す断面図である。It is sectional drawing which shows the modification of 2nd Embodiment. 高出力増幅器の外観の例を示す図である。It is a figure which shows the example of the external appearance of a high output amplifier. 電源装置を示す図である。It is a figure which shows a power supply device. 応力緩和層の表面性状の分析結果を示す図である。It is a figure which shows the analysis result of the surface property of a stress relaxation layer. 窪みの深さと、反りの大きさ及びクラックの長さとの関係を示す図である。It is a figure which shows the relationship between the depth of a hollow, the magnitude | size of curvature, and the length of a crack.

以下、実施形態について添付の図面を参照しながら具体的に説明する。   Hereinafter, embodiments will be described in detail with reference to the accompanying drawings.

(第1の実施形態)
先ず、第1の実施形態について説明する。図1は、第1の実施形態に係る化合物半導体装置の構造を示す図である。
(First embodiment)
First, the first embodiment will be described. FIG. 1 is a diagram illustrating the structure of the compound semiconductor device according to the first embodiment.

第1の実施形態では、図1に示すように、基板1上に応力緩和層2が形成され、応力緩和層2上にGaN系の化合物半導体積層構造3が形成されている。基板1は、例えばSi(111)基板であり、応力緩和層2は、AlN層等のAlN系の化合物半導体層であり、応力緩和層2の上面には、深さが5nm以上の窪み2aが2×1010cm-2以上の個数密度で形成されている。化合物半導体積層構造3には、例えば、電子走行層及び電子供給層が含まれる。また、電子供給層上に、例えば、ゲート電極、ソース電極及びドレイン電極が、ソース電極及びドレイン電極がゲート電極を間に挟むようにして形成されている。 In the first embodiment, as shown in FIG. 1, a stress relaxation layer 2 is formed on a substrate 1, and a GaN-based compound semiconductor multilayer structure 3 is formed on the stress relaxation layer 2. The substrate 1 is, for example, a Si (111) substrate, the stress relaxation layer 2 is an AlN-based compound semiconductor layer such as an AlN layer, and a depression 2 a having a depth of 5 nm or more is formed on the upper surface of the stress relaxation layer 2. The number density is 2 × 10 10 cm −2 or more. The compound semiconductor multilayer structure 3 includes, for example, an electron transit layer and an electron supply layer. Further, for example, a gate electrode, a source electrode, and a drain electrode are formed on the electron supply layer so that the source electrode and the drain electrode sandwich the gate electrode therebetween.

従来の技術では、基板とGaN層等の電子走行層との間にAlN層が形成されることがあるが、このAlN層の上面は平坦である。そして、図2(a)に示すように、応力緩和層2に代えて、上面が平坦なAlN層102が形成される場合には、化合物半導体積層構造3の成長後の冷却の際に、基板1とGaN系の化合物半導体積層構造3との間の熱膨張係数の差に起因する大きな引張応力が化合物半導体積層構造3に作用する。この結果、化合物半導体積層構造3にクラックが生じたり、基板1に反りが生じたりする。   In the conventional technique, an AlN layer may be formed between a substrate and an electron transit layer such as a GaN layer, but the upper surface of this AlN layer is flat. As shown in FIG. 2A, when the AlN layer 102 having a flat top surface is formed instead of the stress relaxation layer 2, the substrate is cooled during the growth of the compound semiconductor multilayer structure 3. A large tensile stress due to the difference in thermal expansion coefficient between 1 and the GaN-based compound semiconductor multilayer structure 3 acts on the compound semiconductor multilayer structure 3. As a result, the compound semiconductor multilayer structure 3 is cracked or the substrate 1 is warped.

一方、本実施形態では、応力緩和層2の上面に適切な窪み2aが散在しているため、化合物半導体積層構造3の成長の際には、窪みの側面からの成長が互いにぶつかり合う形となり、この際にお互いに圧縮応力を発生させる。このため窪みを有する応力緩和層2上に成長した窒化物半導体層には、局所的に圧縮応力も化合物半導体積層構造3に作用する。従って、成長後の冷却時に発生する引張応力が相殺され、化合物半導体積層構造3のクラック及び基板1の反り等が抑制される。更に、このような構造を得るために、特別に複雑な制御は必要とされず、また、特別に長時間の結晶成長も必要とされない。このため、コストの上昇を抑制することもできる。   On the other hand, in the present embodiment, since the appropriate recesses 2a are scattered on the upper surface of the stress relaxation layer 2, the growth from the side surfaces of the recesses collides with each other when the compound semiconductor multilayer structure 3 is grown. At this time, compressive stresses are generated from each other. Therefore, compressive stress locally acts on the compound semiconductor multilayer structure 3 in the nitride semiconductor layer grown on the stress relaxation layer 2 having a depression. Therefore, the tensile stress generated at the time of cooling after growth is offset, and the crack of the compound semiconductor multilayer structure 3 and the warp of the substrate 1 are suppressed. Furthermore, in order to obtain such a structure, no particularly complicated control is required, and no special long-time crystal growth is required. For this reason, an increase in cost can also be suppressed.

また、応力緩和層2の表面性状に関し、粗さ曲線のスキューネスRskは負である。粗さ曲線のスキューネスRskが正の場合、図3(a)に示すように、表面性状は、基準面から突出する複数の突起が存在するようなものとなる。粗さ曲線のスキューネスRskが0の場合、図3(b)に示すように、表面性状は、突起及び窪みが同等に存在するようなものとなる。粗さ曲線のスキューネスRskが負の場合、図3(c)に示すように、基準面から窪んだ複数の窪みが存在するようなものとなる。   Regarding the surface properties of the stress relaxation layer 2, the skewness Rsk of the roughness curve is negative. When the skewness Rsk of the roughness curve is positive, as shown in FIG. 3A, the surface property is such that there are a plurality of protrusions protruding from the reference surface. When the skewness Rsk of the roughness curve is 0, as shown in FIG. 3B, the surface properties are such that protrusions and depressions are present equally. When the skewness Rsk of the roughness curve is negative, as shown in FIG. 3C, there are a plurality of depressions that are recessed from the reference plane.

なお、個数密度の計数の対象とする窪みを深さが5nm以上の窪み2aとしているのは、深さが5nm未満の窪みの周辺にはほとんど圧縮応力が生じず、引張応力の緩和にほとんど寄与しないからである。また、このような窪み2aの個数密度を2×1010cm-2以上としているのは、個数密度が2×1010cm-2未満であると、圧縮応力が不足して十分に引張応力を緩和することが困難だからである。また、後述するが、本願発明者が行った実験の結果を考慮すると、深さが6nm以上の窪み2aが2×1010cm-2以上の個数密度で形成されていることが好ましく、深さが7nm以上の窪みが8×109cm-2以上の個数密度で形成されていることがより好ましく、深さが15nm以上の窪みが9×109cm-2以上の個数密度で形成されていることが更に一層好ましい。また、窪みの深さが決まれば、それに応じて窪みの直径もほぼ決まるが、本願発明者が行った実験の結果を考慮すると、深さが5nm以上の窪みの直径は30nm以上であることが好ましく、80nm以上であることがより好ましい。窪みの直径の上限は、上記の個数密度が確保できれば特に限定されない。なお、窪みが直径に対して深すぎる場合には、その上に形成するバッファ層によって窪みを埋めきれない可能性がある。また、バッファ層の結晶性が乱れる可能性もある。このため、窪みの深さは50nm以下であることが好ましい。 In addition, the depression 2a having a depth of 5 nm or more is used as the object for counting the number density. The compressive stress hardly occurs in the periphery of the depression having a depth of less than 5 nm, and contributes to the relaxation of the tensile stress. Because it does not. In addition, the number density of the depressions 2a is set to 2 × 10 10 cm −2 or more because if the number density is less than 2 × 10 10 cm −2 , the compressive stress is insufficient and sufficient tensile stress is applied. This is because it is difficult to mitigate. As will be described later, in consideration of the results of experiments conducted by the present inventor, it is preferable that the recesses 2a having a depth of 6 nm or more are formed with a number density of 2 × 10 10 cm −2 or more. Is preferably formed with a number density of 8 × 10 9 cm −2 or more, and a depression with a depth of 15 nm or more is formed with a number density of 9 × 10 9 cm −2 or more. Even more preferably. Further, if the depth of the recess is determined, the diameter of the recess is substantially determined accordingly. However, in consideration of the results of experiments conducted by the present inventor, the diameter of the recess having a depth of 5 nm or more may be 30 nm or more. Preferably, it is 80 nm or more. The upper limit of the diameter of the dent is not particularly limited as long as the above number density can be secured. In addition, when a hollow is too deep with respect to a diameter, there exists a possibility that a hollow cannot be filled up with the buffer layer formed on it. In addition, the crystallinity of the buffer layer may be disturbed. For this reason, it is preferable that the depth of the dent is 50 nm or less.

(第2の実施形態)
次に、第2の実施形態について説明する。図4は、第2の実施形態に係るGaN系HEMT(化合物半導体装置)の構造を示す図である。
(Second Embodiment)
Next, a second embodiment will be described. FIG. 4 is a diagram illustrating a structure of a GaN-based HEMT (compound semiconductor device) according to the second embodiment.

第2の実施形態では、図4(a)に示すように、例えばSi(111)基板11上に、厚さが50nm〜300nm程度(例えば200nm)の応力緩和層12が形成されている。応力緩和層12は、AlN層等のAlN系化合物半導体層であり、応力緩和層12の上面には、深さが5nm以上の窪み12aが2×1010cm-2以上の個数密度で形成されている。応力緩和層12上に、厚さが50nm〜300nm程度(例えば200nm)のAlGaN層13a、厚さが50nm〜300nm程度(例えば200nm)のAlGaN層13b、及び厚さが50nm〜300nm程度(例えば200nm)のAlGaN層13cを含むバッファ層13が形成されている。AlGaN層13aの組成はAlxGa1-xN(0<x≦1)で表わされ、AlGaN層13bの組成はAlyGa1-yN(0≦y≦1)で表わされ、AlGaN層13cの組成はAlzGa1-zN(0≦z<1)で表わされる。そして、x、y、zの間には、「x>y>z」の関係が成り立つ。例えば、xの値(AlGaN層13aのAl組成)は0.8、yの値(AlGaN層13bのAl組成)は0.5、zの値(AlGaN層13cのAl組成)は0.2である。 In the second embodiment, as shown in FIG. 4A, for example, a stress relaxation layer 12 having a thickness of about 50 nm to 300 nm (for example, 200 nm) is formed on a Si (111) substrate 11. The stress relaxation layer 12 is an AlN-based compound semiconductor layer such as an AlN layer. On the upper surface of the stress relaxation layer 12, recesses 12a having a depth of 5 nm or more are formed at a number density of 2 × 10 10 cm −2 or more. ing. On the stress relaxation layer 12, an AlGaN layer 13a having a thickness of about 50 nm to 300 nm (eg, 200 nm), an AlGaN layer 13b having a thickness of about 50 nm to 300 nm (eg, 200 nm), and a thickness of about 50 nm to 300 nm (eg, 200 nm). The buffer layer 13 including the AlGaN layer 13c is formed. The composition of the AlGaN layer 13a is represented by Al x Ga 1-x N (0 <x ≦ 1), the composition of the AlGaN layer 13b is represented by Al y Ga 1-y N (0 ≦ y ≦ 1), the composition of the AlGaN layer 13c is represented by Al z Ga 1-z N ( 0 ≦ z <1). A relationship of “x>y> z” is established between x, y, and z. For example, the value of x (Al composition of the AlGaN layer 13a) is 0.8, the value of y (Al composition of the AlGaN layer 13b) is 0.5, and the value of z (Al composition of the AlGaN layer 13c) is 0.2. is there.

バッファ層13上に電子走行層14が形成され、電子走行層14上に電子供給層15が形成され、電子供給層15上に保護層16が形成されている。電子走行層14としては、例えば厚さが0.5μm〜1.5μm程度(例えば1μm)のGaN層が用いられる。電子供給層15としては、例えば厚さが10nm〜30nm程度(例えば30nm)のn型のAlGaN層が用いられる。このAlGaN層の組成は、例えばAl0.25Ga0.75Nで表わされる。保護層16としては、例えば厚さが2nm〜15nm程度(例えば10nm)のn型のGaN層が用いられる。これらn型のAlGaN層及びGaN層には、例えば、n型不純物としてSiが1×1018cm-3〜1×1020cm-3程度(例えば5×1018cm-3)ドーピングされている。 An electron transit layer 14 is formed on the buffer layer 13, an electron supply layer 15 is formed on the electron transit layer 14, and a protective layer 16 is formed on the electron supply layer 15. As the electron transit layer 14, for example, a GaN layer having a thickness of about 0.5 μm to 1.5 μm (for example, 1 μm) is used. As the electron supply layer 15, for example, an n-type AlGaN layer having a thickness of about 10 nm to 30 nm (for example, 30 nm) is used. The composition of the AlGaN layer is represented by, for example, Al 0.25 Ga 0.75 N. As the protective layer 16, for example, an n-type GaN layer having a thickness of about 2 nm to 15 nm (for example, 10 nm) is used. These n-type AlGaN layers and GaN layers are doped with, for example, Si as an n-type impurity of about 1 × 10 18 cm −3 to 1 × 10 20 cm −3 (for example, 5 × 10 18 cm −3 ). .

保護層16上に、ソース電極17s及びドレイン電極17dが形成されている。ソース電極17s及びドレイン電極17dは保護層16にオーミック接触している。ソース電極17s及びドレイン電極17dには、例えば、Ti膜とその上に形成されたAl膜とが含まれている。保護層16上には、ソース電極17s及びドレイン電極17dを覆うパッシベーション膜18も形成されている。パッシベーション膜18としては、例えばシリコン窒化膜が形成されている。パッシベーション膜18の、ソース電極17s及びドレイン電極17dの間に位置する部分に、ゲート電極用の開口部18aが形成されている。そして、パッシベーション膜18上に、開口部18aを介して保護層16とショットキー接触するゲート電極17gが形成されている。ゲート電極17gには、例えば、Ni膜とその上に形成されたAu膜とが含まれている。パッシベーション膜18上には、ゲート電極17gを覆うパッシベーション膜19も形成されている。パッシベーション膜19としては、例えばシリコン窒化膜が形成されている。パッシベーション膜18及び19には、外部端子等の接続のための開口部が形成されている。   A source electrode 17 s and a drain electrode 17 d are formed on the protective layer 16. The source electrode 17s and the drain electrode 17d are in ohmic contact with the protective layer 16. The source electrode 17s and the drain electrode 17d include, for example, a Ti film and an Al film formed thereon. A passivation film 18 covering the source electrode 17s and the drain electrode 17d is also formed on the protective layer 16. For example, a silicon nitride film is formed as the passivation film 18. An opening 18a for a gate electrode is formed in a portion of the passivation film 18 located between the source electrode 17s and the drain electrode 17d. A gate electrode 17g that is in Schottky contact with the protective layer 16 is formed on the passivation film 18 through the opening 18a. The gate electrode 17g includes, for example, a Ni film and an Au film formed thereon. A passivation film 19 is also formed on the passivation film 18 to cover the gate electrode 17g. As the passivation film 19, for example, a silicon nitride film is formed. In the passivation films 18 and 19, openings for connecting external terminals and the like are formed.

なお、基板11の表面側から見たレイアウトは、例えば図4(b)のようになる。つまり、ゲート電極17g、ソース電極17s及びドレイン電極17dの平面形状が櫛歯状となっており、ソース電極17s及びドレイン電極17dが交互に配置されている。そして、これらの間にゲート電極17gが配置されている。また、複数のゲート電極17gがゲート配線25gにより共通接続され、複数のソース電極17sがソース配線25sにより共通接続され、複数のドレイン電極17dがドレイン配線25dにより共通接続されている。このようなマルチフィンガーゲート構造を採用することにより、出力を向上させることができる。なお、図4(a)に示す断面図は、図4(b)中のI−I線に沿った断面を示している。また、活性領域30には、電子走行層14、電子供給層15及び保護層16等が含まれており、活性領域30の周囲はイオン注入又はメサエッチング等により不活性領域とされている。   The layout viewed from the front side of the substrate 11 is, for example, as shown in FIG. That is, the planar shape of the gate electrode 17g, the source electrode 17s, and the drain electrode 17d is comb-shaped, and the source electrode 17s and the drain electrode 17d are alternately arranged. A gate electrode 17g is disposed between them. The plurality of gate electrodes 17g are commonly connected by the gate wiring 25g, the plurality of source electrodes 17s are commonly connected by the source wiring 25s, and the plurality of drain electrodes 17d are commonly connected by the drain wiring 25d. By adopting such a multi-finger gate structure, the output can be improved. Note that the cross-sectional view shown in FIG. 4A shows a cross section taken along the line II in FIG. 4B. The active region 30 includes an electron transit layer 14, an electron supply layer 15, a protective layer 16, and the like, and the periphery of the active region 30 is set as an inactive region by ion implantation or mesa etching.

このように構成された第2の実施形態では、電子走行層14を構成するGaNと電子供給層15を構成するAlGaNとの間のヘテロ接合界面に、ピエゾ分極に伴う高濃度のキャリアが発生する。つまり、格子不整合に起因するピエゾ効果により、電子走行層14の電子供給層15との界面近傍に電子が誘起される。   In the second embodiment configured as described above, high-concentration carriers accompanying piezo polarization are generated at the heterojunction interface between GaN constituting the electron transit layer 14 and AlGaN constituting the electron supply layer 15. . That is, electrons are induced in the vicinity of the interface between the electron transit layer 14 and the electron supply layer 15 due to the piezoelectric effect caused by lattice mismatch.

更に、第2の実施形態では、応力緩和層12の上面に適切な窪み12aが散在しているため、電子走行層14、電子供給層15及び保護層16を含む化合物半導体積層構造の成長後の冷却の際には、引張応力の他に局所的に圧縮応力が化合物半導体積層構造に作用する。従って、引張応力が相殺され、化合物半導体積層構造のクラック及び基板11の反り等が抑制される。   Furthermore, in the second embodiment, since appropriate depressions 12 a are scattered on the upper surface of the stress relaxation layer 12, the compound semiconductor multilayer structure including the electron transit layer 14, the electron supply layer 15 and the protective layer 16 is grown. During cooling, compressive stress locally acts on the compound semiconductor multilayer structure in addition to tensile stress. Accordingly, the tensile stress is offset and cracks in the compound semiconductor multilayer structure and warping of the substrate 11 are suppressed.

次に、第2の実施形態に係るGaN系HEMT(化合物半導体装置)を製造する方法について説明する。図5は、第2の実施形態に係るGaN系HEMT(化合物半導体装置)の製造方法を工程順に示す断面図である。   Next, a method for manufacturing a GaN-based HEMT (compound semiconductor device) according to the second embodiment will be described. FIG. 5 is a cross-sectional view showing a GaN-based HEMT (compound semiconductor device) manufacturing method according to the second embodiment in the order of steps.

先ず、図5(a)に示すように、基板11上に、深さが5nm以上の窪み12aが2×1010cm-2以上の個数密度で分散する応力緩和層12を形成する。応力緩和層12は、例えば有機金属気相成長(MOVPE:metal organic vapor phase epitaxy)法、分子線エピタキシャル(MBE:molecular beam epitaxy)法等の結晶成長法により形成することができる。MOVPE法で応力緩和層12としてAlN層を形成する場合、例えば、アルミニウム(Al)の原料としてトリメチルアルミニウム(TMAl)を使用し、窒素(N)の原料としてアンモニア(NH3)を使用する。そして、例えば、TMAlとNH3との原料比率であるV/III比を50以上、好ましくは100以上、更に好ましくは200以上、成長温度を1080℃程度、成長速度を500nm/h程度に制御するか、又は、V/III比を10〜100程度、成長温度を1000℃〜1040℃程度、成長速度を500nm/h程度に制御する。なお、上記のような窪み12aを2×1010cm-2以上の個数密度で形成することができれば、応力緩和層12の形成方法は特に限定されない。 First, as shown in FIG. 5A, a stress relaxation layer 12 is formed on a substrate 11 in which depressions 12a having a depth of 5 nm or more are dispersed at a number density of 2 × 10 10 cm −2 or more. The stress relaxation layer 12 can be formed by a crystal growth method such as a metal organic vapor phase epitaxy (MOVPE) method or a molecular beam epitaxy (MBE) method. When an AlN layer is formed as the stress relaxation layer 12 by the MOVPE method, for example, trimethylaluminum (TMAl) is used as a raw material for aluminum (Al), and ammonia (NH 3 ) is used as a raw material for nitrogen (N). For example, the V / III ratio, which is the raw material ratio of TMAl and NH 3 , is controlled to 50 or more, preferably 100 or more, more preferably 200 or more, the growth temperature is controlled to about 1080 ° C., and the growth rate is controlled to about 500 nm / h. Alternatively, the V / III ratio is controlled to about 10 to 100, the growth temperature is controlled to about 1000 ° C. to 1040 ° C., and the growth rate is controlled to about 500 nm / h. The method for forming the stress relaxation layer 12 is not particularly limited as long as the depressions 12a as described above can be formed with a number density of 2 × 10 10 cm −2 or more.

応力緩和層12の形成後には、図5(b)に示すように、応力緩和層12上に、AlGaN層13a、AlGaN層13b及びAlGaN層13cを含むバッファ層13を形成する。更に、図5(c)に示すように、バッファ層13上に、電子走行層14、電子供給層15及び保護層16を形成する。これらの化合物半導体層は、応力緩和層12と同様に、MOVPE法、MBE法等の結晶成長法により形成することができる。このとき、ガリウム(Ga)の原料としては、例えば、トリメチルガリウム(TMGa)を使用することができる。また、n型不純物として含まれるシリコン(Si)の原料としては、例えばシラン(SiH4)を使用することができる。そして、原料ガスを選択することにより、応力緩和層12から保護層16までを連続して形成することができる。 After the formation of the stress relaxation layer 12, as shown in FIG. 5B, the buffer layer 13 including the AlGaN layer 13a, the AlGaN layer 13b, and the AlGaN layer 13c is formed on the stress relaxation layer 12. Further, as shown in FIG. 5C, the electron transit layer 14, the electron supply layer 15, and the protective layer 16 are formed on the buffer layer 13. Similar to the stress relaxation layer 12, these compound semiconductor layers can be formed by a crystal growth method such as MOVPE method or MBE method. At this time, for example, trimethylgallium (TMGa) can be used as a gallium (Ga) raw material. Moreover, as a raw material of silicon (Si) contained as n-type impurities, for example, silane (SiH 4 ) can be used. Then, by selecting the source gas, the stress relaxation layer 12 to the protective layer 16 can be continuously formed.

本実施形態では、少なくとも電子走行層14の上面を平坦なものとする。電子走行層14の上面を平坦にできれば、バッファ層13として、窪み12aに倣う窪みが上面に存在するものを形成してもよく、窪み12aに倣う窪みが上面に存在せず平坦なものを形成してもよい。平坦な表面のバッファ層13又は電子走行層14を形成する場合には、例えばV/III比を20以下程度とする。このような条件で結晶成長を行えば、Al原子及びN原子の成長前面での移動が促進され、成長面は平坦化していく。   In the present embodiment, at least the upper surface of the electron transit layer 14 is flat. As long as the upper surface of the electron transit layer 14 can be made flat, the buffer layer 13 may be formed with a depression that follows the depression 12a on the upper surface, or a depression that does not exist on the upper surface and that is flat with the depression 12a. May be. When the buffer layer 13 or the electron transit layer 14 having a flat surface is formed, for example, the V / III ratio is set to about 20 or less. If crystal growth is performed under such conditions, the movement of Al atoms and N atoms in the growth front is promoted, and the growth surface is flattened.

保護層16の形成後には、例えばリフトオフ法により、図5(d)に示すように、ソース電極17s及びドレイン電極17dを保護層16上に形成する。ソース電極17s及びドレイン電極17dの形成では、ソース電極17s及びドレイン電極17dを形成する領域を開口するレジストパターンを形成し、Ti及びAlの蒸着を行い、その後、レジストパターン上に付着したTi及びAlをレジストパターンごと除去する。そして、窒素雰囲気中で400℃〜1000℃(例えば600℃)で熱処理を行い、オーミック接触を確立する。   After the formation of the protective layer 16, the source electrode 17s and the drain electrode 17d are formed on the protective layer 16 as shown in FIG. In the formation of the source electrode 17s and the drain electrode 17d, a resist pattern that opens a region for forming the source electrode 17s and the drain electrode 17d is formed, Ti and Al are deposited, and then Ti and Al deposited on the resist pattern are formed. Are removed together with the resist pattern. Then, heat treatment is performed at 400 ° C. to 1000 ° C. (for example, 600 ° C.) in a nitrogen atmosphere to establish ohmic contact.

次いで、図5(d)に示すように、保護層16上に、ソース電極17s及びドレイン電極17dを覆うようにしてパッシベーション膜18を形成する。パッシベーション膜18としては、例えばプラズマ化学気相成長(CVD:chemical vapor deposition)法によりシリコン窒化膜を形成する。   Next, as shown in FIG. 5D, a passivation film 18 is formed on the protective layer 16 so as to cover the source electrode 17s and the drain electrode 17d. As the passivation film 18, for example, a silicon nitride film is formed by a plasma chemical vapor deposition (CVD) method.

その後、開口部18aを形成する予定の領域を開口するレジストパターンを形成する。続いて、レジストパターンを用いたエッチングを行うことにより、図5(d)に示すように、パッシベーション膜18に開口部18aを形成する。次いで、パッシベーション膜18上に、開口部18aを介して保護層16と接するゲート電極17gをリフトオフ法により形成する。ゲート電極17gの形成では、開口部18aを形成する際に用いたレジストパターンを除去した後、ゲート電極17gを形成する領域を開口する新たなレジストパターンを形成し、Ni及びAuの蒸着を行い、その後、レジストパターン上に付着したNi及びAuをレジストパターンごと除去する。   Thereafter, a resist pattern is formed to open a region where the opening 18a is to be formed. Subsequently, by performing etching using a resist pattern, an opening 18a is formed in the passivation film 18 as shown in FIG. Next, a gate electrode 17g in contact with the protective layer 16 through the opening 18a is formed on the passivation film 18 by a lift-off method. In the formation of the gate electrode 17g, after removing the resist pattern used when forming the opening 18a, a new resist pattern is formed to open the region for forming the gate electrode 17g, and Ni and Au are deposited. Thereafter, Ni and Au attached on the resist pattern are removed together with the resist pattern.

その後、図5(d)に示すように、パッシベーション膜18上に、ゲート電極17gを覆うようにしてパッシベーション膜19を形成する。パッシベーション膜19としては、例えばプラズマCVD法によりシリコン窒化膜を形成する。   Thereafter, as shown in FIG. 5D, a passivation film 19 is formed on the passivation film 18 so as to cover the gate electrode 17g. As the passivation film 19, for example, a silicon nitride film is formed by a plasma CVD method.

続いて、複数のゲート電極17gを共通接続するゲート配線25g、複数のソース電極17sを共通接続するソース配線25s、及び複数のドレイン電極17dを共通接続するドレイン配線25d等を形成する(図4(b)参照)。このようにして、図4に示す構造のGaN系HEMTを得ることができる。   Subsequently, a gate wiring 25g that commonly connects the plurality of gate electrodes 17g, a source wiring 25s that commonly connects the plurality of source electrodes 17s, a drain wiring 25d that commonly connects the plurality of drain electrodes 17d, and the like are formed (FIG. 4 (A)). b)). In this way, a GaN-based HEMT having the structure shown in FIG. 4 can be obtained.

なお、図6に示すように、保護層16に、ソース電極17s及びドレイン電極17d用の開口部を設け、ソース電極17s及びドレイン電極17dを電子供給層15に接するようにして形成してもよい。この場合、開口部の深さに関し、保護層16の一部を残してもよく、また、電子供給層15の一部を除去してもよい。つまり、開口部の深さが保護層16の厚さと一致している必要はない。   As shown in FIG. 6, the protective layer 16 may be formed with openings for the source electrode 17 s and the drain electrode 17 d so that the source electrode 17 s and the drain electrode 17 d are in contact with the electron supply layer 15. . In this case, with respect to the depth of the opening, a part of the protective layer 16 may be left, or a part of the electron supply layer 15 may be removed. That is, the depth of the opening does not need to match the thickness of the protective layer 16.

また、抵抗体及びキャパシタ等をも基板11上に実装してモノリシックマイクロ波集積回路(MMIC)としてもよい。   Further, a resistor, a capacitor, and the like may be mounted on the substrate 11 to form a monolithic microwave integrated circuit (MMIC).

この実施形態に係るGaN系HEMTは、例えば高出力増幅器として用いることができる。図7に、高出力増幅器の外観の例を示す。この例では、ソース電極に接続されたソース端子81sがパッケージの表面に設けられている。また、ゲート電極に接続されたゲート端子81g、及びドレイン電極に接続されたドレイン端子81dがパッケージの側面から延出している。   The GaN-based HEMT according to this embodiment can be used as, for example, a high-power amplifier. FIG. 7 shows an example of the appearance of the high-power amplifier. In this example, a source terminal 81s connected to the source electrode is provided on the surface of the package. A gate terminal 81g connected to the gate electrode and a drain terminal 81d connected to the drain electrode extend from the side surface of the package.

また、これらの実施形態に係るGaN系HEMTは、例えば電源装置に用いることもできる。図8(a)は、PFC(power factor correction)回路を示す図であり、図8(b)は、図8(a)に示すPFC回路を含むサーバ電源(電源装置)を示す図である。   In addition, the GaN-based HEMTs according to these embodiments can be used for, for example, a power supply device. FIG. 8A is a diagram showing a PFC (power factor correction) circuit, and FIG. 8B is a diagram showing a server power supply (power supply device) including the PFC circuit shown in FIG. 8A.

図8(a)に示すように、PFC回路90には、交流電源(AC)が接続されるダイオードブリッジ91に接続されたコンデンサ92が設けられている。コンデンサ92の一端子にはチョークコイル93の一端子が接続され、チョークコイル93の他端子には、スイッチ素子94の一端子及びダイオード96のアノードが接続されている。スイッチ素子94は上記の実施形態におけるHEMTに相当し、当該一端子はHEMTのドレイン電極に相当する。また、スイッチ素子94の他端子はHEMTのソース電極に相当する。ダイオード96のカソードにはコンデンサ95の一端子が接続されている。コンデンサ92の他端子、スイッチ素子94の当該他端子、及びコンデンサ95の他端子が接地される。そして、コンデンサ95の両端子間から直流電源(DC)が取り出される。   As shown in FIG. 8A, the PFC circuit 90 is provided with a capacitor 92 connected to a diode bridge 91 to which an AC power supply (AC) is connected. One terminal of the capacitor 92 is connected to one terminal of the choke coil 93, and the other terminal of the choke coil 93 is connected to one terminal of the switch element 94 and the anode of the diode 96. The switch element 94 corresponds to the HEMT in the above embodiment, and the one terminal corresponds to the drain electrode of the HEMT. The other terminal of the switch element 94 corresponds to a source electrode of the HEMT. One terminal of a capacitor 95 is connected to the cathode of the diode 96. The other terminal of the capacitor 92, the other terminal of the switch element 94, and the other terminal of the capacitor 95 are grounded. Then, a direct current power supply (DC) is taken out between both terminals of the capacitor 95.

そして、図8(b)に示すように、PFC回路90は、サーバ電源100等に組み込まれて用いられる。   Then, as shown in FIG. 8B, the PFC circuit 90 is used by being incorporated in the server power supply 100 or the like.

このようなサーバ電源100と同様の、より高速動作が可能な電源装置を構築することも可能である。また、スイッチ素子94と同様のスイッチ素子は、スイッチ電源又は電子機器に用いることができる。更に、これらの半導体装置を、サーバの電源回路等のフルブリッジ電源回路用の部品として用いることも可能である。   It is also possible to construct a power supply device that can operate at a higher speed, similar to the server power supply 100. A switch element similar to the switch element 94 can be used for a switch power supply or an electronic device. Further, these semiconductor devices can be used as components for a full-bridge power supply circuit such as a server power supply circuit.

なお、基板として、炭化シリコン(SiC)基板、サファイア基板、シリコン基板、GaN基板又はGaAs基板等を用いてもよい。基板が、導電性、半絶縁性又は絶縁性のいずれであってもよい。但し、コストを考慮すると、Si基板、SiC基板又はサファイア基板を用いることが好ましい。   Note that a silicon carbide (SiC) substrate, a sapphire substrate, a silicon substrate, a GaN substrate, a GaAs substrate, or the like may be used as the substrate. The substrate may be conductive, semi-insulating, or insulating. However, in consideration of cost, it is preferable to use a Si substrate, a SiC substrate, or a sapphire substrate.

また、ゲート電極、ソース電極及びドレイン電極の構造は上述の実施形態のものに限定されない。例えば、これらが単層から構成されていてもよい。また、これらの形成方法はリフトオフ法に限定されない。更に、オーミック特性が得られるのであれば、ソース電極及びドレイン電極の形成後の熱処理を省略してもよい。また、ゲート電極に対して熱処理を行ってもよい。   Further, the structures of the gate electrode, the source electrode, and the drain electrode are not limited to those of the above-described embodiment. For example, these may be composed of a single layer. Moreover, these formation methods are not limited to the lift-off method. Furthermore, if ohmic characteristics can be obtained, the heat treatment after the formation of the source electrode and the drain electrode may be omitted. Further, heat treatment may be performed on the gate electrode.

また、ゲート電極17gを形成する前に、保護層16の一部または全部をエッチングしてリセス部を形成してもよい。このとき、リセス部を電子供給層15の途中深さまで形成してもよい。また、ゲート電極17gと保護層16との間にゲート絶縁膜を形成してもよい。更に、バッファ層13として、超格子バッファ層等を用いてもよい。   In addition, the recess portion may be formed by etching a part or all of the protective layer 16 before forming the gate electrode 17g. At this time, the recess portion may be formed up to an intermediate depth of the electron supply layer 15. Further, a gate insulating film may be formed between the gate electrode 17g and the protective layer 16. Furthermore, a superlattice buffer layer or the like may be used as the buffer layer 13.

また、各層の厚さ及び材料等も上述の実施形態のものに限定されない。   Further, the thickness and material of each layer are not limited to those of the above-described embodiment.

次に、本願発明者が実際に行った実験について説明する。この実験では、4種類の条件で第2の実施形態と同様にして応力緩和層12(AlN層)を、直径が6インチの基板11上に成長させ、その上に第2の実施形態と同様にしてバッファ層13、電子走行層14、電子供給層15及び保護層16を成長させ、冷却した。応力緩和層12(AlN層)の成長から保護層16の成長までは連続して行った。但し、条件No.1では、応力緩和層12に代えて、表面が平坦なAlN層を成長させた。このとき、AlN層の形成時のV/III比は、2程度とした。条件No.2では、応力緩和層12(AlN層)の形成時のV/III比を50程度とし、条件No.3では、応力緩和層12(AlN層)の形成時のV/III比を100程度とし、条件No.4では、応力緩和層12(AlN層)の形成時のV/III比を200程度とした。他の条件は共通なものとした。   Next, an experiment actually performed by the present inventor will be described. In this experiment, the stress relaxation layer 12 (AlN layer) is grown on the substrate 11 having a diameter of 6 inches in the same manner as in the second embodiment under four conditions, and the same as in the second embodiment. Then, the buffer layer 13, the electron transit layer 14, the electron supply layer 15 and the protective layer 16 were grown and cooled. The growth from the stress relaxation layer 12 (AlN layer) to the growth of the protective layer 16 was continuously performed. However, Condition No. 1, an AlN layer having a flat surface was grown instead of the stress relaxation layer 12. At this time, the V / III ratio during the formation of the AlN layer was about 2. Condition No. 2, the V / III ratio at the time of forming the stress relaxation layer 12 (AlN layer) is about 50, and the condition No. 3, the V / III ratio at the time of forming the stress relaxation layer 12 (AlN layer) is set to about 100. 4, the V / III ratio when the stress relaxation layer 12 (AlN layer) was formed was about 200. Other conditions were common.

そして、条件No.2〜4について、バッファ層13等を形成する前の応力緩和層12(AlN層)の表面性状を原子間力顕微鏡(AFM:Atomic Force Microscope)像から分析した。各試料の一部における分析結果を図9に示す。図9(a)は条件No.2のものであり、図9(b)は条件No.3のものであり、図9(c)は条件No.4のものである。また、各試料における深さが5nm以上の窪みの深さの分布、直径の分布、及び密度を測定した。この結果を下記表1に示す。更に、各試料の反りの大きさ(ワープ値)及びクラックの長さも測定した。窪みの深さの最大値と、反りの大きさ及びクラックの長さとの関係を図10に示す。   And condition no. 2 to 4, the surface properties of the stress relaxation layer 12 (AlN layer) before forming the buffer layer 13 and the like were analyzed from an atomic force microscope (AFM) image. The analysis result in a part of each sample is shown in FIG. FIG. 2, and FIG. 3, and FIG. 4 things. Further, the depth distribution, the diameter distribution, and the density of the depressions having a depth of 5 nm or more in each sample were measured. The results are shown in Table 1 below. Further, the warp size (warp value) and the crack length of each sample were also measured. FIG. 10 shows the relationship between the maximum value of the depth of the dent, the size of the warp, and the length of the crack.

Figure 0006288187
Figure 0006288187

図10に示すように、V/III比が20程度と極端に低く、AlN層の表面に窪みが存在しない条件No.1では、基板の反りの大きさが150μm程度、クラックの長さが基板の外縁から75mm程度であった。これに対し、V/III比を50程度にした条件No.2では、適切な窪みが形成されており、クラックの長さが30mm程度と条件No.1の半分以下まで低減された。V/III比を更に大きくしてより好ましい窪みを形成した条件No.3では、反りが著しく低減された。V/III比を更に一層大きくして更に好ましい窪みを形成した条件No.4では、クラックの長さが1mm程度と2mm以下であった。つまり、クラックがほとんど発生していなかった。また、反りの大きさが40μm程度と50μm以下であり、反りが大きく低減された。   As shown in FIG. 10, the V / III ratio is extremely low, about 20, and the condition No. in which no depression exists on the surface of the AlN layer. In No. 1, the warpage of the substrate was about 150 μm, and the crack length was about 75 mm from the outer edge of the substrate. On the other hand, in condition No. In No. 2, an appropriate depression is formed, and the crack length is about 30 mm, and the condition No. It was reduced to less than half of 1. Condition No. 1 in which a more preferable depression was formed by further increasing the V / III ratio. In 3, the warpage was remarkably reduced. Condition No. 1 in which the V / III ratio was further increased to form a more preferable depression. In No. 4, the crack length was about 1 mm and 2 mm or less. That is, almost no cracks occurred. Moreover, the magnitude | size of curvature was about 40 micrometers and 50 micrometers or less, and curvature was reduced greatly.

さらに、本願発明者は表面に突起状の凹凸を持つスキューネスが正であるAlN層についても検討を行ったので、その結果について説明する。突起状の凹凸の密度は、スキューネスが負のAlN層と同程度である。しかし、スキューネスが正のAlN層においては、反り及びクラックを低減する効果が十分には得られなかった。スキューネスが正の表面においても、圧縮応力を発生させる突起状の凹凸の傾斜した側面からの成長は起こる。しかし、突起状の表面を平坦化する場合には、例えば成長条件(V/III比)を50程度まで低下させるが、このとき突起側面は成長の経過とともに緩やかに平坦化されていく成長モードとなる。したがって、スキューネスが負の形状の場合のような傾斜側面がお互いに圧縮応力を発生させる効果は著しく損なわれ、スキューネスが正の場合には反り及びクラックを抑制する効果が十分には得られなかったと考えられる。   Furthermore, the inventor of the present application has also studied an AlN layer having a positive skewness having a projection-like unevenness on the surface, and the result will be described. The density of the projections and depressions is about the same as that of the AlN layer having a negative skewness. However, in the AlN layer having a positive skewness, the effect of reducing warpage and cracks was not sufficiently obtained. Even on a surface having a positive skewness, the growth from the inclined side surface of the projection-like unevenness that generates the compressive stress occurs. However, in the case of flattening the protruding surface, for example, the growth condition (V / III ratio) is reduced to about 50. At this time, the side surface of the protrusion is gradually flattened with the progress of growth. Become. Therefore, the effect that the inclined side surfaces generate compressive stress with each other as in the case where the skewness is negative is significantly impaired, and when the skewness is positive, the effect of suppressing warpage and cracking is not sufficiently obtained. Conceivable.

以下、本発明の諸態様を付記としてまとめて記載する。   Hereinafter, various aspects of the present invention will be collectively described as supplementary notes.

(付記1)
基板と、
前記基板上方に形成されたGaN系化合物半導体積層構造と、
前記基板と前記GaN系化合物半導体積層構造との間に設けられたAlN系の応力緩和層と、
を有し、
前記応力緩和層の前記GaN系化合物半導体積層構造と接する面に、深さが5nm以上の窪みが2×1010cm-2以上の個数密度で形成されていることを特徴とする化合物半導体装置。
(Appendix 1)
A substrate,
A GaN-based compound semiconductor multilayer structure formed above the substrate;
An AlN-based stress relaxation layer provided between the substrate and the GaN-based compound semiconductor multilayer structure;
Have
A compound semiconductor device, wherein a recess having a depth of 5 nm or more is formed at a number density of 2 × 10 10 cm −2 or more on a surface of the stress relaxation layer in contact with the GaN-based compound semiconductor multilayer structure.

(付記2)
前記応力緩和層の前記GaN系化合物半導体積層構造と接する面に、深さが6nm以上の窪みが2×1010cm-2以上の個数密度で形成されていることを特徴とする付記1に記載の化合物半導体装置。
(Appendix 2)
Supplementary note 1 characterized in that recesses having a depth of 6 nm or more are formed at a number density of 2 × 10 10 cm −2 or more on the surface of the stress relaxation layer in contact with the GaN-based compound semiconductor multilayer structure. Compound semiconductor device.

(付記3)
前記応力緩和層の前記GaN系化合物半導体積層構造と接する面に、深さが7nm以上の窪みが8×109cm-2以上の個数密度で形成されていることを特徴とする付記1又は2に記載の化合物半導体装置。
(Appendix 3)
Additional remark 1 or 2 wherein depressions having a depth of 7 nm or more are formed at a number density of 8 × 10 9 cm −2 or more on a surface of the stress relaxation layer in contact with the GaN-based compound semiconductor multilayer structure. The compound semiconductor device described in 1.

(付記4)
前記応力緩和層の前記GaN系化合物半導体積層構造と接する面に、深さが15nm以上の窪みが9×109cm-2以上の個数密度で形成されていることを特徴とする付記1乃至3のいずれか1項に記載の化合物半導体装置。
(Appendix 4)
Additional remarks 1 to 3 wherein depressions having a depth of 15 nm or more are formed at a number density of 9 × 10 9 cm −2 or more on a surface of the stress relaxation layer in contact with the GaN-based compound semiconductor multilayer structure. The compound semiconductor device according to any one of the above.

(付記5)
前記窪みの直径が30nm以上であることを特徴とする付記1乃至4のいずれか1項に記載の化合物半導体装置。
(Appendix 5)
5. The compound semiconductor device according to any one of appendices 1 to 4, wherein a diameter of the depression is 30 nm or more.

(付記6)
前記窪みの直径が80nm以上であることを特徴とする付記1乃至5のいずれか1項に記載の化合物半導体装置。
(Appendix 6)
6. The compound semiconductor device according to any one of appendices 1 to 5, wherein a diameter of the recess is 80 nm or more.

(付記7)
前記応力緩和層の前記GaN系化合物半導体積層構造と接する面における粗さ曲線のスキューネスが負であることを特徴とする付記1乃至6のいずれか1項に記載の化合物半導体装置。
(Appendix 7)
7. The compound semiconductor device according to any one of appendices 1 to 6, wherein a skewness of a roughness curve on a surface of the stress relaxation layer in contact with the GaN-based compound semiconductor multilayer structure is negative.

(付記8)
前記GaN系化合物半導体積層構造は、電子走行層及び電子供給層を有することを特徴とする付記1乃至7のいずれか1項に記載の化合物半導体装置。
(Appendix 8)
The compound semiconductor device according to any one of appendices 1 to 7, wherein the GaN-based compound semiconductor multilayer structure includes an electron transit layer and an electron supply layer.

(付記9)
前記電子供給層上方に形成されたソース電極、ゲート電極及びドレイン電極を有することを特徴とする付記8に記載の化合物半導体装置。
(Appendix 9)
The compound semiconductor device according to appendix 8, further comprising a source electrode, a gate electrode, and a drain electrode formed above the electron supply layer.

(付記10)
前記基板は、Si基板、SiC基板又はサファイア基板であることを特徴とする付記1乃至9のいずれか1項に記載の化合物半導体装置。
(Appendix 10)
10. The compound semiconductor device according to any one of appendices 1 to 9, wherein the substrate is a Si substrate, a SiC substrate, or a sapphire substrate.

(付記11)
付記1乃至10のいずれか1項に記載の化合物半導体装置を有することを特徴とする電源装置。
(Appendix 11)
A power supply device comprising the compound semiconductor device according to any one of appendices 1 to 10.

(付記12)
付記1乃至10のいずれか1項に記載の化合物半導体装置を有することを特徴とする高出力増幅器。
(Appendix 12)
A high-power amplifier comprising the compound semiconductor device according to any one of appendices 1 to 10.

(付記13)
基板上方にAlN系の応力緩和層を形成する工程と、
前記応力緩和層上にGaN系化合物半導体積層構造を形成する工程と、
を有し、
前記応力緩和層を形成する際に、前記応力緩和層の前記GaN系化合物半導体積層構造と接する面に、深さが5nm以上の窪みを2×1010cm-2以上の個数密度で形成することを特徴とする化合物半導体装置の製造方法。
(Appendix 13)
Forming an AlN-based stress relaxation layer above the substrate;
Forming a GaN-based compound semiconductor multilayer structure on the stress relaxation layer;
Have
When forming the stress relaxation layer, a recess having a depth of 5 nm or more is formed at a number density of 2 × 10 10 cm −2 or more on the surface of the stress relaxation layer in contact with the GaN-based compound semiconductor multilayer structure. A method for manufacturing a compound semiconductor device.

(付記14)
前記応力緩和層を形成する際に、前記応力緩和層の前記GaN系化合物半導体積層構造と接する面に、深さが6nm以上の窪みを2×1010cm-2以上の個数密度で形成することを特徴とする付記13に記載の化合物半導体装置の製造方法。
(Appendix 14)
When forming the stress relaxation layer, recesses having a depth of 6 nm or more are formed at a number density of 2 × 10 10 cm −2 or more on the surface of the stress relaxation layer in contact with the GaN-based compound semiconductor multilayer structure. Item 14. The method for manufacturing a compound semiconductor device according to appendix 13.

(付記15)
前記応力緩和層を形成する際に、前記応力緩和層の前記GaN系化合物半導体積層構造と接する面に、深さが7nm以上の窪みを8×109cm-2以上の個数密度で形成することを特徴とする付記13又は14に記載の化合物半導体装置の製造方法。
(Appendix 15)
When forming the stress relaxation layer, recesses having a depth of 7 nm or more are formed at a number density of 8 × 10 9 cm −2 or more on the surface of the stress relaxation layer in contact with the GaN-based compound semiconductor multilayer structure. 15. A method for manufacturing a compound semiconductor device according to appendix 13 or 14, wherein:

(付記16)
前記応力緩和層を形成する際に、前記応力緩和層の前記GaN系化合物半導体積層構造と接する面に、深さが15nm以上の窪みを9×109cm-2以上の個数密度で形成することを特徴とする付記13乃至15のいずれか1項に記載の化合物半導体装置の製造方法。
(Appendix 16)
When forming the stress relaxation layer, recesses having a depth of 15 nm or more are formed at a number density of 9 × 10 9 cm −2 or more on the surface of the stress relaxation layer in contact with the GaN-based compound semiconductor multilayer structure. 16. A method of manufacturing a compound semiconductor device according to any one of appendices 13 to 15, wherein:

(付記17)
前記応力緩和層を形成する際に用いる原料ガスのV/III比を50以上とすることを特徴とする付記13乃至16のいずれか1項に記載の化合物半導体装置の製造方法。
(Appendix 17)
17. The method for manufacturing a compound semiconductor device according to any one of appendices 13 to 16, wherein a V / III ratio of a raw material gas used when forming the stress relaxation layer is 50 or more.

(付記18)
前記応力緩和層を形成する際に用いる原料ガスのV/III比を100以上とすることを特徴とする付記13乃至17のいずれか1項に記載の化合物半導体装置の製造方法。
(Appendix 18)
18. The method of manufacturing a compound semiconductor device according to any one of appendices 13 to 17, wherein a V / III ratio of a raw material gas used when forming the stress relaxation layer is 100 or more.

(付記19)
前記応力緩和層を形成する際に用いる原料ガスのV/III比を200以上とすることを特徴とする付記13乃至18のいずれか1項に記載の化合物半導体装置の製造方法。
(Appendix 19)
19. The method for manufacturing a compound semiconductor device according to any one of appendices 13 to 18, wherein a V / III ratio of a source gas used when forming the stress relaxation layer is 200 or more.

(付記20)
前記応力緩和層を形成する際の成長温度を1000℃〜1040℃とすることを特徴とする付記13乃至19のいずれか1項に記載の化合物半導体装置の製造方法。
(Appendix 20)
20. The method for manufacturing a compound semiconductor device according to any one of appendices 13 to 19, wherein a growth temperature at the time of forming the stress relaxation layer is 1000 ° C. to 1040 ° C.

1:基板
2:応力緩和層
2a:窪み
3:化合物半導体積層構造
11:基板
12:応力緩和層
13:バッファ層
14:電子走行層
15:電子供給層
16:保護層
17g:ゲート電極
17s:ソース電極
17d:ドレイン電極
1: substrate 2: stress relaxation layer 2a: depression 3: compound semiconductor multilayer structure 11: substrate 12: stress relaxation layer 13: buffer layer 14: electron transit layer 15: electron supply layer 16: protective layer 17g: gate electrode 17s: source Electrode 17d: Drain electrode

Claims (20)

基板と、
前記基板上方に設けられた窒化物半導体積層構造と、
前記基板と前記窒化物半導体積層構造との間に設けられたAlN系の応力緩和層と、
前記応力緩和層と前記窒化物半導体積層構造との間に設けられたAlGaNの窒化物半導体層と、
を有し、
前記応力緩和層の前記窒化物半導体層側の面に、窪みが5nm以上の深さで2×1010cm-2以上の個数密度で設けられ、
前記応力緩和層の前記窒化物半導体層側の面におけるスキューネスが負であることを特徴とする化合物半導体基板。
A substrate,
A nitride semiconductor multilayer structure provided above the substrate;
An AlN-based stress relaxation layer provided between the substrate and the nitride semiconductor multilayer structure;
An AlGaN nitride semiconductor layer provided between the stress relaxation layer and the nitride semiconductor multilayer structure;
Have
On the surface of the stress relaxation layer on the nitride semiconductor layer side, depressions are provided at a depth of 5 nm or more and a number density of 2 × 10 10 cm −2 or more,
The compound semiconductor substrate, wherein the stress relaxation layer has a negative skewness on the surface of the nitride semiconductor layer.
基板と、
前記基板上方に設けられた窒化物半導体積層構造と、
前記基板と前記窒化物半導体積層構造との間に設けられたAlN系の応力緩和層と、
前記応力緩和層と前記窒化物半導体積層構造との間に設けられたAlGaNの窒化物半導体層と、
を有し、
前記応力緩和層の前記窒化物半導体層側の面に、窪みが7nm以上の深さで8×109cm-2以上の個数密度で設けられ、
前記応力緩和層の前記窒化物半導体層側の面におけるスキューネスが負であることを特徴とする化合物半導体基板。
A substrate,
A nitride semiconductor multilayer structure provided above the substrate;
An AlN-based stress relaxation layer provided between the substrate and the nitride semiconductor multilayer structure;
An AlGaN nitride semiconductor layer provided between the stress relaxation layer and the nitride semiconductor multilayer structure;
Have
On the surface of the stress relaxation layer on the nitride semiconductor layer side, depressions are provided at a depth of 7 nm or more and a number density of 8 × 10 9 cm −2 or more,
The compound semiconductor substrate, wherein the stress relaxation layer has a negative skewness on the surface of the nitride semiconductor layer.
前記窪みは、15nm以上の深さで9×109cm-2以上の個数密度で設けられていることを特徴とする請求項2に記載の化合物半導体基板。 3. The compound semiconductor substrate according to claim 2, wherein the recesses are provided at a depth of 15 nm or more and a number density of 9 × 10 9 cm −2 or more. 前記AlN系の応力緩和層は、AlN層からなることを特徴とする請求項1乃至3のいずれか1項に記載の化合物半導体基板。   The compound semiconductor substrate according to claim 1, wherein the AlN-based stress relaxation layer includes an AlN layer. 前記窒化物半導体積層構造は、
電子走行層と、
前記電子走行層の上方に設けられた電子供給層と、
を含むことを特徴とする請求項1乃至4のいずれか1項に記載の化合物半導体基板。
The nitride semiconductor multilayer structure is
An electronic travel layer,
An electron supply layer provided above the electron transit layer;
The compound semiconductor substrate according to claim 1, comprising:
前記窪みの直径は30nm以上であることを特徴とする請求項1乃至5のいずれか1項に記載の化合物半導体基板。   The compound semiconductor substrate according to claim 1, wherein a diameter of the recess is 30 nm or more. 前記窪みの直径は80nm以上であることを特徴とする請求項6に記載の化合物半導体基板。   The compound semiconductor substrate according to claim 6, wherein a diameter of the recess is 80 nm or more. 基板上方にAlN系の応力緩和層を形成する工程と、
前記応力緩和層上方にAlGaNの窒化物半導体層を形成する工程と、
前記窒化物半導体層上方に窒化物半導体積層構造を形成する工程と、
を有し、
前記応力緩和層を形成する際に、前記応力緩和層の前記窒化物半導体層側の面に、深さが5nm以上の窪みを2×1010cm-2以上の個数密度で形成し、前記面のスキューネスを負とすることを特徴とする化合物半導体基板の製造方法。
Forming an AlN-based stress relaxation layer above the substrate;
Forming an AlGaN nitride semiconductor layer above the stress relaxation layer;
Forming a nitride semiconductor multilayer structure above the nitride semiconductor layer;
Have
When forming the stress relaxation layer, recesses having a depth of 5 nm or more are formed at a number density of 2 × 10 10 cm −2 or more on the surface of the stress relaxation layer on the nitride semiconductor layer side, and the surface A method of manufacturing a compound semiconductor substrate, wherein the skewness of the compound is negative.
基板上方にAlN系の応力緩和層を形成する工程と、
前記応力緩和層上方にAlGaNの窒化物半導体層を形成する工程と、
前記窒化物半導体層上方に窒化物半導体積層構造を形成する工程と、
を有し、
前記応力緩和層を形成する際に、前記応力緩和層の前記窒化物半導体層側の面に、深さが7nm以上の窪みを8×109cm-2以上の個数密度で形成し、前記面のスキューネスを負とすることを特徴とする化合物半導体基板の製造方法。
Forming an AlN-based stress relaxation layer above the substrate;
Forming an AlGaN nitride semiconductor layer above the stress relaxation layer;
Forming a nitride semiconductor multilayer structure above the nitride semiconductor layer;
Have
When forming the stress relaxation layer, recesses having a depth of 7 nm or more are formed at a number density of 8 × 10 9 cm −2 or more on the surface of the stress relaxation layer on the nitride semiconductor layer side, and the surface A method of manufacturing a compound semiconductor substrate, wherein the skewness of the compound is negative.
前記窪みは、15nm以上の深さで9×109cm-2以上の個数密度で形成することを特徴とする請求項9に記載の化合物半導体基板の製造方法。 10. The method of manufacturing a compound semiconductor substrate according to claim 9, wherein the depressions are formed at a depth of 15 nm or more and a number density of 9 × 10 9 cm −2 or more. 基板と、
前記基板上方に設けられた窒化物半導体積層構造と、
前記基板と前記窒化物半導体積層構造との間に設けられたAlN系の応力緩和層と、
前記応力緩和層と前記窒化物半導体積層構造との間に設けられたAlGaNの窒化物半導体層と、
前記窒化物半導体積層構造の上方に設けられたゲート電極と、
前記窒化物半導体積層構造の上方に前記ゲート電極を挟んで設けられた、ソース電極及びドレイン電極と、
を有し、
前記応力緩和層の前記窒化物半導体層側の面に、窪みが5nm以上の深さで2×1010cm-2以上の個数密度で設けられ、
前記応力緩和層の前記窒化物半導体層側の面におけるスキューネスが負であることを特徴とする化合物半導体装置。
A substrate,
A nitride semiconductor multilayer structure provided above the substrate;
An AlN-based stress relaxation layer provided between the substrate and the nitride semiconductor multilayer structure;
An AlGaN nitride semiconductor layer provided between the stress relaxation layer and the nitride semiconductor multilayer structure;
A gate electrode provided above the nitride semiconductor multilayer structure;
A source electrode and a drain electrode provided above the nitride semiconductor multilayer structure with the gate electrode interposed therebetween;
Have
On the surface of the stress relaxation layer on the nitride semiconductor layer side, depressions are provided at a depth of 5 nm or more and a number density of 2 × 10 10 cm −2 or more,
The compound semiconductor device, wherein the stress relaxation layer has a negative skewness on the surface of the nitride semiconductor layer side.
基板と、
前記基板上方に設けられた窒化物半導体積層構造と、
前記基板と前記窒化物半導体積層構造との間に設けられたAlN系の応力緩和層と、
前記応力緩和層と前記窒化物半導体積層構造との間に設けられたAlGaNの窒化物半 導体層と、
前記窒化物半導体積層構造の上方に設けられたゲート電極と、
前記窒化物半導体積層構造の上方に前記ゲート電極を挟んで設けられた、ソース電極及びドレイン電極と、
を有し、
前記応力緩和層の前記窒化物半導体層側の面に、窪みが7nm以上の深さで8×109cm-2以上の個数密度で設けられ、
前記応力緩和層の前記窒化物半導体層側の面におけるスキューネスが負であることを特徴とする化合物半導体装置。
A substrate,
A nitride semiconductor multilayer structure provided above the substrate;
An AlN-based stress relaxation layer provided between the substrate and the nitride semiconductor multilayer structure;
An AlGaN nitride semiconductor layer provided between the stress relaxation layer and the nitride semiconductor multilayer structure;
A gate electrode provided above the nitride semiconductor multilayer structure;
A source electrode and a drain electrode provided above the nitride semiconductor multilayer structure with the gate electrode interposed therebetween;
Have
On the surface of the stress relaxation layer on the nitride semiconductor layer side, depressions are provided at a depth of 7 nm or more and a number density of 8 × 10 9 cm −2 or more,
The compound semiconductor device, wherein the stress relaxation layer has a negative skewness on the surface of the nitride semiconductor layer side.
前記窪みは、15nm以上の深さで9×109cm-2以上の個数密度で設けられていることを特徴とする請求項12に記載の化合物半導体装置。 13. The compound semiconductor device according to claim 12, wherein the depressions are provided at a depth of 15 nm or more and a number density of 9 × 10 9 cm −2 or more. 前記AlN系の応力緩和層は、AlN層からなることを特徴とする請求項11乃至13のいずれか1項に記載の化合物半導体装置。   The compound semiconductor device according to claim 11, wherein the AlN-based stress relaxation layer includes an AlN layer. 前記窒化物半導体積層構造は、
電子走行層と、
前記電子走行層の上方に設けられた電子供給層と、
を含むことを特徴とする請求項11乃至14のいずれか1項に記載の化合物半導体装置。
The nitride semiconductor multilayer structure is
An electronic travel layer,
An electron supply layer provided above the electron transit layer;
The compound semiconductor device according to claim 11, comprising:
前記窪みの直径は30nm以上であることを特徴とする請求項11乃至15のいずれか1項に記載の化合物半導体装置。   The compound semiconductor device according to claim 11, wherein a diameter of the recess is 30 nm or more. 前記窪みの直径は80nm以上であることを特徴とする請求項16に記載の化合物半導体装置。   The compound semiconductor device according to claim 16, wherein a diameter of the recess is 80 nm or more. 基板上方にAlN系の応力緩和層を形成する工程と、
前記応力緩和層上方にAlGaNの窒化物半導体層を形成する工程と、
前記窒化物半導体層上方に窒化物半導体積層構造を形成する工程と、
前記窒化物半導体積層構造上方にゲート電極を形成する工程と、
前記窒化物半導体積層構造上方に、ゲート電極を挟んでソース電極及びドレイン電極を形成する工程と、
を有し、
前記応力緩和層を形成する際に、前記応力緩和層の前記窒化物半導体層側の面に、深さが5nm以上の窪みを2×1010cm-2以上の個数密度で形成し、前記面のスキューネスを負とすることを特徴とする化合物半導体装置の製造方法。
Forming an AlN-based stress relaxation layer above the substrate;
Forming an AlGaN nitride semiconductor layer above the stress relaxation layer;
Forming a nitride semiconductor multilayer structure above the nitride semiconductor layer;
Forming a gate electrode above the nitride semiconductor multilayer structure;
Forming a source electrode and a drain electrode above the nitride semiconductor multilayer structure with a gate electrode interposed therebetween;
Have
When forming the stress relaxation layer, recesses having a depth of 5 nm or more are formed at a number density of 2 × 10 10 cm −2 or more on the surface of the stress relaxation layer on the nitride semiconductor layer side, and the surface A method of manufacturing a compound semiconductor device, wherein the skewness of the compound is negative.
基板上方にAlN系の応力緩和層を形成する工程と、
前記応力緩和層上方にAlGaNの窒化物半導体層を形成する工程と、
前記窒化物半導体層上方に窒化物半導体積層構造を形成する工程と、
前記窒化物半導体積層構造上方にゲート電極を形成する工程と、
前記窒化物半導体積層構造上方に、ゲート電極を挟んでソース電極及びドレイン電極を形成する工程と、
を有し、
前記応力緩和層を形成する際に、前記応力緩和層の前記窒化物半導体層側の面に、深さが7nm以上の窪みを8×109cm-2以上の個数密度で形成し、前記面のスキューネスを負とすることを特徴とする化合物半導体装置の製造方法。
Forming an AlN-based stress relaxation layer above the substrate;
Forming an AlGaN nitride semiconductor layer above the stress relaxation layer;
Forming a nitride semiconductor multilayer structure above the nitride semiconductor layer;
Forming a gate electrode above the nitride semiconductor multilayer structure;
Forming a source electrode and a drain electrode above the nitride semiconductor multilayer structure with a gate electrode interposed therebetween;
Have
When forming the stress relaxation layer, recesses having a depth of 7 nm or more are formed at a number density of 8 × 10 9 cm −2 or more on the surface of the stress relaxation layer on the nitride semiconductor layer side, and the surface A method of manufacturing a compound semiconductor device, wherein the skewness of the compound is negative.
前記窪みは、15nm以上の深さで9×109cm-2以上の個数密度で形成することを特徴とする請求項19に記載の化合物半導体装置の製造方法。 20. The method of manufacturing a compound semiconductor device according to claim 19, wherein the depressions are formed at a depth of 15 nm or more and a number density of 9 × 10 9 cm −2 or more.
JP2016161887A 2016-08-22 2016-08-22 Compound semiconductor device and manufacturing method thereof Active JP6288187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016161887A JP6288187B2 (en) 2016-08-22 2016-08-22 Compound semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016161887A JP6288187B2 (en) 2016-08-22 2016-08-22 Compound semiconductor device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015068637A Division JP6142893B2 (en) 2015-03-30 2015-03-30 Compound semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016201572A JP2016201572A (en) 2016-12-01
JP6288187B2 true JP6288187B2 (en) 2018-03-07

Family

ID=57422801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016161887A Active JP6288187B2 (en) 2016-08-22 2016-08-22 Compound semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6288187B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122693A (en) * 1999-10-22 2001-05-08 Nec Corp Ground substrate for crystal growth and method of producing substrate using the same
JP2003022973A (en) * 2001-07-06 2003-01-24 Sanyo Electric Co Ltd Nitride system semiconductor device and method of forming it
JP4331906B2 (en) * 2001-12-26 2009-09-16 日本碍子株式会社 Method for producing group III nitride film
JP4241106B2 (en) * 2003-03-12 2009-03-18 シャープ株式会社 Semiconductor device and manufacturing method thereof
WO2007077666A1 (en) * 2005-12-28 2007-07-12 Nec Corporation Field effect transistor, and multilayered epitaxial film for use in preparation of field effect transistor
JP2007305869A (en) * 2006-05-12 2007-11-22 Sumitomo Electric Ind Ltd High electron mobility transistor, and manufacturing method thereof
JP5095253B2 (en) * 2007-03-30 2012-12-12 富士通株式会社 Semiconductor epitaxial substrate, compound semiconductor device, and manufacturing method thereof
JP5163045B2 (en) * 2007-10-15 2013-03-13 サンケン電気株式会社 Epitaxial growth substrate manufacturing method and nitride compound semiconductor device manufacturing method
JP5546133B2 (en) * 2009-01-16 2014-07-09 古河電気工業株式会社 Semiconductor electronic device
WO2011055774A1 (en) * 2009-11-06 2011-05-12 日本碍子株式会社 Epitaxial substrate for semiconductor element, semiconductor element, and method for producing epitaxial substrate for semiconductor element
JP5799604B2 (en) * 2011-06-21 2015-10-28 住友電気工業株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2016201572A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP5891650B2 (en) Compound semiconductor device and manufacturing method thereof
JP6018360B2 (en) Compound semiconductor device and manufacturing method thereof
JP4525894B2 (en) Semiconductor device forming plate-like substrate, manufacturing method thereof, and semiconductor device using the same
JP4381380B2 (en) Semiconductor device and manufacturing method thereof
JP5653607B2 (en) GaN-based field effect transistor and manufacturing method thereof
JP4530171B2 (en) Semiconductor device
JP4897948B2 (en) Semiconductor element
JP5634681B2 (en) Semiconductor element
JP5323527B2 (en) Manufacturing method of GaN-based field effect transistor
JP5367429B2 (en) GaN-based field effect transistor
JP2007242853A (en) Semiconductor substrate and semiconductor device using it
JP5712583B2 (en) Compound semiconductor device and manufacturing method thereof
TWI483383B (en) Compound semiconductor device and method for manufacturing the same
JP5707903B2 (en) Compound semiconductor device and manufacturing method thereof
JP5379391B2 (en) Semiconductor device comprising gallium nitride compound semiconductor and method for manufacturing the same
JP2012049170A (en) Nitride semiconductor device
JP6264485B2 (en) Compound semiconductor device and manufacturing method thereof
JP2010287594A (en) Field effect transistor
JP5504660B2 (en) Compound semiconductor device and manufacturing method thereof
JP6142893B2 (en) Compound semiconductor device and manufacturing method thereof
JP6288187B2 (en) Compound semiconductor device and manufacturing method thereof
JP7069486B2 (en) High electron mobility transistor
TW202406146A (en) High electron mobility transistor and method for fabricating the same
JP2011253953A (en) Field-effect transistor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6288187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150