JP6286767B2 - Switchback electrostatic generator using asymmetric electrostatic force - Google Patents

Switchback electrostatic generator using asymmetric electrostatic force Download PDF

Info

Publication number
JP6286767B2
JP6286767B2 JP2013173902A JP2013173902A JP6286767B2 JP 6286767 B2 JP6286767 B2 JP 6286767B2 JP 2013173902 A JP2013173902 A JP 2013173902A JP 2013173902 A JP2013173902 A JP 2013173902A JP 6286767 B2 JP6286767 B2 JP 6286767B2
Authority
JP
Japan
Prior art keywords
charge
electric field
electrode
charge carrier
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013173902A
Other languages
Japanese (ja)
Other versions
JP2015035938A (en
Inventor
酒井 捷夫
捷夫 酒井
Original Assignee
酒井 捷夫
捷夫 酒井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 酒井 捷夫, 捷夫 酒井 filed Critical 酒井 捷夫
Priority to JP2013173902A priority Critical patent/JP6286767B2/en
Publication of JP2015035938A publication Critical patent/JP2015035938A/en
Application granted granted Critical
Publication of JP6286767B2 publication Critical patent/JP6286767B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrostatic Separation (AREA)

Description

本発明は、新たに確認された、静電気力、すなわち、非対称静電気力を使用する静電発電機の構造に関するものである。  The present invention relates to a newly identified electrostatic generator structure that uses electrostatic force, ie, asymmetric electrostatic force.

本出願人は先に、本出願人により新たに見い出された静電気力(非対称静電気力)を使用する新方式の静電発電機器の出願(特許文献[1][2][3][4][5])を行った。
非対称静電力とは、非対称形状の帯電導体に作用する静電力の強さが、電界の方向が反転した時大きく変わる現象である。
また、新方式の静電発電機と言っても、その基本原理は従来の静電発電機(例えば、バンデグラーフ型)と同じで、低電位(0V)で電荷(例えば、マイナス電荷を有する電子)を電荷搬送体に乗せ、それに作用する静電気力に逆らって、該電荷搬送体を高電位(例えば−1000V)まで搬送し、そこで搬送してきた電荷を下ろすだけである。両者の違いは、その搬送力にあり、従来型は、機械力を使用するのに対して、新方式では、非対称静電力を利用する。(以下、新方式静電発電機を電界駆動型静電発電機と呼ぶ。)
The present applicant has previously filed an application for a new type of electrostatic power generation device using the electrostatic force (asymmetric electrostatic force) newly found by the applicant (Patent Documents [1] [2] [3] [4]. [5]) was performed.
The asymmetric electrostatic force is a phenomenon in which the strength of the electrostatic force acting on the asymmetrical charged conductor changes greatly when the direction of the electric field is reversed.
Even if it is a new type of electrostatic generator, its basic principle is the same as that of a conventional electrostatic generator (for example, a van de Graaff type), and an electric charge (for example, an electron having a negative charge) at a low potential (0 V). ) Is placed on the charge transport body, and the charge transport body is transported to a high potential (for example, −1000 V) against the electrostatic force acting on it, and the transported charge is simply lowered. The difference between the two is in the conveying force. The conventional type uses mechanical force, whereas the new method uses asymmetric electrostatic force. (Hereinafter, the new electrostatic generator will be referred to as an electric field driven electrostatic generator.)

以下、特許文献[4]の図17、図18及び図19により、非対称静電力の効果、電界駆動型静電発電機の原理とその構造を説明する。なお、特許文献[2],[3]にも同一の図と同様の説明が記載されている。
特許文献[1] 特開2008−005690
特許特許[2] 特開2009−232667
特許文献[3] 特開2010−098925
特許文献[4] 特開2012−039842
特許文献[5] 特開2012−070607
Hereinafter, with reference to FIGS. 17, 18 and 19 of Patent Document [4], the effect of the asymmetric electrostatic force, the principle of the electric field drive type electrostatic generator and the structure thereof will be described. Patent documents [2] and [3] also contain descriptions similar to those in the same figure.
Patent Document [1] JP 2008-005690 A
Patent [2] JP2009-232667A
Patent Document [3] JP 2010-098925 A
Patent Document [4] JP2012-039842A
Patent Document [5] JP2012-070607A

図17において、記号1はエレクトレットを、記号2は電荷注入電極を、記号3は電荷搬送体を、記号4は電荷回収電極を、記号20は電極2,4及びエレクトレット1の絶縁性支持体を示している。エレクトレット1の幅は、100μmで、注入電極2の幅も100μmで、、回収電極4の幅は160μmである。注入電極2とエレクトレット1、及びエレクトレット1と回収電極4の間隔はそれぞれ320μmである。上下の支持体の間隔は200μmである。
エレクトレット1の電位は、+320Vで、注入電極2は接地されていて、回収電極4の電位は、例えば−35Vである。この結果、エレクトレット1と注入電極2の間には左向きの電界が形成される。その強度は約1.0E+6[V/m]である。以下、順電界と呼ぶ。一方、エレクトレット1と回収電界4の間には右向きの電界が形成される。その強度も約1.0E+6[V/m]である。
以下、逆電界と呼ぶ。
In FIG. 17, symbol 1 is an electret, symbol 2 is a charge injection electrode, symbol 3 is a charge carrier, symbol 4 is a charge recovery electrode, symbol 20 is an insulating support for electrodes 2, 4 and electret 1. Show. The electret 1 has a width of 100 μm, the injection electrode 2 has a width of 100 μm, and the recovery electrode 4 has a width of 160 μm. The intervals between the injection electrode 2 and the electret 1 and between the electret 1 and the collection electrode 4 are 320 μm, respectively. The distance between the upper and lower supports is 200 μm.
The electret 1 has a potential of + 320V, the injection electrode 2 is grounded, and the recovery electrode 4 has a potential of −35V, for example. As a result, a leftward electric field is formed between the electret 1 and the injection electrode 2. Its strength is about 1.0E + 6 [V / m]. Hereinafter, it is called a forward electric field. On the other hand, a rightward electric field is formed between the electret 1 and the recovery electric field 4. Its strength is also about 1.0E + 6 [V / m].
Hereinafter, it is called a reverse electric field.

電荷搬送体3は、図の様に左側が開い箱型で、電界の方向に対して左右非対称形である。軽い導体、例えばアルミで形成されていて、図示しない支持体に支持されている。その幅は80μmで、高さと奥行きは160μm、板厚は20μmである。そして、電気的にフロートである。該電荷搬送体3は、次に述べる非対称静電力で駆動されて、左から右に、注入電極対2、エレクトレット対1、回収電極対4を通り抜ける。  As shown in the figure, the charge carrier 3 has an open box shape on the left side and is asymmetrical with respect to the direction of the electric field. It is made of a light conductor, such as aluminum, and is supported by a support (not shown). The width is 80 μm, the height and depth are 160 μm, and the plate thickness is 20 μm. And it is electrically floating. The charge carrier 3 is driven by an asymmetric electrostatic force described below, and passes through the injection electrode pair 2, the electret pair 1, and the recovery electrode pair 4 from left to right.

電荷搬送体3が、注入電極対2を抜ける時、図示しない接地導線が接触して、静電誘導で、約−0.3pCの電荷が注入される。この結果は、軸対象2次元差分法でシミュレーションして求めた。該非対称形帯電導体(電荷搬送体3)が注入電極対2からエレクトレット対1を通り回収電極対4に至る間に、電界から受ける静電力を同様にシミュレーションで求めた。なお、回収電協の電位は0Vとした。その結果を図18に示す。  When the charge carrier 3 exits the injection electrode pair 2, a ground conductor (not shown) comes into contact, and a charge of about −0.3 pC is injected by electrostatic induction. This result was obtained by simulating with a two-dimensional difference method based on the axis. The electrostatic force received from the electric field while the asymmetrical charged conductor (charge carrier 3) passed from the injection electrode pair 2 through the electret pair 1 to the recovery electrode pair 4 was similarly determined by simulation. The potential of the recovery electric cooperative was 0V. The result is shown in FIG.

図18より、該電荷搬送体3が受ける静電力の強さは、順電界(注入電極2とエレクトレット1間)では、約8.0E−8[N]と大きく、逆電界(エレクトレット1と回収電極4)では、約3.0E−8[N]と半分以下になることが分かる。このように、電界の方向が反転したとき、作用する静電力の強さが大きく変わる現象を、特に、非対称静電力(現象)と呼ぶ。この現象は、帯電した導体の形状が、電界の方向で非対称の場合にのみ見られる特異な現象である。  As shown in FIG. 18, the strength of the electrostatic force received by the charge carrier 3 is as large as about 8.0E-8 [N] in the forward electric field (between the injection electrode 2 and the electret 1), and the reverse electric field (the electret 1 and the recovery). It can be seen that the electrode 4) is about 3.0E-8 [N], less than half. A phenomenon in which the strength of the acting electrostatic force changes greatly when the direction of the electric field is reversed is called an asymmetric electrostatic force (phenomenon). This phenomenon is a unique phenomenon that can be seen only when the shape of the charged conductor is asymmetric in the direction of the electric field.

電界駆動型静電発電機では、この順電界と逆電界の静電力の差を、電荷搬送体3の駆動力として使用する。すなわち、順電界中で、強い静電力で、電荷搬送体3を加速運動させ、逆電界に入り減速運動になっても、弱い静電力なので、十分な速度を残して、回収電極4に到達させるのである。この速度は、電荷搬送体3が、注入電極を抜けた時の速度よりかなり速い。しかしながら、加速器ではないので、速度を速める必要はない。そこで、この速度差に基づく運動エネルギーの差を使って(分配して)、電荷搬送体3を機械的に搬送すると同時に、その帯電電荷を電気的により高い電位まで搬送する。これが、電界駆動型静電発電機の原理である。  In the electric field drive type electrostatic generator, the difference in electrostatic force between the forward electric field and the reverse electric field is used as the driving force of the charge carrier 3. That is, the charge carrier 3 is accelerated by a strong electrostatic force in a forward electric field, and even when entering the reverse electric field and decelerating, it is a weak electrostatic force, so that it remains at a sufficient speed and reaches the recovery electrode 4. It is. This speed is considerably faster than the speed at which the charge carrier 3 exits the injection electrode. However, since it is not an accelerator, there is no need to increase the speed. Therefore, by using (distributing) the difference in kinetic energy based on the speed difference, the charge carrier 3 is mechanically conveyed, and at the same time, the charged charge is electrically conveyed to a higher potential. This is the principle of the electric field drive type electrostatic generator.

なお、電荷搬送体3によって、接地電位V2の注入電極2より、高電位V4の回収電極4に搬送された電荷Qの大部分(例えば、その97%)は、電荷搬送体3が、回収電極4と電気的に接続されることで、回収電極に移行する。すなわち、回収される。この時の発電量Wは、
W=0.97Qx(V4−V2)
となる。
搬送した電荷の大部分を、回収電極4に放出した電荷搬送体3は、回収電極4を抜けてさらに右方向に移動し、次の注入電極2に入る。そして、同様に非対称静電力により電界駆動型発電を行う。
Note that most (for example, 97%) of the charge Q transferred from the injection electrode 2 having the ground potential V2 to the recovery electrode 4 having the high potential V4 by the charge transfer body 3 is transferred to the recovery electrode by the charge transport body 3. By being electrically connected to 4, the transition to the recovery electrode is made. That is, it is collected. The power generation amount W at this time is
W = 0.97Qx (V4-V2)
It becomes.
The charge transport body 3 that has released most of the transported charge to the collection electrode 4 passes through the collection electrode 4 and moves further to the right and enters the next injection electrode 2. Similarly, electric field drive type power generation is performed by asymmetric electrostatic force.

該電界発電工程をエンドレスに、スムーズに行うために、図19の構造が提案されている。図19において、記号10は。電荷搬送体円板で、記号11と12は、上下固定電極円板である。その中間に、電荷搬送体円板10が、回転自在にセットされている。上下の固定電極円板11、12には、図の様に、注入電極2、エレクトレット1、回収電極4が、上下同じ位置に、放射状に多数配置されている。また、電荷搬送体円板10には、箱型、樋型等の非対称形状の電荷搬送体3が、放射状に多数配置されている。電荷搬送体円板10が、等速度で回転することで、上記の様に、電界移動型発電がスムーズに、エンドレスに行われる。以下この構造を回転型と呼ぶ。  In order to smoothly and smoothly perform the electric field power generation process, the structure of FIG. 19 has been proposed. In FIG. In the charge carrier disk, symbols 11 and 12 are upper and lower fixed electrode disks. In the middle, the charge carrier disk 10 is rotatably set. As shown in the figure, the upper and lower fixed electrode disks 11 and 12 have a large number of radially injecting electrodes 2, electrets 1 and collection electrodes 4 at the same upper and lower positions. In addition, a large number of asymmetrical charge carriers 3 such as a box shape and a bowl shape are radially arranged on the charge carrier disk 10. As the charge carrier disk 10 rotates at a constant speed, the electric field transfer type power generation is performed smoothly and endlessly as described above. Hereinafter, this structure is called a rotary type.

なお、この構成では、ひとつのエレクトレット1が構成する電界を、多数の電荷搬送体3が次々に通り抜けていく。このとき、エレクトレット1の構成する電界のエネルギーがそこに静止して蓄えられていれば、電荷搬送体3に静電力を働かせてこれを移動させることで、そのエネルギーは次々に消費され、すぐに枯渇する。すなわち、発電は止まる。しかしながら、幸いなことに、電界のエネルギーは静止して蓄えられているのではなく、その空間を光速度で移動しているので、その心配は不要である。なお、電子が、その全周囲に、絶えることなく光子(電気エネルギー)を放射し続けていることは、量子電気力学に記載されている。  In this configuration, a large number of charge carriers 3 pass one after another through the electric field formed by one electret 1. At this time, if the energy of the electric field constituting the electret 1 is stored stationary there, the energy is consumed one after another by moving the charge carrier 3 by moving the electrostatic force. Depleted. That is, power generation stops. Fortunately, however, the energy of the electric field is not stored stationary, but is moving in that space at the speed of light, so that worry is unnecessary. In addition, it is described in quantum electrodynamics that electrons continue to radiate photons (electric energy) continuously around their entire periphery.

電界駆動型静電発電機の構造として、従来提案されている回転型は、機械的な動きに無理がなく大変よい構造である。しかしながら、その構造が占有する空間中、静電発電に使用される部分の割合はあまり高くない。すなわち、図19において、3枚の円板10、11、12の中心部分は、静電発電にはまったく寄与していないのである。なお、この図で見るとこの不寄与部分の面積はそれほど大きくないが、実際に設計してみると、中心部に近い方でも、注入電極2と、エレクトレット1、エレクトレット1と回収電極4の間隔はある程度空けなければならないため、不寄与部分の面積は大きくなる。また、回収電極4と、次の注入電極2との間も、必要ではあるが、発電には寄与していない。  As the structure of the electric field driven electrostatic generator, the conventionally proposed rotary type has a very good structure without any mechanical movement. However, the proportion of the portion used for electrostatic power generation in the space occupied by the structure is not so high. That is, in FIG. 19, the central portions of the three discs 10, 11, and 12 do not contribute to electrostatic power generation at all. Note that the area of the non-contributing portion is not so large as seen in this figure, but when actually designed, the distance between the injection electrode 2, the electret 1, the electret 1, and the recovery electrode 4 is closer to the center. Must be freed up to some extent, so the area of the non-contributing part becomes large. Further, although it is necessary between the collection electrode 4 and the next injection electrode 2, it does not contribute to power generation.

上記した様に、回転型の構造では、空間の利用効率が高くない。そこで、本発明の目的は、電界駆動型静電発電機において、空間の利用効率の高い構造を提案することである。  As described above, the space utilization efficiency is not high in the rotary structure. Therefore, an object of the present invention is to propose a structure with high space utilization efficiency in an electric field driven electrostatic generator.

上記目的は、回転型の構造に替えて、スイッチバック型の構造にすることで、容易に達成される。スイッチバック型とは、電荷搬送体3が、注入電極2からスタートし、エレクトレット1を抜けて、回収電極4に入り、搬送電荷を放出後、反転して、注入電極2に戻る構造である。  The above object can be easily achieved by using a switchback type structure instead of the rotary type structure. The switchback type is a structure in which the charge carrier 3 starts from the injection electrode 2, exits the electret 1, enters the recovery electrode 4, discharges the carrier charge, and then reverses and returns to the injection electrode 2.

下記に示す実施例1の平面図(図2)から明らかなように、該装置の大部分の面積は、発電に寄与している。  As is clear from the plan view (FIG. 2) of Example 1 shown below, most of the area of the device contributes to power generation.

本装置の、正面図、平面図、側面図を、図1、図2、図3に示す。図1は。上記した図17とまったく同じである。使用されている記号の意味も同じである。それらの、寸法もほとんど同じであるが、電荷搬送体3の奥行は、図3に示されるように、1.0mmに伸ばされている。回転型では、各電極とエレクトレットは放射状に配置されたが、スイッチバック型では、図2に示されるように、お互いに、平行に配置される、  A front view, a plan view, and a side view of the present apparatus are shown in FIGS. FIG. This is exactly the same as FIG. The meanings of the symbols used are the same. Although the dimensions are almost the same, the depth of the charge carrier 3 is extended to 1.0 mm as shown in FIG. In the rotary type, each electrode and the electret are arranged radially, but in the switchback type, as shown in FIG. 2, they are arranged in parallel to each other.

この構造・配置で、上記参考特許文献と同様に、帯電した電荷搬送体3に作用する静電気力を2次元差分法でシミュレーションして求めた。注入電極2と回収電極4の電位は、上記と同様に接地したが、エレクトレットの電位は、少し高めて約390Vとした。この時の、エレクトレットの電荷密度は、0.2mC/mである。最初に、電荷搬送体3を注入電極2の出口に置いて接地し、注入電荷量Qを求めた。Q=−2.293E−12[C]であった。該電荷に作用する静電気力を、注入電極2の出口より、回収電極4の奥まで、20μmごとに求めた結果を、図4に示す。With this structure and arrangement, the electrostatic force acting on the charged charge carrier 3 was obtained by simulation using a two-dimensional difference method, as in the above-mentioned reference patent document. The potentials of the injection electrode 2 and the recovery electrode 4 were grounded in the same manner as described above, but the electret potential was slightly increased to about 390V. At this time, the charge density of the electret is 0.2 mC / m 2 . First, the charge carrier 3 was placed at the outlet of the injection electrode 2 and grounded, and the injection charge amount Q was determined. Q = −2.293E-12 [C]. FIG. 4 shows the result of obtaining the electrostatic force acting on the electric charge every 20 μm from the outlet of the injection electrode 2 to the back of the recovery electrode 4.

参考特許文献の図18とほぼ同じパターンで、注入電極2とエレクトレット1間では強めの(約2μN)静電力が右方向に働き、エレクトレット1対間(順電界)で、ほぼゼロとなり、エレクトレット1と回収電極4間(逆電界)では、弱め(約1μN)の静電力が逆に左方向に働き、回収電極4対間に入ると、ゼロに近づく。順電界と逆電界において、静電力の絶対値に約2倍の差があるので、上記と同様に非対称静電力による静電発電が可能である。  In the same pattern as in FIG. 18 of the reference patent document, a strong (about 2 μN) electrostatic force works in the right direction between the injection electrode 2 and the electret 1, and becomes almost zero between the pair of electrets (forward electric field). Between the collection electrodes 4 (reverse electric field), a weak (about 1 μN) electrostatic force acts in the left direction, and approaches zero when entering between the collection electrode 4 pairs. Since there is a difference of about twice in the absolute value of the electrostatic force between the forward electric field and the reverse electric field, electrostatic power generation using asymmetric electrostatic force is possible as described above.

それを確認するために、まず、該電荷搬送体の速度を計算した。該計算において、電荷搬送体の重さは、厚さ20μmの銅板と、厚さ120μmの低摩擦で硬いプラスチック板で、作製したと仮定しで、0.831E−6[kg]であった。動摩擦係数は、電荷搬送体の支持体と、注入電極2、エレクトレット1、回収電極4の支持板間に、スペーサを兼ねて、直径40μmのテフロン球を挟むことで、0.01とした。なお、内部を真空にすることで、空気抵抗はゼロとした。真空にすることで、さらに、銅の酸化を防ぎ、コロナ放電を防止する効果もある。
速度の計算結果を図5に示す。
In order to confirm this, first, the speed of the charge carrier was calculated. In the calculation, the weight of the charge carrier was 0.831E-6 [kg] on the assumption that it was made of a 20 μm thick copper plate and a 120 μm thick low friction and hard plastic plate. The coefficient of dynamic friction was set to 0.01 by sandwiching a Teflon sphere having a diameter of 40 μm between the support for the charge carrier and the support plate for the injection electrode 2, electret 1, and collection electrode 4. In addition, air resistance was made zero by making the inside a vacuum. Making the vacuum further has the effect of preventing copper oxidation and corona discharge.
The speed calculation result is shown in FIG.

図5で、該電荷搬送体が、800μm進んだ時、すなわち、その全体が、回収電極対4の奥まで入った時(その後端部が、60μm中に入った時)、非対称静電力の効果で、まだかなりの速度(0.0165m/s)が残っていることが分かる。この運動エネルギーは、1.075E−10[J]である。これを全て、発電に振り向けられればよいのだが、スイッチバック方式では、電荷搬送体を回収電極4から、注入電極2まで、動摩擦力に抗して戻すエネルギーが必要である。そのエネルギーは、動摩擦力X搬送距離で、0.654E−10[J]である。このエネルギーは、該電荷搬送体3の速度が、0.01255[m/s]の時に相当する。この復路用エネルギーを差し引くと発電に残されたエネルギーは、0.421E−10[J]である。  In FIG. 5, when the charge carrier has advanced by 800 μm, that is, when the whole has entered the back of the collection electrode pair 4 (when the rear end has entered 60 μm), the effect of the asymmetric electrostatic force It can be seen that a considerable speed (0.0165 m / s) still remains. This kinetic energy is 1.075E-10 [J]. All this should be directed to power generation, but in the switchback method, energy is required to return the charge carrier from the collection electrode 4 to the injection electrode 2 against the dynamic friction force. The energy is 0.654E-10 [J] in terms of dynamic friction force X conveyance distance. This energy corresponds when the speed of the charge carrier 3 is 0.01255 [m / s]. When this return path energy is subtracted, the energy left for power generation is 0.421E-10 [J].

搬送された電荷量は、−2.293E−12[C]なので、このエネルギーで発電できる電位は、−18.4[V]である。なお、復路の速度計算を簡単にするため、回収電極4で、搬送された電荷が100%回収されると仮定したが、実際は97%である。
また、回収電極4の電位が、−18.4[V]の時、電荷搬送体3の最終速度(800μm到達時)は、0.01255[m/s]になり、図示しない右の壁と完全弾性衝突して、その速度は、左向きに反転し、−0.01255[m/s]になると仮定した。実際には、完全弾性衝突はないので、その分復路に振り向けるエネルギーを少し増やす必要がある。
Since the transferred charge amount is -2.293E-12 [C], the potential that can be generated with this energy is -18.4 [V]. In order to simplify the speed calculation of the return path, it is assumed that 100% of the transported charge is recovered by the recovery electrode 4, but it is actually 97%.
When the potential of the collection electrode 4 is −18.4 [V], the final speed of the charge carrier 3 (when reaching 800 μm) is 0.01255 [m / s], and the right wall (not shown) It was assumed that with complete elastic collision, the velocity reversed to the left and became -0.01255 [m / s]. Actually, since there is no perfect elastic collision, it is necessary to slightly increase the energy to be directed to the return path.

初速度 −0.01255[m/s]で、左方向に向かった、該電荷搬送体3(ただし、電荷はゼロ)の各位置での速度を計算した結果を、図6に示す。図6から、元の位置(0μm)に戻った時、その速度はほぼゼロになっていることが分かる。この復路に要した時間は、0.119[s]である。なお、先の往路に要した時間は、0.038[s]であった。合わせて、1往復に要する時間は、0.157[s]である。この間に搬送された電荷は、−2.293E−12[C]なので、電流としては、−1.46E−11[A]になる。発電量(電流X電圧)は、4.24E−11[J]なので、電力は、2.70E−10[J/s=W]である。これは大きな電力とは言えないが、該方式は構造がシンプルで、小型、低コストの用途には適している。  FIG. 6 shows the result of calculating the speed at each position of the charge carrier 3 (where charge is zero) toward the left at the initial speed of −0.01255 [m / s]. From FIG. 6, it can be seen that when returning to the original position (0 μm), the velocity is almost zero. The time required for this return path is 0.119 [s]. The time required for the previous outward trip was 0.038 [s]. In total, the time required for one round trip is 0.157 [s]. Since the electric charge carried during this time is -2.293E-12 [C], the current is -1.46E-11 [A]. Since the power generation amount (current X voltage) is 4.24E-11 [J], the power is 2.70E-10 [J / s = W]. Although this cannot be said to be a large electric power, the method has a simple structure and is suitable for a small-sized and low-cost application.

実施例1では、電荷搬送体3をスイッチバックさせるためのエネルギーを、全て、非対称静電力で賄った。そのため、十分な電力が得られなかった。そこで、実施例2では、他の力も電荷搬送体3を搬送する力として使用することで、非対称静電力の搬送に向けられる割合を減らして、発電量を改善する。  In Example 1, the energy for switching back the charge carrier 3 was all provided by the asymmetric electrostatic force. Therefore, sufficient power cannot be obtained. Therefore, in the second embodiment, by using another force as a force for transporting the charge carrier 3, the proportion of the asymmetric electrostatic force directed to the transport is reduced, and the power generation amount is improved.

具体的には、図7に示すように、電荷搬送体支持体31の左右にバネ33を配置する。左右のバネは、電荷搬送体3が、エレクトレット対1のセンターにあるとき、釣り合って、電荷搬送体3に力を及ぼさない。それより左にあるときは、左のバネ33は縮められて、右のバネ33は引き伸ばされて、それぞれ、電荷搬送体3を右に動かす力を与える。センターより、右にあるときは、同様に、左向きの力を与える。その力の大きさは、センターからの距離に比例する。その比例定数は、バネ定数と呼ばれる。  Specifically, as shown in FIG. 7, springs 33 are arranged on the left and right of the charge carrier support 31. The left and right springs balance and do not exert a force on the charge carrier 3 when the charge carrier 3 is at the center of the electret pair 1. When it is on the left side, the left spring 33 is contracted and the right spring 33 is extended to respectively apply a force for moving the charge carrier 3 to the right. When it is to the right of the center, apply a leftward force in the same way. The magnitude of the force is proportional to the distance from the center. The proportionality constant is called a spring constant.

左右のバネ定数を、0.00094[N/m]とすると、全体では、0.00188[N/m]になる。この状態で、該電荷搬送体3の速度を計算した。なお、バネ33を加えただけで、他の条件は、すべて実施例1と同じである。その結果を図8に示す。図8より、該電荷搬送体3の最終速度は、0.0131[m/s]であることが分かる。この値は、実施例1よりも低い。しかしながら、この運動エネルギーを、電荷搬送体の復路に割く必要はないので、すべて静電発電に使用できる。その電位は、−31.2[V]で、実施例1の、−18.4[V]より70%も高い。  If the left and right spring constants are 0.00094 [N / m], the total is 0.00188 [N / m]. In this state, the speed of the charge carrier 3 was calculated. It should be noted that all other conditions are the same as in the first embodiment, just by adding the spring 33. The result is shown in FIG. From FIG. 8, it can be seen that the final speed of the charge carrier 3 is 0.0131 [m / s]. This value is lower than in Example 1. However, since it is not necessary to divide this kinetic energy into the return path of the charge carrier, all can be used for electrostatic power generation. The potential is -31.2 [V], which is 70% higher than -18.4 [V] in Example 1.

回収電極4の電位が、−31.2[V]であるとき、電荷搬送体3の最終速度はゼロになる。そこで、搬送してきた電荷を回収電極4に放出後、電荷搬送体3は、初速度ゼロで、バネ力で戻り始める。その速度を計算した結果を図9に示す。図9より、該電荷搬送体3は、ちょうどその速度がゼロになって元の位置、出発点に戻ることが分かる。この復路に要する時間は、0.0609[s]である。往路の時間は、0.0333[s]だったので、一往復に要する時間は、0.0942[s]になる。この結果、電流は、−2.43E−11[A]に、電力は、7.59E−10[W]になる。  When the potential of the recovery electrode 4 is −31.2 [V], the final speed of the charge carrier 3 becomes zero. Therefore, after discharging the transported charge to the collection electrode 4, the charge transport body 3 starts to return with a spring force at an initial speed of zero. The result of calculating the speed is shown in FIG. From FIG. 9, it can be seen that the speed of the charge carrier 3 is zero and returns to the original position and starting point. The time required for this return path is 0.0609 [s]. Since the outbound time was 0.0333 [s], the time required for one round trip is 0.0942 [s]. As a result, the current becomes -2.43E-11 [A] and the power becomes 7.59E-10 [W].

バネ力の例を示したが、静電反発力や磁力も使える。電荷搬送体支持体31の先端と、それが接近する側壁34に、同極性のエレクトレットを形成しておけば、接近した時に、強い静電反反発力が働き、電荷搬送体3は、左に押し返される。同様に、同極性の磁石を置いておいてもよい。その他、いろいろの力を使うことができる。その一例として、糸の張力(元々は重力)を使ったベンチモデルの実験を実施例3として紹介する。  An example of spring force is shown, but electrostatic repulsion and magnetic force can also be used. If electrets of the same polarity are formed on the tip of the charge carrier support 31 and the side wall 34 to which the charge carrier support 31 approaches, a strong electrostatic repulsive force acts when approaching, and the charge carrier 3 is moved to the left. Pushed back. Similarly, a magnet having the same polarity may be placed. In addition, various powers can be used. As an example, a bench model experiment using yarn tension (originally gravity) is introduced as Example 3.

図10が、該ベンチモデルの平面図である。記号1が、エレクトレットに置き換えて、エレクトレットと同じ電位を印加する電界形成電極である。記号2、3、4は、上記と同じく、それぞれ、注入電極、電荷搬送体及び回収電極である。但し、電荷搬送体3は、電界形成電極1と平面的に同形であるため、その下に隠されて見えていない。それぞれの長さ(奥行き)は各50mmである。幅は、電界電極1と搬送体3が各10mm、回収電極4が25mmである。注入電極は板厚で0.2mmである。注入電極2と電界電極1の間隔は45mm、形成電極1と回収電極4の間隔は32mmである。新しい記号31は、電荷搬送体3の絶縁性支持体である。また、記号32は、それを吊り下げるための絶縁性生糸を通す孔である。  FIG. 10 is a plan view of the bench model. Symbol 1 is an electric field forming electrode that replaces the electret and applies the same potential as the electret. Symbols 2, 3, and 4 are an injection electrode, a charge carrier, and a recovery electrode, respectively, as described above. However, since the charge carrier 3 has the same shape as the electric field forming electrode 1 in plan view, it is hidden underneath and is not visible. Each length (depth) is 50 mm. The width is 10 mm each for the electric field electrode 1 and the carrier 3, and 25 mm for the collection electrode 4. The injection electrode has a thickness of 0.2 mm. The distance between the injection electrode 2 and the electric field electrode 1 is 45 mm, and the distance between the formation electrode 1 and the collection electrode 4 is 32 mm. A new symbol 31 is an insulating support for the charge carrier 3. Further, symbol 32 is a hole through which the insulating raw silk for hanging it is passed.

図11は正面図である。電荷搬送体3は、厚さ0.4mmの金メッキアルミ板で作られた、横向きT字形で、その高さ、幅とも10mmである。上下の電界電極1の間隔は、20mmなので、電荷搬送体3は、この間を、上下5mmずつ空けてほぼ平行に通過できる。記号35は、電荷搬送体支持体31を吊り下げる絶縁性の生糸で、長さは500mmである。
回収電極4は、横向きの樋形である。幅は25mm、高さは20mmである。注入電極は、高さ20mm、板厚0.2mmのアルミ平板である。
FIG. 11 is a front view. The charge carrier 3 is a laterally T-shaped made of a gold-plated aluminum plate having a thickness of 0.4 mm, and its height and width are both 10 mm. Since the distance between the upper and lower electric field electrodes 1 is 20 mm, the charge carrier 3 can pass through the gap approximately 5 mm above and below in parallel. Symbol 35 is an insulating raw silk that suspends the charge carrier support 31 and has a length of 500 mm.
The collection electrode 4 has a horizontal saddle shape. The width is 25 mm and the height is 20 mm. The injection electrode is an aluminum flat plate having a height of 20 mm and a plate thickness of 0.2 mm.

図12は側面図である。長さ50mmの電荷搬送体3を支持する絶縁性支持体31の長さは70mmで、吊り下げ糸間は約60mmである。このため、長さ50mmの固定された電界電極1に当たることなく通り抜けられる。  FIG. 12 is a side view. The length of the insulating support 31 that supports the charge transport body 3 having a length of 50 mm is 70 mm, and the distance between the hanging threads is about 60 mm. For this reason, it can pass through without hitting the fixed electric field electrode 1 of 50 mm in length.

この構成で、まず、該電荷搬送体の各地点での速度をシミュレーションで求めた。なお、この時の電位は、注入電極2と回収電極4を0V、電界電極1を7000Vとした。注入電荷量は、−1.12E−9[C]であった。静電気力と糸の張力に加えて、実際の実験器なので、空気抵抗力も入れて計算した、この結果を図13に示す。図13より、回収電極4内に深く入った98.0mm地点で、まだ、0.038m/sの速度を残していることが分かる。この結果、約−380Vの発電が可能である。なお、この地点での電荷回収率は92%であった、  With this configuration, first, the speed at each point of the charge carrier was determined by simulation. The potential at this time was 0 V for the injection electrode 2 and the recovery electrode 4 and 7000 V for the field electrode 1. The injected charge amount was −1.12E-9 [C]. In addition to the electrostatic force and the tension of the yarn, since it is an actual experimental device, the calculation result including the air resistance force is shown in FIG. From FIG. 13, it can be seen that the speed of 0.038 m / s still remains at the 98.0 mm point that is deep inside the collection electrode 4. As a result, about -380V power generation is possible. The charge recovery rate at this point was 92%.

次に、この地点98.0mmよりの復路の速度をシミュレーションした。糸の張力、空気抵抗力に加えて残存電荷(8%)に作用する静電力も加えた。その結果を、図14に示す。図14より、初速度ゼロで戻り始めた電荷搬送体3が、0.1m/s強の速度を残して、注入電極2に当たることが分かる。  Next, the speed of the return path from this point 98.0 mm was simulated. In addition to yarn tension and air resistance, electrostatic force acting on the residual charge (8%) was also added. The result is shown in FIG. From FIG. 14, it can be seen that the charge carrier 3 that started to return at the initial velocity of zero hits the injection electrode 2 leaving a velocity of slightly over 0.1 m / s.

このシミュレーション結果を確認するために、実機で、電界電極1に7kVを印加して、電荷搬送体3の動きを動画撮影した。その結果、7kVでは、回収電極の奥までは入らないことが分かったので、電界電極1の電圧を9kVに上げたところ、電荷搬送体3は、回収電極4の奥まで入り、戻って、かなりの速度で、注入電極2に当たり、また、回収電極4に向かい、このスイッチバック、往復運動を、何かに引っかかって止まるまで、10回以上連続して続けた。この結果は、非対称静電力と他の力を組み合わせることで、連続的に、電荷搬送体3を、注入電極2と、回収電極4間で往復運動させられることを示している。  In order to confirm this simulation result, 7 kV was applied to the electric field electrode 1 with an actual machine, and the motion of the charge transport body 3 was photographed. As a result, it was found that at 7 kV, it did not enter the back of the collection electrode. Therefore, when the voltage of the electric field electrode 1 was increased to 9 kV, the charge carrier 3 entered the back of the collection electrode 4, returned, At this speed, it hits the injection electrode 2 and moved toward the recovery electrode 4, and this switchback and reciprocation continued continuously for 10 times or more until it caught on something and stopped. This result shows that the charge carrier 3 can be continuously reciprocated between the injection electrode 2 and the recovery electrode 4 by combining the asymmetric electrostatic force and other forces.

実施例1,2において、注入電極対2、エレクトレット対1、回収電極対4の一つの組み合わせ(以下一ユニットと呼ぶ)内に置かれる電荷搬送体3は1個のみであるが、複数置くことも可能である。例えば、図15の様に、3個の電荷搬送体3を、おのおの280μmづつ間を空けて配置すれば、それぞれの電荷搬送体3に作用する静電力は、ほとんど変わらない。但し、この場合、3個連結の電荷搬送体支持体は、左右で、それぞれ、約600μmもユニット外に飛び出してしまうので、全体の長さは2mm以上になってしまう。  In the first and second embodiments, only one charge carrier 3 is placed in one combination (hereinafter referred to as one unit) of the injection electrode pair 2, the electret pair 1, and the recovery electrode pair 4, but a plurality of charge carriers 3 should be placed. Is also possible. For example, as shown in FIG. 15, if three charge carriers 3 are arranged with a space of 280 μm between them, the electrostatic force acting on each charge carrier 3 is hardly changed. However, in this case, since the three connected charge carrier support bodies jump out of the unit by about 600 μm on the left and right, the total length becomes 2 mm or more.

そこで、図16に示すように、10mmの長さに、8ユニット(図では5ユニット)を配置し、その間に、24個(図では15個)の電荷搬送体3を、おのおの280μm空けて形成した長尺支持体31を置けば、左右600μmづつの飛び出しは変わらないので、24個でも10mmに収まる。
さらに、図16に示すように、注入電極対2、エレクトレット対1及び回収電極対4の長さを、10mmに伸ばし、その間に、前記長尺支持体31を8個(図では3個)連結して置けば、10mm四方に、192個の電荷搬送体3が入り、実施例2の場合、その出力(電力)は、0.146μWになる。なお、この場合、バネ33は個々の長尺支持体ごとに付ける必要はなく、192個の電荷搬送体3を載せた10mm角の大判支持体31の左右に2個づつ付ければよい。
Therefore, as shown in FIG. 16, 8 units (5 units in the figure) are arranged in a length of 10 mm, and 24 (15 in the figure) charge carriers 3 are formed with 280 μm between them. If the long support 31 is placed, the right and left 600 μm protrusions do not change, so even 24 pieces can be accommodated within 10 mm.
Further, as shown in FIG. 16, the lengths of the injection electrode pair 2, the electret pair 1 and the recovery electrode pair 4 are increased to 10 mm, and eight (3 in the figure) the long support bodies 31 are connected therebetween. Then, 192 charge carriers 3 enter 10 mm square, and in the case of Example 2, the output (power) is 0.146 μW. In this case, it is not necessary to attach the springs 33 to each individual long support, and two springs 33 may be attached to the left and right of the 10 mm square large-format support 31 on which 192 charge carriers 3 are mounted.

本発明(スイッチバック型静電発電機)の正面図。The front view of this invention (switchback type electrostatic generator). 本発明(スイッチバック型静電発電機)の平面図。The top view of this invention (switchback type electrostatic generator). 本発明(スイッチバック型静電発電機)の側面図。The side view of this invention (switchback type electrostatic generator). 本発明(スイッチバック型静電発電機)の電荷搬送体に働く静電力を示すグラフ。The graph which shows the electrostatic force which acts on the electric charge carrier of this invention (switchback type electrostatic generator). 本発明(スイッチバック型静電発電機)の電荷搬送体の往路の速度を示すグラフ。The graph which shows the speed of the outward path | route of the electric charge carrier of this invention (switchback type electrostatic generator). 本発明(スイッチバック型静電発電機)の電荷搬送体の復路の速度を示すグラフ。The graph which shows the speed of the return path | route of the electric charge carrier of this invention (switchback type electrostatic generator). 本発明(スイッチバック型静電発電機)の第二実施例の平面図。The top view of 2nd Example of this invention (switchback type electrostatic generator). 本発明(スイッチバック型静電発電機)の第二実施例の電荷搬送体の往路の速度を示すグラフ。The graph which shows the speed of the outward path | route of the electric charge carrier of 2nd Example of this invention (switchback type electrostatic generator). 本発明(スイッチバック型静電発電機)の第二実施例の電荷搬送体の復路の速度を示すグラフ。The graph which shows the speed of the return path | route of the electric charge carrier of 2nd Example of this invention (switchback type electrostatic generator). 本発明(スイッチバック型静電発電機)の第三実施例の平面図。The top view of 3rd Example of this invention (switchback type | mold electrostatic generator). 本発明(スイッチバック型静電発電機)の第三実施例の正面図。The front view of 3rd Example of this invention (switchback type electrostatic generator). 本発明(スイッチバック型静電発電機)の第三実施例の側面図。The side view of 3rd Example of this invention (switchback type | mold electrostatic generator). 本発明(スイッチバック型静電発電機)の第三実施例の電荷搬送体の往路の速度を示すグラフ。The graph which shows the speed of the outward path | route of the electric charge carrier of the 3rd Example of this invention (switchback type electrostatic generator). 本発明(スイッチバック型静電発電機)の第三実施例の電荷搬送体の復路の速度を示すグラフ。The graph which shows the speed of the return path | route of the electric charge carrier of 3rd Example of this invention (switchback type electrostatic generator). 本発明(スイッチバック型静電発電機)の第四実施例の平面図(電荷搬送体3個)。The top view (three charge carriers) of 4th Example of this invention (switchback type electrostatic generator). 本発明(スイッチバック型静電発電機)の第四実施例の平面図(電荷搬送体192個)。The top view (192 charge carriers) of 4th Example of this invention (switchback type electrostatic generator). 特許文献[4]に記載された静電発電機の正面図。The front view of the electrostatic generator described in patent document [4]. 特許文献[4]に記載された静電発電機の電荷搬送体に働く静電力を示すグラフ。The graph which shows the electrostatic force which acts on the electric charge carrier of the electrostatic generator described in patent document [4]. 特許文献[4]に記載された回転型静電発電機の俯瞰図。The bird's-eye view of the rotary electrostatic generator described in patent document [4].

1: エレクトレット(電界形成電極)
2: 電荷注入電極(接地電極)
3: 電荷搬送体
4: 電荷回収電極
10: 回転型静電発電機の電荷搬送体円板。
11: 回転型静電発電機の上固定電極円板。
12: 回転型静電発電機の下固定電極円板。
20: 電極2,4及びエレクトレット1の絶縁性支持体。
31: 電荷搬送体の絶縁性支持体。
32: 電荷搬送体を空中に吊り下げるための絶縁性生糸を通す孔。
33: 電荷搬送体の絶縁性支持体にバネ力を加えるためのバネ。
34: バネの固定端を固着する側壁。
35: 電荷搬送体を空中に吊り下げるための絶縁性生糸。
1: Electret (electric field forming electrode)
2: Charge injection electrode (ground electrode)
3: Charge carrier 4: Charge recovery electrode 10: Charge carrier disk of a rotary electrostatic generator.
11: Upper fixed electrode disk of rotary electrostatic generator.
12: Lower fixed electrode disk of the rotary electrostatic generator.
20: Insulating support for electrodes 2, 4 and electret 1.
31: Insulating support for charge carrier.
32: A hole through which the insulating raw silk is passed to suspend the charge carrier in the air.
33: A spring for applying a spring force to the insulating support of the charge carrier.
34: A side wall for fixing the fixed end of the spring.
35: Insulating raw silk for hanging the charge carrier in the air.

Claims (5)

互いに平行な電荷注入電極、電界形成源(エレクトレット)、及び電荷回収電極をこの順に順方向に並べ、これらの間を非対称形状の導体で形成される電荷搬送体を移動させ、該電荷搬送体に電荷注入電極より静電誘導により電荷を注入し、非対称形状に起因して、該注入電荷に作用する静電力の大きさが、該電界形成源(エレクトレット)の前後で異なる非対称静電力(現象)を利用して、該電荷を注入電極よりも該電荷に対して電気的ポテンシャルの高い電荷回収電極まで搬送して、そこで該搬送電荷を回収する電界駆動型静電発電機において、
前記電荷回収電極の順方向後段に、前記電荷搬送体が弾性衝突する壁体を設置し、前記搬送電荷の回収後において前記電荷搬送体に残存している運動エネルギーを利用して、該搬送電荷が回収された該電荷搬送体を前記壁体に弾性衝突させ、該電荷搬送体の移動方向を反転して逆方向へ移動させ、且つ初期位置(電荷注入電極)まで戻すことを特徴とするスイッチバック電界駆動型静電発電機。
A charge injection electrode, an electric field forming source (electret), and a charge recovery electrode, which are parallel to each other, are arranged in this order in the forward direction, and a charge carrier formed of an asymmetric conductor is moved between them. Asymmetric electrostatic force (phenomenon) in which charges are injected by electrostatic induction from the charge injection electrode, and the magnitude of the electrostatic force acting on the injected charge differs before and after the electric field forming source (electret) due to the asymmetric shape. In the electric field drive type electrostatic generator that transports the charge to a charge recovery electrode having a higher electric potential than the injection electrode and recovers the transported charge there.
A wall body on which the charge carrier is elastically collided is installed at the rear stage of the charge collection electrode, and the kinetic energy remaining in the charge carrier after the collection of the carrier charge is utilized to make the carrier charge. The switch is characterized in that the collected charge carrier is elastically collided with the wall, the direction of movement of the charge carrier is reversed and moved in the reverse direction, and returned to the initial position (charge injection electrode). Back electric field drive type electrostatic generator.
請求項1において、前記電荷搬送体は、逆方向の一側が開いた箱型の非対称形状を有することを特徴とするスイッチバック電界駆動型静電発電機。
2. The switchback electric field drive type electrostatic generator according to claim 1, wherein the charge carrier has a box-shaped asymmetric shape in which one side in the opposite direction is open.
請求項2において、前記電荷搬送体は、少なくとも金属板と低摩擦で硬質のプラスチック板とからなることを特徴とするスイッチバック電界駆動型静電発電機。
3. The switchback electric field drive type electrostatic generator according to claim 2, wherein the charge carrier is made of at least a metal plate and a low-friction hard plastic plate.
請求項1乃至3において、前記電荷注入電極、電界形成源(エレクトレット)、及び電荷回収電極は平面状の支持板によって支持され、前記電荷搬送体は支持体を有し、且つ該支持板と該支持体との間において、これらの間隙を一定にするスペーサを兼ねた動摩擦低減部材を配置したことを特徴とするスイッチバック電界駆動型静電発電機。
4. The charge injection electrode, the electric field forming source (electret), and the charge collection electrode are supported by a planar support plate, the charge transport body has a support, and the support plate and the A switchback electric field drive type electrostatic generator characterized by disposing a dynamic friction reducing member that also serves as a spacer for making the gap constant between the support and the support.
請求項1乃至4において、前記電荷搬送体が搬送される前記電荷注入電極から前記電荷回収電極に至る経路を真空にしたことを特徴とするスイッチバック電界駆動型静電発電機。

5. The switchback electric field drive type electrostatic generator according to claim 1, wherein a path from the charge injection electrode to which the charge transport body is transported to the charge recovery electrode is evacuated.

JP2013173902A 2013-08-07 2013-08-07 Switchback electrostatic generator using asymmetric electrostatic force Expired - Fee Related JP6286767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013173902A JP6286767B2 (en) 2013-08-07 2013-08-07 Switchback electrostatic generator using asymmetric electrostatic force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013173902A JP6286767B2 (en) 2013-08-07 2013-08-07 Switchback electrostatic generator using asymmetric electrostatic force

Publications (2)

Publication Number Publication Date
JP2015035938A JP2015035938A (en) 2015-02-19
JP6286767B2 true JP6286767B2 (en) 2018-03-07

Family

ID=52544090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013173902A Expired - Fee Related JP6286767B2 (en) 2013-08-07 2013-08-07 Switchback electrostatic generator using asymmetric electrostatic force

Country Status (1)

Country Link
JP (1) JP6286767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176872A (en) * 2018-04-11 2019-08-27 北京纳米能源与***研究所 Nano generator system and power supply device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10122301B2 (en) 2015-08-19 2018-11-06 Lawrence Livermore National Security, Llc Pulsed start-up system for electrostatic generators
CN105429503B (en) * 2015-12-28 2017-10-13 北京理工大学 A kind of collapsible vibrating electricity generator and its electricity-generating method based on electret

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232667A (en) * 2008-03-22 2009-10-08 Toshio Sakai Electrostatic motor power generator which tub-shaped electrode in perpendicular and level electric field
JP2010041813A (en) * 2008-08-05 2010-02-18 Sanyo Electric Co Ltd Power generator
JP2010098925A (en) * 2008-10-14 2010-04-30 Toshio Sakai Configuration of electrostatic apparatus using asymmetric force, material for the same, and manufacturing method thereof
WO2011077717A1 (en) * 2009-12-25 2011-06-30 パナソニック株式会社 Vibration power generator, vibration power generation apparatus, and electronic device and communication apparatus having vibration power generation apparatus installed thereon
JP2012039842A (en) * 2010-08-08 2012-02-23 Toshio Sakai Electrostatic motor/electrostatic generator using a-type charge carrier body
JP5304877B2 (en) * 2011-03-09 2013-10-02 カシオ計算機株式会社 Power generation device and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176872A (en) * 2018-04-11 2019-08-27 北京纳米能源与***研究所 Nano generator system and power supply device

Also Published As

Publication number Publication date
JP2015035938A (en) 2015-02-19

Similar Documents

Publication Publication Date Title
JP6286767B2 (en) Switchback electrostatic generator using asymmetric electrostatic force
US20230137951A1 (en) Offset Triggered Cantilever Actuated Generator
US11496068B2 (en) Energy harvesting apparatus using triboelectrification
Buehler Exploratory research on the phenomenon of the movement of high voltage capacitors
WO2014008116A1 (en) Interacting complex electric fields and static electric fields to effect motion
RU2554054C1 (en) Resonance rail accelerator
Cooray et al. Electromagnetic fields of a short electric dipole in free space–revisited
CN107959359B (en) Full-load power generation device
Tajmar et al. Particles with negative mass: Production, properties and applications for nuclear fusion and self-acceleration
JP2019004549A (en) Electric field driven electrostatic generator
JP2012039842A (en) Electrostatic motor/electrostatic generator using a-type charge carrier body
JP2012039842A6 (en) Electrostatic motor / electrostatic generator using vertical charge carrier
Primas et al. Force on high voltage capacitor with asymmetrical electrodes
JP2020150780A (en) Electrostatic application equipment of charging infusion type, driven by image force
US3390290A (en) Statorless homopolar motor or reaction torque generator
Cattani et al. Lifter-High voltage plasma levitation device
CN205863133U (en) A kind of low electric field photoelectronic imaging instrument
KR20230151761A (en) Droplet triboelectric nano generator based on magnetite/polyvinylidene fluoride nanocomposite in applied magnetic fields
JP2015057033A (en) New shape of asymmetric conductor of static application apparatus using asymmetric electrostatic force
JP2006325394A (en) Static electricity applied equipment using image force
WO2008099653A1 (en) Electrostatic applied device using asymmetrical shape effect of mobile body
JP2013165034A (en) Ion generator
JP2010098925A (en) Configuration of electrostatic apparatus using asymmetric force, material for the same, and manufacturing method thereof
CN107040105B (en) Disk type motor
JP2022186550A (en) Optimum structure for electrostatic power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160722

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180118

R150 Certificate of patent or registration of utility model

Ref document number: 6286767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees