JP6285641B2 - Magnetic sensor and magnetic field component calculation method - Google Patents

Magnetic sensor and magnetic field component calculation method Download PDF

Info

Publication number
JP6285641B2
JP6285641B2 JP2013100261A JP2013100261A JP6285641B2 JP 6285641 B2 JP6285641 B2 JP 6285641B2 JP 2013100261 A JP2013100261 A JP 2013100261A JP 2013100261 A JP2013100261 A JP 2013100261A JP 6285641 B2 JP6285641 B2 JP 6285641B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
magnetosensitive
magnetic sensing
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013100261A
Other languages
Japanese (ja)
Other versions
JP2014219350A (en
Inventor
格久 四竈
格久 四竈
洋次 片桐
洋次 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2013100261A priority Critical patent/JP6285641B2/en
Publication of JP2014219350A publication Critical patent/JP2014219350A/en
Application granted granted Critical
Publication of JP6285641B2 publication Critical patent/JP6285641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁気センサ及び磁場成分演算方法に関し、より詳細には、磁気抵抗素子を備え、消費電流の増大を招くことなく、また、温度による影響を最小限に抑えて任意の方向の磁場を検知できるようにした磁気センサ及び磁場成分演算方法に関する。   The present invention relates to a magnetic sensor and a magnetic field component calculation method. More specifically, the present invention includes a magnetoresistive element, which does not cause an increase in current consumption, and minimizes the influence of temperature, so that a magnetic field in an arbitrary direction can be generated. The present invention relates to a magnetic sensor capable of detection and a magnetic field component calculation method.

一般的に磁気の有無を検出する巨大磁気抵抗(Giant Magnet Resistance;GMR)素子は広く知られている。磁場をかけると電気抵抗率が増加する現象を磁気抵抗効果というが、一般の物質では変化率は数%であるが、このGMR素子では数10%に達することから、ハードディスクのヘッドに広く用いられている。   In general, giant magnetoresistive (GMR) elements that detect the presence or absence of magnetism are widely known. The phenomenon in which the electrical resistivity increases when a magnetic field is applied is called the magnetoresistive effect. Although the rate of change is several percent for general substances, this GMR element reaches several tens percent, so it is widely used for hard disk heads. ing.

図1は、従来のGMR素子の動作原理を説明するための斜視図で、図2は、図1の部分断面図である。図中符号1は反強磁性層、2はピンド層(固定層)、3はCu層(スペーサ層)、4はフリー層(自由回転層)を示している。磁性材料の磁化の向きで電子のスピン散乱が変わり抵抗が変化する。つまり、ΔR=(RAP−R)R(RAP;上下の磁化の向きが反平行のとき、R;上下の磁化の向きが反平行のとき)で表される。
固定層2の磁気モーメントは、反強磁性層1との磁気結合により方向が固定されている。漏れ磁場により磁化自由回転層4の磁気モーメントの方向が変化すると、Cu層3を流れる電流が変化し、漏れ磁場の変化が読み取れる。
FIG. 1 is a perspective view for explaining the operation principle of a conventional GMR element, and FIG. 2 is a partial sectional view of FIG. In the figure, reference numeral 1 is an antiferromagnetic layer, 2 is a pinned layer (fixed layer), 3 is a Cu layer (spacer layer), and 4 is a free layer (free rotation layer). Depending on the magnetization direction of the magnetic material, the electron spin scattering changes and the resistance changes. That is, ΔR = (R AP −R P ) R P (R AP ; when the upper and lower magnetization directions are antiparallel, R P ; when the upper and lower magnetization directions are antiparallel).
The direction of the magnetic moment of the fixed layer 2 is fixed by magnetic coupling with the antiferromagnetic layer 1. When the direction of the magnetic moment of the magnetization free rotation layer 4 changes due to the leakage magnetic field, the current flowing through the Cu layer 3 changes and the change in the leakage magnetic field can be read.

図3は、従来のGMR素子の積層構造を説明するための構成図で、図中符号11は絶縁膜、12はフリー層(自由回転層)、13は導電層(伝導層)、14はピンド層(固定層)、15は反強磁性層、16は絶縁膜を示している。   FIG. 3 is a configuration diagram for explaining a laminated structure of a conventional GMR element, in which reference numeral 11 is an insulating film, 12 is a free layer (free rotating layer), 13 is a conductive layer (conductive layer), and 14 is pinned. A layer (fixed layer), 15 is an antiferromagnetic layer, and 16 is an insulating film.

フリー層(自由回転層)12は自由に磁化の向きが回転する層で、NiFe又はCoFe/NiFeから構成され、導電層13は電流を流し、スピン散乱が起きる層で、Cuから構成され、ピンド層(固定層)14は磁化の向きが一定方向に固定された層で、CoFe又はCoFe/Ru/CoFeから構成され、反強磁性層15はピンド層14の磁化の向きを固定するための層で、PtMn又はIrMnから構成され、層11,16はTaやCr、NiFeCr、AlOから構成されている。またピンド層は反強磁性層を用いずにセルフバイアス構造を用いても良い。   The free layer (free rotation layer) 12 is a layer in which the direction of magnetization is freely rotated, and is composed of NiFe or CoFe / NiFe. The conductive layer 13 is a layer in which current flows and spin scattering occurs, and is composed of Cu. The layer (fixed layer) 14 is a layer in which the magnetization direction is fixed in a fixed direction, and is made of CoFe or CoFe / Ru / CoFe. The antiferromagnetic layer 15 is a layer for fixing the magnetization direction of the pinned layer 14. The layers 11 and 16 are made of Ta, Cr, NiFeCr, or AlO. The pinned layer may use a self-bias structure without using an antiferromagnetic layer.

例えば、特許文献1に記載のものは、磁界の方向の影響を受けることが少なく磁界の大きさを精度よく検出できる巨大磁気抵抗素子に関するもので、このGMR素子は、GMRチップ上に対してバイアス磁石とともに設置されている。
また、例えば、特許文献2に記載のものは、方位検出に関して高い感度を有し、小型で量産性にも優れた3軸磁気センサに関するもので、基板表面に平行で互いに直交するように設定した2軸(X、Y軸)方向で地磁気成分を検知する2軸磁気センサ部と、2軸磁気センサ部上に配置され前記2軸を含む面に対して垂直方向(Z軸)の磁界を集める磁性部材とを備えており、磁気感知軸の異なる磁気抵抗素子でブリッジを形成することにより従来よりも少ない素子数で3軸検知センサが実現可能であると提案している。
For example, the device described in Patent Document 1 relates to a giant magnetoresistive element that is less affected by the direction of the magnetic field and can accurately detect the magnitude of the magnetic field, and this GMR element is biased with respect to the GMR chip. It is installed with a magnet.
Further, for example, the one described in Patent Document 2 relates to a three-axis magnetic sensor that has high sensitivity with respect to azimuth detection, is small, and has excellent mass productivity, and is set to be parallel to the substrate surface and orthogonal to each other. A two-axis magnetic sensor unit that detects geomagnetic components in two-axis (X, Y-axis) directions, and a magnetic field that is arranged on the two-axis magnetic sensor unit and that is perpendicular to the plane that includes the two axes (Z-axis) It has been proposed that a three-axis detection sensor can be realized with a smaller number of elements than before by forming a bridge with magnetoresistive elements having different magnetic sensing axes.

また、例えば、特許文献3に記載のものは、温度の影響を受けることが少なく磁界の大きさを精度よく検出できるトンネル磁気抵抗素子に関するもので、このTMR素子は、チップ上に磁気遮蔽されているものと磁場に対して応答するものそれぞれを有している。
さらに、例えば、特許文献4に記載のものは、検出対象方向に対する前方側からの磁場変化と後方側からの磁場変化とを識別でき、特定方向からの磁場の印加を正確に検出できる磁気検出装置に関するもので、特定方向からの磁場に対して距離の異なる二つの磁気抵抗素子を有している。
Further, for example, the device described in Patent Document 3 relates to a tunnel magnetoresistive element that is less affected by temperature and can accurately detect the magnitude of a magnetic field. This TMR element is magnetically shielded on a chip. Each of which is responsive to a magnetic field.
Further, for example, the device described in Patent Document 4 can discriminate between a magnetic field change from the front side and a magnetic field change from the rear side with respect to the detection target direction, and can accurately detect the application of the magnetic field from a specific direction. It has two magnetoresistive elements which differ in distance with respect to the magnetic field from a specific direction.

特開2012−112689号公報JP 2012-112589 A 特開2012−127788号公報JP 2012-127788 A 特開2001−345498号公報JP 2001-345498 A 特開2012−34835号公報JP 2012-34835 A

しかしながら、上述した特許文献1及び2の磁気センサは、磁気抵抗素子を用いてブリッジを形成し、その中点電位を出力信号として取り出すため、磁気抵抗素子を形成する物質の抵抗値を出力に含んでしまうため外部の温度に対して出力信号が敏感に変動してしまうという問題がある。
また、上述した特許文献3に記載の磁気センサは、GMRチップ上に対して磁気遮蔽されている素子と磁場に対して応答する素子それぞれを有している単軸センサであるが、磁気遮蔽のため磁気収束板を有しているため、磁気収束板の温度特性に応じて出力信号が外部の温度に対して敏感に変動してしまうという問題がある。
However, since the magnetic sensors of Patent Documents 1 and 2 described above form a bridge using a magnetoresistive element and take out the midpoint potential as an output signal, the output includes the resistance value of the substance forming the magnetoresistive element. Therefore, there is a problem that the output signal varies sensitively with respect to the external temperature.
The magnetic sensor described in Patent Document 3 described above is a single-axis sensor having an element that is magnetically shielded on the GMR chip and an element that responds to a magnetic field. For this reason, since the magnetic converging plate is provided, there is a problem that the output signal fluctuates sensitively to the external temperature according to the temperature characteristics of the magnetic converging plate.

また、上述した特許文献4に記載の磁気センサは、特定方向からの磁場に対して距離の異なる位置に2つの素子を有しており、それぞれのセンサ出力の差分からある特定方向の磁場のみ高感度に検出し、磁場印加方向を特定する磁気センサであるが、本発明の磁気センサのような2つの素子間の磁気抵抗感度の違いについては何ら開示されていない。
さらに、特許文献4に記載の磁気センサは、弾球遊技機における不正を防止するため、特定方向から磁性体(磁石)が近づけられたことを検知することを目的としたものであり、出力差から磁性体の距離を定量するために、それぞれの感磁部の感度は一致していることを前提にしていると考えられる。
Further, the magnetic sensor described in Patent Document 4 described above has two elements at different distances with respect to the magnetic field from the specific direction, and only the magnetic field in the specific direction is high from the difference between the sensor outputs. The magnetic sensor detects the sensitivity and specifies the magnetic field application direction, but does not disclose any difference in magnetoresistive sensitivity between two elements such as the magnetic sensor of the present invention.
Furthermore, the magnetic sensor described in Patent Document 4 is intended to detect that a magnetic body (magnet) is approached from a specific direction in order to prevent fraud in a ball game machine. In order to quantify the distance from the magnetic material to the magnetic material, it is considered that the sensitivity of each magnetic sensing part is assumed to be the same.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、周囲の温度の影響を最小限に抑え、かつ、感磁軸方向の磁場を検知できる単軸の磁気センサ及び磁場成分演算方法を提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a single-axis magnetic sensor capable of minimizing the influence of ambient temperature and detecting a magnetic field in the magnetosensitive axis direction. And a magnetic field component calculation method.

本発明は、このような目的を達成するためになされたもので、請求項1に記載の発明は、基板の平面に対して任意の軸方向の磁場を検知できるようにした磁気センサにおいて、前記基板に設けられた第1の感磁部(21,41,51,61)と、該第1の感磁部(21)に併設された第2の感磁部(22,42,52,62)と、前記第1及び第2の感磁部の出力の差分に基づいて前記感磁軸方向の磁場成分に応じた信号を出力する差分演算部とを備え、前記第1及び第2の感磁部(21,41,51,61,22,42,52,62)は、無磁場下での電気抵抗が等しく、かつ感磁軸方向が一致で、外部磁場に対する磁気抵抗感度が異なり、前記第1及び第2の感磁部(21,41,51,61,22,42,52,62)からの出力信号の差分により、前記感磁軸方向の磁場成分に応じた信号を出力し、前記第1及び第2の感磁部(21,22,41,42)の厚み(T)が等しく、平面視したときに、前記第1及び第2の感磁部(21,22,41,42)が矩形で、かつ該第1及び第2の感磁部(21,22,41,42)の長手方向の長さ(L1,L2)と短手方向の幅(W1,W2)の比(W1/L1,W2/L2)が等しく、感磁軸方向の長さ(W1,W2)が異なることを特徴とする。(図4,図6,図8,図10)
また、請求項2に記載の発明は、請求項1に記載の発明において、前記第1及び第2の感磁部の出力は、前記第1及び第2の感磁部を定電圧駆動した場合は電流であり、前記第1及び第2の感磁部を定電流駆動した場合は電圧であることを特徴とする。
The present invention has been made to achieve such an object, and the invention according to claim 1 is a magnetic sensor which can detect a magnetic field in an arbitrary axial direction with respect to a plane of a substrate. A first magnetic sensitive part (21, 41, 51, 61) provided on the substrate and a second magnetic sensitive part (22, 42, 52, 62) provided side by side with the first magnetic sensitive part (21). ) And a difference calculation unit that outputs a signal corresponding to the magnetic field component in the magnetic sensitive axis direction based on the difference between the outputs of the first and second magnetic sensitive units, and the first and second sensitive units . The magnetic parts (21, 41, 51, 61, 22, 42, 52, 62) have the same electric resistance under no magnetic field, the same magnetosensitive axis directions, and different magnetoresistive sensitivities to the external magnetic field. Output signals from the first and second magnetic sensing parts (21, 41, 51, 61, 22, 42, 52, 62) When a signal corresponding to the magnetic field component in the direction of the magnetic sensitive axis is output based on the difference, and the thickness (T) of the first and second magnetic sensitive portions (21, 22, 41, 42) is equal and when viewed in plan In addition, the first and second magnetic sensitive portions (21, 22, 41, 42) are rectangular, and the length of the first and second magnetic sensitive portions (21, 22, 41, 42) in the longitudinal direction is long. The ratio (W1 / L1, W2 / L2) of the width (W1, L2) and the width (W1, W2) in the short direction is equal , and the lengths (W1, W2) in the magnetosensitive axis direction are different. . (Fig. 4, Fig. 6, Fig. 8 and Fig. 10)
According to a second aspect of the present invention, in the first aspect of the invention, the outputs of the first and second magnetic sensing units are obtained when the first and second magnetic sensing units are driven at a constant voltage. Is a current, and is a voltage when the first and second magnetosensitive parts are driven at a constant current.

また、請求項に記載の発明は、請求項1又は2に記載の発明において、前記第1及び第2の感磁部(31,32)のどちらか一方にバイアス磁石(33,34)を備えていることを特徴とする。(図7(a)) According to a third aspect of the present invention, in the first or second aspect of the present invention, a bias magnet (33, 34) is provided on one of the first and second magnetic sensitive portions (31, 32). It is characterized by having. (Fig. 7 (a))

また、請求項に記載の発明は、請求項1又は2に記載の発明において、前記第1及び第2の感磁部(31,32)のそれぞれにバイアス磁石(33a乃至33c,34a乃至34c)を備え、かつ前記第1及び第2の感磁部(31,32)の前記バイアス磁石(33a乃至33c,34a乃至34c)の個数及び/又は強度が異なることを特徴とする。(図7(b))
また、請求項に記載の発明は、基板の平面に対して任意の軸方向の磁場を検知できるようにした磁気センサにおいて、前記基板に設けられた第1の感磁部と、該第1の感磁部に併設された第2の感磁部と、前記第1及び第2の感磁部の出力の差分に基づいて前記感磁軸方向の磁場成分に応じた信号を出力する差分演算部とを備え、前記第1及び第2の感磁部は、無磁場下での電気抵抗が等しく、かつ感磁軸方向が反平行でることを特徴とする。
According to a fourth aspect of the present invention, in the first or second aspect of the present invention, a bias magnet (33a to 33c, 34a to 34c) is provided in each of the first and second magnetic sensitive portions (31, 32). ) And the number and / or strength of the bias magnets (33a to 33c, 34a to 34c) of the first and second magnetic sensing portions (31, 32) are different. (Fig. 7 (b))
According to a fifth aspect of the present invention, in the magnetic sensor capable of detecting a magnetic field in an arbitrary axial direction with respect to the plane of the substrate, the first magnetic sensing portion provided on the substrate, and the first Difference calculation that outputs a signal corresponding to the magnetic field component in the direction of the magnetosensitive axis based on the difference between the outputs of the second magnetosensitive part provided in the magnetosensitive part and the outputs of the first and second magnetosensitive parts and a section, wherein the first and second magnetically sensitive portion, the electrical resistance in the absence of a magnetic field is equal and magnetosensitive axis direction is characterized Oh Rukoto antiparallel.

た、請求項6に記載の発明は、基板の平面に対して任意の軸方向の磁場を検知できるようにした磁気センサにおける磁場成分演算方法において、前記基板に設けられた第1の感磁部と、該第1の感磁部に併設された第2の感磁部と、前記第1及び第2の感磁部の出力の差分に基づいて前記感磁軸方向の磁場成分に応じた信号を出力する差分演算部とを備え、前記第1及び第2の感磁部は、無磁場下での電気抵抗が等しく、かつ感磁軸方向が一致で、外部磁場に対する磁気抵抗感度が異なり、前記第1及び第2の感磁部の厚みが等しく、平面視したときに、前記第1及び第2の感磁部が矩形で、かつ該第1及び第2の感磁部の長手方向の長さと短手方向の幅の比が等しく、感磁軸方向の長さが異なることを特徴とする。 Also, the invention according to claim 6, in the magnetic field component calculation method in the magnetic sensor to be able to detect a magnetic field of arbitrary axis direction to the plane of the substrate, a first magnetosensitive provided on the substrate According to the magnetic field component in the direction of the magnetosensitive axis based on the difference between the output of the first magnetosensitive part, the second magnetosensitive part provided in the first magnetic sensitive part, and the output of the first and second magnetic sensitive parts A differential operation unit that outputs a signal , wherein the first and second magnetic sensing units have the same electric resistance in the absence of a magnetic field, the same magnetosensitive axis directions, and different magnetoresistive sensitivities to an external magnetic field. In other words, the thicknesses of the first and second magnetic sensing parts are equal, and when viewed in plan, the first and second magnetic sensing parts are rectangular, and the lengths of the first and second magnetic sensing parts are equal the ratio of the direction of length and a lateral width, the length of the magnetic sensing axis direction is characterized by different of Rukoto.

た、請求項に記載の発明は、請求項に記載の発明において、前記第1及び第2の感磁部(31,32)のどちらか一方にバイアス磁石(33,34)を備えていることを特徴とする。 Also, an invention according to claim 7, in the invention of claim 6, comprising a bias magnet (33, 34) to either of said first and second magnetically sensitive portion (31, 32) It is characterized by.

また、請求項8に記載の発明は、請求項6に記載の発明において、前記第1及び第2の感磁部(31,32)のそれぞれにバイアス磁石(33a乃至33c,34a乃至34c)を備え、かつ前記第1及び第2の感磁部(31,32)の前記バイアス磁石(33a乃至33c,34a乃至34c)の個数及び/又は強度が異なることを特徴とする。
また、請求項9に記載の発明は、基板の平面に対して任意の軸方向の磁場を検知できるようにした磁気センサにおける磁場成分演算方法において、前記基板に設けられた第1の感磁部と、該第1の感磁部に併設された第2の感磁部と、前記第1及び第2の感磁部の出力の差分に基づいて前記感磁軸方向の磁場成分に応じた信号を出力する差分演算部とを備え、無磁場下での電気抵抗が等しく、かつ感磁軸方向が反平行でることを特徴とする。
According to an eighth aspect of the present invention, in the sixth aspect of the present invention, a bias magnet (33a to 33c, 34a to 34c) is provided to each of the first and second magnetic sensitive portions (31, 32). And the number and / or strength of the bias magnets (33a to 33c, 34a to 34c) of the first and second magnetic sensing portions (31, 32) are different.
According to a ninth aspect of the present invention, in the magnetic field component calculation method in the magnetic sensor capable of detecting a magnetic field in an arbitrary axial direction with respect to the plane of the substrate, the first magnetosensitive portion provided on the substrate. And a signal corresponding to the magnetic field component in the direction of the magnetosensitive axis based on the difference between the outputs of the second magnetosensitive part provided in the first magnetosensitive part and the first and second magnetosensitive parts. and a difference arithmetic unit for outputting an electrical resistance under no magnetic field is equal and magnetosensitive axis direction is characterized Oh Rukoto antiparallel.

本発明によれば、第1及び第2の感磁部からの出力信号の差分により、感磁部の感磁軸方向の磁場成分に応じた信号を出力することができるので、周囲の温度の影響を最小限に抑え、かつ、感磁軸方向の磁場を検知できる単軸の磁気センサ及び磁場成分演算方法を実現することができる。   According to the present invention, a signal corresponding to the magnetic field component in the direction of the magnetic sensitive axis of the magnetic sensitive part can be output based on the difference between the output signals from the first and second magnetic sensitive parts. A single-axis magnetic sensor and a magnetic field component calculation method that can detect the magnetic field in the magnetosensitive axis direction while minimizing the influence can be realized.

従来のGMR素子の動作原理を説明するための斜視図である。It is a perspective view for demonstrating the principle of operation of the conventional GMR element. 図1の部分断面図である。It is a fragmentary sectional view of FIG. 従来のGMR素子の積層構造を説明するための構成図である。It is a block diagram for demonstrating the laminated structure of the conventional GMR element. 本発明に係る磁気センサの実施形態を説明するための構成図である。It is a block diagram for demonstrating embodiment of the magnetic sensor which concerns on this invention. 図4に示した感磁部を説明するための図である。It is a figure for demonstrating the magnetic sensing part shown in FIG. それぞれ形状が異なる第1の感磁部と第2の感磁部を示す図である。It is a figure which shows the 1st magnetic sensing part from which a shape differs, respectively, and the 2nd magnetic sensing part. (a),(b)は、感磁部にバイアス磁石を設けた構成図である。(A), (b) is a block diagram which provided the bias magnet in the magnetic sensing part. (a),(b)は、本発明に係る磁気センサの実施例1を説明するための構成図である。(A), (b) is a block diagram for demonstrating Example 1 of the magnetic sensor which concerns on this invention. (a),(b)は、図8(a)(b)に示した磁気センサにおいて、感磁軸方向の外部磁場の変化に対する第1及び第2の感磁部の出力の出力変化を示す図である。(A), (b) shows the output change of the output of the 1st and 2nd magnetosensitive part with respect to the change of the external magnetic field of a magnetosensitive axis direction in the magnetic sensor shown to Fig.8 (a) (b). FIG. (a),(b)は、本発明に係る磁気センサの実施例2を説明するための構成図である。(A), (b) is a block diagram for demonstrating Example 2 of the magnetic sensor which concerns on this invention.

以下、図面を参照して本発明の実施形態について説明する。
図4は、本発明に係る磁気センサの実施形態を説明するための構成図で、図中符号20は感磁部、21は第1の感磁部、22は第2の感磁部、23が差動演算部を示している。
本発明の磁気センサは、基板の平面に対して任意の軸方向の磁場を検知できるようにした磁気センサである。この磁気センサの感磁部20は、基板に設けられた第1の感磁部21と、この第1の感磁部21に併設された第2の感磁部22とを備えている。つまり、第1の感磁部21と第2の感磁部22とは、基板平面上又は基板内部に設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 4 is a configuration diagram for explaining an embodiment of the magnetic sensor according to the present invention. In the figure, reference numeral 20 denotes a magnetic sensitive part, 21 denotes a first magnetic sensitive part, 22 denotes a second magnetic sensitive part, 23. Indicates a differential operation section.
The magnetic sensor of the present invention is a magnetic sensor that can detect a magnetic field in an arbitrary axial direction with respect to the plane of the substrate. The magnetic sensing part 20 of this magnetic sensor includes a first magnetic sensing part 21 provided on the substrate and a second magnetic sensing part 22 provided alongside the first magnetic sensing part 21. That is, the first magnetic sensitive part 21 and the second magnetic sensitive part 22 are provided on the substrate plane or inside the substrate.

これらの第1及び第2の感磁部21,22は、無磁場下での電気抵抗が等しく、かつ感磁軸方向が一致しており、外部磁場に対する磁気抵抗感度が異なっている。そして、第1及び第2の感磁部21,22からの出力信号の差分により、差動演算部23を介して感磁軸方向の磁場成分に応じた信号を出力するように構成されている。つまり、第1及び第2の感磁部21,22の出力の差分に基づく信号を出力する差分演算部23を備えている。   The first and second magnetosensitive parts 21 and 22 have the same electric resistance in the absence of a magnetic field and the same magnetosensitive axis direction, and differ in magnetoresistive sensitivity to an external magnetic field. And it is comprised so that the signal according to the magnetic field component of a magnetosensitive axis direction may be output via the differential calculating part 23 by the difference of the output signal from the 1st and 2nd magnetosensitive parts 21 and 22. . That is, the difference calculating part 23 which outputs the signal based on the difference of the output of the 1st and 2nd magnetic sensing parts 21 and 22 is provided.

第1及び第2の感磁部21,22の出力は、感磁部を構成する材料に依存し、外部磁場には依存しない抵抗Rと、外部磁場に応答して変化する抵抗変化量ΔRに基づいた信号を出力する。例えば、感磁部を定電圧駆動する場合は、出力される電流から前記抵抗R+抵抗変化率ΔRを導出することができる。
材料に依存する抵抗Rは、一般的に外部温度に対して敏感であり、例えば、Cuを材料とするGMR素子であれば、室温から100℃までの温度領域で約0.5%程度抵抗Rが変化し得る。それに比べ、外部磁場に対して変化する抵抗変化量ΔRは、外部温度に対して鈍感であり、例えば、GMR素子では、一定磁場下において室温から100℃までの温度領域で約0.01%程度しか抵抗変化量ΔRが変化しない。
The outputs of the first and second magnetic sensitive parts 21 and 22 depend on the material constituting the magnetic sensitive part, and are a resistance R that does not depend on the external magnetic field and a resistance change ΔR that changes in response to the external magnetic field. Based on the output signal. For example, when the magnetosensitive part is driven at a constant voltage, the resistance R + resistance change rate ΔR can be derived from the output current.
The resistance R depending on the material is generally sensitive to an external temperature. For example, in the case of a GMR element made of Cu, the resistance R is about 0.5% in a temperature range from room temperature to 100 ° C. Can change. On the other hand, the resistance change ΔR that changes with respect to the external magnetic field is insensitive to the external temperature. For example, in a GMR element, about 0.01% in a temperature range from room temperature to 100 ° C. under a constant magnetic field. However, the resistance change amount ΔR does not change.

本発明の磁気センサは、無磁場下で電気抵抗が等しく、外部磁場に対する磁気抵抗感度が異なる第1及び第2の感磁部21,22からの出力信号の差分により、材料に依存する抵抗Rをキャンセルし、抵抗変化量ΔRのみを出力するため、外部温度の影響を最小限に抑え、かつ、感磁軸方向の磁場を検知することを可能になる。
第1及び第2の感磁部21,22の無磁場下での電気抵抗を等しくする方法は特に制限されないが、例えば、それぞれの感磁部の形状を適当な値に設計することで実現可能である。
The magnetic sensor according to the present invention has a resistance R depending on the material due to a difference between output signals from the first and second magnetic sensing units 21 and 22 having the same electric resistance in the absence of a magnetic field and different magnetoresistive sensitivities to an external magnetic field. Is canceled and only the resistance change ΔR is output, so that the influence of the external temperature can be minimized and the magnetic field in the direction of the magnetosensitive axis can be detected.
The method for equalizing the electric resistance of the first and second magnetic sensitive parts 21 and 22 in the absence of a magnetic field is not particularly limited. For example, it can be realized by designing the shape of each magnetic sensitive part to an appropriate value. It is.

つまり、第1及び第2の感磁部21,22の厚みTが等しく、感磁部20を平面視したときに、第1及び第2の感磁部21,22が矩形で、かつ第1及び第2の感磁部21,22の長手方向の長さL1,L2と短手方向の幅W1,W2の比W1/L1,W2/L2が等しければ、無磁場下での抵抗Rを容易に等しくすることができる。
なお、本発明の磁気センサにおける感磁部20は、特定の方向に感磁軸を有し、感磁部20に入力される外部磁場の大きさに応じて出力信号が変化するものであれば特に制限されない。感磁部20の具体例としては、GMR(巨大磁気抵抗)、TMR(トンネル磁気抵抗)、AMR(異方性磁気抵抗),CMR(超巨大磁気抵抗)、ホール素子が挙げられるがこの限りではない。温度特性の観点からGMRやTMRが好ましく、GMRがより好ましい。
That is, when the thickness T of the first and second magnetic sensitive portions 21 and 22 is equal, and the magnetic sensitive portion 20 is viewed in plan, the first and second magnetic sensitive portions 21 and 22 are rectangular, and the first If the ratios W1 / L1 and W2 / L2 of the lengths L1 and L2 in the longitudinal direction of the second magnetic sensitive portions 21 and 22 and the widths W1 and W2 in the short direction are equal, the resistance R in the absence of a magnetic field is easy. Can be equal to
The magnetic sensing unit 20 in the magnetic sensor of the present invention has a magnetic sensing axis in a specific direction, and the output signal changes according to the magnitude of the external magnetic field input to the magnetic sensing unit 20. There is no particular limitation. Specific examples of the magnetosensitive portion 20 include GMR (giant magnetoresistance), TMR (tunnel magnetoresistance), AMR (anisotropic magnetoresistance), CMR (supergiant magnetoresistance), and a Hall element. Absent. From the viewpoint of temperature characteristics, GMR and TMR are preferable, and GMR is more preferable.

図5は、図4に示した感磁部を説明するための図である。抵抗値Rは、感磁部の伝導パスの電流方向Iに対して垂直な面で切断した際の伝導層の(電流パスの)断面積Sに反比例し、伝導パスの電流方向の長さLに比例する。仮想的に感磁部を電流方向に微小区間ΔLの幅で分割したと考え、分割されたそれぞれの要素の電流に垂直な面の断面積をSjで定義する。Sjは、j番目の要素の電流に垂直な面の伝導層の(電流パスの)断面積を表している。   FIG. 5 is a diagram for explaining the magnetic sensing section shown in FIG. The resistance value R is inversely proportional to the cross-sectional area S (of the current path) of the conductive layer when cut along a plane perpendicular to the current direction I of the conductive path of the magnetic sensing portion, and the length L in the current direction of the conductive path. Is proportional to It is assumed that the magnetosensitive part is virtually divided in the current direction by the width of the minute section ΔL, and the cross-sectional area of the plane perpendicular to the current of each divided element is defined by Sj. Sj represents the cross-sectional area (of the current path) of the conductive layer in the plane perpendicular to the current of the j-th element.

この時の抵抗Rは、ΔL/Sjをすべての要素足し合わせた量に比例しており、同一材料も用いた2つの素子であれば、ΔL/Sjをすべての要素足し合わせた量が等しければ抵抗値は等しくなる。
例えば、第1及び第2の感磁部の厚みが等しく、磁気センサを平面視した時に、第1及び第2の感磁部が矩形である場合、この第1及び第2の感磁部の長手方向(電流方向)の長さLと、短手方向(電流方向に垂直方向)の幅Wの比が等しければ、無磁場下での抵抗Rを容易に等しくすることができる。
The resistance R at this time is proportional to the amount obtained by adding ΔL / Sj to all the elements. If two elements using the same material are used, the amount obtained by adding ΔL / Sj to all the elements is equal. Resistance values are equal.
For example, if the thicknesses of the first and second magnetic sensitive parts are equal and the first and second magnetic sensitive parts are rectangular when the magnetic sensor is viewed in plan, the first and second magnetic sensitive parts If the ratio of the length L in the longitudinal direction (current direction) and the width W in the short direction (perpendicular to the current direction) is equal, the resistance R under no magnetic field can be easily equalized.

図6は、それぞれ形状が異なる第1の感磁部と第2の感磁部を示す図で、感磁部を平面視したときに、第1及び第2の感磁部51,52,の形状が異なるように構成されている。
第1及び第2の感磁部51,52の厚みTが等しく、第1及び第2の感磁部51,52を平面視した時の第1の感磁部51が円形で、第2の感磁部52が矩形であったとき、図6に示すように、第2の感磁部52の長手方向(電流方向)の長さLと、短手方向(電流方向に垂直方向)の幅Wの比であるL対W(L/W)がπ対2と等しくなるように第1及び第2の感磁部51,52を設計することにより、無磁場下での抵抗Rを容易に等しくすることができる。
FIG. 6 is a diagram showing a first magnetic sensitive part and a second magnetic sensitive part having different shapes, and when the magnetic sensitive part is viewed in plan, the first and second magnetic sensitive parts 51, 52, It is comprised so that a shape may differ.
The first and second magnetic sensitive portions 51 and 52 have the same thickness T. When the first and second magnetic sensitive portions 51 and 52 are viewed in plan, the first magnetic sensitive portion 51 is circular, and the second When the magnetic sensitive part 52 is rectangular, as shown in FIG. 6, the length L of the second magnetic sensitive part 52 (current direction) and the width in the short direction (perpendicular to the current direction). By designing the first and second magnetic sensitive portions 51 and 52 so that L to W (L / W), which is the ratio of W, is equal to π to 2, the resistance R in the absence of a magnetic field can be easily achieved. Can be equal.

なお、本発明の磁気センサにおいて、第1及び第2の感磁部の無磁場下での電気抵抗が等しい状態とは、本発明の効果を害さない程度に異なっている状態を含んでおり、例えば、無磁場下での電気抵抗が互いに±1%度程度、好ましくは±0.1%、より好ましくは0.01%相違していてもよい。
また、第1及び第2の感磁部の感磁軸方向を一致させる方法も特に制限されないが、例えば、感磁部の構成を同じ構成にすることで実現可能である。感磁部がGMRの場合、ピンド層の固定磁化の方向をそれぞれ同一方向にする方法が挙げられる。なお、本実施形態の磁気センサにおいて、第1及び第2の感磁部の感磁軸方向が一致している状態とは、平行の他に、本発明の効果を害さない程度に異なっている状態を含んでいる。
In the magnetic sensor of the present invention, the state in which the electric resistances of the first and second magnetic sensitive parts in the absence of a magnetic field are equal includes a state that is different to the extent that the effect of the present invention is not impaired, For example, the electric resistances in the absence of a magnetic field may differ from each other by about ± 1%, preferably ± 0.1%, more preferably 0.01%.
Further, the method of matching the magnetic sensitive axis directions of the first and second magnetic sensitive parts is not particularly limited, but can be realized by, for example, making the configuration of the magnetic sensitive parts the same. When the magnetic sensitive part is GMR, there is a method in which the fixed magnetization directions of the pinned layer are made the same direction. In addition, in the magnetic sensor of this embodiment, it differs from the state in which the magnetosensitive axis directions of the first and second magnetosensitive parts are coincident with each other to the extent that the effects of the present invention are not impaired. Includes state.

また、第1及び第2の感磁部の外部磁場に対する磁気抵抗感度を異なるものにする方法は、用いる感磁部の性質に応じて適宜設計すればよいため、特に制限されない。例えば、感磁部としてGMRを用いる場合、第1及び第2の感磁部の電流方向に垂直方向の幅を変えることで実現できる。他の方法としては、例えば、第1及び第2の感磁部の形状を変えることで実現できる。また、ハードバイアス磁石を設置することによって実現することができる。   Further, the method of making the magnetoresistive sensitivities of the first and second magnetic sensitive parts different from each other with respect to the external magnetic field is not particularly limited because it may be designed as appropriate according to the properties of the magnetic sensitive parts to be used. For example, when GMR is used as the magnetic sensing part, it can be realized by changing the width in the direction perpendicular to the current direction of the first and second magnetic sensing parts. Another method can be realized, for example, by changing the shapes of the first and second magnetic sensing portions. Moreover, it is realizable by installing a hard bias magnet.

図7(a),(b)は、感磁部にバイアス磁石を設けた構成図で、図7(a)はどちらか一方に感磁部にバイアス磁石を設けた例で、図7(b)は両方の感磁部にバイアス磁石を設けた例を示している。図中符号31は第1の感磁部、32は第2の感磁部、33,33a乃至33c,34,34a乃至34cはハードバイアス磁石を示している。
図7(a),(b)に示すように、ハードバイアス磁石の設置形態としては、例えば、図7(a)のように、第1及び第2の感磁部31,32のどちらか一方にハードバイアス磁石33,34を備える設置形態や、図7(b)のように、第1及び第2の感磁部31,32のハードバイアス磁石33a乃至33c,34a乃至34cの個数及び/又は強度が異なるようにする設置形態が挙げられる。
FIGS. 7A and 7B are configuration diagrams in which a bias magnet is provided in the magnetic sensing part, and FIG. 7A is an example in which a bias magnet is provided in either one of the magnetic sensing parts. ) Shows an example in which bias magnets are provided in both magnetic sensing portions. In the figure, reference numeral 31 denotes a first magnetic sensing part, 32 denotes a second magnetic sensing part, 33, 33a to 33c, 34, 34a to 34c denote hard bias magnets.
As shown in FIGS. 7A and 7B, the hard bias magnet is installed in either one of the first and second magnetic sensing portions 31 and 32 as shown in FIG. 7A, for example. And the number of the hard bias magnets 33a to 33c and 34a to 34c of the first and second magnetic sensing portions 31 and 32 and / or as shown in FIG. The installation form which makes intensity | strength different is mentioned.

また、図7(a),(b)において、第1及び第2の感磁部31,32の厚みTが等しく、感磁部20を平面視したときに、第1及び第2の感磁部31,32が矩形で、かつ第1及び第2の感磁部31,32の長手方向の長さL1,L2が等しく、短手方向の幅W1,W2が等しいように構成されている。
また、第1及び第2の感磁部の外部磁場に対する磁気抵抗感度を異なるものにする方法は、感磁部としてTMRを用いる場合、第1及び第2の感磁部の厚みを変えることで実現できる。また、磁気抵抗感度は完全一致していなければ特に制限されないが、第1及び第2の感磁部の出力の差分値を大きくし、外部磁場の変化に対する感度を向上させる観点から、第1及び第2の感磁部の外部磁場に対する磁気抵抗感度は大きく異なっていることが好ましい。
7A and 7B, the first and second magnetic sensitive portions 31 and 32 have the same thickness T and the magnetic sensitive portion 20 is viewed in plan view. The portions 31, 32 are rectangular, and the lengths L1, L2 in the longitudinal direction of the first and second magnetic sensitive portions 31, 32 are equal, and the widths W1, W2 in the short direction are equal.
In addition, the method of making the magnetoresistive sensitivities of the first and second magnetic sensitive parts different from each other by changing the thicknesses of the first and second magnetic sensitive parts when using TMR as the magnetic sensitive part. realizable. The magnetoresistive sensitivities are not particularly limited as long as they do not completely match, but from the viewpoint of increasing the difference value between the outputs of the first and second magnetic sensitive parts and improving the sensitivity to changes in the external magnetic field, It is preferable that the magnetoresistive sensitivity with respect to the external magnetic field of the second magnetosensitive part is greatly different.

第1及び第2の感磁部が矩形の場合、磁気センサを平面視したとき、第1及び第2の感磁部の感磁軸方向の長さが異なるように設計することにより、外部磁場に対する磁気抵抗感度を異なるものすることが容易になる。
また、本発明の他の磁気センサは、基板の平面に対して任意の軸方向の磁場を検知できるようにした磁気センサであって、基板に設けられた第1の感磁部と、この第1の感磁部に併設された第2の感磁部とを備え、第1及び第2の感磁部は、無磁場下で電気抵抗が等しく、かつ感磁軸方向は反平行であり、第1及び第2の感磁部からの出力信号の差分により、感磁軸方向の磁場成分に応じた信号を出力する磁気センサである。
When the first and second magnetic sensing portions are rectangular, when the magnetic sensor is viewed in plan, the first and second magnetic sensing portions are designed to have different lengths in the direction of the magnetic sensing axis. It is easy to make the magnetoresistive sensitivity different from each other.
Another magnetic sensor of the present invention is a magnetic sensor that can detect a magnetic field in an arbitrary axial direction with respect to the plane of the substrate, and includes a first magnetic sensing portion provided on the substrate, The first and second magnetosensitive parts have the same electrical resistance under no magnetic field and the magnetosensitive axis direction is antiparallel. This is a magnetic sensor that outputs a signal corresponding to a magnetic field component in the direction of the magnetic sensitive axis based on a difference between output signals from the first and second magnetic sensitive parts.

第1及び第2の感磁部が、無磁場下で電気抵抗が等しく、かつ感磁軸方向は反平行であることにより、感磁部からの出力信号の差分を取ることにより、材料に依存する抵抗Rをキャンセルし、抵抗変化量ΔRのみを出力するため、外部温度の影響を最小限に抑え、かつ、感磁軸方向の磁場を検知することを可能になる。
また、本発明の磁気センサにおいて、第1及び第2の感磁部の出力の差分に基づく信号を出力する差分演算部を備えていることが好ましい。この構成によれば、感磁軸方向の磁場成分に応じた信号を容易に出力することが可能になる。
The first and second magnetic sensitive parts have the same electric resistance in the absence of a magnetic field, and the magnetic sensitive axis direction is antiparallel, so that it depends on the material by taking the difference in the output signal from the magnetic sensitive part. Since the resistance R is canceled and only the resistance change amount ΔR is output, it is possible to minimize the influence of the external temperature and detect the magnetic field in the magnetosensitive axis direction.
In the magnetic sensor of the present invention, it is preferable to include a difference calculation unit that outputs a signal based on a difference between outputs of the first and second magnetic sensing units. According to this configuration, it is possible to easily output a signal corresponding to the magnetic field component in the magnetosensitive axis direction.

差分演算部23としては、第1及び第2の感磁部の出力の差分に基づく信号を出力するものであれば特に制限されず、第1及び第2の感磁部の出力が入力され、2つの入力の差分値を所定の割合で増幅して出力する差動増幅回路や、第1及び第2の感磁部の出力をデジタル信号に変換し、差分演算を行うデジタルIC回路等が挙げられるがこの限りではない。
以下に、本発明の磁気センサのさらに具体的な実施例について説明する。
The difference calculator 23 is not particularly limited as long as it outputs a signal based on the difference between the outputs of the first and second magnetic sensing units, and the outputs of the first and second magnetic sensing units are input. Examples include a differential amplifier circuit that amplifies and outputs a difference value between two inputs at a predetermined ratio, a digital IC circuit that converts the outputs of the first and second magnetic sensing units into a digital signal, and performs a difference operation. This is not the case.
Hereinafter, more specific examples of the magnetic sensor of the present invention will be described.

図8(a),(b)は、本発明に係る磁気センサの実施例1を説明するための構成図である。図中符号41は第1の感磁部、42は第2の感磁部、50は基板、111,121はピンド層、112,122は伝導層、113,123はフリー層を示している。つまり、第1の感磁部41と第2の感磁部42は、スピンバルブ型のピンド層111,121と伝導層112,122とフリー層113.123を積層してなるGMR素子を用いている。   8A and 8B are configuration diagrams for explaining the first embodiment of the magnetic sensor according to the present invention. In the figure, reference numeral 41 denotes a first magnetic sensitive part, 42 denotes a second magnetic sensitive part, 50 denotes a substrate, 111 and 121 denote pinned layers, 112 and 122 denote conductive layers, and 113 and 123 denote free layers. That is, the first magnetosensitive part 41 and the second magnetosensitive part 42 use a GMR element formed by laminating the spin valve type pinned layers 111 and 121, the conductive layers 112 and 122, and the free layer 113.123. Yes.

本実施例1の磁気センサは、基板の平面に対して任意の軸方向の磁場を検知できるようにした磁気センサである。この磁気センサの感磁部は、基板に設けられた第1の感磁部41と、この第1の感磁部41に併設された第2の感磁部42とを備えている。つまり、第1の感磁部41と第2の感磁部42とは、基板平面上又は基板内部に設けられている。
これらの第1及び第2の感磁部41,42は、無磁場下での電気抵抗が等しく、かつ感磁軸方向が一致しており、外部磁場に対する磁気抵抗感度が異なっている。そして、第1及び第2の感磁部41,42からの出力信号の差分により、差動演算部を介して感磁軸方向の磁場成分に応じた信号を出力するように構成されている。また、本実施例1においては、それぞれ形状が異なる第1の感磁部41と第2の感磁部42を備えている。
The magnetic sensor of the first embodiment is a magnetic sensor that can detect a magnetic field in an arbitrary axial direction with respect to the plane of the substrate. The magnetic sensing part of this magnetic sensor includes a first magnetic sensing part 41 provided on the substrate and a second magnetic sensing part 42 provided alongside the first magnetic sensing part 41. That is, the first magnetic sensing part 41 and the second magnetic sensing part 42 are provided on the substrate plane or inside the substrate.
These first and second magnetic sensing portions 41 and 42 have the same electric resistance in the absence of a magnetic field and the same magnetic sensitive axis direction, and differ in magnetoresistive sensitivity to an external magnetic field. And it is comprised so that the signal according to the magnetic field component of a magnetic sensitive axis direction may be output via a differential calculating part by the difference of the output signal from the 1st and 2nd magnetic sensitive parts 41 and 42. FIG. In the first embodiment, the first magnetic sensitive part 41 and the second magnetic sensitive part 42 having different shapes are provided.

また、第1及び第2の感磁部41,42の厚みT1,T2が等しく、平面視したときに、第1及び第2の感磁部41,42が矩形で、かつ第1及び第2の感磁部41,42の長手方向の長さL1,L2(L1>L2)と短手方向の幅W1,W2(W1>W2)の比W1/L1,W2/L2が等しくなるように構成されている。
また、第1及び第2の感磁部41,42が矩形で、平面視したときに、第1及び第2の感磁部41,42の感磁軸方向の長さW1,W2が異なるように構成されている。
Further, the thicknesses T1 and T2 of the first and second magnetic sensitive portions 41 and 42 are equal, and when viewed in plan, the first and second magnetic sensitive portions 41 and 42 are rectangular, and the first and second magnetic sensitive portions 41 and 42 are rectangular. The ratios W1 / L1, W2 / L2 of the longitudinal lengths L1, L2 (L1> L2) and the lateral widths W1, W2 (W1> W2) of the magnetically sensitive portions 41, 42 are equal Has been.
In addition, when the first and second magnetic sensing portions 41 and 42 are rectangular and viewed in plan, the lengths W1 and W2 in the magnetic sensitive axis direction of the first and second magnetic sensing portions 41 and 42 are different. It is configured.

つまり、第1の感磁部41と第2の感磁部42は、同一方向からの磁場に対して感磁軸を持っており、それぞれの感磁軸がお互いに平行になるように配置されている。また、第1の感磁部41と第2の感磁部42は、磁気抵抗感度が異なっており、かつ磁気センサを平面視した時、第1及び第2の感磁部41,42の感磁軸方向長さW、基板面に対して平行かつ感磁軸方向に垂直な方向の長さLの比(W1:L1及びW2:L2)は等しくなるように配置されている。すなわち、第1及び第2の感磁部の無磁場時での抵抗Rは等しくなっている。   In other words, the first magnetic sensitive part 41 and the second magnetic sensitive part 42 have a magnetic sensitive axis with respect to the magnetic field from the same direction, and are arranged so that the respective magnetic sensitive axes are parallel to each other. ing. Further, the first and second magnetic sensing portions 41 and 42 have different magnetoresistive sensitivities, and when the magnetic sensor is viewed in plan, the first and second magnetic sensing portions 41 and 42 are sensitive. The ratio (W1: L1 and W2: L2) of the length W in the magnetic axis direction and the length L in the direction parallel to the substrate surface and perpendicular to the magnetic sensitive axis direction is arranged to be equal. That is, the resistances R of the first and second magnetic sensing parts when no magnetic field is applied are equal.

また、上述した実施例1の磁気センサは、第1及び第2の感磁部41,42の出力が入力される差分回路(図4参照)を備えている。このような構成における第1及び第2感磁部41,42からの出力信号の差分により、感度軸方向の磁場成分に応じた信号を出力することができる。
また、感磁部は、特定の方向に感磁軸を持つ素子であれば特に制限されず、例えば、巨大磁気抵抗素子(GMR)又はトンネル磁気抵抗素子(TMR)、異方性磁気抵抗素子(AMR)などを用いる。また、感磁部の感度軸方向の幅は、0.1〜20ミクロンであることが好ましい。
Moreover, the magnetic sensor of Example 1 mentioned above is provided with the difference circuit (refer FIG. 4) into which the output of the 1st and 2nd magnetic sensing parts 41 and 42 is input. A signal corresponding to the magnetic field component in the sensitivity axis direction can be output based on the difference between the output signals from the first and second magnetic sensing units 41 and 42 in such a configuration.
The magnetosensitive part is not particularly limited as long as it is an element having a magnetosensitive axis in a specific direction. For example, a giant magnetoresistive element (GMR), a tunnel magnetoresistive element (TMR), an anisotropic magnetoresistive element ( AMR). The width of the magnetic sensitive part in the sensitivity axis direction is preferably 0.1 to 20 microns.

第1及び第2の感磁部41,42の抵抗をR、X方向の磁場をBx、磁気抵抗感度をa、bとした場合に、差分回路は、第1の感磁部41の出力信号をS1(∝R+aBx)と、第2の感磁部2の出力信号をS2(∝R+bBx)の差分信号として
S1−S2∝(a−b)Bx
を出力する。これにより、第1及び第2の感磁部41,42の感磁軸方向の磁場を検出することができる。
When the resistance of the first and second magnetic sensing units 41 and 42 is R, the magnetic field in the X direction is Bx, and the magnetoresistive sensitivity is a and b, the difference circuit outputs the output signal of the first magnetic sensing unit 41. S1 (∝R + aBx) and the output signal of the second magnetic sensing unit 2 as a differential signal of S2 (∝R + bBx) S1-S2∝ (ab) Bx
Is output. Thereby, the magnetic field of the 1st and 2nd magnetic sensitive parts 41 and 42 in the magnetic sensitive axis direction is detectable.

図9(a),(b)は、図8(a)(b)に示した磁気センサにおいて、感磁軸方向の外部磁場の変化に対する第1及び第2の感磁部の出力の出力変化を示す図である。図9(a)は、第1及び第2の感磁部41,42の出力S1,S2の差分信号S1−S2を示している。図7(b)に示した差分信号S1−S2は、上述したように、外部温度によって敏感に変化する抵抗Rがキャンセルされているため、外部温度の変化の影響を受けずに外部磁場Bxの変化に応じた出力を得ることができる。   FIGS. 9A and 9B show output changes of the outputs of the first and second magnetic sensing units with respect to the change of the external magnetic field in the direction of the magnetic sensitive axis in the magnetic sensor shown in FIGS. 8A and 8B. FIG. FIG. 9A shows the difference signal S1-S2 between the outputs S1, S2 of the first and second magnetic sensing units 41, 42. FIG. In the difference signal S1-S2 shown in FIG. 7B, the resistance R that changes sensitively with the external temperature is canceled as described above, so that the external magnetic field Bx is not affected by the change in the external temperature. An output corresponding to the change can be obtained.

例えば、定電流駆動の場合、第1及び第2の感磁部41,42にそれぞれ等しい電流Iを印加する。このときの第1及び第2の感磁部41,42の抵抗をR、X方向の磁場をBx、磁気抵抗感度をa、bとした場合に、差分回路は、第1の感磁部41の出力信号をS1(=(R+aBx)×I)と、第2の感磁部42の出力信号をS2(=(R+bBx)×I)の差分信号として
S1−S2=(a−b)Bx×I
を出力する。これによって、第1及び第2の感磁部41,42の感磁軸方向の磁場を検出することができる。
For example, in the case of constant current driving, the same current I is applied to the first and second magnetic sensing portions 41 and 42, respectively. In this case, when the resistance of the first and second magnetic sensing parts 41 and 42 is R, the magnetic field in the X direction is Bx, and the magnetoresistive sensitivity is a and b, the difference circuit is the first magnetic sensing part 41. The output signal of S1 (= (R + aBx) × I) and the output signal of the second magnetic sensing unit 42 as a differential signal of S2 (= (R + bBx) × I) S1-S2 = (ab) Bxx I
Is output. As a result, the magnetic field in the direction of the magnetic sensitive axis of the first and second magnetic sensitive portions 41 and 42 can be detected.

図10(a),(b)は、本発明に係る磁気センサの実施例2を説明するための構成図である。図中符号61は第1の感磁部、62は第2の感磁部、70は基板、131,141はピンド層、132,142は伝導層、133,143はフリー層を示している。つまり、第1の感磁部61と第2の感磁部62は、スピンバルブ型のピンド層131,141と伝導層132,142とフリー層133.143を積層してなるGMR素子を用いている。   FIGS. 10A and 10B are configuration diagrams for explaining the magnetic sensor according to the second embodiment of the present invention. In the figure, reference numeral 61 denotes a first magnetic sensitive part, 62 denotes a second magnetic sensitive part, 70 denotes a substrate, 131 and 141 denote pinned layers, 132 and 142 denote conductive layers, and 133 and 143 denote free layers. In other words, the first magnetic sensitive part 61 and the second magnetic sensitive part 62 use a GMR element in which a spin valve type pinned layers 131 and 141, conductive layers 132 and 142, and a free layer 133.143 are laminated. Yes.

図8に示した実施例1では、第1及び第2の感磁部41,42の各層の膜厚(T1=T2)が等しい場合において、第1及び第2の感磁部41,42の感磁軸方向長さWと基板面に対して平行かつ感磁軸方向に垂直な方向の長さLの比(W1:L1及びW2:L2)が等しくなるように配置された例に説明したが、図10に示すように、感磁軸方向の長さW(W1=W2)が等しい場合において、第1及び第2の感磁部61,62の伝導層の厚みT(T1>T2)と基板面に対して平行かつ感磁軸方向に垂直な方向の長さL(L1>L2)の比(T1:L1及びT2:L2)が等しくなるように配置されていてもよい。   In Example 1 shown in FIG. 8, when the film thicknesses (T1 = T2) of the layers of the first and second magnetic sensitive portions 41 and 42 are equal, the first and second magnetic sensitive portions 41 and 42 have the same thickness. The example in which the ratio (W1: L1 and W2: L2) of the length W in the magnetic axis direction and the length L in the direction parallel to the substrate surface and perpendicular to the magnetic axis direction is equal is described. However, as shown in FIG. 10, when the lengths W (W1 = W2) in the direction of the magnetic sensitive axis are equal, the thickness T (T1> T2) of the conductive layers of the first and second magnetic sensitive portions 61, 62 is obtained. And the length L (L1> L2) in the direction parallel to the substrate surface and perpendicular to the magnetosensitive axis direction (T1: L1 and T2: L2) may be equal.

すなわち、上述したように、感磁軸方向の断面における伝導層の断面積S(=W×T)と、長さLの比が等しくなるように感磁部を設計することにより、無磁場下で電気抵抗が等しく、かつ、外部磁場に対する磁気抵抗感度が異なる感磁部を得ることができる。
本実施例2の磁気センサは、基板の平面に対して任意の軸方向の磁場を検知できるようにした磁気センサである。この磁気センサの感磁部は、基板に設けられた第1の感磁部61と、この第1の感磁部61に併設された第2の感磁部62とを備えている。つまり、第1の感磁部61と第2の感磁部62とは、基板平面上又は基板内部に設けられている。
That is, as described above, by designing the magnetic sensing portion so that the ratio of the length L to the cross sectional area S (= W × T) of the conductive layer in the cross section in the direction of the magnetic sensitive axis, Thus, it is possible to obtain magnetically sensitive portions having the same electrical resistance and different magnetoresistive sensitivities to an external magnetic field.
The magnetic sensor of the second embodiment is a magnetic sensor that can detect a magnetic field in an arbitrary axial direction with respect to the plane of the substrate. The magnetic sensor of this magnetic sensor includes a first magnetic sensor 61 provided on the substrate, and a second magnetic sensor 62 provided alongside the first magnetic sensor 61. That is, the first magnetic sensitive part 61 and the second magnetic sensitive part 62 are provided on the substrate plane or inside the substrate.

これらの第1及び第2の感磁部61,62は、無磁場下での電気抵抗が等しく、かつ感磁軸方向が一致しており、外部磁場に対する磁気抵抗感度が異なっている。そして、第1及び第2の感磁部61,62からの出力信号の差分により、差動演算部を介して感磁軸方向の磁場成分に応じた信号を出力するように構成されている。
また、本実施例2においては、それぞれ形状が異なる第1の感磁部61と第2の感磁部62を備えている。つまり、第1及び第2の感磁部61,62が矩形で、平面視したときに、第1及び第2の感磁部61,62の感磁軸方向の長さW1,W2が異なるように構成されている。
The first and second magnetic sensitive portions 61 and 62 have the same electric resistance in the absence of a magnetic field and the same magnetic sensitive axis direction, and differ in magnetoresistive sensitivity to an external magnetic field. And according to the difference of the output signal from the 1st and 2nd magnetic sensing parts 61 and 62, it is comprised so that the signal according to the magnetic field component of a magnetic sensitive axis direction may be output via a differential calculating part.
In the second embodiment, the first magnetic sensitive part 61 and the second magnetic sensitive part 62 having different shapes are provided. That is, when the first and second magnetic sensitive portions 61 and 62 are rectangular and viewed in plan, the lengths W1 and W2 in the magnetic sensitive axis direction of the first and second magnetic sensitive portions 61 and 62 are different. It is configured.

上述した各実施例における差分回路は、2つの入力の差に応じた信号を出力するものであればよく、アナログ回路で実現する場合は、例えば、図4に示すような差動増幅回路23(Vout=R2(V1−V2)/R1)を用いることができるが、本発明はこれに限定されない。   The difference circuit in each embodiment described above may be any circuit that outputs a signal corresponding to the difference between two inputs. When the difference circuit is realized by an analog circuit, for example, a differential amplifier circuit 23 ( Vout = R2 (V1-V2) / R1) can be used, but the present invention is not limited to this.

次に、本発明に係る磁場成分演算方法について説明する。
本発明の磁気センサを用いた磁場成分演算方法は、無磁場での電気抵抗が等しく、感磁軸方向が一致しており、かつ外部磁場に対する磁気抵抗感度が異なる2つの感磁部の出力の差分に基づいて、感磁軸方向の磁場成分を演算する。また、無磁場での電気抵抗が等しく、感磁軸方向が反平行である2つの感磁部の出力の差分に基づいて、感磁軸方向の磁場成分を演算する。
Next, the magnetic field component calculation method according to the present invention will be described.
In the magnetic field component calculation method using the magnetic sensor of the present invention, the output of two magnetosensitive parts having the same electric resistance in the non-magnetic field, the same magnetosensitive axis direction, and different magnetoresistive sensitivities to the external magnetic field. Based on the difference, the magnetic field component in the magnetosensitive axis direction is calculated. In addition, the magnetic field component in the magnetosensitive axis direction is calculated based on the difference between the outputs of the two magnetosensitive parts having the same electric resistance in the absence of a magnetic field and the anti-magnetic axis direction being antiparallel.

つまり、本発明の磁場成分演算方法は、基板の平面に対して任意の軸方向の磁場を検知できるようにした磁気センサにおける磁場成分演算方法である。基板に設けられた第1の感磁部と、この第1の感磁部に併設された第2の感磁部とを備えている。
無磁場下での電気抵抗が等しく、かつ感磁軸方向が一致で、外部磁場に対する磁気抵抗感度が異なる第1及び第2の感磁部の出力の差分に基づいて、感磁軸方向の磁場成分を演算する。なお、磁気センサの構成については、上述した各実施例と同様である。
That is, the magnetic field component calculation method of the present invention is a magnetic field component calculation method in a magnetic sensor that can detect a magnetic field in an arbitrary axial direction with respect to the plane of the substrate. A first magnetic sensing part provided on the substrate and a second magnetic sensing part provided alongside the first magnetic sensing part are provided.
The magnetic field in the direction of the magnetic sensitive axis is based on the difference between the outputs of the first and second magnetic sensitive parts having the same electric resistance in the absence of a magnetic field, the same magnetic sensitive axis direction, and different magnetoresistive sensitivities to the external magnetic field. Calculate the component. The configuration of the magnetic sensor is the same as that in each of the embodiments described above.

また、本発明の磁場成分演算方法は、基板に設けられた第1の感磁部と、この第1の感磁部に併設された第2の感磁部とを備え、無磁場下での電気抵抗が等しく、かつ感磁軸方向が反平行で、第1及び第2の感磁部の出力の差分に基づいて、感磁軸方向の磁場成分を演算する。
以上のように、本発明によれば、第1及び第2の感磁部からの出力信号の差分により、感磁部の感磁軸方向の磁場成分に応じた信号を出力することができるので、周囲の温度の影響を最小限に抑え、かつ、感磁軸方向の磁場を検知できる単軸の磁気センサ及び磁場成分演算方法を実現することができる。
The magnetic field component calculation method according to the present invention includes a first magnetic sensing part provided on the substrate and a second magnetic sensing part provided alongside the first magnetic sensing part. A magnetic field component in the magnetosensitive axis direction is calculated based on the difference between the outputs of the first and second magnetosensitive parts with the same electrical resistance and antimagnetic axis direction.
As described above, according to the present invention, a signal corresponding to the magnetic field component in the direction of the magnetic sensitive axis of the magnetic sensitive part can be output based on the difference between the output signals from the first and second magnetic sensitive parts. Thus, it is possible to realize a single-axis magnetic sensor and a magnetic field component calculation method capable of minimizing the influence of the ambient temperature and detecting the magnetic field in the direction of the magnetosensitive axis.

1 反強磁性層
2 ピンド層(固定層)
3 Cu層(スペーサ層)
4 フリー層(自由回転層)
11,16 絶縁膜
12 フリー層(自由回転層)
13 導電層(伝導層)
14 ピンド層(固定層)
15 反強磁性層
20 感磁部
21,31,41,51,61 第1の感磁部
22,32,42,52,62 第2の感磁部
23 差動演算部
33,33a乃至33c,34,34a乃至34c ハードバイアス磁石
50,70 基板
111,121,131,141 ピンド層
112,122,132,142 伝導層
113,123,133,143 フリー層
1 Antiferromagnetic layer 2 Pinned layer (pinned layer)
3 Cu layer (spacer layer)
4 Free layer (free rotation layer)
11, 16 Insulating film 12 Free layer (free rotation layer)
13 Conductive layer (conductive layer)
14 Pinned layer (fixed layer)
15 antiferromagnetic layer 20 magnetic sensing parts 21, 31, 41, 51, 61 first magnetic sensing parts 22, 32, 42, 52, 62 second magnetic sensing part 23 differential operation parts 33, 33a to 33c, 34, 34a to 34c Hard bias magnet 50, 70 Substrate 111, 121, 131, 141 Pinned layer 112, 122, 132, 142 Conductive layer 113, 123, 133, 143 Free layer

Claims (9)

基板の平面に対して任意の軸方向の磁場を検知できるようにした磁気センサにおいて、
前記基板に設けられた第1の感磁部と、該第1の感磁部に併設された第2の感磁部と
前記第1及び第2の感磁部の出力の差分に基づいて前記感磁軸方向の磁場成分に応じた信号を出力する差分演算部とを備え、
前記第1及び第2の感磁部は、無磁場下での電気抵抗が等しく、かつ感磁軸方向が一致で、外部磁場に対する磁気抵抗感度が異なり、
前記第1及び第2の感磁部の厚みが等しく、
平面視したときに、前記第1及び第2の感磁部が矩形で、かつ該第1及び第2の感磁部の長手方向の長さと短手方向の幅の比が等しく、感磁軸方向の長さが異なることを特徴とする磁気センサ。
In a magnetic sensor capable of detecting a magnetic field in an arbitrary axial direction with respect to the plane of the substrate,
A first magnetic sensing part provided on the substrate; a second magnetic sensing part provided alongside the first magnetic sensing part ;
A difference calculation unit that outputs a signal corresponding to the magnetic field component in the direction of the magnetosensitive axis based on the difference between the outputs of the first and second magnetosensitive units ;
The first and second magnetosensitive parts have the same electric resistance under no magnetic field and the same magnetosensitive axis direction, and differ in magnetoresistive sensitivity to an external magnetic field,
The thicknesses of the first and second magnetic sensing parts are equal,
When viewed in plan, the first and second magnetic sensitive portions are rectangular, and the ratio of the length in the longitudinal direction to the width in the short direction of the first and second magnetic sensitive portions is equal , and the magnetic sensitive axis A magnetic sensor characterized by having different lengths in directions.
前記第1及び第2の感磁部の出力は、The outputs of the first and second magnetic sensing units are:
前記第1及び第2の感磁部を定電圧駆動した場合は電流であり、  When the first and second magnetic sensitive parts are driven at a constant voltage, the current is
前記第1及び第2の感磁部を定電流駆動した場合は電圧である  When the first and second magnetic sensing parts are driven at a constant current, they are voltages.
ことを特徴とする請求項1に記載の磁気センサ。  The magnetic sensor according to claim 1.
前記第1及び第2の感磁部のどちらか一方にバイアス磁石を備えていることを特徴とする請求項1又は2に記載の磁気センサ。 3. The magnetic sensor according to claim 1, wherein a bias magnet is provided in one of the first and second magnetic sensing portions. 前記第1及び第2の感磁部のそれぞれにバイアス磁石を備え、かつ前記第1及び第2の感磁部の前記バイアス磁石の個数及び/又は強度が異なることを特徴とする請求項1又は2に記載の磁気センサ。 Claim 1 or, characterized in comprising a bias magnet, and the number and / or intensity of the bias magnet of the first and second magnetically sensitive portion is different for each of said first and second magnetically sensitive portion 2. The magnetic sensor according to 2 . 基板の平面に対して任意の軸方向の磁場を検知できるようにした磁気センサにおいて、
前記基板に設けられた第1の感磁部と、該第1の感磁部に併設された第2の感磁部と
前記第1及び第2の感磁部の出力の差分に基づいて前記感磁軸方向の磁場成分に応じた信号を出力する差分演算部とを備え、
前記第1及び第2の感磁部は、無磁場下での電気抵抗が等しく、かつ感磁軸方向が反平行でることを特徴とする磁気センサ。
In a magnetic sensor capable of detecting a magnetic field in an arbitrary axial direction with respect to the plane of the substrate,
A first magnetic sensing part provided on the substrate; a second magnetic sensing part provided alongside the first magnetic sensing part ;
A difference calculation unit that outputs a signal corresponding to the magnetic field component in the direction of the magnetosensitive axis based on the difference between the outputs of the first and second magnetosensitive units ;
It said first and second magnetic sensitive section, the magnetic sensor electrical resistance under no magnetic field is equal and magnetosensitive axis direction is characterized Oh Rukoto antiparallel.
基板の平面に対して任意の軸方向の磁場を検知できるようにした磁気センサにおける磁場成分演算方法において、
前記基板に設けられた第1の感磁部と、該第1の感磁部に併設された第2の感磁部と
前記第1及び第2の感磁部の出力の差分に基づいて前記感磁軸方向の磁場成分に応じた信号を出力する差分演算部とを備え、
前記第1及び第2の感磁部は、無磁場下での電気抵抗が等しく、かつ感磁軸方向が一致で、外部磁場に対する磁気抵抗感度が異な
前記第1及び第2の感磁部の厚みが等しく、平面視したときに、前記第1及び第2の感磁部が矩形で、かつ該第1及び第2の感磁部の長手方向の長さと短手方向の幅の比が等しく、感磁軸方向の長さが異なることを特徴とする磁場成分演算方法。
In a magnetic field component calculation method in a magnetic sensor capable of detecting a magnetic field in an arbitrary axial direction with respect to a plane of a substrate,
A first magnetic sensing part provided on the substrate; a second magnetic sensing part provided alongside the first magnetic sensing part ;
A difference calculation unit that outputs a signal corresponding to the magnetic field component in the direction of the magnetosensitive axis based on the difference between the outputs of the first and second magnetosensitive units ;
It said first and second magnetically sensitive portion is equal electrical resistance under no magnetic field, and in the magnetic sensing axis direction matches, Ri magnetoresistive sensitivity Do different with respect to the external magnetic field,
The thicknesses of the first and second magnetic sensing parts are equal, and when viewed in plan, the first and second magnetic sensing parts are rectangular, and the longitudinal direction of the first and second magnetic sensing parts is A method of calculating a magnetic field component, wherein the ratio of the length and the width in the short direction is equal, and the length in the magnetosensitive axis direction is different.
前記第1及び第2の感磁部のどちらか一方にバイアス磁石を備えていることを特徴とする請求項6に記載の磁場成分演算方法。   The magnetic field component calculation method according to claim 6, wherein a bias magnet is provided in one of the first and second magnetic sensing portions. 前記第1及び第2の感磁部のそれぞれにバイアス磁石を備え、かつ前記第1及び第2の感磁部の前記バイアス磁石の個数及び/又は強度が異なることを特徴とする請求項6に記載の磁場成分演算方法。   The bias magnet is provided in each of the first and second magnetic sensing portions, and the number and / or strength of the bias magnets of the first and second magnetic sensing portions are different. The magnetic field component calculation method described. 基板の平面に対して任意の軸方向の磁場を検知できるようにした磁気センサにおける磁場成分演算方法において、
前記基板に設けられた第1の感磁部と、該第1の感磁部に併設された第2の感磁部と
前記第1及び第2の感磁部の出力の差分に基づいて前記感磁軸方向の磁場成分に応じた信号を出力する差分演算部とを備え、
無磁場下での電気抵抗が等しく、かつ感磁軸方向が反平行でることを特徴とする磁場成分演算方法。
In a magnetic field component calculation method in a magnetic sensor capable of detecting a magnetic field in an arbitrary axial direction with respect to a plane of a substrate,
A first magnetic sensing part provided on the substrate; a second magnetic sensing part provided alongside the first magnetic sensing part ;
A difference calculation unit that outputs a signal corresponding to the magnetic field component in the direction of the magnetosensitive axis based on the difference between the outputs of the first and second magnetosensitive units ;
Field component calculation method the electric resistance of the under no magnetic field is equal and magnetosensitive axis direction is characterized Oh Rukoto antiparallel.
JP2013100261A 2013-05-10 2013-05-10 Magnetic sensor and magnetic field component calculation method Active JP6285641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013100261A JP6285641B2 (en) 2013-05-10 2013-05-10 Magnetic sensor and magnetic field component calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013100261A JP6285641B2 (en) 2013-05-10 2013-05-10 Magnetic sensor and magnetic field component calculation method

Publications (2)

Publication Number Publication Date
JP2014219350A JP2014219350A (en) 2014-11-20
JP6285641B2 true JP6285641B2 (en) 2018-02-28

Family

ID=51937918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013100261A Active JP6285641B2 (en) 2013-05-10 2013-05-10 Magnetic sensor and magnetic field component calculation method

Country Status (1)

Country Link
JP (1) JP6285641B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101523214A (en) * 2006-10-09 2009-09-02 皇家飞利浦电子股份有限公司 Magnetic sensor device with pairs of detection units
JP2008209224A (en) * 2007-02-26 2008-09-11 Daido Steel Co Ltd Magnetic sensor

Also Published As

Publication number Publication date
JP2014219350A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
EP2442117B1 (en) Magnetic balance current sensor
US10989769B2 (en) Magneto-resistive structured device having spontaneously generated in-plane closed flux magnetization pattern
US9116198B2 (en) Planar three-axis magnetometer
US8427144B2 (en) Magnetic sensor that includes magenetoresistive films and conductors that combine the magnetoresistive films
JP5297539B2 (en) Magnetic sensor
JP4837749B2 (en) Magnetic sensor and magnetic encoder using the same
US9964601B2 (en) Magnetic sensor
US9400315B2 (en) Current sensor
US9810748B2 (en) Tunneling magneto-resistor device for sensing a magnetic field
EP3531153B1 (en) Spin valve with bias alignment
US10557726B2 (en) Systems and methods for reducing angle error for magnetic field angle sensors
JP5532166B1 (en) Magnetic sensor and magnetic sensor system
US9933462B2 (en) Current sensor and current measuring device
JP2006125962A (en) Current sensor
US9389286B2 (en) Magnetic sensor with reduced effect of interlayer coupling magnetic field
JP6427588B2 (en) Magnetic sensor
JP2016176911A (en) Magnetic sensor
JP2009175120A (en) Magnetic sensor and magnetic sensor module
JP2016517952A (en) Magnetic sensing device, magnetic induction method and manufacturing process thereof
JP2017072375A (en) Magnetic sensor
JP2013210335A (en) Magnetic sensor
JP6321323B2 (en) Magnetic sensor
KR20150056064A (en) Magnetic detecting device
JP6185298B2 (en) Magnetic sensor
US20150198430A1 (en) Magnetism detection element and rotation detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180202

R150 Certificate of patent or registration of utility model

Ref document number: 6285641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350