JP6284186B2 - Radiation dose measuring method and dosimeter - Google Patents

Radiation dose measuring method and dosimeter Download PDF

Info

Publication number
JP6284186B2
JP6284186B2 JP2014054007A JP2014054007A JP6284186B2 JP 6284186 B2 JP6284186 B2 JP 6284186B2 JP 2014054007 A JP2014054007 A JP 2014054007A JP 2014054007 A JP2014054007 A JP 2014054007A JP 6284186 B2 JP6284186 B2 JP 6284186B2
Authority
JP
Japan
Prior art keywords
diarylethene
radiation
ring
composition
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014054007A
Other languages
Japanese (ja)
Other versions
JP2015174963A (en
Inventor
入江 正浩
正浩 入江
忠承 山口
忠承 山口
一郎 ▲高▼島
一郎 ▲高▼島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKKYO EDUCATIONAL CORPORATION
Original Assignee
RIKKYO EDUCATIONAL CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKKYO EDUCATIONAL CORPORATION filed Critical RIKKYO EDUCATIONAL CORPORATION
Priority to JP2014054007A priority Critical patent/JP6284186B2/en
Publication of JP2015174963A publication Critical patent/JP2015174963A/en
Application granted granted Critical
Publication of JP6284186B2 publication Critical patent/JP6284186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は放射線線量の測定方法およびその線量計に関し、より詳しくは放射線の照射により蛍光特性を示すようになる化合物を用いた放射線線量の測定方法およびその線量計に関する。   The present invention relates to a radiation dose measurement method and a dosimeter thereof, and more particularly to a radiation dose measurement method and a dosimeter using a compound that exhibits fluorescence characteristics upon irradiation with radiation.

紫外線と可視光線とを交互に光照射することにより、2つの構造異性体を可逆的に生成する現象をフォトクロミズムといい、フォトクロミズムを示す化合物をフォトクロミック化合物という。フォトクロミック化合物は、光記録材料、表示材料、光センサー、調光材料等の用途に使用されている。   A phenomenon in which two structural isomers are reversibly generated by alternately irradiating ultraviolet rays and visible light is called photochromism, and a compound exhibiting photochromism is called a photochromic compound. Photochromic compounds are used in applications such as optical recording materials, display materials, optical sensors, and light control materials.

フォトクロミック化合物の1つであるジアリールエテンは、上記用途への応用において特に重要な特性である熱安定性、化学的安定性、および繰り返し耐久性に優れており、実用化に向けた検討が行われている。例えば、非特許文献1は、ジアリールエテンの応用について開示する。   Diarylethene, which is one of the photochromic compounds, has excellent thermal stability, chemical stability, and repeated durability, which are particularly important characteristics in application to the above applications, and has been studied for practical use. Yes. For example, Non-Patent Document 1 discloses application of diarylethene.

ジアリールエテンは、下記の一般式で示されるように、紫外線と可視光線とを交互に照射することによって、異性体(開環体と閉環体)を可逆的に生成する。ジアリールエテンの開環体は通常無色である。開環体に紫外線を照射するとジアリールエテンの閉環体が生成する。ジアリールエテンの閉環体は着色している。着色したジアリールエテンの閉環体に可視光線を照射すると元の無色の開環体にもどる。

Figure 0006284186
As shown by the following general formula, diarylethene reversibly produces isomers (open and closed rings) by alternately irradiating ultraviolet rays and visible rays. The ring opening of diarylethene is usually colorless. When the ring-opened body is irradiated with ultraviolet light, a diarylethene ring-closed body is formed. The ring closure of diarylethene is colored. When the colored diarylethene ring-closed body is irradiated with visible light, it returns to the original colorless ring-opened body.
Figure 0006284186

特許文献1にはジアリールエテン中のアリール骨格がベンゾスルホン骨格であるジアリールエテンが開示されている。具体的にはベンゾチオフェン−1,1−ジオキシド−3−イル基を有する化合物が開示されている。この化合物は、上記一般式に示される通常のジアリールエテンと同様に、開環体に紫外線を照射すると可視部に吸収帯をもつ閉環体へ変換し、その閉環体に可視光線を照射すると元の開環体へ戻る。   Patent Document 1 discloses a diarylethene in which the aryl skeleton in the diarylethene is a benzosulfone skeleton. Specifically, a compound having a benzothiophen-1,1-dioxide-3-yl group is disclosed. Similar to the normal diarylethene represented by the above general formula, this compound is converted to a closed ring having an absorption band in the visible region when irradiated with ultraviolet rays, and when the closed ring is irradiated with visible light, the original opened state is converted. Return to the ring.

非特許文献2や非特許文献3には、上記のベンゾスルホン型ジアリールエテンの製造方法と、1,4−ジオキサン中等の有機溶剤中における閉環体の蛍光量子収率が記載されている。   Non-Patent Document 2 and Non-Patent Document 3 describe a method for producing the above benzosulfone-type diarylethene and the fluorescence quantum yield of the ring-closed compound in an organic solvent such as 1,4-dioxane.

ジアリールエテンに放射線を照射すると着色することを利用した放射線カラー線量計に関する研究が行われている。特許文献2には、チオフェン環やチアゾール環を有するジアリールエテンの開環体を含むポリスチレン膜に放射線を照射すると、閉環体が生成し、生成した閉環体の着色量により照射線量が求められることが開示されている。   Studies have been conducted on radiation color dosimeters that utilize the coloration of diarylethene when irradiated. Patent Document 2 discloses that when a polystyrene film containing a diarylethene ring-opening body having a thiophene ring or a thiazole ring is irradiated with radiation, a ring-closing body is generated, and an irradiation dose is determined by a coloring amount of the generated ring-closing body. Has been.

特許文献2には、チオフェン環やチアゾール環を有するジアリールエテンと、シンチレーション材料を直接混在させたポリスチレン膜に関する研究が開示されている。シンチレーションの材料として、BaFCl:Eu2+やCeMgAl1119、CaWO、ZnSAgが用いられている。これらを添加すると、シンチレーション材料を加えていない場合に比べて、着色量が最大8倍も増大することが開示されている。 Patent Document 2 discloses a study on a polystyrene film in which a diarylethene having a thiophene ring or a thiazole ring and a scintillation material are directly mixed. As a material for scintillation, BaFCl: Eu 2+ , CeMgAl 11 O 19 , CaWO 4 , and ZnSAg are used. It is disclosed that when these are added, the coloring amount is increased by a maximum of 8 times compared to the case where no scintillation material is added.

特許文献3には、ジアリールエテン閉環体を含む溶液に放射線を照射し、着色量によって照射線量を測定する方法が開示されている。また、特許文献4には、ポリスチレン等の芳香族基をもつ高分子媒体を用いると、放射線感受性が高まることが開示されている。特許文献5〜7には、ジアリールエテンにメトキシ置換基を導入することにより放射線感受性および着色体の安定性の向上を行うことも開示されている。   Patent Document 3 discloses a method of irradiating a solution containing a diarylethene ring-closed product with radiation and measuring an irradiation dose based on a coloring amount. Patent Document 4 discloses that radiation sensitivity is increased when a polymer medium having an aromatic group such as polystyrene is used. Patent Documents 5 to 7 also disclose that radiation sensitivity and stability of a colored body are improved by introducing a methoxy substituent into diarylethene.

特許文献2〜7に記載の技術は、ジアリールエテンの着色の程度を、吸収スペクトロメーター等を用いて検出することにより、あるいは一定の濃度に着色した標準サンプルとの比較により、照射線量を測定する方法である。
一方、超高密度光メモリに関する非特許文献4に開示されているように、実験的に、すでに1分子レベルにおいて蛍光性化合物を検出することが可能であることが実証されている。
The techniques described in Patent Documents 2 to 7 are methods for measuring an irradiation dose by detecting the degree of coloration of diarylethene using an absorption spectrometer or the like, or by comparing with a standard sample colored to a certain concentration. It is.
On the other hand, as disclosed in Non-Patent Document 4 regarding ultra-high density optical memory, it has been experimentally demonstrated that it is already possible to detect a fluorescent compound at a single molecule level.

特開2012−172139号公報JP 2012-172139 A 特開2003−64353号公報JP 2003-64353 A 特開平11−258348号公報Japanese Patent Laid-Open No. 11-258348 特開2001−354862号公報JP 2001-354862 A 特開2002−309244号公報JP 2002-309244 A 特開2002−334498号公報JP 2002-334498 A 特開2004−45037号公報JP 2004-45037 A

入江正浩、Chemical Reviews、(米国)、American Chemical Society、2000年5月、第100巻、第5号、p.1685−1716Masahiro Irie, Chemical Reviews, (USA), American Chemical Society, May 2000, Vol. 100, No. 5, p. 1685-1716 入江正浩、他、Journal of the American Chemical Society、(米国)、American Chemical Society、2011年、第133巻、p.13558−13564Masahiro Irie, et al., Journal of the American Chemical Society, (USA), American Chemical Society, 2011, Vol. 133, p. 13558-13564 入江正浩、他6人、Photochemical & Photobiological Science、(イギリス)、The Royal Society of Chemistry、2012年、第11巻、p.1661−1665Masahiro Irie, 6 others, Photochemical & Photobiological Science, (UK), The Royal Society of Chemistry, 2012, Vol. 11, p. 1661-1665 入江正浩、他4人、「ネイチャー(Nature)」、2002年、第420巻、p.759−761Masahiro Irie, 4 others, “Nature”, 2002, 420, p. 759-761

従来の放射線線量計は着色の度合いによって線量を測定するが、このような線量計は感度が不十分であった。かかる事情を鑑み、本発明は感度に優れた放射線線量の測定方法および線量計を提供することを課題とする。   Conventional radiation dosimeters measure dose according to the degree of coloration, but such dosimeters have insufficient sensitivity. In view of such circumstances, it is an object of the present invention to provide a radiation dose measurement method and a dosimeter with excellent sensitivity.

発明者らは、その閉環体が蛍光特性を示すジアリールエテンを用いて蛍光強度により放射線線量を測定すれば、格段の高感度化が見込まれることを着想し本発明を完成した。すなわち、前記課題は以下の本発明により解決される。
(1)紫外線および波長が430nm未満の可視光線遮光下で、式1aで表されるジアリールエテンを含む組成物を準備する工程、
前記組成物に紫外線および波長が430nm未満の可視光線遮光下で放射線を照射して式1bで表されるジアリールエテンを生成する工程、ならびに、
前記工程で得た組成物の蛍光強度を測定する工程、
を含む、放射線線量の測定方法。
(2)前記Yがハロゲン原子であり、nが0であり、かつmが5である、(1)に記載の方法。
(3)前記RおよびRが、フェニル基またはチエニル基である、(1)または(2)に記載の方法。
(4)紫外線および波長が430nm未満の可視光線を遮光する容器内に収納した、式1aで表されるジアリールエテンを含む組成物を備える、放射線線量計。
(5)前記容器の周囲に配置された、紫外領域に発光特性を有するシンチレーション材料をさらに備える、(4)に記載の放射線線量計。
The inventors have conceived that if the radiation dose is measured by the fluorescence intensity using diarylethene whose ring-closed body exhibits fluorescence properties, the present invention has been completed with the idea that a markedly higher sensitivity is expected. That is, the said subject is solved by the following this invention.
(1) A step of preparing a composition containing diarylethene represented by formula 1a under the shielding of ultraviolet rays and visible light having a wavelength of less than 430 nm,
Irradiating the composition with ultraviolet rays and a visible light shield having a wavelength of less than 430 nm to produce a diarylethene represented by formula 1b; and
Measuring the fluorescence intensity of the composition obtained in the step,
A method for measuring radiation dose, including:
(2) The method according to (1), wherein Y is a halogen atom, n is 0, and m is 5.
(3) The method according to (1) or (2), wherein R 3 and R 4 are a phenyl group or a thienyl group.
(4) A radiation dosimeter comprising a composition containing diarylethene represented by formula 1a, housed in a container that blocks ultraviolet rays and visible light having a wavelength of less than 430 nm.
(5) The radiation dosimeter according to (4), further comprising a scintillation material having a light emission characteristic in an ultraviolet region, which is disposed around the container.

本発明により感度に優れた放射線線量の測定方法および線量計を提供できる。   The present invention can provide a radiation dose measuring method and a dosimeter having excellent sensitivity.

化合物2aのトルエン溶液中における蛍光スペクトルと放射線照射量との関係Relationship between the fluorescence spectrum of compound 2a in toluene solution and the irradiation dose 化合物2aの530nmにおける蛍光強度と放射線照射量との関係Relationship between fluorescence intensity of compound 2a at 530 nm and radiation dose 化合物3aの530nmにおける蛍光強度と放射線照射量との関係Relationship between fluorescence intensity of compound 3a at 530 nm and radiation dose 化合物4aの586nmにおける蛍光強度と放射線照射量との関係Relationship between fluorescence intensity of compound 4a at 586 nm and radiation dose BaFCl:Eu薄膜に挟んだ、化合物2aを添加したポリスチレン薄膜の蛍光スペクトルと放射線照射量との関係Relationship between fluorescence spectrum and radiation dose of polystyrene thin film with compound 2a sandwiched between BaFCl: Eu thin films BaFCl:Eu薄膜に挟んだ、化合物2aを添加したポリスチレン薄膜薄膜の530nmにおける蛍光強度と放射線照射量との関係Relationship between fluorescence intensity at 530 nm and radiation dose of polystyrene thin film with compound 2a sandwiched between BaFCl: Eu thin films 化合物3aを添加したポリスチレン薄膜の蛍光スペクトルと放射線照射量との関係Relationship between fluorescence spectrum and radiation dose of polystyrene thin film to which compound 3a is added BaFCl:Eu薄膜に挟んだ、化合物3aを添加したポリスチレン薄膜の蛍光スペクトルと放射線照射量との関係Relationship between fluorescence spectrum and radiation dose of polystyrene thin film added with compound 3a sandwiched between BaFCl: Eu thin films

以下、本発明を詳細に説明する。本発明において「X〜Y」は両端の値すなわちXとYの双方を含むことを意味する。
1.測定方法
本発明の放射線線量の測定方法は、
紫外線および波長が430nm未満の可視光線遮光下で、式1aで表されるジアリールエテンを含む組成物を準備する工程(準備工程)、
前記組成物に紫外線および波長が430nm未満の可視光線遮光下で放射線を照射して式1bで表されるジアリールエテンを生成する工程(照射工程)、ならびに
前記工程で得た組成物の蛍光強度を測定する工程(測定工程)、を含む。
Hereinafter, the present invention will be described in detail. In the present invention, “X to Y” means that both values, that is, both X and Y are included.
1. Measuring method The measuring method of radiation dose of the present invention,
A step of preparing a composition containing diarylethene represented by Formula 1a under the shielding of ultraviolet rays and visible light having a wavelength of less than 430 nm (preparation step);
A step of irradiating the composition with ultraviolet light and a visible light shield having a wavelength of less than 430 nm to produce a diarylethene represented by Formula 1b (irradiation step), and measuring the fluorescence intensity of the composition obtained in the step Including a process (measurement process).

(1)準備工程
本工程では、式1aで表されるジアリールエテン(以下、「開環体」ともいう)を含む組成物を準備する。
(1) Preparation Step In this step, a composition containing a diarylethene represented by the formula 1a (hereinafter also referred to as “ring-opened product”) is prepared.

Figure 0006284186
Figure 0006284186

式中RおよびRはそれぞれ独立して炭素数1〜4のアルキル基である。本発明においてアルキル基は、直鎖状アルキル基および分岐状アルキル基の双方を含む。
およびRはそれぞれ独立して炭素数5〜10のアリール基である。本発明においてアリール基は、芳香族炭化水素基および複素芳香族炭化水素基を含む。アリール基としては、非置換のまたは置換基を有するフェニル基またはチエニル基が好ましい。この場合の置換基は、炭素数が1〜3のアルキル基が好ましく、メチル基がより好ましい。
In the formula, R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms. In the present invention, the alkyl group includes both a linear alkyl group and a branched alkyl group.
R 3 and R 4 are each independently an aryl group having 5 to 10 carbon atoms. In the present invention, the aryl group includes an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group. As the aryl group, an unsubstituted or substituted phenyl group or thienyl group is preferable. In this case, the substituent is preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.

nは独立に0または1であり、RおよびRの数を示す。RおよびRは炭素数1〜3のアルキル基である。RおよびRが存在すると合成が困難となる場合があるので、nは0であることが好ましい。ただし、nが1である場合、RおよびRはメチル基またはエチル基が好ましい。
−(CY)m−は脂環骨格を示す。Yは水素原子またはハロゲン原子であり、mは脂環骨格の員数を示し、5〜7の整数である。mは5であることが好ましく、Yはハロゲン原子であることが好ましく、フッ素原子であることがより好ましい。すなわちmが5でYがフッ素原子である場合、式1aの化合物は以下の脂環骨格を有することを意味する。
n is independently 0 or 1, and represents the number of R 5 and R 6 . R 5 and R 6 are alkyl groups having 1 to 3 carbon atoms. Since the synthesis may be difficult when R 5 and R 6 are present, n is preferably 0. However, when n is 1, R 5 and R 6 are preferably a methyl group or an ethyl group.
-(CY) m- represents an alicyclic skeleton. Y is a hydrogen atom or a halogen atom, m represents the number of alicyclic skeletons, and is an integer of 5 to 7. m is preferably 5, Y is preferably a halogen atom, and more preferably a fluorine atom. That is, when m is 5 and Y is a fluorine atom, it means that the compound of formula 1a has the following alicyclic skeleton.

Figure 0006284186
Figure 0006284186

開環体は公知の方法、例えば非特許文献2または3に記載の方法で合成できる。
開環体を溶媒に溶解または分散させることにより組成物を調製できる。組成物は、前記の場合は溶液となり、後者の場合は分散液となる。溶媒は特に限定されないが、トルエン等の芳香族炭化水素や、1,4−ジオキサン等のエーテルが好ましい。当該溶媒と開環体との配合比は、溶媒1Lに対して開環体1〜10gが好ましい。
The ring-opened product can be synthesized by a known method, for example, the method described in Non-Patent Document 2 or 3.
A composition can be prepared by dissolving or dispersing the ring-opened product in a solvent. The composition is a solution in the above case and a dispersion in the latter case. The solvent is not particularly limited, but aromatic hydrocarbons such as toluene and ethers such as 1,4-dioxane are preferable. The mixing ratio of the solvent and the ring-opened body is preferably 1 to 10 g of the ring-opened body with respect to 1 L of the solvent.

また、開環体をポリマー中に溶解または分散させることにより組成物を調製できる。ポリマーとしては限定されないが、ポリスチレン、芳香族ポリエステル等の芳香環を有するポリマーが好ましい。芳香環を有するポリマーは紫外線を吸収するので、本願発明で用いるジアリールエテンに対して紫外線を遮蔽する効果を有するからである。   Moreover, a composition can be prepared by dissolving or dispersing the ring-opened product in a polymer. Although it does not limit as a polymer, The polymer which has aromatic rings, such as a polystyrene and aromatic polyester, is preferable. This is because the polymer having an aromatic ring absorbs ultraviolet rays and thus has an effect of shielding ultraviolet rays against the diarylethene used in the present invention.

開環体をポリマー中に溶解または分散させる方法も限定されないが、例えば、開環体の溶液とポリマーの溶液とを準備し、両者を混合した後に溶媒を除去することにより組成物を調製できる。この際、キャストフィルムとすると取扱性が向上するので好ましい。当該ポリマーと開環体との配合比は、ポリマー1gに対して開環体0.01〜0.5gが好ましく、0.05〜0.1gがより好ましい。   A method for dissolving or dispersing the ring-opened product in the polymer is not limited, but for example, a composition can be prepared by preparing a solution of the ring-opened product and a solution of the polymer, mixing them, and then removing the solvent. In this case, it is preferable to use a cast film because the handleability is improved. The blending ratio of the polymer to the ring-opened product is preferably 0.01 to 0.5 g, more preferably 0.05 to 0.1 g, based on 1 g of the polymer.

本発明においては、紫外線および波長が430nm未満の可視光線を遮光した状態で組成物を準備する。環境光に含まれる紫外線および波長が430nm未満の可視光線は当該開環体を閉環体に転化するので、開環体を線量計に用いる際に正しい測定ができなくなるためである。また、紫外線より短波長の光が有意に存在する環境下で組成物を準備することは現実的には想定できないのであえて規定はしていないが、本発明の趣旨から、放射線等の紫外線より短波長の光の影響を受けずに組成物を準備することは必須である。すなわち、波長が430nm未満の光線の影響を受けずに組成物を準備することは必須である。   In the present invention, the composition is prepared in a state where ultraviolet rays and visible light having a wavelength of less than 430 nm are shielded. This is because ultraviolet rays contained in ambient light and visible light having a wavelength of less than 430 nm convert the ring-opened body into a ring-closed body, so that correct measurement cannot be performed when the ring-opened body is used in a dosimeter. Although it is not possible to prepare a composition in an environment where light having a wavelength shorter than that of ultraviolet rays is significantly present, it is not stipulated, but for the purpose of the present invention, it is shorter than ultraviolet rays such as radiation. It is essential to prepare the composition without being affected by light of the wavelength. That is, it is essential to prepare the composition without being affected by light having a wavelength of less than 430 nm.

紫外線および波長が430nm未満の可視光線を遮蔽した環境下、例えば当該光線を遮蔽するフィルターを通した光の環境下で、開環体の合成および組成物の調製を実施することができる。あるいは、前記光線を遮蔽しない環境下で前記ジアリールエテンの合成を行い、その後、可視光線に十分暴露してジアリールエテンを完全に開環体とした後に、前記光線を遮蔽した環境下にて組成物を調製してもよい。さらには、前記光線を遮蔽しない環境下で前記ジアリールエテンの合成および組成物の調製を行い、その後、可視光線に十分暴露してジアリールエテンを完全に開環体とした後に、前記光線を遮蔽した環境下にて組成物を調製してもよい。   Synthesis of the ring-opened compound and preparation of the composition can be carried out in an environment where ultraviolet rays and visible light having a wavelength of less than 430 nm are shielded, for example, in a light environment through a filter that shields the light rays. Alternatively, synthesis of the diarylethene is performed in an environment that does not block the light, and then the composition is prepared in an environment in which the light is shielded after sufficient exposure to visible light to completely diarylethene is ring-opened. May be. Furthermore, the diarylethene was synthesized and the composition was prepared in an environment where the light beam was not shielded, and then the diarylethene was fully exposed to visible light to completely open the diarylethene, and then the light beam was shielded. A composition may be prepared at

(2)照射工程
本工程では、前工程で得た組成物に紫外線および波長が430nm未満の可視光線で放射線を照射して、式1bで表されるジアリールエテン(以下「閉環体」ともいう)を生成させる。放射線としては、ガンマ線、X線などの電磁放射線、α線、β線、電子線などの粒子放射線が挙げられる。生成した閉環体は可視領域(l>400nm)に吸収を有する安定な化合物であり、熱的に元の開環体へ戻ることはない。前述のとおり、本工程も照射する放射線以外の光の影響を受けない条件下で実施される。
(2) Irradiation step In this step, the composition obtained in the previous step is irradiated with ultraviolet rays and visible light having a wavelength of less than 430 nm to give diarylethene represented by the formula 1b (hereinafter also referred to as “ring-closed body”). Generate. Examples of the radiation include electromagnetic radiation such as gamma rays and X-rays, and particle radiation such as α rays, β rays, and electron beams. The produced ring closure is a stable compound having absorption in the visible region (l> 400 nm) and does not thermally return to the original ring opening. As described above, this step is also performed under conditions that are not affected by light other than the irradiation radiation.

(3)測定工程
吸収帯の存在する可視光線を閉環体に照射すると、光励起された閉環体は蛍光を発して基底状態となる。閉環体の生成量は放射線の照射線量に依存して線形的に増加し、さらにその生成量は蛍光強度の増加として検出できる。このため、本発明の組成物により、放射線量を高感度で測定できる。
(3) Measurement step When the closed ring is irradiated with visible light having an absorption band, the photoexcited closed ring emits fluorescence and becomes a ground state. The amount of closed ring produced increases linearly depending on the radiation dose, and the amount produced can be detected as an increase in fluorescence intensity. For this reason, the radiation dose can be measured with high sensitivity by the composition of the present invention.

2.線量計
本発明の放射線線量計は、紫外線および波長が430nm未満の可視光線を遮光する容器内に収納した式1aで表されるジアリールエテンを含む組成物を備える。ジアリールエテンを含む組成物についてはすでに述べたとおりである。
2. Dosimeter The radiation dosimeter of the present invention includes a composition containing diarylethene represented by Formula 1a housed in a container that shields ultraviolet rays and visible light having a wavelength of less than 430 nm. The composition containing diarylethene has already been described.

紫外線および波長が430nm未満の可視光線を遮光する容器は限定されない。組成物が溶液である場合、当該溶液を容器内に収納するとは、当該溶液を、前記光線を遮蔽するフィルターからなる容器、当該フィルターで被覆したガラス容器またはポリマー容器、金属箔からなる容器、金属箔で被覆したガラス容器またはポリマー容器、金属容器等に収容することを含む。また、組成物がポリマー組成物である場合、当該ポリマー組成物を容器内に収納するとは、前記フィルターや金属箔等で当該組成物を被覆することを含む。このように容器の形状、寸法は限定されず、使用する状況に応じて適宜適切な形状、寸法としてよい。   The container which shields ultraviolet rays and visible light having a wavelength of less than 430 nm is not limited. When the composition is a solution, storing the solution in a container means that the solution is a container made of a filter that shields the light beam, a glass container or a polymer container coated with the filter, a container made of metal foil, a metal It is contained in a glass container or polymer container coated with a foil, a metal container or the like. Moreover, when the composition is a polymer composition, storing the polymer composition in a container includes covering the composition with the filter, metal foil, or the like. As described above, the shape and dimensions of the container are not limited, and may be appropriately determined according to the situation of use.

前記容器の周囲には、紫外領域に発光特性をもつシンチレーション材料を配置してもよい。当該材料としてはBaFCl:Eu等が挙げられる。シンチレーション材料は、放射線の照射を受けると紫外領域に蛍光またはりん光を発生する。これらの光が本発明のジアリールエテンの開環体に吸収されると紫外線照射の場合と同様に可視部に吸収をもつ閉環体の生成が誘起される。よって、シンチレーション材料により本発明の線量計の放射線感受性が向上する。   A scintillation material having emission characteristics in the ultraviolet region may be disposed around the container. Examples of the material include BaFCl: Eu. The scintillation material generates fluorescence or phosphorescence in the ultraviolet region when irradiated with radiation. When these lights are absorbed by the ring-opened product of the diarylethene of the present invention, the formation of a ring-closed product having absorption in the visible region is induced as in the case of ultraviolet irradiation. Therefore, the radiation sensitivity of the dosimeter of the present invention is improved by the scintillation material.

以下に実施例を示す。本発明はこれらの実施例によって制限されない。
[参考例1]
ジアリールエテン2a、3a、および4aを、前述の非特許文献に記載の方法に準じて合成した。これらの化合物を、ヘキサン:酢酸エチル=8:2の混合溶媒を展開溶媒として、分取シリカゲルカラム(和光純薬工業株式会社製、Wakosil 5SIL)を用いて高速液体クロマトグラフィーにて精製した。次いで、トルエンとアセトンを用いて当該化合物の再結晶を行い、純粋な化合物2a、3a、および4aを得た。これらは無色の化合物であった。これらは、本発明で最も好ましい化合物である。すべての作業は紫外線および波長が430nm未満の可視光線を遮蔽した環境下で行った。
Examples are shown below. The present invention is not limited by these examples.
[Reference Example 1]
Diarylethenes 2a, 3a, and 4a were synthesized according to the method described in the aforementioned non-patent literature. These compounds were purified by high performance liquid chromatography using a preparative silica gel column (Wakosil 5SIL, manufactured by Wako Pure Chemical Industries, Ltd.) using a mixed solvent of hexane: ethyl acetate = 8: 2 as a developing solvent. Subsequently, the compound was recrystallized using toluene and acetone to obtain pure compounds 2a, 3a, and 4a. These were colorless compounds. These are the most preferred compounds in the present invention. All operations were performed in an environment where ultraviolet rays and visible light having a wavelength of less than 430 nm were shielded.

Figure 0006284186
Figure 0006284186

得た化合物について、蛍光光度計(株式会社日立製作所製、F−2500)で蛍光特性を測定した。通常の1cmの蛍光セルに当該化合物の入った溶液を加え、L−42のバンドパスフィルターで励起光中に含まれる微量の紫外光を除去して測定を行った。溶媒として、トルエンと1,4−ジオキサンを用いた。トルエン溶液中の化合物2a、3aは、488nmおよび500nmの光励起で無蛍光であった。トルエン溶液中の化合物4aは550nmの光励起で無蛍光であった。1、4−ジオキサン溶液とした場合も、蛍光は観察されなかった。   About the obtained compound, the fluorescence characteristic was measured with the fluorometer (the Hitachi, Ltd. make, F-2500). The solution containing the compound was added to a normal 1 cm fluorescent cell, and a trace amount of ultraviolet light contained in the excitation light was removed with an L-42 bandpass filter. Toluene and 1,4-dioxane were used as solvents. Compounds 2a and 3a in the toluene solution were non-fluorescent upon photoexcitation at 488 nm and 500 nm. Compound 4a in the toluene solution was non-fluorescent upon photoexcitation at 550 nm. Even when a 1,4-dioxane solution was used, no fluorescence was observed.

[実施例1]ジアリールエテン/溶媒組成物
化合物2a、3a、および4aのそれぞれ20mgをトルエン4mLに完全に溶解し、20mLのガラス瓶中に入れた。同様に化合物2a、3a、および4aのそれぞれ20mgを1,4−ジオキサンに完全に溶解し、20mLのガラス瓶中に入れた。大阪府立大学放射線研究所の第三照射室にて、この溶液にコバルト60のガンマ線を1時間かけて0.05Gy、0.1Gy、0.3Gy、0.5Gy、1Gy、1.5Gy、2Gy照射した。
また、化合物の量を2mgに変更したトルエンおよび1,4−ジオキサン溶液を同様に調製し、それぞれ20mLのガラス瓶中に入れた。当該ガラス瓶をアルミ箔で被覆して遮光した状態で、当該瓶に大阪府立大学の照射プールにてコバルト60ガンマ線を10Gy、100Gy照射した。
すべての作業は紫外線および波長が430nm未満の可視光線を遮蔽した環境下で行った。
Example 1 Diarylethene / Solvent Composition 20 mg of each of compounds 2a, 3a, and 4a was completely dissolved in 4 mL of toluene and placed in a 20 mL glass bottle. Similarly, 20 mg of each of compounds 2a, 3a, and 4a was completely dissolved in 1,4-dioxane and placed in a 20 mL glass bottle. In the third irradiation room of the Institute of Radiation, Osaka Prefecture University, this solution was irradiated with gamma rays of cobalt 60 for 1 hour at 0.05 Gy, 0.1 Gy, 0.3 Gy, 0.5 Gy, 1 Gy, 1.5 Gy, 2 Gy. did.
Moreover, the toluene and 1, 4- dioxane solution which changed the quantity of the compound to 2 mg were prepared similarly, and each was put into a 20 mL glass bottle. In a state where the glass bottle was covered with aluminum foil and shielded from light, the bottle was irradiated with 10 Gy and 100 Gy of cobalt 60 gamma rays in an irradiation pool of Osaka Prefecture University.
All operations were performed in an environment where ultraviolet rays and visible light having a wavelength of less than 430 nm were shielded.

トルエン溶液中の化合物2aにガンマ線を照射すると、ガンマ線によって2aが2b(閉環体)に転化した。2bの生成は蛍光スペクトルの測定により488nmまたは500nmの光励起によって現れる蛍光により確認できる。この蛍光性物質が2bの化学構造を有することは、非特許文献3、4から明らかである。この結果を図1に示す。トルエンの代わりに1、4−ジオキサンを用いた場合も、蛍光を発する2bの生成が確認できた。   When gamma rays were irradiated to the compound 2a in the toluene solution, 2a was converted to 2b (closed ring) by the gamma rays. The production of 2b can be confirmed by the fluorescence appearing by photoexcitation at 488 nm or 500 nm by measuring the fluorescence spectrum. It is clear from Non-Patent Documents 3 and 4 that this fluorescent substance has a chemical structure of 2b. The result is shown in FIG. Even when 1,4-dioxane was used instead of toluene, the production of 2b emitting fluorescence could be confirmed.

トルエン溶液中の化合物2aにガンマ線を照射した後、励起光488nmにおける蛍光スペクトルを測定した結果を図1に示す。0.05Gyから蛍光値が変化し、ガンマ線照射量の増大に伴い蛍光値が増大した。530nmにて検出したときの蛍光強度を図2に示す。放射線照射量増大に伴い蛍光強度が増大し、両者の関係は線形的に変化した。   FIG. 1 shows the result of measuring the fluorescence spectrum at 488 nm of excitation light after irradiating the compound 2a in the toluene solution with gamma rays. The fluorescence value changed from 0.05 Gy, and the fluorescence value increased as the amount of gamma ray irradiation increased. FIG. 2 shows the fluorescence intensity when detected at 530 nm. The fluorescence intensity increased with increasing radiation dose, and the relationship between the two changed linearly.

トルエン溶液中の化合物3aについても同様の検討を行った。ガンマ線を照射した後、励起光488nmにおける蛍光スペクトルを530nmにて検出した結果を図3に示す。0.05Gyで蛍光値が変化しガンマ線照射量の増大に伴い蛍光値が増大した。放射線照射量増大に伴い蛍光強度が増大し、両者の関係は線形的に変化した。   A similar study was conducted for compound 3a in the toluene solution. FIG. 3 shows the result of detecting the fluorescence spectrum at excitation light of 488 nm at 530 nm after irradiation with gamma rays. The fluorescence value changed at 0.05 Gy, and the fluorescence value increased as the gamma ray irradiation amount increased. The fluorescence intensity increased with increasing radiation dose, and the relationship between the two changed linearly.

トルエン溶液中においてチオフェン環を置換基として有する化合物4aについても検討を行った。励起光を550nmとし、586nmにて検出したときの蛍光強度を図4に示す。ガンマ線照射量増大に伴い蛍光強度が増大し、両者の関係は線形的に変化した。   The compound 4a having a thiophene ring as a substituent in a toluene solution was also examined. FIG. 4 shows the fluorescence intensity when the excitation light is 550 nm and detected at 586 nm. The fluorescence intensity increased with increasing gamma irradiation dose, and the relationship between the two changed linearly.

1,4−ジオキサン溶液中においても同様の測定を行った。これらの条件に基づく蛍光の測定値における数値の変化を表1にまとめた。   The same measurement was performed in a 1,4-dioxane solution. Table 1 summarizes the numerical changes in the fluorescence measurement values based on these conditions.

Figure 0006284186
Figure 0006284186

ガンマ線照射量の最小照射限界は0.05Gyである。この照射量においても再現性良く蛍光値の変化が認められたことから、溶液中においてmGyレベルでの放射線線量の検出が可能であることが明らかとなった。また、表1において、化合物2aのトルエン溶液の入った容器の周りに、結晶状態の塩化セリウム・7水和物を配置し、1Gyのガンマ線を照射した。その結果、何も配置せず照射量を1Gyとした場合の蛍光値38.96と比べて、蛍光値が増大し放射線感度が若干向上した。塩化セリウム・7水和物は、ガンマ線を紫外線へと変換することから、放射線感受性を向上させる効果があることが明らかとなった。   The minimum irradiation limit of the gamma ray irradiation dose is 0.05 Gy. The change in the fluorescence value was recognized with good reproducibility even at this irradiation amount, and it became clear that the radiation dose at the mGy level can be detected in the solution. In Table 1, crystalline cerium chloride heptahydrate was placed around a container containing a toluene solution of compound 2a and irradiated with 1 Gy of gamma rays. As a result, compared with the fluorescence value of 38.96 when nothing is arranged and the irradiation amount is 1 Gy, the fluorescence value is increased and the radiation sensitivity is slightly improved. It was revealed that cerium chloride heptahydrate has the effect of improving radiosensitivity because it converts gamma rays into ultraviolet rays.

[実施例2]ジアリールエテン/ポリマー組成物
本例では、化合物2a〜4aを透明なポリスチレンHF−77(ポリスチレンジャパン株式会社製)に添加して薄膜を形成した。代表例として化合物2aを用いた場合の手順を示す。すべての作業は紫外線および波長が430nm未満の可視光線を遮蔽した環境下で行った。
950mgのポリスチレンHF−77と5mLのトルエンを蓋付きガラス瓶に入れ、HF−77を2日かけて膨潤させた。別の蓋付きガラスビンに50mgの化合物2aと5mLのトルエンを入れ、LED赤色灯下で溶解させた。当該トルエン溶液を前記の膨潤したポリスチレンの入ったガラス瓶に入れ、溶解させた。この後、テフロン(登録商標)製の薄膜形成器の中に溶液をすべて注いだ。アルミホイルと黒色のゴミ袋をかぶせ、暗所下で7日間乾燥した。この方法により、化合物2aを含む、厚さ約0.5mm、幅25mm、長さ75mmのHF−77ポリスチレン薄膜を調製した。この薄膜を3等分し、厚さ約0.5mm、幅25mm、長さ25mmの膜に分割した後、真空乾燥機にて室温で12時間乾燥した。
[Example 2] Diarylethene / polymer composition In this example, compounds 2a to 4a were added to transparent polystyrene HF-77 (manufactured by Polystyrene Japan Co., Ltd.) to form a thin film. The procedure in the case of using Compound 2a as a representative example is shown. All operations were performed in an environment where ultraviolet rays and visible light having a wavelength of less than 430 nm were shielded.
950 mg of polystyrene HF-77 and 5 mL of toluene were placed in a glass bottle with a lid, and HF-77 was swollen over 2 days. In another glass bottle with a lid, 50 mg of compound 2a and 5 mL of toluene were placed and dissolved under a red LED light. The toluene solution was put into the glass bottle containing the swollen polystyrene and dissolved. Thereafter, all the solution was poured into a thin film former made of Teflon (registered trademark). It was covered with aluminum foil and black garbage bags and dried in the dark for 7 days. By this method, an HF-77 polystyrene thin film containing Compound 2a and having a thickness of about 0.5 mm, a width of 25 mm, and a length of 75 mm was prepared. This thin film was divided into three equal parts and divided into films having a thickness of about 0.5 mm, a width of 25 mm, and a length of 25 mm, and then dried at room temperature for 12 hours in a vacuum dryer.

当該薄膜を2枚のガラス板(100mm×100mm)に挟んだ。ガラス板の間にはスペーサーとして2枚の0.2mmアルミ板を配置した。ガラス板の上に0.8kgの銅板(100mm×100mm)を置き、その上に望遠鏡用バランスウエイト2.8kgを載せ、真空乾燥機中(10mmHg)で90分間140℃に加熱圧縮した。このようにして平らで透明なHF−77膜を作製した。放射線を照射する前にこの膜をスタイロカッターを用いて4等分し、約10mm×10mm、厚さ0.54mm程度の膜とした。   The thin film was sandwiched between two glass plates (100 mm × 100 mm). Two 0.2 mm aluminum plates were placed between the glass plates as spacers. A 0.8 kg copper plate (100 mm × 100 mm) was placed on the glass plate, 2.8 kg of the balance weight for the telescope was placed on the glass plate, and heated and compressed to 140 ° C. for 90 minutes in a vacuum dryer (10 mmHg). In this way, a flat and transparent HF-77 film was produced. Before irradiating with radiation, this film was divided into four equal parts by using a stylo cutter to form a film of about 10 mm × 10 mm and a thickness of about 0.54 mm.

化合物3a、4aを用いた場合も同様にして薄膜を作製した。ただし、化合物の量を100mgとし、かつ薄膜の寸法を約10mm×10mm、厚さ0.27mmとした。   A thin film was prepared in the same manner when compounds 3a and 4a were used. However, the amount of the compound was 100 mg, the dimensions of the thin film were about 10 mm × 10 mm, and the thickness was 0.27 mm.

蛍光光度計(株式会社日立製作所製、F−2500)の膜測定用のユニットを用いて前記薄膜の蛍光特性を評価した。測定においてはL−42のバンドパスフィルターで励起光中に含まれる微量の紫外光を除去した。さらに、これらの薄膜をアルミ箔により遮光した缶に入れて放射線を照射した。大阪府立大学放射線研究所の第三照射室でコバルト60のガンマ線を1時間かけて0.5Gy、1Gy、1.5Gy、2Gy照射した。   The fluorescence characteristics of the thin film were evaluated using a film measuring unit of a fluorometer (manufactured by Hitachi, Ltd., F-2500). In the measurement, a trace amount of ultraviolet light contained in the excitation light was removed with an L-42 bandpass filter. Furthermore, these thin films were put in a can shielded by an aluminum foil and irradiated with radiation. Cobalt 60 gamma rays were irradiated with 0.5 Gy, 1 Gy, 1.5 Gy, and 2 Gy for 1 hour in the third irradiation room of the Osaka Prefecture University Radiation Research Institute.

50mgの化合物2aを含むポリスチレン薄膜を用いた場合、放射線を照射しない場合(0Gy)と比べて放射線を照射した試料は照射量に応じて蛍光値が増大した。この結果は溶液を用いた実験と同様に、ポリマー薄膜中でもガンマ線照射によって閉環体(2b)が生成することを示している。   When a polystyrene thin film containing 50 mg of compound 2a was used, the fluorescence value of the sample irradiated with radiation increased according to the dose compared to the case where radiation was not irradiated (0 Gy). This result shows that the closed ring (2b) is formed by gamma ray irradiation in the polymer thin film as in the experiment using the solution.

シンチレーション材料BaFCl:Eu膜(東芝マテリアル製、TB−80)を2枚用いて、化合物2aを含むポリスチレン薄膜を挟みガンマ線を照射した。ポリスチレン薄膜を取り出し蛍光スペクトルを測定した結果を図5に示す。励起波長488nm、測定波長530nmで検出を行った。1Gyの比較において、BaFCl:Eu膜で取り囲むと蛍光値は表2に示すように8.65であり、同じ1Gyダイレクトに照射した値2.46と比べて約3.5倍蛍光強度が増大した。この結果は、組成物をBaFCl:Eu等のシンチレーション材料で取り囲むことによって、ガンマ線照射量に応じて蛍光発光体の生成量がさらに増大することを示している。さらに、0.5Gyのガンマ線照射で蛍光値が変化した。図6に示すようにガンマ線照射量の増大に伴い530nmにおける蛍光検出値が増大することが明らかとなった。 Two sheets of scintillation material BaFCl: Eu film (manufactured by Toshiba Materials, TB-80) were used to sandwich a polystyrene thin film containing compound 2a and irradiated with gamma rays. The result of taking out the polystyrene thin film and measuring the fluorescence spectrum is shown in FIG. Detection was performed at an excitation wavelength of 488 nm and a measurement wavelength of 530 nm. In the comparison of 1 Gy, when surrounded by a BaFCl: Eu film, the fluorescence value was 8.65 as shown in Table 2, and the fluorescence intensity increased about 3.5 times compared to the value 2.46 irradiated to the same 1 Gy direct. . This result shows that the amount of the fluorescent luminescent material generated is further increased according to the amount of gamma ray irradiation by surrounding the composition with a scintillation material such as BaFCl: Eu. Furthermore, the fluorescence value changed with 0.5 Gy of gamma ray irradiation. As shown in FIG. 6, it became clear that the fluorescence detection value at 530 nm increases with increasing gamma ray irradiation.

100mgの化合物3aを含むポリスチレン薄膜を用いた場合も、放射線を照射しない場合(0Gy)と比べて放射線を照射した試料は照射量に応じて蛍光値が増大した。図7に、ガンマ線を直接照射した薄膜の488nmで励起した場合の蛍光値の変化を示す。この結果はガンマ線照射によって閉環体(3b)が生成することを示している。   Even when a polystyrene thin film containing 100 mg of compound 3a was used, the fluorescence value of the sample irradiated with radiation increased according to the dose compared to the case where radiation was not irradiated (0 Gy). FIG. 7 shows a change in fluorescence value when the thin film directly irradiated with gamma rays is excited at 488 nm. This result shows that a closed ring (3b) is produced by gamma irradiation.

シンチレーション材料BaFCl:Eu膜(東芝マテリアル製、TB−80)を2枚用いて化合物3aを含むポリスチレン薄膜を挟みガンマ線を照射した。ポリスチレン薄膜を取り出し、蛍光スペクトルを測定した結果を図8に示す。励起波長488nm、測定波長530nmで検出を行った。2Gyの比較において、BaFCl:Eu膜で取り囲むと蛍光値は4.89であり、同じ2Gyダイレクトに照射した値4.21と比べて約1.2倍蛍光強度が増大した。   A scintillation material BaFCl: Eu film (manufactured by Toshiba Materials, TB-80) was used to sandwich a polystyrene thin film containing compound 3a and irradiated with gamma rays. FIG. 8 shows the result of taking out the polystyrene thin film and measuring the fluorescence spectrum. Detection was performed at an excitation wavelength of 488 nm and a measurement wavelength of 530 nm. In the comparison of 2Gy, the fluorescence value was 4.89 when surrounded by a BaFCl: Eu film, and the fluorescence intensity increased about 1.2 times compared to the value 4.21 irradiated to the same 2Gy direct.

表2に、薄膜中における蛍光強度の変化の結果をまとめた。表2には化合物の添加量、照射量、放射条件、測定結果を示した。「ダイレクト」とは、ポリスチレン薄膜の周りに何も配置せずに膜にガンマ線を照射したことを示す。「BaFCl:Eu膜中」とは、2枚の東芝マテリアル製MB−80膜にポリスチレン薄膜を挟んで測定したことを示す。「BaFCl:Eu粉」とは、カプセルケースにBaFCl:Eu粉を約16g入れ、その粉の中にポリエチレンでシールしたポリスチレン薄膜を入れた状態でガンマ線を照射したことを示す。「CaWO粉」とは、カプセルケースにCaWOの粉を約15g入れ、その粉の中にポリエチレンでシールしたポリスチレン薄膜を入れた状態でガンマ線を照射したことを示す。CaWO粉を用いた場合においても、東芝マテリアルのBaFCl:Eu膜を用いた場合と同様に、蛍光強度の増大が認められた。 Table 2 summarizes the results of changes in fluorescence intensity in the thin film. Table 2 shows the addition amount of the compound, the irradiation amount, the radiation conditions, and the measurement results. "Direct" indicates that the film was irradiated with gamma rays without placing anything around the polystyrene thin film. “In a BaFCl: Eu film” indicates that measurement was performed by sandwiching a polystyrene thin film between two MB-80 films manufactured by Toshiba Materials. “BaFCl: Eu powder” indicates that about 16 g of BaFCl: Eu powder was put in a capsule case and gamma rays were irradiated in a state where a polystyrene thin film sealed with polyethylene was put in the powder. “CaWO 4 powder” indicates that about 15 g of CaWO 4 powder was put in a capsule case and a polystyrene thin film sealed with polyethylene was put in the powder and gamma rays were irradiated. Even in the case of using CaWO 4 powder, an increase in fluorescence intensity was observed as in the case of using a Toshiba material BaFCl: Eu film.

Figure 0006284186
Figure 0006284186

溶液中の結果を示す図2、図3、図4、および、ポリスチレン薄膜の結果を示す図6から明らかなように、ガンマ線照射量に応じて蛍光強度が線形的に増大する。
つまり、本発明で用いた組成物は、ガンマ線照射量に応じて蛍光強度が増大する特徴を有する。したがって、本発明は照射線量を計測可能な放射線線量計として有用である。
As can be seen from FIGS. 2, 3, and 4 showing the results in the solution, and FIG. 6 showing the results of the polystyrene thin film, the fluorescence intensity increases linearly according to the gamma irradiation dose.
That is, the composition used in the present invention has a feature that the fluorescence intensity increases according to the dose of gamma rays. Therefore, the present invention is useful as a radiation dosimeter capable of measuring an irradiation dose.

Claims (3)

紫外線および波長が430nm未満の可視光線遮光下で、式1aで表されるジアリールエテンを含む組成物を準備する工程、
Figure 0006284186
(式中、RおよびRはそれぞれ独立して炭素数1〜4のアルキル基であり、
およびRはそれぞれ独立して非置換のまたは炭素数1〜3のアルキル基を置換基として有するフェニル基またはチエニル基であ
前記組成物に紫外線および波長が430nm未満の可視光線遮光下で放射線を照射して式1bで表されるジアリールエテンを生成する工程、
Figure 0006284186
(式中、R は前記のとおり定義される)
ならびに、
前記工程で得た組成物の蛍光強度を測定する工程、
を含む、放射線線量の測定方法。
Preparing a composition comprising diarylethene represented by formula 1a under ultraviolet light and visible light shielding having a wavelength of less than 430 nm;
Figure 0006284186
(Wherein R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms,
R 3 and R 4 Ru phenyl group or a thienyl group Der having independently unsubstituted or alkyl group having 1 to 3 carbon atoms as a substituent)
Irradiating the composition with ultraviolet rays and a visible light shield having a wavelength of less than 430 nm to produce a diarylethene represented by Formula 1b;
Figure 0006284186
(Wherein R 1 to R 4 are defined as above)
And
Measuring the fluorescence intensity of the composition obtained in the step,
A method for measuring radiation dose, including:
紫外線および波長が430nm未満の可視光線を遮光する容器内に収納した、式1aで表されるジアリールエテンを含む組成物を備える、放射線線量計。
Figure 0006284186
(式中、R は前記のとおり定義される)
A radiation dosimeter comprising a composition containing diarylethene represented by formula 1a, housed in a container that blocks ultraviolet rays and visible light having a wavelength of less than 430 nm.
Figure 0006284186
(Wherein R 1 to R 4 are defined as above)
前記容器の周囲に配置された、紫外領域に発光特性を有するシンチレーション材料をさらに備える、請求項に記載の放射線線量計。 The radiation dosimeter according to claim 2 , further comprising a scintillation material having a light emission characteristic in an ultraviolet region, which is disposed around the container.
JP2014054007A 2014-03-17 2014-03-17 Radiation dose measuring method and dosimeter Active JP6284186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014054007A JP6284186B2 (en) 2014-03-17 2014-03-17 Radiation dose measuring method and dosimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014054007A JP6284186B2 (en) 2014-03-17 2014-03-17 Radiation dose measuring method and dosimeter

Publications (2)

Publication Number Publication Date
JP2015174963A JP2015174963A (en) 2015-10-05
JP6284186B2 true JP6284186B2 (en) 2018-02-28

Family

ID=54254441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014054007A Active JP6284186B2 (en) 2014-03-17 2014-03-17 Radiation dose measuring method and dosimeter

Country Status (1)

Country Link
JP (1) JP6284186B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251770B2 (en) * 2019-02-07 2023-04-04 国立大学法人 筑波大学 Organic microresonator, organic microresonator array, anti-counterfeiting system, switching element, method for manufacturing organic microresonator, method for manufacturing organic microresonator array
CN112830918B (en) * 2019-11-22 2022-05-03 国家纳米科学中心 Photochromic diarylethene compound with up-conversion luminescence property and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216493A (en) * 1989-02-17 1990-08-29 Mitsubishi Atom Power Ind Inc Radiation sensitive display sheet
GB9325364D0 (en) * 1993-12-10 1994-02-16 British Nuclear Fuels Plc A method and material for the detection of ionising radiation
JP2002285146A (en) * 2001-03-27 2002-10-03 Masahiro Irie Photochromic composition and dosimeter
JP4238075B2 (en) * 2003-06-19 2009-03-11 三菱化学株式会社 Photochromic composition and radiation indicator using the same
JP2005082507A (en) * 2003-09-05 2005-03-31 Mitsubishi Chemicals Corp Diarylethene compound, photochromic material, color dosimeter and optical memory device
JP5704723B2 (en) * 2009-05-19 2015-04-22 国立大学法人 奈良先端科学技術大学院大学 Metal complexes and their use
JP5803025B2 (en) * 2011-02-24 2015-11-04 入江 正浩 Photochromic molecule

Also Published As

Publication number Publication date
JP2015174963A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
Filatov et al. BODIPY‐pyrene and perylene dyads as heavy‐atom‐free singlet oxygen sensitizers
Hermann et al. Metal‐Organic Frameworks as Hosts for Fluorinated Azobenzenes: A Path towards Quantitative Photoswitching with Visible Light
JP4852410B2 (en) Radiation monitoring apparatus and manufacturing method thereof
EP2976330B1 (en) New family of discriminating molecules for neutron and gamma rays and ionic liquids
Akselrod et al. New Al2O3: C, Mg crystals for radiophotoluminescent dosimetry and optical imaging
Wang et al. Sensitive X-ray detection and imaging by a scintillating Lead (II)-based Metal-Organic framework
WO2002102923A1 (en) Photochromic material and color dose meter using the same
Kurobori et al. A comparative study of optical and radiative characteristics of X-ray-induced luminescent defects in Ag-doped glass and LiF thin films and their applications in 2-D imaging
JP2005082507A (en) Diarylethene compound, photochromic material, color dosimeter and optical memory device
JP2002333478A (en) Color dosemeter, and photochromic compound
Asai et al. Isomerization behavior of spiropyran-based compounds upon X-ray irradiation
Kinashi et al. Radiochromic film containing spiropyran dye for dosimetry of low energy X‐rays
JP6284186B2 (en) Radiation dose measuring method and dosimeter
Sun et al. A photochromic and scintillation Eu-MOF with visual X-ray detection in bright and dark environments
JP3779604B2 (en) Radiation detector
Kato et al. Radio-photoluminescence phenomenon in non-doped CaF2 ceramic
US20220308241A1 (en) Metal-organic hybrid lattice material and use thereof in detection of radiation sources
Schwartz et al. High fatigue resistance of a photochromic dithienylethene embedded into the pores of a metal–organic framework (MOF)
Asato et al. Photosynergetic amplification of radiation input: from efficient UV induced cycloreversion to sensitive X-ray detection
Harrah Chemical dosimetry with doped poly (halostyrene) film
US3710109A (en) Precision dosimetry of high energy radiation
JP4190212B2 (en) Photochromic material and color dosimeter using the same
EP2395045B1 (en) High dose film dosimeter based on nitro blue tetrazolium and polyvinyl butyral for radiation processing
Xu et al. 0D Organic Manganese (II) Bromide Hybrids as Stable and Efficient X‐Ray Scintillator
Tao et al. A X-ray-induced photochromic ethylviologen-induced zinc phosphate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180125

R150 Certificate of patent or registration of utility model

Ref document number: 6284186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250