JP6282031B2 - Ventilator for air conditioning - Google Patents

Ventilator for air conditioning Download PDF

Info

Publication number
JP6282031B2
JP6282031B2 JP2012248426A JP2012248426A JP6282031B2 JP 6282031 B2 JP6282031 B2 JP 6282031B2 JP 2012248426 A JP2012248426 A JP 2012248426A JP 2012248426 A JP2012248426 A JP 2012248426A JP 6282031 B2 JP6282031 B2 JP 6282031B2
Authority
JP
Japan
Prior art keywords
air
carbon dioxide
concentration
switching threshold
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012248426A
Other languages
Japanese (ja)
Other versions
JP2014095532A (en
Inventor
健太 桶谷
健太 桶谷
亀石 圭司
圭司 亀石
茂己 小林
茂己 小林
正史 芦野
正史 芦野
大西 茂樹
茂樹 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012248426A priority Critical patent/JP6282031B2/en
Publication of JP2014095532A publication Critical patent/JP2014095532A/en
Application granted granted Critical
Publication of JP6282031B2 publication Critical patent/JP6282031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ventilation (AREA)

Description

本発明は、室内の炭酸ガス濃度に応じて換気を行う空調用換気装置に関するものである。   The present invention relates to an air-conditioning ventilator that performs ventilation according to indoor carbon dioxide gas concentration.

従来から、空調機のエネルギーを低減するとともに、快適な空気調和を行うために、給気ファンによって室外から室内へ導入される給気と、排気ファンによって室内から室外へ排出される排気との間で熱交換を行わせ、温度差を低減した給気を室内へ導くようにした熱交換型換気装置が用いられている。   Conventionally, in order to reduce the energy of the air conditioner and to achieve a comfortable air conditioning, the air supply fan introduces air between the outside and the air exhausted from the room to the outside by the exhaust fan. A heat exchange type ventilator is used in which heat exchange is performed in order to guide the air supply with a reduced temperature difference into the room.

事務所ビルなどでは、室内にいる人数の増減に応じて、室内の空気汚れの度合いは大きく異なる。通常、事務所ビルなどの換気設計は室内の在室率が100%状態で室内の炭酸ガス濃度が一定値以下となるように換気設計されているが、実際の室内の在室率は文献などの調査によると、50〜70%がほとんどであり、換気風量は例えば壁面に設置されたリモコンによって、ある風量に固定され設定されることが多い。このため、多人数が室内にいる場合には、室内の空気が汚れるという問題がある。また、早朝や夜間の時間帯では少人数或いは全然人がいない場合においては、過剰換気を行うことは空調負荷の増大となり、省エネ上好ましくない。   In an office building or the like, the degree of air pollution in the room varies greatly depending on the number of people in the room. Normally, ventilation design for office buildings is designed so that the indoor occupancy rate is 100% and the indoor carbon dioxide concentration is below a certain value. According to the survey, most of the air volume is 50 to 70%, and the ventilation air volume is often fixed and set to a certain air volume by, for example, a remote controller installed on the wall surface. For this reason, when many people are indoors, there exists a problem that indoor air gets dirty. In addition, when there are a small number of people or no people in the early morning and night time periods, excessive ventilation increases the air conditioning load, which is not preferable for energy saving.

換気を壁面に設置されたリモコンでタイマーを設定し、換気運転を制御する場合もある。タイマーの設定内容は、運転のON/OFF、風量切換であり、それぞれを設定しタイマーによる自動換気運転をする。実際は、1日の時間帯ごとに室内の人数を想定し、運転のON/OFF、風量切換を設定するが、在室人数に応じた最適風量での換気の運転設定が難しく、過剰換気で外気負荷の増大に伴う空調機の消費エネルギーの増大または過少換気で炭酸ガス濃度の増大による室内の空気環境の汚染につながるという課題がある。   In some cases, ventilation is controlled by setting a timer with a remote controller installed on the wall. The setting contents of the timer are ON / OFF of operation and air volume switching, and each is set and automatic ventilation operation is performed by the timer. Actually, the number of people in the room is assumed for each day of the day, and the operation ON / OFF and air volume switching are set. However, it is difficult to set the operation of ventilation with the optimum air volume according to the number of people in the room, and the outside air due to excessive ventilation There is a problem that an increase in energy consumption of the air conditioner accompanying an increase in load or a contamination of the indoor air environment due to an increase in carbon dioxide concentration due to under-ventilation.

室内へ炭酸ガスセンサーを設置し、室内の炭酸ガス濃度が炭酸ガスセンサーの濃度しきい値以上になったら換気扇を運転あるいは換気風量を多くし、室内の炭酸ガス濃度が炭酸ガスセンサーの濃度しきい値以下となったら換気扇の運転を停止あるいは換気風量を少なくする制御方法がある。しかし、炭酸ガスセンサーの濃度しきい値はユーザーが目標としたい室内濃度ではなく、換気運転・停止あるいは換気風量を切換えるしきい値となるため、ユーザーが目標としたい室内濃度以下で適切な換気風量で制御することは困難であった。例えば、換気風量を抑制し省エネ性を向上させるため炭酸ガスセンサーの濃度しきい値を大きくすると、室内の炭酸ガス濃度が高い状況にあるにもかかわらず換気運転しないあるいは過少換気で炭酸ガス濃度の増大による室内の空気環境の汚染につながるという課題があった。一方で、室内の炭酸ガス濃度を一定値(例えば、建築物衛生法の基準値1000ppm)以下に保ちたいために炭酸ガスセンサーの濃度しきい値を低く設定すると、室内の炭酸ガス濃度が十分に低いにもかかわらず常時換気運転し、その結果、過剰換気で外気負荷の増大に伴う空調機の消費エネルギーの増大につながるという課題があった。   Install a carbon dioxide sensor indoors, and when the indoor carbon dioxide concentration exceeds the carbon dioxide sensor concentration threshold value, operate the ventilation fan or increase the ventilation air volume, and the indoor carbon dioxide concentration threshold is the carbon dioxide sensor threshold. There is a control method to stop the operation of the ventilation fan or reduce the ventilation air volume when it becomes less than the value. However, the concentration threshold of the carbon dioxide sensor is not the indoor concentration that the user wants to target, but the threshold for switching the ventilation operation / stop or ventilation air flow, so the appropriate ventilation air flow at or below the indoor concentration desired by the user It was difficult to control with. For example, if the concentration threshold of the carbon dioxide sensor is increased in order to suppress the ventilation air volume and improve energy saving, the ventilation operation is not performed even though the indoor carbon dioxide concentration is high, or the carbon dioxide concentration is reduced due to under-ventilation. There was a problem that the indoor air environment was contaminated by the increase. On the other hand, if the concentration threshold of the carbon dioxide sensor is set low in order to keep the indoor carbon dioxide concentration below a certain value (for example, the standard value of 1000 ppm in the Building Sanitation Law), the indoor carbon dioxide concentration will be sufficient. Despite being low, there was a problem that the operation was always ventilated, and as a result, excessive ventilation led to an increase in energy consumption of the air conditioner accompanying an increase in the outside air load.

空調機と連動運転する熱交換型換気装置においては、快適な空気環境を提供し、換気による外気負荷を低減させ、空調機の省エネを図るために、室内の炭酸ガスを検知する炭酸ガスセンサーを室内に設置し、炭酸ガスの濃度に応じて熱交換型換気装置の風量を制御する技術が提案されている(例えば、特許文献1参照)。   In the heat exchange type ventilator that operates in conjunction with the air conditioner, a carbon dioxide sensor that detects carbon dioxide in the room is provided to provide a comfortable air environment, reduce the external air load due to ventilation, and save energy in the air conditioner. A technique has been proposed that is installed indoors and controls the air volume of a heat exchange type ventilator according to the concentration of carbon dioxide gas (see, for example, Patent Document 1).

また、室内の炭酸ガスを検知する炭酸ガスセンサーを熱交換型換気装置の内部に設置し、炭酸ガスの濃度に応じて熱交換型換気装置の風量を制御する技術が提案されている(例えば、特許文献2参照)。
Further, a technology has been proposed in which a carbon dioxide sensor for detecting carbon dioxide in a room is installed inside a heat exchange ventilator, and the air volume of the heat exchange ventilator is controlled according to the concentration of carbon dioxide gas (for example, Patent Document 2).
.

特許第3551124号公報Japanese Patent No. 3551124 特開平9−159208号公報JP-A-9-159208

しかしながら、前述した特許文献1の技術では、炭酸ガスセンサーによる風量制御を実施しても風量切換のための炭酸ガス濃度のしきい値が固定されているため、ユーザーが目標としたい室内の炭酸ガス濃度以下で換気風量を制御することが困難である。   However, in the technique of Patent Document 1 described above, the carbon dioxide concentration threshold for switching the air volume is fixed even if the air volume control by the carbon dioxide sensor is performed. It is difficult to control the ventilation airflow below the concentration.

また、特許文献2の技術では、熱交換型換気装置の内部に炭酸ガスセンサーが設置されているため、熱交換型換気装置の運転中は室内の炭酸ガス濃度が正確に検知可能であるが、熱交換型換気装置の停止中は、室内の炭酸ガス濃度の正確な検知が難しいため、炭酸ガス濃度に応じて自動的に換気をON/OFFすることや適切な風量制御が不可能である。   In the technique of Patent Document 2, since the carbon dioxide sensor is installed inside the heat exchange type ventilator, the carbon dioxide concentration in the room can be accurately detected during the operation of the heat exchange type ventilator. While the heat exchange type ventilator is stopped, it is difficult to accurately detect the carbon dioxide concentration in the room. Therefore, it is impossible to automatically turn on / off the ventilation according to the carbon dioxide concentration or to control the air volume appropriately.

本発明は、前述のような課題を解決するためになされたものであり、任意に設定された設定目標濃度に応じて風量切換しきい値を設定し、余分な過剰換気を行うことなく、ユーザーの室内環境に応じた換気風量で換気を行うことができる空調用換気装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. The air flow switching threshold is set according to a set target concentration arbitrarily set, and the user does not perform excessive excessive ventilation. It aims at providing the ventilation apparatus for air conditioning which can ventilate with the ventilation air volume according to the indoor environment.

本発明に係る空調用換気装置は、外気を給気風路を介して吸込み室内に給気する給気用送風機と、室内空気を排気風路を介して吸い込み外部へ排気する排気用送風機と、室内空気から炭酸ガス濃度を検知し、検知した炭酸ガス濃度と風量切換しきい値とを比較し、その結果を送出する炭酸ガスセンサーと、炭酸ガスセンサーの送出する結果に従って給気用送風機及び排気用送風機の風量を制御する制御部とを備え、炭酸ガスセンサーは、ユーザーによって選択された設定目標濃度より低く、当該設定目標濃度に応じた風量切換しきい値を自動的に設定し、過去の最大炭酸ガス濃度を記憶し、設定目標濃度と記憶した最大炭酸ガス濃度との差分値を算出し、差分値が正の値である場合に、差分値を風量切換しきい値に加算して補正するAn air-conditioning ventilator according to the present invention includes an air supply blower that sucks outside air through a supply air passage, and supplies air into the room, an air blower that sucks room air through an exhaust air passage, and exhausts the air to the outside. Detects the carbon dioxide concentration from the air, compares the detected carbon dioxide concentration with the air flow switching threshold value , sends the result, and the blower for air supply and exhaust use according to the result sent by the carbon dioxide sensor A carbon dioxide gas sensor that is lower than the set target concentration selected by the user and automatically sets an air flow switching threshold according to the set target concentration, Stores the carbon dioxide concentration, calculates the difference value between the set target concentration and the stored maximum carbon dioxide concentration, and if the difference value is a positive value, adds the difference value to the air flow switching threshold and corrects it. .

本発明によれば、炭酸ガスセンサーは、設定目標濃度に応じて当該設定目標濃度より低い風量切換しきい値を設定し、過去の最大炭酸ガス濃度を記憶し、設定目標濃度と記憶した最大炭酸ガス濃度から差分値を算出し、その差分値を基に風量切換しきい値を補正するようにしている。このため、ユーザーの室内環境の炭酸ガス濃度を統計的に把握しながら、余分な過剰換気を抑制することができ、ユーザーの室内環境に応じた換気風量で換気を行うことができる。また、ユーザーの室内環境に応じた換気風量で換気を行うことができるため、空調機の空調負荷を低減させ省エネを促進することができる。   According to the present invention, the carbon dioxide sensor sets an air flow switching threshold lower than the set target concentration according to the set target concentration, stores the past maximum carbon dioxide concentration, stores the set target concentration and the stored maximum carbon dioxide. A difference value is calculated from the gas concentration, and the air volume switching threshold value is corrected based on the difference value. For this reason, it is possible to suppress excessive excessive ventilation while statistically grasping the carbon dioxide concentration in the user's indoor environment, and to perform ventilation with a ventilation air volume corresponding to the user's indoor environment. Moreover, since it can ventilate with the ventilation air volume according to a user's indoor environment, the air-conditioning load of an air conditioner can be reduced and energy saving can be promoted.

実施の形態1に係る空調用換気装置の内部構成を簡略化して示す断面図である。It is sectional drawing which simplifies and shows the internal structure of the air conditioning ventilation apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る空調用換気装置における換気風量と炭酸ガス濃度との関係を示す図である。It is a figure which shows the relationship between the ventilation air volume and carbon dioxide gas density | concentration in the air conditioning ventilator which concerns on Embodiment 1. FIG. 図2において風量切換しきい値の補正に伴う換気風量と炭酸ガス濃度との関係を示す図である。It is a figure which shows the relationship between the ventilation air volume and carbon dioxide gas concentration accompanying correction | amendment of the air volume switching threshold value in FIG. 実施の形態1に係る空調用換気装置において炭酸ガス濃度が設定目標濃度を超えたときの換気風量と炭酸ガス濃度との関係を示す図である。It is a figure which shows the relationship between the ventilation air flow and carbon dioxide gas concentration when a carbon dioxide gas density | concentration exceeds preset target density | concentration in the air conditioning ventilator which concerns on Embodiment 1. FIG. 実施の形態2に係る空調用換気装置の内部構成を簡略化して示す断面図である。It is sectional drawing which simplifies and shows the internal structure of the air conditioning ventilation apparatus which concerns on Embodiment 2. FIG. 実施の形態3に係る空調用換気装置の内部構成を簡略化して示す断面図である。It is sectional drawing which simplifies and shows the internal structure of the air conditioning ventilation apparatus which concerns on Embodiment 3. FIG.

実施の形態1.
図1は実施の形態1に係る空調用換気装置の内部構成を簡略化して示す断面図である。なお、符号OAは外気(Outdoor Air)、符号SAは給気(Supply Air)、符号RAは還気(Return Air)、符号EAは排気(Exhaust Air)を示している。
Embodiment 1 FIG.
1 is a cross-sectional view showing a simplified internal configuration of an air-conditioning ventilator according to Embodiment 1. FIG. Reference OA indicates outdoor air, reference SA indicates supply air, reference RA indicates return air, and reference EA indicates exhaust air.

図1に示す空調用換気装置は、外観が板金でできた直方体状の筐体1によって形成され、内部に熱交換素子6を有する熱交換型換気装置である。この空調用換気装置13は、天井18の内側に隠蔽された状態で設置されている。空調用換気装置13は、前述の熱交換素子6の他に、筐体1の長手方向の一端面に縦方向に設けられた排気吐出口10及び外気吸込口7と、その一端面と対向する他端面に縦方向に設けられた給気吐出口8及び室内空気吸込口9と、外気吸込口7及び給気吐出口8を熱交換素子6を介して結ぶ給気風路11と、室内空気吸込口9及び排気吐出口10を熱交換素子6を介して結ぶ排気風路12と、給気用送風機3及び排気用送風機5と、炭酸ガスセンサー14と、リモコン17と、給気用送風機3及び排気用送風機5の風量を制御する制御部20とを備えている。   The air-conditioning ventilator shown in FIG. 1 is a heat exchange type ventilator that is formed by a rectangular parallelepiped casing 1 made of sheet metal and has a heat exchange element 6 inside. The air-conditioning ventilator 13 is installed in a state of being concealed inside the ceiling 18. In addition to the heat exchange element 6 described above, the air-conditioning ventilator 13 opposes one end surface of the exhaust discharge port 10 and the outside air suction port 7 provided in the longitudinal direction on one end surface of the casing 1 in the longitudinal direction. A supply air discharge port 8 and an indoor air suction port 9 provided in the vertical direction on the other end surface, a supply air passage 11 connecting the outside air suction port 7 and the supply air discharge port 8 via the heat exchange element 6, and a room air suction An exhaust air passage 12 connecting the port 9 and the exhaust discharge port 10 via the heat exchange element 6, an air supply fan 3, an exhaust fan 5, a carbon dioxide gas sensor 14, a remote controller 17, an air supply fan 3, and And a control unit 20 that controls the air volume of the exhaust fan 5.

給気風路11は、外気OAを室内へ給気SAするための風路で、外気吸込口7と熱交換素子6との間に形成された外気熱交換前風路11aと、熱交換素子6と給気吐出口8との間に形成された外気熱交換後風路11bとを有している。排気風路12は、室内空気(還気RA)を室外へ排気EAするための風路で、室内空気吸込口9と熱交換素子6との間に形成された室内空気熱交換前風路12aと、熱交換素子6と排気吐出口10との間に形成された室内空気熱交換後風路12bとを有している。この構成により、給気風路11と排気風路12は、熱交換素子6で交差している。   The supply air passage 11 is an air passage for supplying the outside air OA into the room SA, and the air passage 11a before the outside air heat exchange formed between the outside air inlet 7 and the heat exchange element 6 and the heat exchange element 6 are provided. And an air passage 11b after the outside air heat exchange formed between the air supply and discharge port 8. The exhaust air passage 12 is an air passage for exhausting EA of room air (return air RA) to the outside, and is a pre-indoor air heat exchange air passage 12a formed between the indoor air inlet 9 and the heat exchange element 6. And an air passage 12b after the indoor air heat exchange formed between the heat exchange element 6 and the exhaust outlet 10. With this configuration, the supply air passage 11 and the exhaust air passage 12 intersect at the heat exchange element 6.

給気用送風機3は、外気熱交換後風路11b内で給気吐出口8と連結され、内部に給気用モータ2を備えている。排気用送風機5は、室内空気熱交換後風路12b内で排気吐出口10と連結され、内部に排気用モータ4を備えている。給気用モータ2と排気用モータ4は、制御部20からの制御に応じて回転速度が可変する。給気風路11及び排気風路12には、外気OAや還気RAに含まれる埃などの目詰まりによる熱交換素子6の性能低下を防止するためのエアフィルター15、16が取り外しに自在に設置されている。   The air supply blower 3 is connected to the air supply discharge port 8 in the air passage 11b after the outside air heat exchange, and includes the air supply motor 2 therein. The exhaust fan 5 is connected to the exhaust discharge port 10 in the air passage 12b after the indoor air heat exchange, and includes the exhaust motor 4 therein. The rotation speed of the air supply motor 2 and the exhaust motor 4 varies according to control from the control unit 20. In the supply air passage 11 and the exhaust air passage 12, air filters 15 and 16 for preventing deterioration of the performance of the heat exchange element 6 due to clogging of dust or the like contained in the outside air OA and the return air RA are freely installed. Has been.

熱交換素子6は、平板紙上に波板紙(コルゲートシート)を接着して形成された平板状の給気通路と、同様に平板紙上に波板紙(コルゲートシート)を接着して形成された平板状の排気通路とが互いに直交するように多数積層されたものであり、給気風路11を通過する給気SAと排気風路12を通過する排気EAとの間で熱交換を行なう。   The heat exchange element 6 has a flat air supply passage formed by adhering corrugated paper (corrugated sheet) on the flat paper, and a flat plate formed by adhering corrugated paper (corrugated sheet) on the flat paper as well. The exhaust passages are stacked so as to be orthogonal to each other, and heat exchange is performed between the supply air SA that passes through the supply air passage 11 and the exhaust air EA that passes through the exhaust air passage 12.

リモコン17は、運転のON/OFF、風量の切換、換気モードの切換、運転タイマーの設定などが可能になっている。また、リモコン17は、ユーザーによって設定目標濃度が選択されたときには、その設定目標濃度を炭酸ガスセンサー14に制御部20を介して入力する。   The remote controller 17 can be turned ON / OFF, air volume switching, ventilation mode switching, operation timer setting, and the like. In addition, when the set target concentration is selected by the user, the remote controller 17 inputs the set target concentration to the carbon dioxide sensor 14 via the control unit 20.

炭酸ガスセンサー14は、室内空気熱交換前風路12aに設置され、室内空気の炭酸ガス濃度を検知する。筐体1の内部に炭酸ガスセンサー14を設置することは、制御部20と炭酸ガスセンサー14を接続する制御線を最短長にできるなど施工コストを削減するために最適である。なお、炭酸ガスセンサー14を室内空間に設置し、制御線を制御部20に接続して制御する方法もある(図5参照)。   The carbon dioxide sensor 14 is installed in the air passage 12a before the room air heat exchange, and detects the carbon dioxide concentration in the room air. The installation of the carbon dioxide sensor 14 inside the housing 1 is optimal for reducing the construction cost, for example, the control line connecting the controller 20 and the carbon dioxide sensor 14 can be made the shortest. There is also a method of controlling by installing the carbon dioxide sensor 14 in the indoor space and connecting a control line to the control unit 20 (see FIG. 5).

制御部20は、筐体1にメンテナンスできる位置に配置され、炭酸ガスセンサー14からの情報、即ち、炭酸ガス濃度が弱風量と微弱風量の切換しきい値以下の情報が入力されたときに、微弱風量運転となるように給気用モータ2と排気用モータ4の運転を制御する。また、制御部20は、炭酸ガス濃度が弱風量と微弱風量の切換しきい値以上で、強風量と弱風量の切換しきい値以下のときには、弱風量運転となるように給気用モータ2と排気用モータ4の運転を制御する。更に、制御部20は、炭酸ガス濃度が強風量と弱風量の切換しきい値を超えたときには、強風量運転となるように給気用モータ2と排気用モータ4の運転を制御する。   The control unit 20 is disposed at a position where maintenance can be performed on the housing 1, and when information from the carbon dioxide sensor 14, that is, information having a carbon dioxide gas concentration equal to or lower than a switching threshold value between the weak air amount and the weak air amount, is input. The operation of the air supply motor 2 and the exhaust motor 4 is controlled so as to achieve the weak air flow operation. The control unit 20 also supplies the air supply motor 2 so that the low air flow operation is performed when the carbon dioxide concentration is equal to or higher than the switching threshold value between the weak air volume and the weak air volume and is equal to or lower than the switching threshold value between the strong air volume and the weak air volume. And the operation of the exhaust motor 4 is controlled. Further, the control unit 20 controls the operation of the air supply motor 2 and the exhaust motor 4 so that the high air amount operation is performed when the carbon dioxide gas concentration exceeds the switching threshold value between the strong air amount and the weak air amount.

この風量制御により、室内の空気環境を快適に維持しつつ、換気による外気負荷を低減させることが可能となるので、空調機の省エネ化を図ることができる。また、無駄な換気がなくなり必要な換気量を満足させるだけ空調用換気装置13を運転すればよいので、空調用換気装置自体の消費電力の低減にもなる。   This air volume control makes it possible to reduce the outdoor air load due to ventilation while maintaining a comfortable indoor air environment, so that energy saving of the air conditioner can be achieved. Moreover, since it is sufficient to operate the air-conditioning ventilator 13 as long as the necessary ventilation amount is satisfied without useless ventilation, the power consumption of the air-conditioning ventilator itself is also reduced.

次に、炭酸ガス濃度に応じた風量制御について図2、図3及び図4を用いて説明する。
図2は実施の形態1に係る空調用換気装置における換気風量と炭酸ガス濃度との関係を示す図、図3は図2において風量切換しきい値の補正に伴う換気風量と炭酸ガス濃度との関係を示す図、図4は実施の形態1に係る空調用換気装置において炭酸ガス濃度が設定目標濃度を超えたときの換気風量と炭酸ガス濃度との関係を示す図である。
Next, the air volume control according to the carbon dioxide gas concentration will be described with reference to FIGS.
FIG. 2 is a diagram showing the relationship between the ventilation air volume and the carbon dioxide concentration in the air-conditioning ventilator according to Embodiment 1, and FIG. 3 is a graph showing the relationship between the ventilation air volume and the carbon dioxide gas concentration in FIG. FIG. 4 is a diagram showing the relationship, and FIG. 4 is a diagram showing the relationship between the ventilation air volume and the carbon dioxide concentration when the carbon dioxide concentration exceeds the set target concentration in the air conditioning ventilator according to the first embodiment.

現在、建築物衛生法にて炭酸ガス(二酸化炭素)濃度の上限値とする設定目標濃度が建築物の使用目的に応じて定められている。例えば、延べ面積3000m以上の建屋においては、1000ppm以下と定められている。図2、図3及び図4においては、炭酸ガス濃度の検知による風量制御は、建築物衛生法で定められている1000ppmを設定目標濃度とした場合であるが、これは限定されるものではない。 Currently, a set target concentration, which is the upper limit value of carbon dioxide (carbon dioxide) concentration, is determined according to the purpose of use of the building in the Building Sanitation Law. For example, in a building with a total area of 3000 m 2 or more, it is defined as 1000 ppm or less. In FIG. 2, FIG. 3 and FIG. 4, the air volume control based on the detection of the carbon dioxide gas concentration is a case where the set target concentration is 1000 ppm defined in the Building Sanitation Law, but this is not limited. .

リモコン17にて「風量自動制御」を選択すると、炭酸ガスセンサー14は、室内の炭酸ガス濃度を検知するためのセンシング動作を開始する。短時間で安定した室内の炭酸ガス濃度を炭酸ガスセンサー14で検知させる必要があるため、空調用換気装置13の最大風量の強風量が最適であるが、安定した炭酸ガス濃度を検知できればこの限りではない。   When “automatic air volume control” is selected with the remote controller 17, the carbon dioxide sensor 14 starts a sensing operation for detecting the indoor carbon dioxide concentration. Since the carbon dioxide sensor 14 needs to detect the stable carbon dioxide concentration in a short time, the maximum air volume of the air-conditioning ventilator 13 is optimal. However, if the stable carbon dioxide concentration can be detected, this is the limit. is not.

炭酸ガスセンサー14には、設定目標濃度とその設定目標濃度に応じて設定された風量切換しきい値とを有している。設定目標濃度は、ユーザーが目標としたい室内の炭酸ガス濃度であり、炭酸ガス濃度の検知に応じて換気の風量制御を行う場合、超えてはならない値である。例えば、炭酸ガスセンサー14は、リモコン17の操作により設定目標濃度1000ppmが選択された場合、室内の炭酸ガス濃度が1000ppm以下になるように、その設定目標濃度に応じた風量切換しきい値を設定する。風量切換しきい値は、室内の炭酸ガス濃度が設定目標濃度より低くなるように設定された値である。   The carbon dioxide sensor 14 has a set target concentration and an air volume switching threshold value set according to the set target concentration. The set target concentration is the indoor carbon dioxide concentration that the user wants to set as a target, and is a value that must not be exceeded when the ventilation air volume control is performed according to the detection of the carbon dioxide concentration. For example, the carbon dioxide sensor 14 sets the air flow switching threshold according to the set target concentration so that the indoor carbon dioxide concentration is 1000 ppm or less when the set target concentration 1000 ppm is selected by operating the remote controller 17. To do. The air volume switching threshold is a value set so that the carbon dioxide concentration in the room is lower than the set target concentration.

例えば、設定目標濃度を1000ppmと選択した場合は、強風量と弱風量の切換しきい値は800ppm、弱風量と微弱風量の切換しきい値は700ppmと自動で設定される。つまり、炭酸ガスセンサー14は、設定目標濃度が1000ppmと選択された場合、強風量と弱風量の切換しきい値を800ppm、弱風量と微弱風量の切換しきい値を700ppmと自動的に設定する。   For example, when the set target concentration is selected as 1000 ppm, the switching threshold value between the strong air volume and the weak air volume is automatically set to 800 ppm, and the switching threshold value between the weak air volume and the weak air volume is automatically set to 700 ppm. That is, the carbon dioxide sensor 14 automatically sets the switching threshold between the strong airflow and the weak airflow to 800 ppm and the switching threshold between the weak airflow to the weak airflow to 700 ppm when the set target concentration is selected to be 1000 ppm. .

炭酸ガスセンサー14は、設定目標濃度を複数保有しており、ユーザーが空調用換気装置13を使用する環境に応じて設定が可能になっている。例えば、設定目標濃度が1500ppm、1000ppm、800ppmと選択可能である。炭酸ガスセンサー14は、設定目標濃度を1500ppmと選択された場合、強風量と弱風量の切換しきい値を1300ppm、弱風量と微弱風量の切換しきい値を1000ppmと自動的に設定する。また、炭酸ガスセンサー14は、設定目標濃度が800ppmと選択された場合、強風量と弱風量の切換しきい値を600ppm、弱風量と微弱風量の切換しきい値を400ppmと自動的に設定する。   The carbon dioxide sensor 14 has a plurality of set target concentrations, and can be set according to the environment in which the user uses the air-conditioning ventilator 13. For example, the set target concentration can be selected from 1500 ppm, 1000 ppm, and 800 ppm. When the set target concentration is selected to be 1500 ppm, the carbon dioxide sensor 14 automatically sets the switching threshold value between the strong air amount and the weak air amount to 1300 ppm and the switching threshold value between the weak air amount and the weak air amount to 1000 ppm. Further, the carbon dioxide sensor 14 automatically sets the switching threshold between the strong airflow and the weak airflow to 600 ppm and the switching threshold between the weak airflow to the weak airflow to 400 ppm when the set target concentration is selected as 800 ppm. .

図2は設定目標濃度を1000ppmと選択した場合の風量制御を示している。強風量と弱風量の切換しきい値は800ppm、弱風量と微弱風量の切換しきい値は700ppmと自動設定され、700ppm以下では微弱風量運転、701ppm〜800ppmは弱風量運転、801ppmを超えた場合には強風量運転となり、室内の炭酸ガス濃度を検知することで3段階の風量切換制御が可能となっている。   FIG. 2 shows air volume control when the set target concentration is selected to be 1000 ppm. The switching threshold for strong airflow and weak airflow is automatically set to 800 ppm, and the switching threshold for weak airflow to weak airflow is automatically set to 700 ppm. The air flow operation is strong, and three-step air flow switching control is possible by detecting the carbon dioxide concentration in the room.

前述したように、炭酸ガスセンサー14が空調用換気装置13の室内空気熱交換前風路12aに設置されており(図1参照)、リモコン17にて「風量自動制御」を選択した場合、炭酸ガスセンサー14による風量自動制御は、室内の炭酸ガス濃度が低濃度であっても、運転を停止することなく最低風量(微弱風量)で連続運転する。つまり、炭酸ガスセンサー14は炭酸ガス濃度のセンシング動作を常時行っている。これは、空調用換気装置13が天井18内に隠蔽設置されているため、運転を停止した場合、空調用換気装置13内部に風が流れなくなり、室内空気熱交換前風路12aに設置された炭酸ガスセンサー14で室内の炭酸ガス濃度を正確に検知できないためである。なお、室内空気熱交換前風路12aに設置された炭酸ガスセンサー14が室内の炭酸ガス濃度を検知可能であれば、連続運転以外に間欠運転でもよい。   As described above, the carbon dioxide sensor 14 is installed in the air passage 12a before the indoor air heat exchange of the air conditioning ventilator 13 (see FIG. 1), and when “automatic air volume control” is selected by the remote controller 17, The automatic air volume control by the gas sensor 14 continuously operates at the minimum air volume (weak air volume) without stopping the operation even if the indoor carbon dioxide gas concentration is low. That is, the carbon dioxide sensor 14 always performs a sensing operation of the carbon dioxide concentration. This is because the air-conditioning ventilator 13 is concealed and installed in the ceiling 18, and when the operation is stopped, the wind does not flow inside the air-conditioning ventilator 13 and is installed in the air passage 12 a before the indoor air heat exchange. This is because the carbon dioxide sensor 14 cannot accurately detect the carbon dioxide concentration in the room. As long as the carbon dioxide sensor 14 installed in the air passage 12a before the indoor air heat exchange can detect the indoor carbon dioxide concentration, intermittent operation may be performed in addition to continuous operation.

炭酸ガスセンサー14は、炭酸ガス濃度のセンシング動作を行っているときに、過去の最大炭酸ガス濃度を記憶し、記憶した最大炭酸ガス濃度を参照して各切換しきい値を自動的に補正する。   The carbon dioxide sensor 14 stores the past maximum carbon dioxide concentration when the carbon dioxide concentration sensing operation is being performed, and automatically corrects each switching threshold value with reference to the stored maximum carbon dioxide concentration. .

風量の切換しきい値を自動的に補正する機能について、図2と図3にて説明する。
図2では、室内の最大炭酸ガス濃度が900ppmである。この最大炭酸ガス濃度の情報を記憶しておき、設定目標濃度1000ppmと比較し、差分値の100ppm(設定目標濃度1000ppm −最大炭酸ガス濃度が900ppm)を強風量と弱風量の切換しきい値の800ppmに加算し、差分値の100ppmを弱風量と微弱風量の切換しきい値の700ppmに加算する。風量の切換しきい値を自動的に補正する期間は、過去の最大炭酸ガス濃度の情報を記憶する期間と同じであり、期間は任意に設定可能である。例えば、風量の切換しきい値を1週間間隔で補正する場合は、過去1週間の最大炭酸ガス濃度を記憶し、風量の切換しきい値を1ヶ月間隔で補正する場合は、過去1ヶ月の最大炭酸ガス濃度を記憶し、記憶した最大炭酸ガス濃度と設定目標濃度との差分値を風量の切換しきい値に加算して補正する。
The function of automatically correcting the air flow switching threshold will be described with reference to FIGS.
In FIG. 2, the maximum carbon dioxide concentration in the room is 900 ppm. This maximum carbon dioxide concentration information is stored and compared with the set target concentration of 1000 ppm, and the difference value of 100 ppm (the set target concentration of 1000 ppm-the maximum carbon dioxide concentration of 900 ppm) is used as the switching threshold for the strong air flow and the weak air flow. Add to 800ppm, and add 100ppm of difference value to 700ppm of switching threshold of weak air volume and weak air volume. The period for automatically correcting the air flow switching threshold is the same as the period for storing the past maximum carbon dioxide concentration information, and the period can be arbitrarily set. For example, when correcting the airflow switching threshold at intervals of one week, the maximum carbon dioxide concentration in the past week is stored, and when correcting the airflow switching threshold at intervals of one month, The maximum carbon dioxide concentration is stored, and the difference value between the stored maximum carbon dioxide concentration and the set target concentration is added to the air flow switching threshold value for correction.

次に、風量の切換しきい値を補正した場合の風量動作について図3を用いて説明する。
図2に示す風量の切換しきい値と比較すると、強風量と弱風量の切換しきい値は800→900ppm、弱風量と微弱風量の切換しきい値は700→800ppmと補正されるため、微弱風量と弱風量での運転時間が長くなり、強風量の運転時間が短くなっている。
Next, the air flow operation when the air flow switching threshold is corrected will be described with reference to FIG.
Compared with the air flow switching threshold value shown in FIG. 2, the switching threshold value between the strong air flow and the weak air flow is corrected from 800 to 900 ppm, and the switching threshold value between the weak air flow and the weak air flow is corrected from 700 to 800 ppm. The operation time for airflow and weak airflow is longer, and the operation time for strong airflow is shorter.

従来の制御では、炭酸ガスセンサー14による風量制御を実施しても風量の切換しきい値が固定されているため、室内の在室率パターンに応じた換気ができず過剰換気となり、余分な換気負荷が発生して空調負荷になっている場合があった。本実施の形態においては、過去の室内の最大炭酸ガス濃度を記憶することで、設定目標濃度との差分値を算出して風量の切換しきい値を補正するため、ユーザーの室内環境の炭酸ガス濃度を統計的に把握しながら、余分な過剰換気を抑制することができ、ユーザーの室内環境に応じた換気風量で換気を行うため、空調機の空調負荷を低減させ省エネ化を促進することができる。   In the conventional control, even if the air volume control by the carbon dioxide sensor 14 is performed, the air flow switching threshold is fixed, so that ventilation according to the indoor occupancy rate pattern cannot be performed, resulting in excessive ventilation, and excess ventilation. There was a case where a load was generated, resulting in an air conditioning load. In the present embodiment, since the past maximum indoor carbon dioxide concentration is stored, the difference value with the set target concentration is calculated to correct the air flow switching threshold value. Excessive ventilation can be suppressed while statistically grasping the concentration, and ventilation is performed with the ventilation air volume according to the user's indoor environment, which can reduce the air conditioning load of the air conditioner and promote energy saving. it can.

次に、設定目標濃度に対して過去の最大炭酸ガス濃度が低かった場合の風量制御について図4を用いて説明する。
過去の最大炭酸ガス濃度が低かった場合は、設定目標濃度1000ppmに対し、強風量と弱風量の切換しきい値が1150ppm、弱風量と微弱風量の切換しきい値が950ppmとなることもある。このような場合、室内の在室率が低い場合は微弱風量でも室内の炭酸ガス濃度を設定目標濃度1000ppm以下の環境を維持可能である。しかし、室内の在室率が急に高くなった場合は、微弱風量の運転では換気量が足りず、室内の炭酸ガス濃度を設定目標濃度1000ppm以下の環境を維持できなくなる。換気量が足りず、室内の炭酸ガス濃度が設定目標濃度1000ppmを超えてしまった場合は、強風量と弱風量の切換しきい値を800ppm、弱風量と微弱風量の切換しきい値を700ppmのデフォルト設定に変更する(図2参照)。変更後は、炭酸ガス濃度が800ppmを超えている状況であれば強風量で運転するため、室内の炭酸ガス濃度は低下する。
Next, the air volume control when the past maximum carbon dioxide gas concentration is lower than the set target concentration will be described with reference to FIG.
When the past maximum carbon dioxide gas concentration is low, the switching threshold value between the strong air flow and the weak air flow may be 1150 ppm and the switching threshold value between the weak air flow and the weak air flow may be 950 ppm with respect to the set target concentration of 1000 ppm. In such a case, when the indoor occupancy rate is low, it is possible to maintain an environment in which the indoor carbon dioxide concentration is set to a target concentration of 1000 ppm or less even with a weak air flow. However, if the indoor occupancy rate suddenly increases, the amount of ventilation is not sufficient in the operation with a weak air flow, and the environment in which the indoor carbon dioxide concentration is set to a target concentration of 1000 ppm or less cannot be maintained. If the indoor carbon dioxide concentration exceeds the set target concentration of 1000ppm due to insufficient ventilation, the switching threshold for strong airflow and weak airflow is 800ppm, and the switching threshold for weak airflow and weak airflow is 700ppm. Change to default settings (see Figure 2). After the change, if the carbon dioxide concentration exceeds 800 ppm, the indoor carbon dioxide concentration decreases because the operation is performed with a strong air flow.

以上のように実施の形態1によれば、室内の炭酸ガス濃度を検知して過去の最大炭酸ガス濃度を記憶し、記憶した最大炭酸ガス濃度と設定目標濃度との差分値を算出して風量の切換しきい値を補正するようにしている。このため、ユーザーの室内環境の炭酸ガス濃度を統計的に把握しながら、余分な過剰換気を抑制することができ、ユーザーの室内環境に応じた換気風量で換気を行うことができる。また、ユーザーの室内環境に応じた換気風量で換気を行うことができるため、空調機の空調負荷を低減させ省エネ化を促進することができる。   As described above, according to the first embodiment, the indoor carbon dioxide concentration is detected, the past maximum carbon dioxide concentration is stored, the difference value between the stored maximum carbon dioxide concentration and the set target concentration is calculated, and the air volume is calculated. The switching threshold is corrected. For this reason, it is possible to suppress excessive excessive ventilation while statistically grasping the carbon dioxide concentration in the user's indoor environment, and to perform ventilation with a ventilation air volume corresponding to the user's indoor environment. Moreover, since it can ventilate with the ventilation air volume according to a user's indoor environment, the air-conditioning load of an air conditioner can be reduced and energy saving can be promoted.

実施の形態2.
図5は実施の形態2に係る空調用換気装置の内部構成を簡略化して示す断面図である。なお、実施の形態1で説明した図1と同様の部分には同じ符号を付している。
実施の形態2においては、実施の形態1と異なる構成として、炭酸ガスセンサー14を室内空間に設置していることである。この場合、炭酸ガスセンサー14が室内空間に設置されているため、空調用換気装置13の室内空気熱交換前風路12aに炭酸ガスセンサー14を設置する場合と比べ、空調用換気装置13の運転が停止しても室内空間の炭酸ガス濃度を正確に検知できる。なお、炭酸ガスセンサー14の機能、及び炭酸ガス濃度に応じて給気用モータ2と排気用モータ4の運転を制御する点は実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 5 is a cross-sectional view showing a simplified internal configuration of the air-conditioning ventilator according to the second embodiment. In addition, the same code | symbol is attached | subjected to the part similar to FIG. 1 demonstrated in Embodiment 1. FIG.
In the second embodiment, as a configuration different from that of the first embodiment, the carbon dioxide sensor 14 is installed in the indoor space. In this case, since the carbon dioxide sensor 14 is installed in the indoor space, the operation of the air conditioning ventilator 13 is compared to the case where the carbon dioxide sensor 14 is installed in the air passage 12a before the indoor air heat exchange of the air conditioning ventilator 13. Even if is stopped, the carbon dioxide concentration in the indoor space can be accurately detected. The function of the carbon dioxide sensor 14 and the point of controlling the operation of the supply motor 2 and the exhaust motor 4 according to the carbon dioxide concentration are the same as in the first embodiment.

以上のように実施の形態2によれば、炭酸ガスセンサー14が室内空間に設置されているので、空調用換気装置13の運転が停止しても室内空間の炭酸ガス濃度を正確に検知できる。また、室内空気熱交換前風路12aに設置された炭酸ガスセンサー14で室内の炭酸ガス濃度を正確に検知するために必要な連続運転や間欠運転といったセンシング動作が不要となるため、さらなる換気運転の時間の削減が可能となり、外気負荷の低減による空調機の省エネ効果を増加させることができる。   As described above, according to the second embodiment, since the carbon dioxide sensor 14 is installed in the indoor space, the carbon dioxide concentration in the indoor space can be accurately detected even when the operation of the air-conditioning ventilator 13 is stopped. Further, since the sensing operation such as continuous operation and intermittent operation necessary for accurately detecting the indoor carbon dioxide concentration with the carbon dioxide sensor 14 installed in the air passage 12a before the indoor air heat exchange becomes unnecessary, further ventilation operation Therefore, the energy saving effect of the air conditioner can be increased by reducing the outside air load.

実施の形態3.
図6は実施の形態3に係る空調用換気装置の内部構成を簡略化して示す断面図である。なお、実施の形態1で説明した図1と同様の部分には同じ符号を付している。
実施の形態3においては、実施の形態1と異なる構成として、天井18に人感センサー19を設置していることである。人感センサー19は、制御線を介して制御部20に接続され、室内の人を感知したときには、その情報を制御部20に送出する。制御部20は、人感センサー19からの人感知の情報が入力されたときに空調用換気装置13を運転し、運転中はさらに室内空気熱交換前風路12aに設置された炭酸ガスセンサー14からの情報に従って給気用モータ2と排気用モータ4の運転を制御する。人感センサー19が室内の人を感知しない場合、空調用換気装置13は停止する。なお、炭酸ガスセンサー14の機能については実施の形態1と同様である。また、空調用換気装置13と運転連動する機器は人感センサー19だけに限らず、人を感知できるセンサーであれば何れでもよい。
Embodiment 3 FIG.
FIG. 6 is a cross-sectional view showing a simplified internal configuration of the air-conditioning ventilator according to the third embodiment. In addition, the same code | symbol is attached | subjected to the part similar to FIG. 1 demonstrated in Embodiment 1. FIG.
In the third embodiment, a human sensor 19 is installed on the ceiling 18 as a different configuration from the first embodiment. The human sensor 19 is connected to the control unit 20 via a control line, and sends the information to the control unit 20 when a person in the room is sensed. The control unit 20 operates the air-conditioning ventilator 13 when human detection information is input from the human sensor 19, and during the operation, the carbon dioxide sensor 14 is further installed in the air passage 12a before the indoor air heat exchange. The operation of the air supply motor 2 and the exhaust motor 4 is controlled in accordance with the information from. When the human sensor 19 does not detect a person in the room, the air-conditioning ventilator 13 stops. The function of the carbon dioxide sensor 14 is the same as that of the first embodiment. Further, the device linked to the air-conditioning ventilator 13 is not limited to the human sensor 19 but may be any sensor that can detect a person.

炭酸ガスセンサー14が空調用換気装置13内部に設置された事例では、人感センサー19がない場合は、室内に人がいるかいないかわからないため、炭酸ガスセンサー14にて室内炭酸ガス濃度を正確に検知するために必要な連続運転や間欠運転といったセンシング動作が必要となっていた。
しかし、本実施の形態3のように人感センサー19がある場合は、室内に人がいる時のみ空調換気装置13を運転させるため、炭酸ガスセンサー14にて室内の炭酸ガス濃度を正確に検知するために必要な連続運転や間欠運転といったセンシング動作が不要となる。このため、さらなる換気運転の時間の削減が可能となり、外気負荷の低減による空調機の省エネ効果を増加させることができる。
In the case where the carbon dioxide sensor 14 is installed inside the air conditioning ventilator 13, if there is no human sensor 19, it is not known whether there is a person in the room, so the carbon dioxide sensor 14 accurately determines the indoor carbon dioxide concentration. Sensing operations such as continuous operation and intermittent operation necessary for detection are required.
However, when the presence sensor 19 is provided as in the third embodiment, the air-conditioning ventilator 13 is operated only when there is a person in the room, so the carbon dioxide sensor 14 accurately detects the carbon dioxide concentration in the room. Sensing operations such as continuous operation and intermittent operation necessary for this are not necessary. For this reason, it is possible to further reduce the ventilation operation time, and to increase the energy saving effect of the air conditioner by reducing the outside air load.

なお、実施の形態1、2、3では、空調用換気装置13を熱交換型換気装置として説明したが、熱交換素子6を持たない換気装置に適用できることはいうまでもない。   In the first, second, and third embodiments, the air conditioning ventilator 13 is described as a heat exchange type ventilator, but it goes without saying that the present invention can be applied to a ventilator that does not have the heat exchange element 6.

1 筐体、2 給気用モータ、3 給気用送風機、4 排気用モータ、5 排気用送風機、6 熱交換素子、7 外気吸込口、8 給気吐出口、9 室内空気吸込口、10 排気吐出口、11 給気風路、11a 外気熱交換前風路、11b 外気熱交換後風路、12 排気風路、12a 室内空気熱交換前風路、12b 室内空気熱交換後風路、13 空調用換気装置、14 炭酸ガスセンサー、15、16 エアフィルター、17 リモコン、18 天井、19 人感センサー、20 制御部。   DESCRIPTION OF SYMBOLS 1 Housing | casing, 2 Supply motor, 3 Supply fan, 4 Exhaust motor, 5 Exhaust fan, 6 Heat exchange element, 7 Outside air inlet, 8 Supply air outlet, 9 Indoor air inlet, 10 Exhaust Discharge port, 11 Supply air passage, 11a Air passage before outdoor heat exchange, 11b Air passage after outdoor air heat exchange, 12 Exhaust air passage, 12a Air passage before indoor air heat exchange, 12b Air passage after indoor air heat exchange, 13 For air conditioning Ventilator, 14 Carbon dioxide sensor, 15, 16 Air filter, 17 Remote control, 18 Ceiling, 19 Human sensor, 20 Control unit.

Claims (7)

外気を給気風路を介して吸込み室内に給気する給気用送風機と、
室内空気を排気風路を介して吸い込み外部へ排気する排気用送風機と、
室内空気から炭酸ガス濃度を検知し、検知した炭酸ガス濃度と風量切換しきい値とを比較し、その結果を送出する炭酸ガスセンサーと、
前記炭酸ガスセンサーの送出する前記結果に従って前記給気用送風機及び前記排気用送風機の風量を制御する制御部と
を備え、
前記炭酸ガスセンサーは、ユーザーによって選択された設定目標濃度より低く、当該設定目標濃度に応じた風量切換しきい値を自動的に設定し、過去の最大炭酸ガス濃度を記憶し、前記設定目標濃度と記憶した前記最大炭酸ガス濃度との差分値を算出し、前記差分値が正の値である場合に、前記差分値を前記風量切換しきい値に加算して補正する
ことを特徴とする空調用換気装置。
An air supply blower that sucks outside air through an air supply passage and supplies the air into the room;
An exhaust fan for sucking indoor air through the exhaust air passage and exhausting it to the outside;
A carbon dioxide sensor that detects the carbon dioxide concentration from the indoor air , compares the detected carbon dioxide concentration with the air flow switching threshold, and sends the result ;
A controller for controlling the air volume of the air supply blower and the exhaust air blower according to the result sent by the carbon dioxide sensor,
The carbon dioxide sensor is lower than a set target concentration selected by the user, automatically sets an air flow switching threshold according to the set target concentration, stores a past maximum carbon dioxide concentration, and stores the set target concentration And calculating the difference value between the stored maximum carbon dioxide concentration and adding the difference value to the air flow switching threshold value when the difference value is a positive value. A featured ventilation system for air conditioning.
前記風量切換しきい値は、少なくとも、強風量と弱風量の切換しきい値と、前記切換しきい値より低い弱風量と微弱風量の切換しきい値とに分けられ、
前記差分値が正の値である場合に、前記差分値を前記各切換しきい値に加算して補正することを特徴とする請求項1記載の空調用換気装置。
The air volume switching threshold value is divided into at least a switching threshold value for strong air volume and weak air volume, and a switching threshold value for weak air volume and weak air volume lower than the switching threshold value,
Wherein when the difference value is a positive value, claim 1 Symbol mounting the air-conditioning ventilator of the difference value and correcting by adding to each switching threshold.
前記炭酸ガスセンサーは、前記排気風路内の室内空気の吸込み側に設置されていることを特徴とする請求項1又は2に記載の空調用換気装置。 The carbon dioxide sensor, the air-conditioning ventilator according to claim 1 or 2, characterized in that it is installed on the suction side of the indoor air of the exhaust air passage. 前記制御部は、前記炭酸ガスセンサーからの情報が入力されている間、当該情報に従って前記給気用送風機及び前記排気用送風機の風量を制御することを特徴とする請求項1乃至の何れか一項に記載の空調用換気装置。 Wherein, while the information from the carbon dioxide sensor is input, any one of claims 1 to 3, characterized in that to control the air volume of the air supply blower and said exhaust blower in accordance with the information The ventilation apparatus for air conditioning as described in one term. 前記炭酸ガス濃度が前記設定目標濃度を超えたときに、前記風量切換しきい値を前記炭酸ガスセンサーが前記設定目標濃度に応じて自動的に設定したデフォルト設定の風量切換しきい値に戻すことを特徴とする請求項1乃至の何れか一項に記載の空調用換気装置。 When the carbon dioxide concentration exceeds the set target density, to return the air volume switching threshold air volume switching threshold of default settings which the carbon dioxide gas sensor is automatically set according to the set target density The ventilation apparatus for air conditioning as described in any one of Claims 1 thru | or 4 characterized by these. 室内に設置された人感センサーを備え、
前記制御部は、前記人感センサーで室内の人が検知されたときに、前記給気用送風機及び前記排気用送風機を運転し、前記炭酸ガスセンサーからの情報に従って風量を制御することを特徴とする請求項1乃至の何れか一項に記載の空調用換気装置。
A human sensor installed in the room,
The controller is configured to operate the air supply blower and the exhaust blower when a person in the room is detected by the human sensor, and to control the air volume according to information from the carbon dioxide sensor. The ventilation apparatus for air conditioning as described in any one of Claim 1 thru | or 5 .
前記給気風路を流れる外気を前記排気風路を流れる室内空気とで熱交換する熱交換素子を備えたことを特徴とする請求項1乃至の何れか一項に記載の空調用換気装置。 The air-conditioning ventilator according to any one of claims 1 to 6 , further comprising a heat exchange element that exchanges heat between outside air flowing through the supply air passage and indoor air flowing through the exhaust air passage.
JP2012248426A 2012-11-12 2012-11-12 Ventilator for air conditioning Active JP6282031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012248426A JP6282031B2 (en) 2012-11-12 2012-11-12 Ventilator for air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012248426A JP6282031B2 (en) 2012-11-12 2012-11-12 Ventilator for air conditioning

Publications (2)

Publication Number Publication Date
JP2014095532A JP2014095532A (en) 2014-05-22
JP6282031B2 true JP6282031B2 (en) 2018-02-21

Family

ID=50938736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012248426A Active JP6282031B2 (en) 2012-11-12 2012-11-12 Ventilator for air conditioning

Country Status (1)

Country Link
JP (1) JP6282031B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056141A1 (en) * 2014-10-10 2016-04-14 三菱電機株式会社 Heat exchanger ventilating device
US10520214B2 (en) * 2015-07-01 2019-12-31 Mitsubishi Electric Corporation Air-conditioning system control apparatus and air-conditioning system
EP3207868A1 (en) * 2016-02-19 2017-08-23 Patonomics AB Method and apparatus for identifying a transitory emotional state of a living mammal
WO2019058516A1 (en) * 2017-09-22 2019-03-28 三菱電機株式会社 Heat exchanging type ventilation device
WO2019106980A1 (en) 2017-11-28 2019-06-06 パナソニックIpマネジメント株式会社 Self-propelled pathogen detection device, pathogen detection system, and control method
EP3851752B1 (en) * 2018-09-10 2024-02-14 Mitsubishi Electric Corporation Ventilation device and ventilation control method
CN109579208B (en) * 2018-12-04 2021-06-15 远大洁净空气科技有限公司 Comfortable energy-saving fresh air machine and adjusting method thereof
US20220316742A1 (en) 2019-10-01 2022-10-06 Mitsubishi Electric Corporation Ventilation apparatus, ventilation system, and ventilation control method
JP7301011B2 (en) * 2020-02-26 2023-06-30 三菱電機株式会社 Ventilation device and ventilation control method
JP7522962B2 (en) 2020-09-30 2024-07-26 パナソニックIpマネジメント株式会社 Ventilation system
WO2024047730A1 (en) * 2022-08-30 2024-03-07 三菱電機株式会社 Heat exchange and ventilation device
CN115443838B (en) * 2022-10-11 2024-07-02 合肥创农生物科技有限公司 Plant gas self-balancing system for indoor environment
CN116085986A (en) * 2022-12-27 2023-05-09 小米科技(武汉)有限公司 Fresh air curtain adjusting method, device, equipment, storage medium and program product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233547A (en) * 1988-07-21 1990-02-02 Toshiba Corp Blower device
JPH09159208A (en) * 1995-12-05 1997-06-20 Shinko Kogyo Co Ltd Air conditioning ventilation device
JP3551124B2 (en) * 2000-04-19 2004-08-04 ダイキン工業株式会社 Air conditioner
US20120052791A1 (en) * 2010-08-26 2012-03-01 Kurelowech Richard S Heat recovery and demand ventiliation system
JP5525432B2 (en) * 2010-12-20 2014-06-18 アズビル株式会社 Hazardous substance control device and method

Also Published As

Publication number Publication date
JP2014095532A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP6282031B2 (en) Ventilator for air conditioning
JP6120820B2 (en) Ventilation system
JP6414240B2 (en) Ventilation system
JP2007263548A (en) Ventilation system
EP3851752B1 (en) Ventilation device and ventilation control method
US20220316742A1 (en) Ventilation apparatus, ventilation system, and ventilation control method
US20170234571A1 (en) Heat exchanger ventilator
JP2009002554A (en) Ventilation device and its control method
KR20120015059A (en) Intelligent building air conditioning control system
JP2007003085A (en) Ventilation device
JP6785981B2 (en) Ventilator
JP2007212026A (en) Residential ventilation system
WO2021069881A1 (en) Ventilation system and method
JP3723167B2 (en) Indoor unit for air conditioning and air conditioner equipped with the same
JP3218042U (en) Ventilation equipment
JP4431963B2 (en) Natural ventilation system for detached house and control method thereof
JP2014066400A (en) Heat exchanger
JP4595502B2 (en) Ventilation control device
KR100540976B1 (en) Apparatus and method for controlling exhaustgas of buildings
JP7462594B2 (en) Ventilation system
WO2023144886A1 (en) Ventilation device
KR100818618B1 (en) Module for ventilator control
JP6019402B2 (en) Ventilation equipment
JP2012143184A (en) Air conditioning facility for animal-rearing chamber and air conditioning method for the animal-rearing chamber
JP2024000157A (en) Control device and air blower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160830

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20161104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180123

R150 Certificate of patent or registration of utility model

Ref document number: 6282031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250