JP6281861B2 - Temperature-sensitive light-modulating material and manufacturing method thereof - Google Patents

Temperature-sensitive light-modulating material and manufacturing method thereof Download PDF

Info

Publication number
JP6281861B2
JP6281861B2 JP2013156394A JP2013156394A JP6281861B2 JP 6281861 B2 JP6281861 B2 JP 6281861B2 JP 2013156394 A JP2013156394 A JP 2013156394A JP 2013156394 A JP2013156394 A JP 2013156394A JP 6281861 B2 JP6281861 B2 JP 6281861B2
Authority
JP
Japan
Prior art keywords
temperature
silica
light
particles
light transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013156394A
Other languages
Japanese (ja)
Other versions
JP2015025090A (en
Inventor
藤原 正浩
正浩 藤原
物部 浩達
浩達 物部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013156394A priority Critical patent/JP6281861B2/en
Publication of JP2015025090A publication Critical patent/JP2015025090A/en
Application granted granted Critical
Publication of JP6281861B2 publication Critical patent/JP6281861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Paints Or Removers (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Silicon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

本発明は、シリカ系粒子分散物およびその製造方法に関する。   The present invention relates to a silica-based particle dispersion and a method for producing the same.

さらに本発明は、感温調光材料並びに透明体の光透過性を温度により制御する方法に関する。   The present invention further relates to a temperature-sensitive light-modulating material and a method for controlling the light transmittance of a transparent body by temperature.

太陽光や人工光等の反射と透過を自在に制御できる材料や素材は、例えばディスプレイ、ショーウィンドウ、建物や乗り物のガラス窓等、様々な分野での応用が拡がっている。建物等の窓ガラスの場合、光の反射と透過の制御は、室内温度へ大きな影響を及ぼす。室内温度の制御はエアコン等を通じ、エネルギー消費を増大される。特に夏季において室内に強い光が差し込むことに伴うエネルギー消費の増大が問題となっており、近年は窓ガラスの光透過を制御して、室内温度の急激な上昇を抑制する省エネルギー技術の開発が活発になされている。   Materials and materials that can freely control the reflection and transmission of sunlight, artificial light, and the like are widely used in various fields such as displays, show windows, and glass windows of buildings and vehicles. In the case of a window glass such as a building, the control of light reflection and transmission has a great influence on the indoor temperature. Controlling the room temperature increases energy consumption through an air conditioner or the like. In particular, the increase in energy consumption caused by strong light entering the room in summer has become a problem, and in recent years, energy-saving technology has been actively developed to control the light transmission through the window glass and suppress the rapid rise in room temperature. Has been made.

ガラスの光透過性を変化させる技術は多く知られており、その方法は、大きく二つに分けることができる。一つは、外部からの指示により能動的に光透過性を変化させるアクティブ型調光法と、外部環境の変化により受動的・自動的に光透過性を変化させるパッシブ型調光法である。前者のアクティブ型調光法としては、液晶分子を混合したシステムに電圧印加を行い液晶の配向等を変化させて光透過性をオン・オフ的に制御する「液晶方式」(例えば、特許文献1)、電荷を加えることによるエレクトロクロミズムに伴う光特性の変化を用いるエレクトロクロミック方式(例えば、特許文献2)、マグネシウム・ニッケル合金等の水素との反応によるガスクロミックを用いて光透過性を制御するガスクロミック方式(例えば、特許文献3〜5)などがある。   Many techniques for changing the light transmittance of glass are known, and the method can be roughly divided into two. One is an active dimming method that actively changes the light transmission according to an instruction from the outside, and a passive dimming method that changes the light transmission passively and automatically according to a change in the external environment. As the former active type dimming method, a “liquid crystal method” is used in which voltage is applied to a system in which liquid crystal molecules are mixed to change the alignment of the liquid crystal to control the light transmission on and off (for example, Patent Document 1). ), The electrochromic method using the change in optical characteristics due to electrochromism by adding electric charge (for example, Patent Document 2), gas chromic by reaction with hydrogen such as magnesium-nickel alloy, etc., and controlling the light transmission There are gas chromic methods (for example, Patent Documents 3 to 5).

温度に自動的に応答して光透過性を変化させることは、建物等の内部への光透過を自律的に制御できる。例えば、夏の暑い日の温度上昇に対応して自動的に光を透過させなくすることで、エアコン等の冷房動作を自動的に抑制できる効果を持つことになる。このようなパッシブ型調光法の一つである温度変化に自動的に応答する調光法には、例えば以下のような方法がある。サーモクロミック材料である二酸化バナジウム等の混合金属系材料による温度により光透過性を変化させるサーモクロミック方式(例えば、特許文献6〜9)、ポリマーと他成分との混合系が温度変化により相転移等を起こす曇点を用いて特定温度域で光の透過性を制御する相分離・曇点方式(例えば、特許文献10〜16)、ガラス転移点での光透過変化を用いる方法(特許文献17)、液晶材料の溶剤への溶解度の温度変化を利用する方法(特許文献18)等である。   Changing the light transmittance automatically in response to the temperature can autonomously control the light transmission to the inside of a building or the like. For example, it is possible to automatically suppress the cooling operation of an air conditioner or the like by automatically preventing the light from transmitting in response to a temperature rise on a hot summer day. Examples of such a dimming method that automatically responds to a temperature change, which is one of the passive dimming methods, include the following methods. Thermochromic method (for example, Patent Documents 6 to 9) that changes light transmittance depending on the temperature of a mixed metal material such as vanadium dioxide, which is a thermochromic material, and a mixed system of a polymer and other components undergoes a phase transition due to a temperature change. A phase separation / clouding point system that controls light transmission in a specific temperature range using a clouding point that causes aging (for example, Patent Documents 10 to 16), and a method that uses a light transmission change at the glass transition point (Patent Document 17). And a method using a temperature change in solubility of a liquid crystal material in a solvent (Patent Document 18).

しかしながら、これらの感温調光法では、比較的複雑な方法により光透過性を変化させているため、光透過を制御する部分を複数のガラスの間に挟み込む形で組み込まなければならない。そのために、既存の住宅等の窓ガラスに適応する場合は、窓ガラス全体を交換しなければならなくなる。上述のアクティブ型調光法の「液晶方式」には、シートあるいはフィルムになったものもあるが(例えば、特許文献19)、電圧印加による光透過制御であるため、温度に自動的に応答できるものではなく、電気関連の設備も必須である。このように、簡単な原理で、温度に対し自律応答的に光透過性を変化でき、かつガラスに挟み込むような形での複雑なシステムの必要の無い調光方法はこれまでなかった。   However, in these temperature-sensitive light control methods, since the light transmission is changed by a relatively complicated method, a portion for controlling the light transmission must be incorporated between a plurality of glasses. Therefore, when it adapts to the window glass of the existing house etc., it becomes necessary to replace the whole window glass. Although the above-mentioned “liquid crystal method” of the active light control method is in the form of a sheet or a film (for example, Patent Document 19), since it is light transmission control by voltage application, it can automatically respond to temperature. Electricity related equipment is also essential. As described above, there has been no dimming method that can change the light transmittance autonomously with respect to temperature by a simple principle and does not require a complicated system in a form sandwiched between glasses.

特開1994-072150JP1994-072150 特開2003-344878JP2003-344878 特開2004-139134JP2004-139134 特開2003-335553JP2003-335553 特開2003-261356JP2003-261356 特開2007-171759JP2007-171759 特開1996-003546JP 1996-003546 特開2004-004795JP2004-004795 特開1998-311189JP1998-311189 特開1994-080446JP1994-080446 特開1996-025545JP 1996-025545 特開1998-048674JP1998-048674 特開1998-086262JP1998-086262 特開1999-024111JP 1999-024111 特開2001-215456JP2001-215456 特開2006-220926JP 2006-220926 特開2011-141325JP2011-141325 特開1999-006988JP 1999-006988 特開2004-182484JP2004-182484 特開2010-053200JP2010-053200

Langmuir, 26, 6561-6567 (2010)Langmuir, 26, 6561-6567 (2010)

本発明は、外部の温度変化に対し自律応答的に光透過性を変化でき、かつ調光部分を必ずしもガラスに挟み込むような複雑な構造の必要のない調光法に関する技術を提供するものである。   The present invention provides a technique relating to a light control method that can change the light transmission in an autonomous response to an external temperature change and that does not necessarily require a complicated structure in which the light control part is sandwiched between glasses. .

本発明は、以下のシリカ系粒子分散物およびその製造方法、感温調光材料並びに透明体の光透過性を温度により制御する方法を提供するものである。
項1. シリカ系粒子を媒体に分散させてなり、前記媒体が溶剤及び/又はポリマーであり、前記媒体の屈折率(nD20)は1.40〜1.60である、シリカ系粒子分散物。
項2. シリカ系粒子がシリカ粒子、シリカ中空粒子又はシリカゲル粒子である、項1に記載のシリカ系粒子分散物。
項3. シリカ系粒子が光反射性シリカ中空ナノ粒子である、項2に記載のシリカ系粒子分散物。
項4. シリカ系粒子の粒径が100nm〜100μmである、項1〜3のいずれか1項に記載のシリカ系粒子分散物。
項5. シート、フィルム又は成形体である、項1〜4のいずれか1項に記載のシリカ系粒子分散物。
項6. 前記媒体が流動性を有し、かつ、透明容器に収容されてなる、項1〜5のいずれか1項に記載のシリカ系粒子分散物。
項7. 温度上昇に伴い光透過率が上昇する項1〜6のいずれか1項に記載のシリカ系粒子分散物。
項8. 温度上昇に伴い光透過率が低下する項1〜6のいずれか1項に記載のシリカ系粒子分散物。
項9. 温度上昇に伴い光透過率が上昇したのちに低下する項7又は8に記載のシリカ系粒子分散物。
項10. シリカ系粒子を媒体に分散させる工程を含み、前記媒体が溶剤及び/又はポリマーである、項1〜6のいずれか1項に記載のシリカ系粒子分散物の製造方法。
項11. 項1〜9のいずれか1項に記載のシリカ系粒子分散物を含む、感温調光材料。
項12. 項1〜9のいずれか1項に記載のシリカ系粒子分散物を透明体に適用することを特徴とする、透明体の光透過性を温度により制御する方法。
項13. 前記透明体がガラス又はプラスチックである、項12に記載の方法。
The present invention provides the following silica-based particle dispersion and method for producing the same, a temperature-sensitive light-modulating material, and a method for controlling the light transmittance of a transparent body by temperature.
Item 1. A silica-based particle dispersion obtained by dispersing silica-based particles in a medium, wherein the medium is a solvent and / or a polymer, and the refractive index (nD20) of the medium is 1.40 to 1.60.
Item 2. Item 2. The silica-based particle dispersion according to Item 1, wherein the silica-based particles are silica particles, silica hollow particles, or silica gel particles.
Item 3. Item 3. The silica-based particle dispersion according to Item 2, wherein the silica-based particles are light-reflective silica hollow nanoparticles.
Item 4. Item 4. The silica-based particle dispersion according to any one of Items 1 to 3, wherein the particle size of the silica-based particles is 100 nm to 100 µm.
Item 5. Item 5. The silica-based particle dispersion according to any one of Items 1 to 4, which is a sheet, a film, or a molded body.
Item 6. Item 6. The silica-based particle dispersion according to any one of Items 1 to 5, wherein the medium has fluidity and is contained in a transparent container.
Item 7. Item 7. The silica-based particle dispersion according to any one of Items 1 to 6, wherein the light transmittance increases with an increase in temperature.
Item 8. Item 7. The silica-based particle dispersion according to any one of Items 1 to 6, wherein the light transmittance decreases as the temperature increases.
Item 9. Item 9. The silica-based particle dispersion according to Item 7 or 8, which decreases after the light transmittance increases with increasing temperature.
Item 10. Item 7. The method for producing a silica-based particle dispersion according to any one of Items 1 to 6, comprising a step of dispersing silica-based particles in a medium, wherein the medium is a solvent and / or a polymer.
Item 11. Item 10. A temperature-sensitive light-modulating material comprising the silica-based particle dispersion according to any one of items 1 to 9.
Item 12. Item 10. A method for controlling light transmittance of a transparent body by temperature, wherein the silica-based particle dispersion according to any one of Items 1 to 9 is applied to the transparent body.
Item 13. Item 13. The method according to Item 12, wherein the transparent body is glass or plastic.

本発明は、特開2010-053200等の方法で合成することができるシリカ中空粒子を含むシリカ系粒子と、シリカと屈折率が同等レベルの物質との屈折率差の温度変化を応用した調光材料に関連する物質混合系、およびその作成方法を提供するものである。公開特許、特開2010-053200には、シリカ中空粒子と様々な物質との混合系が記載されているが、それら物質の屈折率に関する記述やその温度による変化に関する記述、およびそれらを統合して温度応答性の調光材料とするような記載は全くなく、本発明は当該特許により制限を受けるものでは無い。本発明により、シリカ中空粒子と溶剤との混合分散系の光透過度が温度により変化する技術が提供され、例えば、25℃程度の室温付近では透明である材料が温度上昇により透明度が減少する、あるいは、25℃程度の室温付近では不透明である材料が温度上昇により透明になる等の調光技術を創出できることになる。   The present invention relates to dimming applying a temperature change of a refractive index difference between silica-based particles including silica hollow particles that can be synthesized by a method such as JP 2010-053200 and silica and a substance having an equivalent refractive index. The present invention provides a substance mixing system related to a material and a method for producing the same. The published patent and JP 2010-053200 describe mixed systems of silica hollow particles and various substances. Descriptions on the refractive index of these substances, changes on their temperature, and their integration. There is no description as a temperature-responsive light control material, and the present invention is not limited by the patent. The present invention provides a technique in which the light transmittance of a mixed dispersion system of silica hollow particles and a solvent varies depending on the temperature, for example, the transparency of a material that is transparent around room temperature of about 25 ° C. decreases as the temperature rises. Alternatively, it is possible to create a light control technique such that a material that is opaque near room temperature of about 25 ° C. becomes transparent as the temperature rises.

種々のシリカ系粒子をポリエチレングリコール300に分散させた混合系の光透過度の温度変化Temperature change of light transmittance of mixed system in which various silica particles are dispersed in polyethylene glycol 300 種々のシリカ系粒子をドデカンに分散させた混合系の光透過度の温度変化Temperature change of light transmittance of mixed system in which various silica-based particles are dispersed in dodecane 種々のシリカ系粒子をヘキサデカンに分散させた混合系の光透過度の温度変化Temperature change of light transmittance of mixed system in which various silica-based particles are dispersed in hexadecane 種々のシリカ系粒子をシリコーンオイルに分散させた混合系の光透過度の温度変化Temperature change of light transmittance of mixed system in which various silica-based particles are dispersed in silicone oil 種々のシリカ系粒子をポリアクリル酸メチル(PMA)に分散させた混合系の光透過度の温度変化Temperature change of light transmittance of mixed system in which various silica-based particles are dispersed in polymethyl acrylate (PMA)

本発明において、シリカ系粒子は、酸化ケイ素から構成される粒子であれば特に限定されないが、例えばシリカ粒子、シリカ中空粒子又はシリカゲル粒子が挙げられる。シリカ系粒子の粒径は、100nm〜100μm程度である。このシリカ系粒子の粒径は、一次粒子や二次粒子等の粒子の次元に関係せず乾燥時における凝集体の粒径である。また、粒径がこれよりも大きい場合も、乾燥粒子の光透過率、すなわち空気中での可視光透過率が10%以下となるものならば良い。シリカ中空粒子は、好ましくは光反射性シリカ中空粒子である。光反射性シリカ中空粒子とは、シリカ中空粒子であって、殻部分が数十から数百ナノメートルサイズ(例えば10nm〜900nm、好ましくは30nm〜600nm)の微粒子で構築されたものをいう。   In the present invention, the silica-based particles are not particularly limited as long as they are particles composed of silicon oxide, and examples thereof include silica particles, silica hollow particles, and silica gel particles. The particle size of the silica-based particles is about 100 nm to 100 μm. The particle size of the silica-based particles is the particle size of the aggregate during drying regardless of the dimensions of the particles such as primary particles and secondary particles. Even when the particle diameter is larger than this, it is sufficient if the light transmittance of the dry particles, that is, the visible light transmittance in air is 10% or less. The silica hollow particles are preferably light reflective silica hollow particles. The light-reflective silica hollow particles are silica hollow particles whose shell part is constructed with fine particles having a size of several tens to several hundreds of nanometers (for example, 10 nm to 900 nm, preferably 30 nm to 600 nm).

シリカ系粒子の屈折率は、1.4〜1.5程度である。   The refractive index of silica-based particles is about 1.4 to 1.5.

媒体としては、溶剤及びポリマーからなる群から選ばれる少なくとも1種が挙げられる。溶剤としては、具体的には、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、エイコサン、ドコサン、テトラコサン、スクアランなどの直鎖又は分岐を有する炭化水素、シクロヘキサン、シクロオクタン、シクロデカン、シクロドデカン、デカヒドロナフタレンなどの環状炭化水素、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン、アニソール、クロルベンゼン、ジクロルベンゼン、1,2-メチレンジオキシベンゼン、ニトロベンゼン、アセトフェノンなどの芳香族化合物、アセトニトリル、プロピオニトリルなどのニトリル類、メチルイソブチルケトンなどのケトン類、ジオキサン、DMF,DMSO、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリエチレングリコールなどのアルキレングリコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルなどのアルキレングリコールモノアルキルエーテル類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテルなどのアルキレングリコールジアルキルエーテル類、グリセリンなど、シリカ系粒子と反応しない、あるいはシリカ系粒子との相互作用で変色や白濁を起こさない溶剤が挙げられる。溶剤としては、融点が−10℃以下で沸点が80℃以上のものが望ましいが、他の溶剤と混合することで透明な混合溶剤となり、当該混合溶剤の融点が−10℃以下で沸点が80℃以上となるものでも良い。   Examples of the medium include at least one selected from the group consisting of a solvent and a polymer. Specific examples of the solvent include decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, eicosan, docosan, tetracosan, squalane, etc., hydrocarbon having a straight chain or branched chain, cyclohexane, cyclooctane, Cyclic hydrocarbons such as cyclodecane, cyclododecane, decahydronaphthalene, aromatic compounds such as benzene, toluene, xylene, ethylbenzene, tetralin, anisole, chlorobenzene, dichlorobenzene, 1,2-methylenedioxybenzene, nitrobenzene, acetophenone , Nitriles such as acetonitrile and propionitrile, ketones such as methyl isobutyl ketone, dioxane, DMF, DMSO, ethylene glycol, propylene glycol, di Alkylene glycols such as ethylene glycol, dipropylene glycol, triethylene glycol, polyethylene glycol, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol dimethyl ether And solvents such as alkylene glycol dialkyl ethers such as diethylene glycol dimethyl ether and propylene glycol dimethyl ether, and glycerin, which do not react with silica particles or cause discoloration or cloudiness due to interaction with silica particles. The solvent preferably has a melting point of −10 ° C. or lower and a boiling point of 80 ° C. or higher, but becomes a transparent mixed solvent when mixed with another solvent, and the mixed solvent has a melting point of −10 ° C. or lower and a boiling point of 80 It may be one that is higher than ℃.

ポリマーとしては、透明性を有するポリマーが好ましく、例えばポリメチルメタクリレート(PMMA)、ポリメチルアクリレート(PMA)などのアクリル樹脂、ポリカーボネート(PC)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリプロプレン(PP)、ポリエチレン(PE)、ナイロン(Ny)、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、シリコーンオイル、エチレン・ビニルアルコール共重合樹脂(EVOH)、環状ポリオレフィン(COP)などが挙げられ、これらのポリマーは単独で或いは2種以上を混合して用いることができる。   As the polymer, a polymer having transparency is preferable, for example, an acrylic resin such as polymethyl methacrylate (PMMA), polymethyl acrylate (PMA), polycarbonate (PC), polystyrene (PS), polyethylene terephthalate (PET), polypropylene ( PP), polyethylene (PE), nylon (Ny), polyvinyl chloride (PVC), polyvinyl alcohol (PVA), silicone oil, ethylene / vinyl alcohol copolymer resin (EVOH), cyclic polyolefin (COP), etc. These polymers can be used alone or in admixture of two or more.

本発明のシリカ系粒子分散物は、シリカ系粒子を2〜50質量%、好ましくは4〜40質量%含み、媒体を50〜98質量%、好ましくは60〜96質量%含む。   The silica-based particle dispersion of the present invention contains 2 to 50% by mass of silica-based particles, preferably 4 to 40% by mass, and 50 to 98% by mass, preferably 60 to 96% by mass of the medium.

媒体の屈折率(nD20)は1.40〜1.60、好ましくは1.4〜1.5である。   The refractive index (nD20) of the medium is 1.40 to 1.60, preferably 1.4 to 1.5.

本発明のシリカ系粒子分散物は、媒体が溶剤の場合には、適切な容器に封入して使用することができ、媒体がポリマーの場合には、ポリマーに分散させて使用することができる。媒体がポリマーの場合、シリカ系粒子分散物はシート状、フィルム状、プレート状、或いは任意の形状に成形して使用することができる。成形体の厚みは好ましくは10mm以下、より好ましくは5mm以下であり、厚みが薄い方が温度変化による光透過性の変化が速やかに起こるため好ましいが、必要とする光透過率域によって厚みは適宜調整すれば良い。   When the medium is a solvent, the silica-based particle dispersion of the present invention can be used by being enclosed in a suitable container, and when the medium is a polymer, it can be used after being dispersed in a polymer. When the medium is a polymer, the silica-based particle dispersion can be used in the form of a sheet, a film, a plate, or an arbitrary shape. The thickness of the molded body is preferably 10 mm or less, more preferably 5 mm or less, and it is preferable that the thickness is thinner because the light transmittance changes rapidly due to temperature change, but the thickness is appropriately determined depending on the required light transmittance region. Adjust it.

シリカ系粒子よりも媒体の屈折率が大きい場合には、温度上昇に伴って光透過率が上昇し、シリカ系粒子よりも媒体の屈折率が小さい場合には、温度上昇に伴って光透過率が低下する。また、媒体の屈折率の特性によっては、温度上昇に伴って光透過率が上昇してその後減少しても良く、逆に、温度上昇に伴って光透過率が低下してその後上昇しても良い。   When the refractive index of the medium is larger than that of the silica-based particles, the light transmittance increases as the temperature increases. When the refractive index of the medium is smaller than that of the silica-based particles, the light transmittance increases as the temperature increases. Decreases. Further, depending on the refractive index characteristics of the medium, the light transmittance may increase with a rise in temperature and then decrease, or conversely, the light transmittance may decrease with a rise in temperature and then increase. good.

屈折率の異なる異成分の混合分散系の光透過性は、両成分の屈折率の差によって決まる。例えば、酸化ケイ素材料の場合、ガラス類は透明である一方、シリカゲルなどの乾燥粉末は白濁して透明では無いことは、酸化ケイ素と屈折率の異なる空気との分散により説明できる。ガラスの場合は、材料内部には空隙は無く稠密であるため、ガラス内部での屈折率は一定であり、光は屈折、散乱を受けない。一方、空隙の多い多孔性材料であるシリカゲルの場合、屈折率の異なる酸化ケイ素と空気とが微細なレベルで存在するために光は材料内部で無数の屈折を起こし、その結果、入射光は透過できずに散乱し、白く見える。なお、酸化ケイ素・シリカの屈折率は1.4〜1.5程度、空気の屈折率は1.0と比較的大きな屈折率の差がある。逆に言えば、このシリカゲルの場合でも、粒子の周りの媒体が屈折率1の空気ではなく、シリカと同等の屈折率を持つ物質であれば、このシリカゲルと媒体の混合分散系も透明になるはずである。一方、一般に物質の屈折率は温度上昇と共に低下するため、当該分散系の光透過性は温度変化により影響を受けるはずである。シリカの温度変化による屈折率変化、すなわち温度係数は概ね10-5レベルである一方、有機溶剤は10-4レベルと一桁以上大きい。このシリカと有機溶剤の分散混合系が温度変化を受けた場合、有機溶剤の屈折率はシリカと比べ10倍以上変化することになるため、温度変化によってシリカと有機溶剤との屈折率差が大きくなり、その結果分散混合系の光透過性が変化することが期待できる。この効果は、今回目的とする外部の温度変化に対し自律応答的に光透過性を変化できる調光法を創出できるとも考えられる。しかしながら、有機溶剤系の屈折率の温度変化も1℃の変化につき約0.0005程度であり、このレベルでの屈折率変化が分散混合系全体の光透過性に大きな影響を及ぼすことはほとんど無いため、このような調光法はこれまでに知られていなかった。本明細書において、光反射性シリカ中空粒子とは、シリカ中空粒子であって、殻部分がナノサイズの微粒子で構築されたものをいう。 The light transmittance of the mixed dispersion system of different components having different refractive indexes is determined by the difference in refractive index between the two components. For example, in the case of a silicon oxide material, the fact that glass is transparent while dry powder such as silica gel is cloudy and not transparent can be explained by the dispersion of silicon oxide and air having a different refractive index. In the case of glass, since there is no void inside the material and it is dense, the refractive index inside the glass is constant, and light is not refracted or scattered. On the other hand, in the case of silica gel, which is a porous material with many voids, light is infinitely refracted inside the material because silicon oxide and air having different refractive indexes exist at a fine level, and as a result, incident light is transmitted. It can't be scattered and looks white. The refractive index of silicon oxide / silica is about 1.4 to 1.5, and the refractive index of air is 1.0, which is a relatively large difference in refractive index. Conversely, even in the case of this silica gel, if the medium around the particles is not air having a refractive index of 1 but a substance having a refractive index equivalent to that of silica, this mixed dispersion system of silica gel and medium becomes transparent. It should be. On the other hand, since the refractive index of a substance generally decreases with an increase in temperature, the light transmittance of the dispersion system should be affected by temperature changes. The refractive index change due to the temperature change of silica, that is, the temperature coefficient is about 10 −5 level, while the organic solvent is 10 −4 level, which is more than one digit. When this silica / organic solvent dispersion mixture system is subjected to temperature changes, the refractive index of the organic solvent will change by more than 10 times compared to silica. As a result, it can be expected that the light transmittance of the dispersion mixed system changes. This effect is also considered to be able to create a dimming method that can change the light transmission in an autonomous response to the external temperature change aimed at this time. However, the temperature change of the refractive index of the organic solvent system is about 0.0005 per 1 ° C., and the change in the refractive index at this level hardly affects the light transmittance of the entire dispersion mixed system. Such a dimming method has not been known so far. In this specification, the light-reflective silica hollow particles are silica hollow particles whose shell portion is constructed of nano-sized fine particles.

一方、シリカの中空状微粒子が、光の散乱による高い光反射性能を持つことはすでに指摘されており、例えばシリカ中空粒子の殻部分がナノサイズの微粒子で構築されている場合は、この光の乱反射・散乱の効果が特に大きくなることが知られている(特許文献20)。この特殊なシリカ中空粒子の高い光散乱の効果は、普通のシリカゲルよりも大きいが(非特許文献1)、これは、当該粒子の中空構造とナノ粒子からなる特異な殻構造によって、わずかな屈折率差による光反射・散乱効果が増幅されたためと考えられる。そこで、当該シリカ中空粒子と様々な屈折率の有機溶剤との分散混合系の光透過性を鋭意検討した結果、この特殊なシリカ中空粒子は有機溶剤のわずかな屈折率の差に敏感に反応して、分散混合系の光透過性が激しく変化することを見出した。そして、これら分散混合系の温度を変化させた場合、系全体の透過性も大きく変化することを見出した。すなわち、ミクロンサイズ(1〜100μm)のシリカ中空粒子にある殻部分にナノからミクロンサイズの穴(50nm〜5μm)を有するシリカ材料を、シリカの屈折率とほぼ同等の屈折率を持つ溶剤やポリマー等に分散・混合させ、温度変化により当該溶剤やポリマーの屈折率を変化させることで、屈折率差をもたらすというシステムを構築することで、外部温度の変化によって自律的に混合系の光透過性を変化させることができる調光法を見出し、本発明に至った。   On the other hand, it has already been pointed out that hollow silica fine particles have high light reflection performance due to light scattering. For example, when the shell of silica hollow particles is constructed of nano-sized fine particles, It is known that the effect of irregular reflection / scattering is particularly large (Patent Document 20). The effect of high light scattering of this special silica hollow particle is larger than that of ordinary silica gel (Non-patent Document 1), but this is caused by slight refraction due to the unique shell structure of the particle hollow structure and nanoparticles. This is probably because the light reflection / scattering effect due to the rate difference was amplified. Therefore, as a result of intensive studies on the light transmittance of a dispersion mixed system of the silica hollow particles and organic solvents having various refractive indexes, the special silica hollow particles react sensitively to a slight difference in refractive index of the organic solvent. Thus, it was found that the light transmittance of the dispersion mixed system changes drastically. And when the temperature of these dispersion | distribution mixing systems was changed, it discovered that the permeability | transmittance of the whole system also changed a lot. That is, a silica material having a nano to micron-sized hole (50 nm to 5 μm) in a shell part of a silica hollow particle of micron size (1 to 100 μm), and a solvent or polymer having a refractive index almost equal to that of silica By constructing a system that changes the refractive index of the solvent or polymer by changing the temperature and changing the refractive index of the solvent or polymer, etc., the light transmission of the mixed system autonomously due to changes in the external temperature The present inventors have found a dimming method capable of changing the light intensity and have arrived at the present invention.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
実施例1 シリカ粒子・ポリエチレングリコール混合系の光透過性
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.
Example 1 Light Transmittance of Silica Particle / Polyethylene Glycol Mixed System

公開特許、特開2010-053200に示す方法で、殻部分がナノ粒子で構成されたシリカ中空粒子(ここでは「光反射性シリカ中空粒子」とする)を調製した。この粒子を10mm角の石英製セルに稠密に充填し、ポリエチレングリコール300(和光純薬)を均一に分散するように加えた。セル内部は、適宜金属製の棒でかき混ぜて空気を十分に取り除いた。こうして得られた光反射性シリカ中空粒子分散ポリエチレングリコール300の入ったセルの光透過度を、島津社製分光光度計UV−2500PCを用いて評価した。また、セルの温度は、島津社製電子冷熱式恒温セルホルダ TCC−240Aにセルを設置して、それぞれの温度での光透過度を分析した。その結果を図1に示す。室温25℃では中程度の光透過度を持つが、温度上昇によりさらに透過度が減少し、60℃ではほとんど光は透過しなかった。その後、温度を25℃に戻すと元の光透過度に戻り、この光透過度の変化は可逆的であった。この光反射性シリカ中空粒子のみ、すなわち空気に分散した場合では、25℃から60℃の全ての温度域において、光透過度は1%以下であった。このように、この光反射性シリカ中空粒子は、適当な溶剤に分散した場合、温度変化によって光透過度が可逆的に変化することがわかった。なお、ポリエチレングリコール300のnD20値は、1.465である。   Silica hollow particles (herein referred to as “light-reflective silica hollow particles”) whose shell portion is composed of nanoparticles were prepared by the method shown in the published patent and Japanese Patent Application Laid-Open No. 2010-053200. The particles were densely packed in a 10 mm square quartz cell, and polyethylene glycol 300 (Wako Pure Chemical Industries) was added so as to be uniformly dispersed. The inside of the cell was appropriately mixed with a metal rod to sufficiently remove air. The light transmittance of the cell containing the light-reflective silica hollow particle-dispersed polyethylene glycol 300 thus obtained was evaluated using a spectrophotometer UV-2500PC manufactured by Shimadzu Corporation. Moreover, the temperature of the cell installed the cell in the thermoelectric constant temperature cell holder TCC-240A by Shimadzu Corporation, and analyzed the light transmittance in each temperature. The result is shown in FIG. The light transmittance was moderate at room temperature 25 ° C, but the transmittance further decreased with increasing temperature, and almost no light was transmitted at 60 ° C. Thereafter, when the temperature was returned to 25 ° C., the original light transmittance was restored, and this change in light transmittance was reversible. When only the light-reflective silica hollow particles, that is, dispersed in air, the light transmittance was 1% or less in all temperature ranges from 25 ° C to 60 ° C. Thus, it was found that when the light-reflective silica hollow particles are dispersed in an appropriate solvent, the light transmittance changes reversibly with temperature change. The nD20 value of polyethylene glycol 300 is 1.465.

この光透過性変化は、他のシリカ材料に関しても観測された。特開2010-053200に示す方法で、塩化ナトリウムを添加せずに得たシリカ中空粒子(ここでは「通常のシリカ中空粒子」とする)や市販のシリカゲル(メルク社製シリカゲル60)においても同様の傾向があり、ここで観察された温度変化による光透過度の可逆的変化は、光反射性シリカ中空粒子に限定されず、シリカ系粒子全般で起こることがわかった。なお、ポリエチレングリコール300のみを同じセルに充填した場合の透過率には、温度による変化は観測されなかった。   This change in light transmission was also observed for other silica materials. The same applies to silica hollow particles (herein referred to as “normal silica hollow particles”) obtained without adding sodium chloride by the method shown in Japanese Patent Application Laid-Open No. 2010-053200 and commercially available silica gel (silica gel 60 manufactured by Merck). There was a tendency, and it was found that the reversible change in light transmittance due to the temperature change observed here was not limited to the light-reflective silica hollow particles, but occurred in general silica-based particles. In addition, the change by temperature was not observed in the transmittance | permeability at the time of filling only the polyethylene glycol 300 in the same cell.

実施例2 シリカ粒子・ドデカン混合系の光透過性
実施例1と同様の方法で、種々のシリカ粒子を、3mm角のパイレックス(登録商標)ガラス製セルに稠密に充填し、ドデカン(和光純薬製)を均一に分散するように加えた。セル内部は、適宜金属製の棒でかき混ぜて空気を十分に除いた。こうして得られたシリカ粒子分散ドデカンの入ったセルの光透過度を、実施例1と同様の方法を用いて評価した。また、セルを温度可変機に設置して、それぞれの温度でも光透過度も分析した。その結果を図2に示す。光反射性シリカ中空粒子、通常のシリカ中空粒子、およびシリカゲルにおいて、光透過率の温度変化が見られ、温度上昇に伴い透過率が減少したが、その中で光反射性シリカ中空粒子が最も変化した。なお、ドデカンのnD20値は、1.421〜1.424である。
Example 2 Light Transmittance of Silica Particle / Dodecane Mixed System Various silica particles were densely packed in a 3 mm square Pyrex (registered trademark) glass cell in the same manner as in Example 1 to obtain dodecane (Wako Pure Chemical Industries, Ltd.). Product) was added so as to be evenly dispersed. The inside of the cell was appropriately mixed with a metal rod to sufficiently remove air. The light transmittance of the cell containing the silica particle-dispersed dodecane thus obtained was evaluated using the same method as in Example 1. Moreover, the cell was installed in the temperature variable machine, and the light transmittance was also analyzed at each temperature. The result is shown in FIG. In light-reflective silica hollow particles, ordinary silica hollow particles, and silica gel, the temperature change of light transmittance was observed, and the transmittance decreased with increasing temperature, among which light-reflective silica hollow particles changed the most did. In addition, the nD20 value of dodecane is 1.421 to 1.424.

実施例3 シリカ粒子・ヘキサデカン混合系の光透過性
実施例2と同様の方法で、種々のシリカ粒子を、3mm角のパイレックスガラス製セルに稠密に充填し、ヘキサデカン(和光純薬製)を均一に分散するように加えた。こうして得られたシリカ粒子分散ヘキサデカンの入ったセルの光透過度を、実施例1と同様の方法を用いて評価した。また、セルを温度可変機に設置して、それぞれの温度でも光透過度も分析した。その結果を図3に示す。ヘキサデカンの融点が18℃のため、20℃より低い温度は測定していない。通常のシリカ中空粒子、およびシリカゲルでは、温度上昇に透過率は単調に減少し、透過率変化は通常のシリカ中空粒子の方が顕著であった。一方、光反射性シリカ中空粒子では、20℃から40℃において透過率は向上したが、40℃から60℃へとさらに温度を上げると逆に透過率が減少した。このように、20℃から60℃のわずかな温度変化において透過率の増加と減少が観測された。なお、ヘキサデカンのnD20値は、1.433〜1.438である。
Example 3 Light Transmittance of Silica Particle / Hexadecane Mixed System In the same manner as in Example 2, various silica particles were densely packed in a 3 mm square Pyrex glass cell, and hexadecane (manufactured by Wako Pure Chemical Industries) was evenly mixed. Added to disperse. The light transmittance of the cell containing the silica particle-dispersed hexadecane thus obtained was evaluated using the same method as in Example 1. Moreover, the cell was installed in the temperature variable machine, and the light transmittance was also analyzed at each temperature. The result is shown in FIG. Since the melting point of hexadecane is 18 ° C, temperatures below 20 ° C are not measured. In ordinary silica hollow particles and silica gel, the transmittance monotonously decreased with increasing temperature, and the transmittance change was more remarkable in the ordinary silica hollow particles. On the other hand, in the light-reflective silica hollow particles, the transmittance improved from 20 ° C. to 40 ° C., but the transmittance decreased conversely when the temperature was further increased from 40 ° C. to 60 ° C. Thus, an increase and decrease in transmittance was observed at slight temperature changes from 20 ° C to 60 ° C. In addition, the nD20 value of hexadecane is 1.433 to 1.438.

実施例4 シリカ粒子・シリコーンオイルKF-50-300CS混合系の光透過性
内径約26mmのパイレックスガラス製シャーレに、2種類のシリカ中空粒子は0.1g、シリカゲルは0.3gを均一に広げ、そこにシリコーンオイル、KF-50-300CS(信越化学製)約1.5mLをシリカ粒子全体に加え、その後室温で放置して十分にシリカ粒子となじませた(約3日間)。こうして得られたシリカ粒子シリコーンオイル混合系の光透過性は、上部より光を照射することで透過率を測定した。光透過率測定は、オリンパス社製BX型顕微鏡のタングステンランプを光源とし、オーシャンオプティクスのUSB2000+分光器で透過光を分析した。温度変化は、測定用シャーレをINSTEC社製ホットステージに置くことで行った。なお、光源の特性のため、400nm以下、および750nm以上の波長域の光に関しては測定していない。光反射性シリカ中空粒子、通常のシリカ中空粒子、およびシリカゲルにおいて、光透過率の温度変化が見られ、温度上昇に伴い透過率が減少したが、その中で光反射性シリカ中空粒子が最も変化した。なお、このシリコーンオイルKF-50-300CSのnD25値は、1.425である。
Example 4 Light Transmittance of Silica Particle / Silicone Oil KF-50-300CS Mixed System In a Pyrex glass petri dish with an inner diameter of about 26 mm, 0.1 g of two types of silica hollow particles and 0.3 g of silica gel are uniformly spread. About 1.5 mL of silicone oil, KF-50-300CS (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to the entire silica particles, and then allowed to stand at room temperature to fully blend with the silica particles (about 3 days). The light transmittance of the silica particle silicone oil mixed system thus obtained was measured by irradiating light from above. The light transmittance was measured using a tungsten lamp of Olympus BX microscope as a light source and the transmitted light was analyzed with a USB2000 + spectrometer of Ocean Optics. The temperature change was performed by placing a measuring petri dish on an INSTEC hot stage. In addition, due to the characteristics of the light source, measurement is not performed for light having a wavelength range of 400 nm or less and 750 nm or more. In light-reflective silica hollow particles, ordinary silica hollow particles, and silica gel, the temperature change of light transmittance was observed, and the transmittance decreased with increasing temperature, among which light-reflective silica hollow particles changed the most did. The nD25 value of this silicone oil KF-50-300CS is 1.425.

実施例5 シリカ粒子・ポリアクリル酸メチル混合系の光透過性
実施例4と同じ方法で、内径約26mmのガラス製シャーレに、シリカ中空粒子は0.1g、シリカゲルは0.3gを均一に広げ、そこにポリアクリル酸メチル・トルエン溶液(40%、アルドリッチ社製)3mLをシリカ粒子全体に加え、その後室温で放置して全てのトルエンが蒸発させた(約5日間)。こうして得られたシリカ粒子シリコーンオイル混合系の光透過性は、実施例4と同じ方法で測定した。光反射性シリカ中空粒子、通常のシリカ中空粒子、およびシリカゲルにおいて、光透過率の温度変化が見られ、温度上昇に伴い透過率が増加したが、その中で光反射性シリカ中空粒子が最も変化した。なお、このポリアクリル酸メチルのnD20値は、1.494である。
Example 5 Light Transmittance of Mixed Silica Particle / Methyl Polyacrylate Using the same method as in Example 4, 0.1 g of silica hollow particles and 0.3 g of silica gel were uniformly spread on a glass petri dish having an inner diameter of about 26 mm. 3 mL of a methyl acrylate / toluene solution (40%, manufactured by Aldrich) was added to the entire silica particles, and then left at room temperature to evaporate all the toluene (about 5 days). The light transmittance of the silica particle silicone oil mixed system thus obtained was measured by the same method as in Example 4. In light-reflective silica hollow particles, ordinary silica hollow particles, and silica gel, the temperature change in light transmittance was observed, and the transmittance increased as the temperature rose. Among them, light-reflective silica hollow particles changed the most. did. The nD20 value of this polymethyl acrylate is 1.494.

本特許で示した技術や調光性能の応用は、種々想定されるが、例えば以下のような応用が考えられる。   Various applications of the technology and dimming performance shown in this patent are envisaged. For example, the following applications are conceivable.

建物の窓ガラス等に設置して、室内外の温度変化に伴い窓ガラスの光透過度を自動的に調節できる技術である。例えば、夏季の日中の急激な温度上昇と共に光透過を抑制して室内の温度上昇を抑え、ひいては冷房に必要なエネルギーを低減する、等の応用である。また、車両の窓ガラスへの応用も想定できる。また、温度により光の反射性能を制御できるため、温度に応答できる遮熱塗料、遮熱コーティングへの応用の可能性もある。   It is a technology that can be installed on the window glass of a building and automatically adjust the light transmittance of the window glass as the temperature changes indoors and outdoors. For example, it is an application in which light transmission is suppressed together with a rapid temperature rise during the daytime in summer to suppress a temperature rise in the room, and thus energy required for cooling is reduced. Moreover, the application to the window glass of a vehicle can also be assumed. In addition, since the light reflection performance can be controlled by the temperature, there is a possibility of application to a thermal barrier coating and thermal barrier coating that can respond to the temperature.

Claims (6)

光反射性シリカ中空粒子を媒体に分散させてなる、感温調光性成形体であって、前記成形体は、シート状、フィルム状又はプレート状であり、前記媒体がポリマーであり、前記媒体の屈折率(nD20)は1.40〜1.60である、感温調光性成形体。 A temperature-sensitive light-adjustable molded product obtained by dispersing light-reflective silica hollow particles in a medium, wherein the molded product is a sheet, a film, or a plate, and the medium is a polymer. The refractive index (nD20) of the thermosensitive light-adjustable molded product is 1.40 to 1.60. 前記媒体の屈折率(nD20)は1.4〜1.5であり、光反射性シリカ中空粒子の屈折率(nD20)は1.4〜1.5である、請求項1に記載の感温調光性成形体。 The temperature-sensitive light-adjustable molded article according to claim 1, wherein the refractive index (nD20) of the medium is 1.4 to 1.5, and the refractive index (nD20) of the light-reflective silica hollow particles is 1.4 to 1.5. 光反射性シリカ中空粒子の粒径が100nm〜100μmである、請求項1又は2に記載の感温調光性成形体。 The temperature-sensitive light-adjustable molded article according to claim 1 or 2, wherein the light-reflective silica hollow particles have a particle size of 100 nm to 100 µm. 温度上昇に伴い光透過率が上昇する請求項1〜3のいずれか1項に記載の感温調光性成形体。 The temperature-sensitive light-adjustable molded article according to any one of claims 1 to 3, wherein the light transmittance increases as the temperature rises. 温度上昇に伴い光透過率が低下する請求項1〜3のいずれか1項に記載の感温調光性成形体。 The temperature-sensitive light-adjustable molded article according to any one of claims 1 to 3, wherein the light transmittance decreases as the temperature rises. 温度上昇に伴い光透過率が上昇したのちに低下する請求項4又は5に記載の感温調光性成形体。 The temperature-sensitive light-adjustable molded article according to claim 4 or 5, which decreases after the light transmittance increases with an increase in temperature.
JP2013156394A 2013-07-29 2013-07-29 Temperature-sensitive light-modulating material and manufacturing method thereof Active JP6281861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013156394A JP6281861B2 (en) 2013-07-29 2013-07-29 Temperature-sensitive light-modulating material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013156394A JP6281861B2 (en) 2013-07-29 2013-07-29 Temperature-sensitive light-modulating material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015025090A JP2015025090A (en) 2015-02-05
JP6281861B2 true JP6281861B2 (en) 2018-02-21

Family

ID=52490016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013156394A Active JP6281861B2 (en) 2013-07-29 2013-07-29 Temperature-sensitive light-modulating material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6281861B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110105A (en) * 2015-12-16 2017-06-22 三菱樹脂株式会社 Temperature-sensitive light-shielding sheet and sheet for agriculture
JP7064902B2 (en) * 2018-02-22 2022-05-11 ベック株式会社 Pigment dispersion and gloss adjustment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671736B2 (en) * 1992-11-09 1997-10-29 信越化学工業株式会社 Temperature sensor
JP3287508B2 (en) * 1993-12-21 2002-06-04 トヨタ自動車株式会社 Functional glazing and its manufacturing method
JP4046921B2 (en) * 2000-02-24 2008-02-13 触媒化成工業株式会社 Silica-based fine particles, method for producing the fine particle dispersion, and coated substrate
JP2005301246A (en) * 2004-03-15 2005-10-27 Fuji Photo Film Co Ltd Antireflection film, polarizing plate, and liquid crystal display
JP4632403B2 (en) * 2004-03-26 2011-02-16 大日本印刷株式会社 Antireflection film

Also Published As

Publication number Publication date
JP2015025090A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
Liu et al. Thermal-responsive photonic crystal with function of color switch based on thermochromic system
Mandal et al. Porous polymers with switchable optical transmittance for optical and thermal regulation
Zhong et al. Hierarchically hollow microfibers as a scalable and effective thermal insulating cooler for buildings
Jing et al. Scalable and flexible electrospun film for daytime subambient radiative cooling
Yang et al. Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling
Kragt et al. Temperature-responsive, multicolor-changing photonic polymers
Xue et al. Fabrication of superhydrophobic P (VDF-HFP)/SiO2 composite film for stable radiative cooling
Takeoka et al. Structural colored liquid membrane without angle dependence
Argyros Microstructures in Polymer Fibres for Optical Fibres, THz Waveguides, and Fibre‐Based Metamaterials
Elim et al. Refractive index control and Rayleigh scattering properties of transparent TiO2 nanohybrid polymer
Shumburo et al. Stabilization of an organic photochromic material by incorporation in an organogel
Wu et al. Thermoresponsive inverse opal films fabricated with liquid-crystal elastomers and nematic liquid crystals
Deng et al. Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation
CA3008601C (en) Nanoemulsion optical materials
Han et al. Electro-optical device with tunable transparency using colloidal core/shell nanoparticles
JP6281861B2 (en) Temperature-sensitive light-modulating material and manufacturing method thereof
Hassan Two-photon absorption-based optical limiting in 2-(2-methoxybenzyllideneamino)-5-methylphenylmercuric chloride-doped PMMA film
CN113386437B (en) Flexible photonic crystal material with temperature/voltage response color change and preparation method thereof
Zhong et al. Ultrafast freestanding microfiber humidity sensor based on three-dimensional graphene network cladding
Yuan et al. Nonlinear absorption, refraction and optical limiting properties of CsPbBr3 perovskite quantum dot organic glass
Zhang et al. A novel low-voltage fast-response electrically controlled dimming film based on fluorinated PDLC for smart window applications
Miluski et al. Optical properties of spirooxazine-doped PMMA fiber for new functional applications
Chen et al. Numerically enhancing daytime radiative cooling performance of random dielectric microsphere coatings by hollow structures
Chen 3D direct writing of bandgap tunable nanocrystals in transparent material
Al-Kadhemy et al. Effect of Doping Ratio on optical properties of coumarin doped polystyrene films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180116

R150 Certificate of patent or registration of utility model

Ref document number: 6281861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250