JP6280558B2 - 温度分布決定装置 - Google Patents

温度分布決定装置 Download PDF

Info

Publication number
JP6280558B2
JP6280558B2 JP2015542387A JP2015542387A JP6280558B2 JP 6280558 B2 JP6280558 B2 JP 6280558B2 JP 2015542387 A JP2015542387 A JP 2015542387A JP 2015542387 A JP2015542387 A JP 2015542387A JP 6280558 B2 JP6280558 B2 JP 6280558B2
Authority
JP
Japan
Prior art keywords
temperature distribution
temperature
region
model
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015542387A
Other languages
English (en)
Other versions
JP2016502434A5 (ja
JP2016502434A (ja
Inventor
アジャイ アナンド
アジャイ アナンド
シュリラム セツラーマン
シュリラム セツラーマン
ジュンボ リー
ジュンボ リー
バラスンダール イーヤブ ラジュ
バラスンダール イーヤブ ラジュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2016502434A publication Critical patent/JP2016502434A/ja
Publication of JP2016502434A5 publication Critical patent/JP2016502434A5/ja
Application granted granted Critical
Publication of JP6280558B2 publication Critical patent/JP6280558B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • A61B5/015By temperature mapping of body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00106Sensing or detecting at the treatment site ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • A61B2034/104Modelling the effect of the tool, e.g. the effect of an implanted prosthesis or for predicting the effect of ablation or burring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/543Control of the diagnostic device involving acquisition triggered by a physiological signal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Surgical Instruments (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

本発明は、温度分布決定装置、温度分布決定方法、及びエネルギーを対象に印加することによって生じる対象内の温度分布を決定するコンピュータプログラムに関する。本発明は更に、エネルギーを対象に印加するシステムであって、温度分布決定装置を有するシステムに関する。
欧州特許第2387963A1号公報は、エネルギーを対象に印加することによって生じる対象内の温度分布を決定する温度分布決定装置を開示している。
この装置は、対象が第1の温度レンジ内の温度に加熱されるようにエネルギーが対象に印加される間、対象内の空間及び時間依存の第1の温度分布を測定する温度分布測定ユニットを有する。装置は更に、測定された第1の温度分布の空間及び時間依存性に基づいて、第1の温度レンジとは異なる第2の温度レンジ内で、対象の空間及び時間依存の第2の温度分布を評価する温度分布評価ユニットを有する。
本発明の目的は、決定される温度分布の改善された正確さを与える、温度分布決定装置、温度分布決定方法、エネルギーを対象に印加することによって生じる対象内の温度分布を決定するためのコンピュータプログラムを提供することである。本発明の他の目的は、エネルギーを対象に印加するシステムであって、温度分布決定装置を有するシステムを提供することである。
本発明の第1の見地において、エネルギーを対象に印加することによって生じる対象内の温度分布を決定する温度分布決定装置であって、エネルギーはエネルギー印加素子を使用することにより印加され、前記温度分布装置は、エネルギーが対象に印加される間、第1の温度レンジ内で、対象内の第1領域における第1の温度分布を測定する温度分布測定ユニットと、変更可能なモデルパラメータに依存して、対象内の第1領域及び該第1領域よりエネルギー印加素子に近い第2領域におけるモデル温度分布を記述するモデルを提供するモデル提供ユニットと、第1領域における第1の温度分布からのモデル温度分布のずれが最小にされるようにモデルパラメータを変更することによって、エネルギーが対象に印加される間、第1の温度レンジとは異なる第2の温度レンジ内で、第2領域における第2の温度分布を評価する温度分布評価分布ユニットと、を有する温度分布装置が提供される。
モデルパラメータが、エネルギーの印加中に変更されるので、第2の温度分布を評価する間に第2の温度レンジ内でのモデルパラメータの温度依存性が考慮されることができ、それにより、第2の温度分布の評価の正確さを改善する。例えば、第1の温度レンジが摂氏50度以下の温度を含み、第2の温度レンジがより大きい温度を含む場合、より大きい第2の温度分布を評価する間に、該第2の温度レンジ内でのモデルパラメータの温度依存性が考慮されることができ、それにより、第2の温度分布を決定する正確さを改善する。
第2の温度レンジは好適には、温度分布測定ユニットが温度分布を測定することができない又は正確に温度分布を測定することができない温度レンジである。例えば、温度分布測定ユニットが、温度分布を測定するために超音波温度測定プロシージャを実施するように適応される場合、第2の温度レンジは、摂氏50度より大きい温度を含むことができ、第1の温度レンジは、摂氏50度以下の温度を含みうる。
第1の温度分布は、時間及び/又は空間依存の分布でありうる。好適には、第1の温度分布は、時間及び空間依存の温度分布である。更に、第2の温度分布は、空間及び/又は時間依存の温度分布でありえ、空間及び時間依存の温度分布が好ましい。
第2の温度レンジ内での変更可能なパラメータの温度依存性が第2の温度分布を評価する間に考慮されることができる該変更可能なパラメータは、好適には、対象の熱伝導率のような熱的パラメータ及び/又は導電率のような電気的パラメータを含む。対象が空間的に不均一である場合、変更可能なパラメータもまた、好適には空間的に不均一であり、変更可能なパラメータの空間的な不均一性は、対象の空間的な不均一性に対応する。例えば、対象は、組織、血管、その他の異なる種類のような異なる要素を含む生物の一部でありえ、この場合、生物の一部のこれらの異なる要素の少なくともいくつかに関して、異なる変更可能なパラメータが、モデルによって提供されることができる。
好適には、エネルギー印加素子は、エネルギー印加素子において温度を測定するように適応され、提供されるモデルは、第1及び第2領域における及びエネルギー印加素子におけるモデル温度分布を記述し、温度分布評価ユニットは、第1領域における第1の温度分布及びエネルギー印加素子のところで測定された温度からのモデル温度分布のずれが最小にされるように、モデルパラメータを変更するように適応される。エネルギー印加素子において測定された温度を付加的に考慮することによって、第2領域における第2の温度分布の評価が一層改善されることができる。
好適には、温度分布評価ユニットが少なくとも第1及び第2の温度分布を含む全体の温度分布を評価することができるように、第1領域及び第2領域は隣り合った領域である。第1及び第2領域が隣り合った領域でなく、他の領域が第1領域と第2領域との間にある場合、温度分布評価ユニットは、好適には、第1領域、第2領域、並びに第1及び第2領域の間の領域をカバーする全体の温度分布を評価するように適応される。
更に好適には、モデル提供ユニットは、前記提供されるモデルを初期モデルパラメータで初期化するように適応され、この場合、少なくとも1つの初期モデルパラメータが、対象特有のモデルパラメータである。例えば、対象が血管を含む生物である場合、血管内のフロー速度は、例えば超音波ドップラー技法によって決定されることができ、フロー速度は、対象特有の初期モデルパラメータでありえ、第1領域における第1の温度分布にモデルを適応させるために、及び任意にはエネルギー印加素子において測定された温度にモデルを適応させるために、温度分布評価ユニットによって変更されることができる。対象特有の初期モデルパラメータを使用することは、第2の温度レンジ内で第2の温度分布を評価する正確さを一層改善することができる。
好適な実施形態において、対象は生物であり、エネルギーは、生物の一部をアブレーションするために生物に印加され、温度分布決定装置は、アブレーションされた対象内の領域を規定するアブレーションされた領域(以下、アブレーション領域)を決定するアブレーション領域決定ユニットを更に有し、アブレーション領域決定ユニットは、評価された第2の温度分布が予め規定された温度閾値より大きい温度を含む対象の部分を決定することによって、アブレーション領域を決定するように適応される。これは、アブレーション領域の発生を観察することによって、アブレーションプロシージャを監視することを可能にする。アブレーション領域は、好適にはディスプレイに表示される。更にディスプレイには、腫瘍領域であってアブレーションされるべきである関心領域が、表示されることができる。例えば、アブレーション領域と関心領域とのオーバレイが、ディスプレイに表示されることができる。
生物は人又は動物であり、エネルギー印加素子は、好適には、エネルギーを印加するように適応されたニードル又はカテーテルである。エネルギーは好適にはラジオ周波数(RF)エネルギーであり、カテーテル又はニードルは好適には対応するRF電極を含む。関心領域は、好適には、完全にアブレーションされるべき腫瘍領域である。決定されたアブレーション領域及び腫瘍領域を表示することによって、それらは、アブレーションプロシージャを実施している医師によって容易に比較されることができ、それにより、医師は、アブレーション領域が腫瘍領域を完全にカバーしていることを確かめることができる。
温度分布測定ユニットは、好適には、第1領域の超音波データを取得する超音波プローブと、取得された超音波データに基づいて温度分布を決定する超音波温度測定ユニットとを有する。これは、既知の磁性共鳴を利用する温度分布測定装置と比較して技術的にあまり複雑でないやり方で、エネルギーの印加中に、第1領域内の第1の温度分布を測定することを可能にする。
温度分布測定ユニットは好適には、第1領域が平面によって形成されるように適応される。第1領域は、1又は複数の平面によって形成されることができ、それは、垂直及び/又は水平でありうる。例えば、超音波プローブは、互いに直交する及び第1領域を規定する2つの平面において超音波データを取得するように適応されることができる。しかしながら、第1領域は非平面であってもよく、特にカーブしていてもよい。
好適には、温度分布測定ユニットは、エネルギー印加素子に超音波プローブを固定する固定具を有する。固定具は、好適には知られている寸法を有し、それにより、固定具が超音波プローブ及びエネルギー印加素子を互いに接続する場合、超音波プローブとエネルギー印加素子との間の空間的な関係、特に距離が知られる。固定具は、好適には、温度測定ユニットが第1領域において第1の温度分布を測定するように適応され、かかる第1領域は、第1の温度分布が第1領域内で測定可能であるようなエネルギー印加素子までの距離を有し、すなわち、第1領域は、エネルギー印加素子に対し近すぎないところにある。
一実施形態において、温度分布測定ユニットは、第1の温度レンジ内で、個々の異なる第1領域における個々の異なる第1の温度分布を測定するために、測定された第1の温度分布に依存して第1領域を変更するように適応され、モデル提供ユニットは、それが変更可能なパラメータに依存して対象内の異なる第1領域及び第2領域におけるモデル温度分布を記述するモデルを提供するように適応され、温度分布評価ユニットは、第1領域における第1の温度分布からのモデル温度分布のずれが最小にされるようにモデルパラメータを変更することによって、エネルギーが対象に印加される間、第2の温度レンジ内で、第2領域の第2の温度分布を評価するように適応される。第1領域は、それぞれ異なる第1領域においてそれぞれ異なる第1の温度分布を測定するために、測定された第1の温度分布に依存して変更されるので、第1領域は、現在の測定された第1の分布に適応されることが可能である。これは、例えば、実際に測定された第1の温度分布に依存して第1領域を変更することを可能にし、それゆえ、直前の第1領域における温度が、正確に測定されるためにはあまりに高すぎる場合、変更された第1領域、すなわち新しい第1領域において、対象の温度の測定が続行されることができ、これにより、対象の第1の温度分布が測定されうる期間を延ばす。
好適には、温度分布測定ユニットは、第1領域の位置を変えることによって、第1領域を変更するように適応される。特に、温度分布測定ユニットは、それぞれ異なる位置に第1領域を連続的に位置付けるように適応され、第1領域の位置が変えられる場合、それは、エネルギー印加素子に対しより近い位置から、エネルギー印加素子に対しより遠い位置に変えられる。温度分布測定ユニットがもはや現在の第1領域において温度を測定することが可能でなくなる場合、異なる距離を有する異なる第1領域をエネルギー印加素子に提供することによって、温度分布の測定が、現在の第1領域よりエネルギー印加素子に対し離れた別の第1領域において続行されることができる。こうして、加熱プロセス中、エネルギー印加素子に対するそれぞれの第1領域の距離を増大することによって、対象の温度が測定されることができる期間が、比較的単純なやり方で非常に効果的に増大されることができる。
温度分布測定ユニットは、超音波プローブを有することができ、第1領域を変更するために第1領域の位置を変えるために超音波プローブを移動するよう適応されることができる。この場合、超音波プローブは、好適には1次元の超音波プローブである。これは、技術的に比較的単純な超音波プローブを使用して、エネルギー印加素子に対するそれぞれ異なる距離を有するそれぞれ異なる第1領域における温度分布を測定することを可能にする。超音波プローブは更に、超音波プローブを移動させることなく第1領域の位置が変えられるように、適応されることもできる。この場合、超音波プローブは、好適には2次元の超音波プローブである。これは、機械的移動装置を必要とすることなく、エネルギー印加素子に対して超音波プローブを移動させるための超音波プローブを提供することを可能にし、これは、結果として機械的により単純な温度分布測定ユニットをもたらすことができる。
更に好適には、温度分布測定ユニットは、超音波プローブが、基準温度にあるそれぞれ異なる第1領域の基準超音波データ、及びそれぞれ異なる第1領域の実際の超音波データを取得するように、適応され、超音波温度測定ユニットは、個々の第1領域について得られる個々の実際の超音波データ、個々の第1領域について得られる基準超音波データ、及び個々の基準温度に依存して、個々の第1領域の第1の温度分布を決定する。特に、基準データ取得ステージにおいて、超音波プローブが、知られている基準温度にあるそれぞれ異なる第1領域の基準超音波データを取得し、温度分布測定ステージにおいて、超音波プローブが、実際の超音波データを取得し、超音波温度測定ユニットが、個々の第1領域について取得された個々の実際の超音波データ、個々の第1領域について取得される基準超音波データ、及び個々の基準温度に依存して、それぞれ異なる第1領域内の第1の温度分布を決定するように、温度分布測定ユニットが適応される。基準温度は、各々の第1領域について同じでありうる。例えば、対象が人である場合、基準温度は摂氏37度でありうる。特に、エネルギー印加素子が、腫瘍のような人の一部をアブレーションするアブレーション素子である場合、アブレーションプロシージャが開始される前に、基準データ取得ステージにおいて、超音波プローブは、基準超音波データを得ることができ、この場合、人は、摂氏約37度の知られている温度を有する。アブレーションプロシージャの間、第1の温度分布は、アブレーションプロシージャ中に基準データの取得を必要とせずに、異なる第1領域において測定されることができ、それにより、アブレーションプロシージャ中に超音波温度測定によって第1の温度分布を迅速に及び正確に測定することが可能になる。
別の好適な実施形態において、モデル提供ユニットは、対象のモデルを提供し、該モデルは、個別の第1の温度分布がすでに測定された第1領域、及び個別の第1の温度分布が、変更可能なモデルパラメータに依存してまだ測定されていない第1領域のモデル温度分布を記述し、温度分布評価ユニットは、第1の温度分布が既に測定された第1領域において測定された第1の温度分布からの、第1の温度分布が既に測定された第1領域におけるモデル温度分布のずれが最小にされるようにモデルパラメータを変更することによって、及び変更されたモデルから基準温度を決定することによって、第1の温度分布がまだ測定されていない第1領域についての基準温度を決定する。従って、この実施形態において、直前の基準データ取得ステージにおいて知られている基準温度での基準超音波データの取得を必要とせずに、第1の温度分布が、それぞれの異なる第1領域において測定されることができる。
温度分布測定ユニットは、好適には、第1領域の測定された第1の温度分布が予め規定された温度レンジ外の温度を含むかどうか決定し、第1領域の測定された第1の温度分布が予め規定された温度レンジ外の温度を含む場合、第1領域を変更するように適応される。予め規定された温度レンジは、第1の温度レンジと同様でありうる。例えば、対象は人又は動物でありえ、予め規定された温度レンジは、摂氏50度の上限最高温度によって規定されることができる。予め規定された温度レンジは更に、特に摂氏37度である人又は動物の正常体温に等しい下限最小温度によって規定されることができる。
本発明の他の見地において、エネルギーを対象に印加するシステムであって、エネルギーを対象に印加するエネルギー印加素子と、請求項1に記載のエネルギーを対象に印加することによって生じる対象内の温度分布を決定する温度分布決定装置と、を有するシステムが提示される。
好適な実施形態において、システムは、決定された温度分布に依存して、エネルギー印加素子を制御するエネルギー印加制御ユニットを更に有する。特に、腫瘍領域のようなアブレーションされるべき関心領域が提供され、決定されたアブレーション領域と比較されることができ、ここで、アブレーション領域は、決定された温度分布に依存して決定されることができる。エネルギー印加制御ユニットは、関心領域が完全にアブレーションされることを確実にするために、決定されたアブレーション領域が関心領域を完全にカバーするように、エネルギーの印加を制御するように適応されることができる。このようにして、対象に対するエネルギーの印加が改善されることができる。
本発明の他の見地において、エネルギーを対象に印加することによって生じる対象内の温度分布を決定する温度分布決定方法であって、エネルギーがエネルギー印加素子を使用することによって印加され、温度分布決定方法は、温度分布測定ユニットによって、エネルギーが対象に印加される間、第1の温度レンジ内で、対象内の第1領域における第1の温度分布を測定するステップと、モデル提供ユニットによって、変更可能なモデルパラメータに依存して、対象内の第1領域及び該第1領域よりエネルギー印加素子に近い第2領域におけるモデル温度分布を記述するモデルを提供するステップと、温度分布評価ユニットによって、第1領域における第1の温度分布からのモデル温度分布のずれが最小にされるようにモデルパラメータを変更することによって、エネルギーが対象に印加される間、第1の温度レンジと異なる第2の温度レンジ内で、第2領域における第2の温度分布を評価するステップと、を含む温度分布決定方法が提示される。
本発明の他の見地において、エネルギーを対象に印加することによって生じる対象内の温度分布を決定するためのコンピュータプログラムであって、コンピュータプログラムが温度分布決定装置を制御するコンピュータ上で実行されるとき、請求項1に記載の温度分布決定装置に、請求項14に記載の温度分布決定方法の各ステップを実施させるためのプログラムコード手段を有するコンピュータプログラムが提示される。
請求項1に記載の温度分布決定装置、請求項12に記載のシステム、請求項14に記載の温度分布決定方法、及び請求項15に記載のコンピュータプログラムは、特に従属請求項に記載される同様の及び/又は同一の好適な実施形態をもつことが理解されるべきである。
本発明の好適な実施形態は更に、個々の独立請求項と従属請求項の任意の組み合わせでありうることが理解されるべきである。
本発明のこれらの及び他の見地は、以下に記述される実施例から明らかになり、それらを参照して説明される。
エネルギーを対象に印加するシステムの実施形態を概略的及び例示的に示す図。 超音波プローブ、アブレーションニードル及び固定具の配置を概略的及び例示的に示す図。 超音波温度測定が実施されることができる第1の温度レンジ及び超音波温度測定が実施されることができない第2の温度レンジを示す図。 エネルギーを対象に印加することによって生じる対象内の温度分布を決定する温度分布決定方法の実施形態を例示的に示すブロック図。 アブレーションニードルの先端付近の温度分布及び超音波温度測定が実施される第1領域を規定する超音波モニタリング平面を概略的及び例示的に示す図。 アブレーションニードルの先端付近の他の温度分布を示す図。 アブレーションニードルの先端の一実施形態を示す図。 アブレーションニードルまでのそれぞれ異なる距離を有する幾つかの第1領域を概略的及び例示的に示す図。 エネルギーを対象に印加することによって生じる対象内の温度分布を測定する温度分布測定方法の他の実施形態を例示的に示すフローチャート。 温度プロファイルを例示的に示す図。 アブレーションニードルから25mmの距離のところでの温度上昇対時間を例示的に示す図。 アブレーションニードルから5mmの距離のところでの温度上昇対時間を概略的に示す図。 時間に依存する第1領域の位置を例示的に示す図。
図1は、エネルギーを対象に印加するためのシステムの実施形態を概略的及び例示的に示す。この実施形態において、システムは、患者テーブルのような支持手段4上に横たわる人3の内部の腫瘍をアブレーションするためのアブレーションシステムである。システム1は、エネルギーを人3に、特に人3の内部の腫瘍に、印加するエネルギー印加素子を有する。この実施形態において、エネルギー印加素子2は、アブレーションニードル2の先端5にアブレーション電極及び温度検知素子を有するアブレーションニードルである。アブレーションニードル2の先端5における温度検知素子は、好適には、先端温度決定ユニット18に電気的に接続される熱電対であり、先端温度決定ユニット18は、熱電対から受け取られる電気信号に依存してアブレーションカテーテル2の先端5における温度を決定する。
アブレーション電極によって人3に印加されるエネルギーは、好適にはRFエネルギーであり、アブレーション電極は、電気接続部72を通じてRFエネルギーの印加を制御するアブレーションエネルギー制御ユニット12に電気的に接続される。この実施形態において、アブレーションエネルギー制御ユニット12は、RFエネルギーを提供するRF源を有する。
システム1は更に、RFエネルギーが人3に印加される間、第1の温度レンジ内において、人3の第1領域の空間及び時間依存の第1の温度分布を測定する温度分布測定ユニットを有する。温度分布測定ユニットは、第1領域の超音波データを取得する超音波プローブ71と、取得された超音波データに基づいて第1の温度分布を決定する超音波温度測定ユニット13と、を有する。この実施形態において、超音波プローブ71は、互いに直交し及び第1領域を規定する2つの平面において超音波データを取得するように適応される。しかしながら、別の実施形態において、超音波プローブは、第1領域を規定する他の平面において超音波データを取得するように適応されることもでき、この場合、超音波プローブは、ボリューム超音波プローブでありうる。第1領域における第1の温度分布が超音波温度測定によって測定可能であるように、超音波プローブ71は、固定具73を使用することによってアブレーションニードル2に固定されることができる。アブレーションニードル2、超音波プローブ71及び固定具73の好ましい実施態様が、図2に概略的及び例示的に示されている。
システム1は、変更可能なモデルパラメータに依存して、人3の内部の第1領域及び第2領域におけるモデル温度分布を記述するモデルを提供するモデル提供ユニット14を更に有し、第2領域は、第1領域よりアブレーションニードル2の先端5に近い。変更可能なパラメータは、熱伝導率のような熱的パラメータ及び肝臓20の導電率のような電気的パラメータを含む。
システム1は更に、第1領域の第1の温度分布からの及びアブレーションニードル2の先端5において熱電対によって測定された温度からのモデル温度分布のずれが最小にされるようにモデルパラメータを変更することによって、エネルギーが人3に印加される間、第1の温度レンジと異なる第2の温度レンジであって、温度分布測定ユニット13、71が温度分布を測定することができない第2の温度レンジ内で、第2領域における空間及び時間依存の第2の温度分布を評価する温度分布評価ユニット15を有する。最小化プロセスの開始時に、提供されたモデルは、人に特有の初期モデルパラメータを使用することによって初期化されることができる。例えば、超音波プローブ71及び超音波温度測定ユニット13は、ドップラー超音波技法に基づいて、人の内部の血管を通って流れる血液の速度を測定するように適応されることができ、この測定は、アブレーションエネルギーを印加することによって人3が加熱される前に、実施されることができる。しかしながら、第2の温度レンジ内の第2の温度分布は、この従来の超音波測定を実施せずに、決定されることができ、この場合、例えば、文献から知られているモデルパラメータのような既知のモデルパラメータが、初期モデルパラメータとして使用されることができ、モデルパラメータは、最小化プロセスの間に変更される。
アブレーションエネルギーが人3に印加される場合、第1領域は、第1領域の温度が摂氏約50度より低いようにアブレーションニードル2の先端5までの距離を有する。これは、温度分布測定ユニット13、71がアブレーションプロシージャ中にも第1の温度分布を測定することができることを確実にする。第2領域のほうが、アブレーションニードル2の先端5に近い。好適には、第2領域は、アブレーションニードル2の先端5と隣接しており、アブレーションされるべき関心領域と関心領域を囲む周囲領域とをカバーする。この実施形態において、関心領域は、肝臓20内の腫瘍領域である。従って、超音波温度測定ユニット13、モデル提供ユニット14及び温度分布評価ユニット15は、好適には、温度分布が腫瘍領域において及び腫瘍領域付近の周囲領域において評価されることができるように適応され、これらの領域は、第2領域を規定することができ、第2の温度分布は、この第2領域において評価される温度分布である。第2の温度領域は、アブレーションニードル2の先端5から一層間隔を隔てている他の領域をカバーするより大きい領域であってもよく、他の領域の組織は、摂氏50度より大きい温度まで加熱されうる。
温度分布測定ユニット13、71、モデル提供ユニット14及び温度分布評価ユニット15は、第1及び第2の温度分布をカバーする人3の内部の温度分布全体を決定する温度分布決定装置21を形成する。
温度分布決定装置21は、対象内のアブレーションされた領域を規定するアブレーション領域を決定するアブレーション領域決定ユニット16を有し、アブレーション領域決定ユニット16は、評価された第2の温度分布が予め規定された温度閾値より大きい温度を含む又は含んでいた人3の部分を決定することによって、アブレーション領域を決定するように適応される。温度分布決定装置21は更に、この実施形態では、アブレーションされるべき腫瘍領域である関心領域を提供する関心領域提供ユニット17を有し、決定されたアブレーション領域及び腫瘍領域が、ディスプレイ19に表示されることができる。例えば、決定されたアブレーション領域及び腫瘍領域のオーバレイが、ディスプレイ19に表示されることができる。予め規定された温度閾値は、例えば摂氏60度、65度又は70度である。
アブレーションエネルギー制御ユニット12は、決定された温度分布に依存して、アブレーションニードル2を、すなわちアブレーションのパワーを制御するように適応されることができる。特に、アブレーションエネルギー制御ユニット12は、腫瘍領域が完全にアブレーションされるように、アブレーションパワーを制御するように適応されることができる。
図1を再び参照して、システム1は、人3の内部においてアブレーションニードル2の先端5の位置を検出する位置検出システム6を有する。この実施形態において、位置検出システム6は、X線蛍光透視システムであり、特にX線Cアームシステムである。X線蛍光透視システムは、テーブル4上の人3を横切るX線8を生成するX線源7を有し、人3を横切ったX線8は、X線検出器9によって検出される。X線蛍光透視システム6は、X線源7及びX線検出器9を制御する蛍光透視制御ユニット10を更に有する。X線検出器9は、人3のX線画像を生成し、それはディスプレイ19に表示されることができる。生成されたX線画像において、アブレーションニードル2の先端5が人3の内部で可視であり、X線画像は、人3の内部のアブレーションニードル2の先端5の位置を表示する。他の実施形態において、電磁センサ、超音波センサ等に基づく位置検出システムのような、人の内部のニードル先端の位置を検出する他の位置検出システムが、使用されることができる。
この実施形態において、アブレーションニードル2は、手で直接ナビゲートされる。別の実施形態において、システムは更に、人の内部の所望の位置にアブレーションニードルを、特にニードル先端をナビゲートするナビゲーションユニットを有することができる。ナビゲーションユニットは、ユーザが手で又は半自動的にアブレーションニードルを完全にナビゲートすることを可能にするように適応されることができる。アブレーションニードルは、ナビゲーションユニットによって制御されることができる内蔵ガイディング手段を有することもできる。アブレーションニードルは、人の内部の所望の位置にニードル先端をガイドするために、例えばステアリングワイヤを用いてステアリングされナビゲートされることができる。
熱的アブレーション技法は、最も経験のある外科医であってもリスクを有しうる主要な外科手術に代わる、優れた代替の技法である。これらの技法は、RF治療、クライオセラピー又はマイクロ波アブレーション治療を実施するように適応されることができるニードルのみを必要とする最小侵襲性であり、又はそれらは非侵襲性であり、例えば高密度焦点超音波(HIFU)源のような超音波加熱源のような非侵襲の熱源が、使用される。プロシージャの多くにおいて、癌性組織は、摂氏60度を上回る温度にまで加熱され、凝固される。
RFアブレーション(RFA)プロシージャを実施するために、図1を参照して上述されたシステムは、活性電極チップ(すなわちアブレーションニードル)を有するプローブを有し、プローブには、好適には460〜500kHzの交流電流が導通される。電流は、人3の身体を通じて、人3の背部又は大腿部に配置される接地パッド(明確さの理由で図1に図示せず)に伝わる。電流は、イオン性攪乱及び摩擦加熱を生じさせる。熱は、腫瘍領域をアブレーションするために熱伝導を通じて消失される。この実施形態において、RFAは、肝臓癌を処置するために使用される。
図1を参照して上述された実施形態において、RFAは、X線Cアームシステムを使用することによってX線ガイダンス下で実施される。しかしながら、RFAは、超音波イメージング、コンピュータトモグラフィ(CT)イメージング又は磁気共鳴イメージング(MRI)ガイダンスに基づくことができる別のガイダンスシステムを使用することによって実施されることもできる。フォローアップ検査は、好適には、アブレーションの効果を評定するために、例えば1か月以内にCTスキャン又はMRIスキャンを使用することによって行われ、再び、残余の疾患を検出するために腫瘍マーカと共に3か月の間隔で行われる。腫瘍細胞を適切に殺すのにアブレーションサイズを十分にモニタし制御する能力が多くの場合はないため、最先端技術のアブレーションプロシージャが実施された後、相対的に高い再発率が観察されることが多い。従って、図1を参照して上述されたシステムは、アブレーションされたゾーンの温度マップを提供することによって、臨床医にリアルタイムフィードバックを提供する。これは、MRベースの温度イメージングにより合理的な正確さを伴って達成されることもできる。しかしながら、MRIは、高価であり、容易には利用できないことがある。超音波は、ニードル配置の間の画像ガイダンスのために使用されることができる別のモダリティである。その使いやすさ及び利用可能性のため、超音波は、病変をモニタするための好適な方法でありうる。しかしながら、従来技術において、超音波は、Bモード画像上の高エコー病変を視覚化することによって処置をモニタするために一般に使用される。このような可視化は、おおよそのものであり、処置の有効性の良好なインジケータではない。
図1を参照して上述されたシステムは、3次元超音波温度測定を実施するために超音波プローブ71及び超音波温度測定ユニット13を使用する。超音波プローブ71及び超音波温度測定ユニット13は、例えば文献"Three-dimensional spatial and temporal temperature imaging in gel phantoms using backscattered ultrasound" by A. Anand et al., IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 54(1), pages 23 to 31 (2007)に記述される3次元空間の時間的な第1の温度分布を決定するように適応される。
超音波温度測定の基礎をなす原理は、組織内の音速が温度の関数として変化することであり、これは、超音波エコーの明らかなシフト、すなわち変位、を示す。結果として得られる「温度誘導されるひずみ」は、超音波ビーム方向に沿って前記変位を区別することによって数学的に導出され、摂氏50度までのレンジ内の温度上昇に名目上比例する。しかしながら、問題は、さまざまな組織の音速がもつ温度依存の傾向のバリエーションにある。例えば、肝臓組織の場合、音速は摂氏50度の温度レンジまで温度とともに直線的に増大し、その後、傾きはプラトーに達する。それゆえ、この温度レンジを越える温度でのエコーシフトを超音波で検査するための感受性はない。更に、組織壊死の発現及び結果的に得られる組織構造の変化がある場合、超音波エコーのシグネチャは、大幅に変化し、変位を決定するための超音波エコーの比較を困難にする。従って、摂氏50度以上の温度の場合、音速の変化を追跡することに基づく超音波温度測定は、組織内の温度の信頼性の高いインジケータではない。従って、この実施形態において、第1の温度レンジは、約摂氏50度である上限境界によって規定される。第1の温度レンジの下限境界は、人の標準温度によって、すなわち摂氏37度によって、規定されることができる。超音波温度測定ユニット13は、この第1の温度レンジ内の第1の温度分布を超音波で測定するように適応される。
温度分布決定装置21は、i)加熱ゾーンのコアから離れたところで、温度が摂氏50度より低い第1領域において超音波エコーシフトを測定し、ii)これらのエコーシフトを熱モデルに結合し、iii)加熱ゾーンのコアを含む、すなわち第2領域を含むより大きいボリュームにおける温度を推定するために熱モデルを使用する、ように適応される。温度分布決定装置21は、試験ショットを実施する必要がないように、すなわち、アブレーションエネルギーを印加する前に、超音波温度測定プロシージャを実施する必要がないように、設計される。モデルによって必要とされる適切なパラメータは、アブレーション処置自体の間に評価される。このアプローチの目標は、アブレーションゾーンをもカバーする評価された温度マップを医師に提供することである。
温度分布決定装置21は、アブレーションゾーン又は高温ゾーンから離れた空間位置で連続的に温度をモニタするために超音波温度測定を使用し、従って、熱モデルを利用したアプローチによりアブレーションゾーンの温度を評価するように適応される。このアプローチを使用することによって、温度分布決定装置21は、従来技術の以下の問題を解決することができる。
アブレーション領域の範囲が、より正確に決定されることができる。更に、従来技術では、アブレーション領域の高エコー可視化によってガイドされる超音波Bモード検査が正確でないことが多く、それによって、治療の効果を評定することを困難にしうる。Bモード画像上で視覚化される高エコーは、ガス及び蒸気泡によってもたらされる。これらの気泡を生成し、超音波により処置領域を視覚化するために、アブレーション処置プロトコルは、摂氏70〜80度までの温度を必要とするだけである壊死を達成するために、オーバキルである100度のオーダーの温度に加熱することを含む。それゆえ、超音波Bモードイメージングがアブレーションプロシージャを視覚的にモニタするために使用される場合、処置時間は、それが必要とするよりも長い。更に、アブレーション領域が摂氏約50度を越える温度を有する場合、知られている超音波温度測定技法は、その領域をモニタするのに使用されることができない。更に、処置領域に放出される気泡は、信頼性をもって超音波を使用することを困難にしうる。
温度分布決定装置は、全く異なるアプローチを提供することによって、これらの欠点を解決し、そのアプローチにおいて、アブレーションゾーンの温度は、i)熱モデル、及びii)アブレーションゾーンから離れた空間位置において測定された温度、を使用することによって上述したように評価される。更に、これは、RFアブレーション処置の最中に容易に利用できる超音波の効果を改善し、瞬時のフィードバックを処置に提供する。更に、「試験」ショットが、欧州特許出願公開第2387963A1号明細書に記載されるように必ずしも必要とされないので、処置時間が最適化されることができ、これは、改善された患者スループットをもたらすことができる。
温度分布決定装置21は、(高温の)アブレーションゾーンから離れた位置で温度を測定するために、すなわち第1領域における第1の温度分布を測定するために、超音波温度測定を利用するように適応される。その後、3次元の第1の温度分布の発展が、アブレーションゾーンにおける温度上昇を予測するために、すなわち第2領域における第2の温度分布を予測するために、熱モデルベースのアプローチと協働して使用される。この処置レジメンにおいて、低温領域で取得される、熱ひずみにより導出される温度データのロバストネスは、アブレーション治療が実施される腫瘍マージンにおける温度の正確な予測のために利用される。上述のプロシージャの後、超音波データは、プロシージャ中に放出された気泡から離れたところで取得され、この場合、超音波データは、温度の低い又は中程度の上昇をもつ領域について、すなわち摂氏約37度〜50度の第1の絶対温度レンジ内の領域について、取得される。更に、熱モデルは、好適には、アブレーション領域の正確な温度マップを提供するために、組織特性及び血管灌流に対する局所温度の依存性を考慮する。
図3に示される図は、第1及び第2の温度レンジを例示的に示し、温度分布測定ユニット13、71は、第1の温度レンジ31内で第1の温度分布を測定し、温度分布評価ユニット15は、第2の温度レンジ32内で第2の温度分布を評価する。図3に見られるように、超音波の速度c対温度Tの曲線30は、摂氏50度付近でプラトーに達する。従って、温度分布測定ユニット13、71によって提供される超音波温度測定データは、摂氏50度以下でのみ有効であり、より大きい温度の場合、すなわち第2の温度レンジ32においては、熱モデルアプローチが使用される。
以下において、エネルギーを対象に印加することによって生じる対象内の温度分布を決定する温度分布決定方法の実施形態が、図4に示されるブロック図を参照して例示的に記述される。
図4に示されるブロック図において、前処理フェーズ40、RFアブレーションエネルギーが印加される処置フェーズ41、及び後処置フェーズ42の3つのフェーズが図示されている。
前処置フェーズ40において、アブレーションニードル2、具体的にはアブレーションニードル2の先端5が、人3の肝臓20に挿入されるとともに、アブレーションゾーンから十分遠く、RFアブレーションエネルギーの印加中に温度が摂氏50度より小さいことが期待される空間位置に配置される超音波モニタリング平面において第1の温度分布が測定されることができるように、超音波プローブ71が配置される(図4のボックス43)。超音波モニタリング平面は、第1領域を規定し、第1の温度分布が、RFアブレーションエネルギーの印加中に測定される。超音波プローブ71は、第1の超音波モニタリング平面がアブレーションニードル2の先端5に平行であるように、及び第2の超音波モニタリング平面がアブレーションニードル2の先端5に対し垂直であるように構成されることができるマトリクス超音波プローブでありうる。図5は、超音波モニタリング平面の考えられる配置を概略的及び例示的に示す。
図5において、超音波モニタリング平面60、61は、互いに垂直であり、第1の超音波モニタリング平面は、アブレーションニードル2の先端5に平行であり、第2の超音波モニタリング平面61は、アブレーションニードル2の先端5に対し垂直である。図5は更に、RFアブレーションエネルギーの印加中のアブレーションニードル2の先端5付近の温度分布62を示し、アブレーションニードル2の先端5に近い領域63において温度は非常に高く、ゆえに、肝臓組織がこの領域においてアブレーションされており、すなわち、領域63は、アブレーション領域である。
肝臓組織がアブレーションされるアブレーションニードル2の先端5付近の領域から離れたところに超音波モニタリング平面60、61を配置することによって、これらの超音波モニタリング平面60、61及びゆえにこれらの超音波モニタリング平面60、61によって規定される第1領域における温度上昇は遅く、絶対温度は摂氏50度以下であることが確実にされることができる。更に、超音波モニタリング平面60、61のこの配置は、温度分布測定ユニット13によって測定される超音波後方散乱エコーが、気泡から生じる又はアブレーションニードル2の先端5から生じる高エコーによる超音波データの改変なしに、信頼性のあるシフトを生成することを確実にすることができる。
超音波プローブ71の配置は、アブレーションニードルに結合される固定具の助けにより行われることができる、かかる固定具は、アブレーションニードル2の先端5から所与の距離のところ、例えば2cm離れたところに、超音波プローブ71を保持する。超音波プローブとアブレーションニードルとの間のこの距離は、好適には、図2に概略的及び例示的に示される構成においてアブレーションニードル2に対し垂直であって、固定具73と平行である方向における距離である。前処置フェーズ40において、超音波プローブ71又は別の超音波プローブは、腫瘍に挿入するための考えられるニードル経路を識別し、所望の通りに超音波温度測定のための超音波モニタリング平面を配置するために、使用されることができる。
更に、前処置フェーズ40において、モデル提供ユニット14は、特に超音波モニタリング平面60、61である第1領域、及び特にRFアブレーションエネルギーの印加中にアブレーションニードル2の先端5に隣接する領域である第2領域におけるモデル温度分布を記述する熱モデルを提供する。このモデルを提供するために、モデル提供ユニット14は、CT画像又はMR画像のような、腫瘍領域を含む肝臓20の医用画像を使用する。腫瘍及び血管のような他の構造が、医用画像において識別され、セグメント化され、この情報は、初期化された熱モデルを提供するために、初期モデルパラメータ値と共に使用される。例えば、識別されセグメント化された異なる構造の熱的及び電気的パラメータが、初期の熱モデルを提供するために最初に提供されることができる。初期モデルパラメータは、さまざまな異なる種類の組織の熱伝導率及び導電率のような組織特性、又は灌流パラメータ、指向性フローパラメータ、アブレーションニードルの先端のパラメータ等の他のパラメータでありうる。灌流パラメータ及び指向性フローパラメータは、以前に実施された他の測定から知られることができる既知の情報を使用することによって、最初に決定されることができる。例えば、超音波ドップラー測定は、典型的なフロー速度及びゆえに指向性フローパラメータ及び灌流パラメータを決定するために、実施されることができる。図4において、初期化されたモデルの提供は、ボックス44によって示され、ボックス45は、肝臓内の構造の識別及びセグメント化を示し、ボックス46は、組織特性のようなモデルパラメータの提供を示す。一実施形態において、初期モデルは、すでに決定され、予め初期化されたものであり、前処置フェーズ40においてモデル提供ユニット14からロードされることを必要とするだけである。
熱モデルは好適には、例えば文献"Analysis of tissue and arterial blood temperatures in the resting human forearm", 85:5-34, Journal of Applied Physiology (1998))においてH. H. Pennesによって提案される生体熱伝達方程式(bioheat transfer equation、BHTE)の有限要素インプルメントであり、この文献の内容は、参照によって本願明細書に盛り込まれるっものとする。
生体熱伝達方程式は、組織における熱の拡散及び灌流をモデル化する。それは、ラプラス方程式が実現されるRFA熱源のモデル化を含む。モデルは、流体中の熱伝達の方程式を使用することによって、大きい血管内の指向性フローを考慮する。肝臓組織のモデルの場合、初期モデルパラメータは、例えば、0.148S/mの電気導電率、0.465W/mCの熱伝導率、1060kg/mの密度、3600J/Ckgの熱容量、及び6.4x10−3/sの灌流レートである。他の初期モデルパラメータは、電流分布及び熱伝達に対するアブレーションニードル特性の影響を考慮するために、個々の製造業者によってドキュメント化されるようなアブレーションニードルの特性でありうる。
処置フェーズ41の間、超音波温度測定は、ボックス53によって示されるように実施される。超音波プローブ71は、例えば3次元超音波後方散乱取得プロシージャを実施し、この場合、任意には呼吸ゲーティングが実施されることができる。これは、ボックス54によって示される。超音波温度測定ユニット13は、ボックス55によって示されるように、取得された3次元超音波エコー信号から超音波エコーシフトを評価し、熱ひずみ及び最終的に温度が、ボックス56によって示されるように、超音波温度測定ユニット13によって評価される。
この実施形態において、超音波モニタリング平面60、61における第1の温度分布が、処置フェーズ41中に、すなわち腫瘍領域に対するRFアブレーションエネルギーの印加中に、測定されることができるように、超音波温度測定53が実施されることができる。従って、処置の間、超音波エコーは、加熱の結果としての明らかな変位に関して解析され、シフトとみなされることができるこれらの変位は、熱ひずみ値に変換され、最終的に温度に変換されることができ、熱ひずみ値に依存して温度を決定するために、較正測定によって予め決められることができる熱ひずみ値と温度との間の知られている対応付けが使用されることができる。
ボックス50は、測定された第1の温度分布に基づく及び熱モデルを実行することから得られる実際の評価された第2の温度分布に基づく、モデルパラメータの更新を示す。熱モデルを実行することによる第2の温度分布の評価は、ボックス47によって示される。
超音波温度測定プロシージャの間、すなわち並行して、熱モデルは、初期化されたパラメータによって実行され、それによって実際の空間的な温度評価を生成し、これは、超音波温度測定プロシージャ53から得られる第1の温度分布と比較される。超音波温度測定プロシージャ53の結果とこれらのモデル評価との比較は、ボックス51によって示される。この比較を使用して、モデルパラメータは、モデル予測と超音波実験データとの間の差を最小にするために、確立された最小化方法を使用して常に更新される。モデルパラメータのこの変更は、ボックス52によって示される。このようにして最適化されるモデルパラメータは、例えば熱拡散係数のような熱定数、導電率のような電気特性、灌流によってもたらされるヒートシンクの特性、血流による対流冷却、その他、を含む。この最適化プロセスは、モデルに柔軟性を与え、これは、生物学的組織において期待されることができる局所的な異質性を考慮することを可能にする。
モデルを実行するために、電気的な熱生成及び媒体中のその後の熱伝達を組み合わせるCOMSOLのような既知のマルチフィジックスシミュレーションツールが使用されることができる。ヒートシンクは、アブレーションゾーンの近傍における大きい血管である。それらは、フローレート、フロー方向、及びエネルギー印加素子に対するこれらの血管の位置及びサイズによって特徴付けられることができる。これらの特性は、生体熱伝達方程式に組み込まれることができ、モデル温度分布と測定された第1の温度分布との間のずれが最小にされるように、モデルのこれらの特性及び他の特性が最適化されることができる。
モデルパラメータが最適化されるとき、好適には腫瘍をカバーする処置関心領域である関心領域の温度マップが生成され、更新される。温度マップは、予め規定された温度閾値より高い温度に加熱される又は加熱された肝臓20内の領域を規定することによってアブレーション輪郭を生成するために使用されることができる。温度マップのこの生成及びアブレーション輪郭の選択的な決定は、ボックス49によって示される。関心領域は、第2の温度分布が評価される第2領域であるとみなされることができ、又は、第2領域は、少なくとも腫瘍を有する関心領域をカバーする、より大きい領域でありうる。処置フェーズ41のプロセス全体の間、超音波エコーシフトは、アブレーションゾーンから離れた領域、すなわちこの実施形態において超音波モニタリング平面60、61によって規定される第1領域、において常に解析され、例えば組織特性及び熱の空間的及び時間的な分布に対する灌流効果を考慮するモデルに対して、現実的なフィードバックが与えられる。
処置フェーズ41においてモデルパラメータを更新するために、超音波モニタリング平面60、61における温度分布のみが、熱モデルから得られる評価された温度分布と比較されうるのではなく、更に熱電対によって測定されたアブレーションニードルの先端における温度も、熱モデルから得られる評価された温度分布と比較されることができ、ここで、モデルパラメータは、評価された温度分布が、超音波温度測定によって測定された超音波モニタリング平面における温度分布及びアブレーションカテーテルの先端のところで熱電対によって測定された温度にできる限り良好にフィットするように、最適化されることができる。
温度マップは、RFアブレーションエネルギーの印加を制御するアブレーションエネルギー制御ユニット12のパワー出力を制御するフィードバックとして使用されることができる。
後処置フェーズ42において、温度マップ及び/又はアブレーション輪郭が、関心領域にオーバレイされて、具体的には腫瘍領域にオーバレイされて、表示されることができ、それにより、処置の効果の現実的な感覚が得られる。このオーバレイ画像に基づいて、付加の処置が必要であるかどうか判定されることができる。これは、ボックス57によって示される。
図6は、最適化された熱モデルによって規定される3次元温度分布を概略的及び例示的に示しており、ここで、3次元温度分布は、図4を参照して上述された実施形態に従って評価された温度値と測定された温度値との間の差を最小にすることによって最適化されたものである。
アブレーションニードルの先端は、ほぼアブレーション電極と、任意には熱電対のような温度検知素子とを有することができる。しかしながら、アブレーションニードルの先端は、1又は複数のアブレーション電極の別の構成を含むこともでき、かかる先端は、熱電対のように温度検知素子を有することができ又は有しなくてもよい。例えば、図7に概略的及び例示的に示されるように、アブレーションニードルの先端105は、内蔵された熱電対を有する幾つかのアブレーション電極70を有することができ、内蔵された熱電対を有するアブレーション電極70は、アブレーションニードルのシャフト74に引き込まれ格納可能である。
他の実施形態において、温度測定ユニット13、71は、異なる第1領域において異なる第1の温度分布を測定するために、測定された第1の温度分布に依存して第1領域が変更されるように適応される。特に、第1領域が、第1領域の位置を変えることによって変更されるように、温度分布測定ユニットが適応される。第1領域は、平面によって形成され、温度分布測定ユニットは、好適には、平坦な第1領域がそれぞれの異なる位置に連続的に位置付けられるように、適応され、第1領域の位置が変えられる場合、それは、アブレーションニードル2に対しより近い位置から、アブレーションニードル2に対しより遠い位置に変えられる。
具体的には超音波温度測定ユニット13のような温度分布測定ユニットは、予め規定された位置のシーケンスが記憶されている、記憶ユニットを有することができ、実際の測定中に、この記憶された予め規定されたシーケンスが、平坦な第1領域を位置付けるために使用されることができる。それぞれの異なる位置は等距離でありえ、位置のシーケンスを規定するために単一の距離値及び方向を記憶するのみが必要とされる。しかしながら、位置のシーケンスは、等距離でない位置を含むこともでき、この場合、位置は、少なくとも部分的に異なる距離値のシーケンス及び方向を記憶することによって、記憶されることができる。位置のシーケンスは、較正測定に基づいて予め規定されることができ、又は、それは所望の通りにユーザによって手動で予め規定されることができる。位置のシーケンスは、典型的組織の電気及び熱特性並びに臓器特有の特性を含むデータベースを使用して、熱モデリングによって予め決められることもできる。熱モデルに基づいて、相対的に高い熱勾配を有する位置が識別され、これらの位置は回避されることができ、更に、相対的に低い熱勾配を有する位置は、スキャン平面の位置を規定するために識別され、使用されることができる。従って、熱モデルに基づいて、熱勾配が決定されることができ、位置のシーケンスが、熱勾配を閾値処理することによって決定されることができる。位置のシーケンスを予め決めるために使用される熱勾配は、好適には、空間的な勾配である。
一実施形態において、位置のシーケンスの事前の決定は、更に、個々の位置で期待される温度上昇を含むことができ、モデル化された加熱プロセスの間に、温度が摂氏50度まで期待通りに上昇する位置が、温度がこのような高い温度に期待通りに上昇しない位置と比較して好ましい。例えば、各位置ごとに、選択ファクタが計算されることができ、これは特に、モデル化された加熱プロセスの間、個々の位置で期待される温度上昇を示す第1の値及びこの位置で期待される温度勾配を示す第2の値の線形の組み合わせのような組み合わせでありうる。位置のシーケンスは、計算された選択ファクタに基づいて予め決められることができる。好適には、第1の値は、期待される温度上昇の増加に伴って増加し、第2の値は、期待される温度勾配の低下に伴って増加する。位置の決定のために使用される温度勾配は、好適には、モデル化された加熱プロセスの間、個々の位置で期待される最大の空間的温度勾配である。加熱プロセスをモデル化するために、知られている生物熱伝達モデルが、熱モデルとして使用されることができ、これは、マルチフィジックス有限要素ツール(例えばCOMSOL)を使用することによって実現されうる。平坦な第1領域、すなわち異なる超音波スキャン平面、の異なる位置が、図8に概略的及び例示的に示される。
図8は、加熱領域23に位置するアブレーション電極(図示せず)によって形成される加熱領域23を有するアブレーションニードル2を示す。温度分布測定ユニット13、71は、異なる第1領域が、異なる超音波スキャン平面からアブレーションニードル2までの距離に対応するように、適応される。対応する異なる第1領域24は、破線によって図8に示されている。初期時間tにおいて、第1の温度分布は、アブレーションニードル2に相対的に近い第1領域において測定される。時間tに現在の第1領域において測定された第1の温度分布が、好適には摂氏50度の最大温度を有する温度レンジである予め規定された温度レンジ外の温度を含む場合、温度分布測定ユニット13、71は、第1領域の位置を変えることによって、別の第1領域において第1の温度分布を測定するように第1領域を変更する。図8において、別の第1領域は、時間tにおける超音波スキャン平面に対応する。温度分布測定ユニットは、別の第1領域において温度分布を測定し、測定された温度分布が、予め規定された温度レンジ外にある温度を含む場合、温度分布測定ユニット13、71は、時間tに、超音波スキャン平面tによって図8に示される更に別の第1領域の温度分布を測定する。第1領域から第1領域への、具体的には超音波スキャン面から超音波スキャン面へのこの移動は、図8において時間t及びtのところに破線で示される第1領域のような一層遠い第1領域に関して続行される。
この実施形態において、超音波プローブ71は、異なる第1領域の、すなわちこの実施形態では異なる超音波スキャン平面の、超音波データを得るために2次元超音波トランスデューサを有する。これは、超音波プローブ71を機械的に移動させることなく、それぞれ異なる第1領域の超音波データを得ることを可能にする。別の実施形態において、超音波プローブは、1次元超音波トランスデューサを有することができ、この場合、1次元超音波トランスデューサは、アブレーションニードルまでのそれぞれ異なる距離を有する個々の異なる第1領域の超音波データを得るために、アブレーションニードル2に対して機械的に移動可能である。
超音波プローブ71は、基準温度にある異なる第1領域24の基準超音波データと、異なる第1領域24の実際の超音波データとを取得し、超音波温度測定ユニット13は、個々の第1領域24について取得される個々の実際の超音波データ、個々の第1領域24について取得される基準超音波データ、及び個々の基準温度に依存して、個々の第1領域における、すなわちアブレーションニードル2まで別個の距離を有する超音波スキャン平面における第1の温度分布を決定するように、温度分布測定ユニット13、71が適応される。特に、超音波温度測定ユニット13は、好適には、例えばA. Anand他によって上述の文献に述べられているように、超音波データが個々の第1領域24について取得された時間期間について、個々の第1領域24における3次元空間の時間的な温度分布を決定するように適応され、上記文献の内容は参照によってここに盛り込まれるものとする。
この実施形態において、基準データ取得ステージにおいて、超音波プローブ71が、この実施形態において摂氏37度である知られている基準温度にある異なる第1領域24について基準超音波データを取得し、温度分布測定ステージにおいて、超音波プローブ71は、実際の超音波データを取得し、超音波温度測定ユニット13は、個々の第1領域24について得られた個々の実際の超音波データ、個々の第1領域24について得られた基準超音波データ、及び知られている基準温度に依存して、個々の異なる第1領域24における第1の温度分布を決定するように、温度分布測定ユニット13、71が適応される。
更に、この実施形態において、モデル提供ユニット14は、変更可能なパラメータに依存して、対象内のそれぞれ異なる第1領域及び第2領域におけるモデル温度分布を記述するモデルを提供するように適応されることができ、温度分布評価ユニット15は、第1領域において測定された第1の温度分布からのモデル温度分布のずれが最小にされるようにモデルパラメータを変更することによって、エネルギーが対象に印加される間、第2の温度レンジ内で、第2領域の第2の温度分布を評価するように適応される。特に、モデル提供ユニット14は、個々の第1の温度分布が個々の第1領域において測定された時間期間中及び個々の第1の温度分布が個々の第1領域24において測定されなかった時間期間中の第1領域24及び第2領域のモデル温度分布を記述する対象のモデルを提供するように適応される。温度分布評価ユニット15は、個々の第1の温度分布が個々の第1領域24において測定された時間期間中、異なる第1領域24におけるモデル温度分布の異なる第1領域24において測定された温度分布からのずれが最小にされるようにモデルパラメータを変更することによって、及び変更されたモデルから評価された温度分布を決定することによって、第1の温度分布が第1領域24においてまだ測定されていない時間期間中の異なる第1領域における及び第2領域における空間及び時間依存の温度分布を評価するように適応される。
以下において、異なる位置の異なる第1領域を使用する温度分布測定方法の実施形態が図9に示されるフローチャートを参照して例示的に記述される。
ステップ201において、アブレーションニードル2の先端5は、先端が肝臓20内の腫瘍領域に位置付けられるように肝臓20にナビゲートされる。更に、ステップ201において、初期熱モデルが、モデル提供ユニット14によって提供される。ステップ201は、前処置フェーズに実施される。
ステップ203において、処置は、アブレーションエネルギーを腫瘍領域に印加する、すなわち腫瘍領域を加熱することによって始まり、ステップ202において、第1の温度分布が、温度分布測定ユニット13、71によって、肝臓20内の第1領域24において測定される。
ステップ204において、第1領域において測定された第1の温度分布が摂氏50度を上回る温度を含むかどうかチェックされ、そうである場合、ステップ202において、温度測定が、アブレーションニードル2の先端5までより大きい距離を有する別の第1領域に関して続行する。初期の第1領域において測定された温度分布が摂氏50度より高い温度を含まない場合、温度測定は、初期の第1領域の温度分布を更に測定することによってステップ202において続行する。更に、摂氏50度より高くない温度が、温度分布評価ユニット15に供給され、ステップ205において、温度分布評価ユニット15は全体の温度分布を決定し、特に、個々の温度分布が個々の第1領域において測定された時間期間中、異なる第1領域のモデル温度分布の、異なる第1領域において既に測定された温度分布からのずれが最小にされるように、熱モデルのモデルパラメータを変更することによって、及び変更されたモデルから評価された温度分布を決定することによって、温度分布が第1領域において測定されなかった時間期間中の異なる第1領域24及び温度分布が測定されなかった肝臓20内の第2領域のような他の領域における、評価された温度分布を決定する。
ステップ202及び204は、ループで実施され、このループ及びステップ205は並行に実施され、すなわち、更新された全体の温度分布を連続的に生成するために、測定された温度分布は、温度分布評価ユニット15に連続的に供給される。温度分布決定ステップ202、204及び205並びにアブレーションステップ203が更に並列に実施される。アブレーションプロシージャの間、医師のようなユーザは、温度分布の発生をモニタすることができ、生成された温度分布に満足する場合にアブレーションプロシージャを止めることができる。従って、ユーザがプロシージャを止めるまで又は中止基準が満たされるまで、ステップ202〜205は実施されることができる。
この実施形態において、第1領域24は、アブレーションニードル2の先端5までの異なる距離を有し、すなわち、超音波測定が実施される位置が満足なものでない。この位置が静止している場合、これは、準最適な、例えば高い又は低い測定される温度をもたらし、位置が、高い熱勾配を有しうる。これは、アブレーション部位の位置での測定から導出されるモデルパラメータ、及び測定された温度分布に基づいて計算されることができる特定の熱供給量が到達される際に達成されうる評価された治療エンドポイントの正確さに影響を及ぼす。
図8及び図9を参照して上述された温度分布測定プロシージャは、特に、最適な温度上昇、すなわちこの実施形態では摂氏37度から50度への温度上昇が使用されることを確実にするために、測定位置が治療中に変えられる、適応的な超音波温度測定スキームを提供する。
この実施形態において、温度分布測定装置21は、RFアブレーション先端と並列に、すなわち加熱源と並列に、平面24の対のところで超音波を使用して局所温度上昇を追跡するように適応される。温度が常に同じ平面において追跡される静止した状況と異なり、加熱が進行する動的な状況において、異なる空間位置が、温度上昇を計算するために使用される。
この実施形態において、温度分布測定器21は、以下の問題に対処することができる。スキャン平面が静止したままである場合、それはアブレーション先端、すなわちエネルギー印加素子、の近くに位置することができず、温度が摂氏50度を越えるまで上昇するので、測定値は有用でなくなる。スキャン平面が、温度上昇が摂氏50度より決して大きくないことを確実にするに十分な遠さのところに配置される場合、温度上昇が、初期時点で極めて低くなりえ、温度測定の正確さが低減されうる。更に、超音波を使用して測定された温度上昇を熱モデルに提供することに加えて、重要な入力の1つは、加熱源に対する、個々の測定が行われる空間位置である。熱勾配が高い場合、スキャン平面の位置の不確実さは、モデルパラメータにおける大きな誤差をもたらしうる。従って、スキャン平面が、多くの場合又は常に相対的に低い熱勾配を有する空間領域にあるように、スキャン平面位置が動的に変更されることができる。
図10は、エネルギー印加素子であるアブレーション先端に対して垂直なラインに沿った温度プロファイルを例示的に示しており、垂直ラインは、アブレーション先端の露出された電極の中間において先端と交差する。アブレーション先端は、水平軸に沿って距離d=0のところにある。ラインプロット140は、肝臓組織のRFアブレーション加熱プロシージャ中の、100s毎の温度Tの発展を示す。図10において分かるように、ピークの先端温度は、摂氏90度より大きい。図11は、加熱源の位置から25mmの距離のところの温度発展を例示的に示しており、すなわち、図11は、図10のライン141に沿った温度を例示的に示す。図12は、加熱源の位置から5mmの距離のところの温度発展を例示的に示しており、すなわち、図12は、図10のライン142に沿った温度を示す。これらの5mm及び25mmの距離は、静止した測定スキームにおいて、第1領域である超音波スキャン平面が配置される位置を表す。しかしながら、両方の位置は不利益をもつ。25mmの距離では、温度上昇は、図11に示されるように治療終了後かろうじて摂氏3.5度である。従って、この距離では、印加できる温度のレンジは良好には利用されない。5mmの距離では、温度は、図12に示されるように摂氏70度近くの温度まで上昇する。これは、上述の理由のために、超音波ベースの温度測定技法を実現するのを困難にする。図11及び図12に示されるこれらの問題は、異なる位置の異なる第1領域に関する実施形態によって解決されることができる。
この実施形態において、温度分布測定装置21は、超音波スキャン平面であるに第1領域の位置を動的に変える柔軟性を提供し、これは、最も良好な位置での超音波温度測定を行うことを可能にし、これらの超音波温度測定により得られた値は、熱モデルに供給されることができる。例えば、第1領域が配置されるべきである最適距離である最適位置は、図13から決定されることができる。青いアスタリスク143は、異なる時点で温度が摂氏約50度である位置を表す。時間に対するこれらの青いアスタリスク143は、すなわちtに対する対応する距離dが、図13に示されている。図13は、加熱源までの距離を表すプロットを例示的に示しており、超音波技法によって測定されることができる最適温度を変化させるために、それらの距離のところに、この実施形態では超音波スキャン平面である第1領域が配置されることができる。
この実施形態において、温度分布測定装置は、超音波温度測定値が取得されるスキャン平面、すなわち第1領域、の位置を変える能力を有する。温度分布測定装置は、好適には、1次元トランスデューサ又は2次元トランスデューサを含むことができる超音波プローブを有する。超音波プローブが1次元トランスデューサを有する場合、超音波プローブは、好適には、1次元超音波トランスデューサが異なる空間位置で温度測定値を得るために機械的に並進移動されることができるように適応される。超音波プローブが2次元超音波トランスデューサを有する場合、それは、好適には、超音波温度測定が実施されるべきである異なる位置に位置付けられるスキャン平面を有する。温度分布測定装置は、好適には、温度上昇が予め規定された許容レンジ(例えば摂氏37度乃至50度の間)内にあるかどうかを決定するために、各々のスキャン平面位置における、すなわち各々の第1領域における温度測定を評価する。温度上昇がこのレンジを越える場合、当該スキャン平面からの温度データが退けられ、次に遠い位置が解析のために利用される。
この実施形態では、温度が実際に測定される第1領域は、単一平面によってのみ形成されており、すなわち、この実施形態では、個々の異なる第1領域が、単一の移動可能な超音波スキャン平面のみによって形成されるが、他の実施形態では、温度が実際に測定される第1領域は、幾つかの複数の平面によって、特に幾つかの複数の超音波スキャン平面によって、形成されることができ、それにより、温度は、複数の異なる平面において測定されることができる。これらの平面のうちの少なくとも1つにおいて、温度が、摂氏50度のような上限温度を上回って上昇する場合、第1領域は、更なる温度測定からこの平面を除外することによって、又はこの平面をより遠い別の位置へ移動させることによって、変更されることができる。平面は、垂直の又は水平の平面でありえ、スキャン平面が水平である場合、それはCスキャンの態様でスキャンされることができる。更に、第1領域は、平坦である代わりに、別の形状を有するもでき、すなわち、それらは、非平面でありえ、カーブした形状でもよい。更に、上述の実施形態では、スキャン平面、すなわち平坦な第1領域は、アブレーション先端の方向と平行であるが、他の実施形態では、それらは、アブレーション先端に対して垂直であってもよい。
一実施形態において、超音波プローブが1次元超音波トランスデューサを有する場合、トランスデューサは、好適には、基準データ取得ステージにおいて異なる測定位置において基準超音波データを取得するために、処置の開始時に機械的に並進移動され、すなわち基準超音波データは、それぞれ異なる第1領域において取得される。好適には、基準データ取得ステージにおける基準スイープは、摂氏37度の温度でのベースライン情報を提供する。本質的に、これは、処置の開始前のt=0におけるRFエコーのシグネチャのスナップショットと考えられていることができる。基準超音波データは、処置フェーズ中、すなわち温度分布測定ステージの間、基準データ取得ステージ中に取得される超音波後方散乱と処置フェーズ中に取得される実際の超音波後方散乱との間の差に基づいて、超音波温度測定によって異なる第1領域の実際の温度分布を決定するために、使用されることができる。
スキャン位置、すなわち平坦な第1領域の位置、の間の距離が、生成されるべき計画される目標病変ボリュームと、必要とされるスキャン平面の数に基づいて決定されることができる。モデル提供ユニット14によって提供されるモデルでありえ、異なる位置での熱勾配を示す熱モデルのアプリオリな情報が、平坦な第1領域の位置を決定するために使用されることができる。
基準スキャンが、基準データ取得ステージにおいて実施された後、1次元トランスデューサは、一般的にアブレーション先端に最も近い第1の位置に位置付けし直される。治療が開始された後、第1の平面における温度上昇は、対応する基準フレームとの比較を使用することによって、測定される。この第1の平面において、すなわち第1領域において測定される温度上昇は、提供される熱モデルに連続的に供給される。第1の平面において測定された温度が摂氏約50度に近い場合、この位置での温度測定が止められ、1次元トランスデューサは、アブレーション先端から離れた次の空間位置へ、すなわち第2の位置へ、移動される。第1の位置からの温度測定値は、第2の位置から、第3の位置等からの測定値に添えられ、最適モデルパラメータは、制約としてこれらの温度測定に基づいて評価される。対応する最適化された熱モデルに基づいて、すなわち最適モデルパラメータに基づいて、ボリューム全体における3次元温度分布が決定されることができる。
上述の実施形態において、基準超音波データは、アブレーション処置の開始前に基準スイープを実施することによって、基準データ取得ステージにおいて取得されたが、他の実施形態では、温度分布測定方法は、このような基準超音波データの取得なしに実施されることができる。この場合、モデル提供ユニット14によって提供される熱モデルは、測定された超音波データの基準温度を決定するために使用されることができる。特に、対象の提供される熱モデルは、治療中に温度分布がすでに測定された第1領域及び治療中に温度分布がまだ測定されていない第1領域の温度分布モデルを記述することができ、温度分布評価ユニットは、温度分布がすでに測定されている第1領域の測定された温度分布からの、温度分布がすでに測定された第1領域のモデル温度分布のずれが最小にされるようにモデルパラメータを変更することによって、及び変更されたモデルから基準温度を決定することによって、温度分布がまだ測定されていない第1領域について基準温度を決定するために適応されることができる。例えば、1次元超音波トランスデューサは、時間tから時間tまで、第1の位置に最初に配置されることができ、この第1の位置で、すなわち対応する第1領域において、温度は、時間tにおける温度まで、経時的に測定される。時間tは、測定された温度がほぼ摂氏50度に近く、摂氏50度に等しく、又は摂氏50よりわずかに高くなる時間によって、規定されることができる。次に、1次元超音波トランスデューサは、時間tに第2の位置へ移動され、第2の位置、すなわちアブレーション先端までの距離がより離れている別の第1領域、における時間t又はより具体的には時間t+Δtにおける温度が、初期の第1領域においてすでに実施された温度測定に基づく熱モデルから予測される。別の第1領域における時間tにおけるこの予測された温度は、別の第1領域における測定のための基準温度であり、基準超音波データは、別の第1領域において時間tに得られる超音波データである。1次元トランスデューサが第2の位置へ移動された後、時間tから時間tまでの期間にこの位置で測定される温度上昇は、時間tおける絶対温度を得るために、時間tに熱モデルから導出された開始温度に加えられる。同じプロシージャが、もっと遠い別の第1領域について、時間間隔t乃至t、t乃至t、t乃至t、その他の期間に、実施されることができる。アブレーション先端から離れた個々の異なる空間位置におけるデータが利用可能であるので、非常にロバストなデータが、空間的且つ時間的な熱分布プロファイルを決定する熱パラメータを評価するために提供される。
1次元超音波トランスデューサの代わりに2次元超音波トランスデューサ、すなわち2次元超音波アレイ、が使用される場合、複数の2次元スキャン平面でイメージングする能力が提供される。データが取得されるスキャン平面、すなわち対応する位置及びゆえに第1領域は、好適には予め規定される。これらの予め規定されたスキャン平面において取得される超音波データは、時間tにアブレーション先端に最も近いスキャン平面から始まり、時間と共に次第に離れた位置になる。これらの空間位置の各々において、すなわち各々の平坦な第1領域において、取得される超音波データは、超音波温度測定によってこれらの第1領域における温度分布を決定するために使用されることができ、決定された温度分布は、モデルパラメータ及び結果として得られる全体の温度分布を評価するために、熱モデルに供給されることができる。この実施形態では、2次元超音波トランスデューサが使用されるので、基準データ取得ステージにおいて、基準フレーム、すなわち人の温度が摂氏37度である時間tにおける異なる第1領域に関する基準超音波データが同時に容易に利用可能である。
上述の実施形態では、温度分布決定技法は、RFアブレーションプロシージャに関連して使用されているが、他の実施形態において、温度分布決定技法は、他のアブレーションプロシージャのような他のエネルギー印加プロシージャと共に使用されることもできる。例えば、温度分布決定技法は、HIFU、マイクロ波アブレーション、レーザアブレーションその他と組み合わせられることもできる。
開示された実施形態に対する他の変更例は、図面、開示及び添付の請求項の検討から、請求項に記載の本発明を実施する際に当業者によって理解され達成されることができる。
請求項において、「含む、有する(comprising)」という語は、他の構成要素又はステップを除外せず、不定冠詞「a」又は「an」は複数性を除外しない。
単一のユニット又は装置が、請求項に列挙されるいくつかのアイテムの機能を果たすことができる。特定の手段が相互に異なる従属請求項に列挙されているという単なる事実は、これらの手段の組み合わせが有利に使用されることができないことを示さない。
取得された超音波データ、モデルの提供、第1の温度分布、及び提供されるモデルに基づく第2の温度分布の評価等に依存して、1又は複数のユニット又は装置によって実施される第1の温度分布の決定のようなプロシージャは、任意の他の数のユニット又は装置よって実施されることができる。これらのプロシージャ及び/又は温度分布決定方法に従う温度分布決定装置の制御は、コンピュータプログラムのプログラムコード手段として及び/又は専用のハードウェアとして実現されることができる。
コンピュータプログラムは、他のハードウェアと共に又はその一部として供給される適切な媒体(例えば光学記憶媒体又はソリッドステート媒体)に記憶され/分散されることができるが、他の形式で、例えばインターネット又は他のワイヤード又はワイヤレスの通信システムを通じて、配布されることもできる。
請求項における任意の参照符号は、本発明の範囲を制限するものとして解釈されるべきでない。
本発明は、エネルギー印加素子を使用することによって、エネルギーが印加される対象内の温度分布を決定する温度分布決定装置に関する。第1の温度分布は、第1の温度レンジ内で第1領域において測定され、変更可能なモデルパラメータに依存して第1領域及び第2領域のモデル温度分布を記述するモデルが提供される。第2の温度分布は、第1領域の第1の温度分布からのモデル温度分布のずれが最小にされるようにモデルパラメータを変更することによって、エネルギーが対象に印加される間、第2の温度レンジ内で第2領域において評価される。これは、第2の温度分布を評価する間、第2の温度レンジ内のモデルパラメータの温度依存性を考慮することを可能にし、それにより、第2の温度分布の評価の正確さを改善する。

Claims (13)

  1. エネルギーを対象に印加することによって生じる対象内の温度分布を決定する温度分布決定装置であって、エネルギーはエネルギー印加素子を使用することによって印加され、前記エネルギー印加素子は、前記エネルギー印加素子のところで温度を測定するように構成され、前記温度分布決定装置は、
    エネルギーが対象に印加される間、第1の温度レンジ内で、対象内の第1領域における第1の温度分布を測定する温度分布測定ユニットであって、前記第1領域において超音波データを取得する超音波プローブと、前記取得された超音波データに基づいて前記第1の温度分布を決定する超音波温度測定ユニットと、を有する温度分布測定ユニットと、
    変更可能なモデルパラメータに依存して、対象内の第1領域、該第1領域よりも前記エネルギー印加素子に近い第2領域、及び前記エネルギー印加素子のところのモデル温度分布を記述するモデルを提供するモデル提供ユニットと、
    前記第1領域の第1の温度分布から及び前記エネルギー印加素子のところで測定された温度からの前記モデル温度分布のずれが最小にされるように前記モデルパラメータを変更することによって、エネルギーが対象に印加される間、前記第1の温度レンジと異なる第2の温度レンジ内で、前記第2領域における第2の温度分布を評価する温度分布評価ユニットと、
    を有する温度分布決定装置。
  2. 前記温度分布測定ユニットは、前記エネルギー印加素子に前記超音波プローブを固定するための固定具を有する、請求項1に記載の温度分布決定装置。
  3. 前記超音波プローブは、互いに直交する及び第1領域を規定する2つの平面において、超音波データを得るように構成される、請求項1に記載の温度分布決定装置。
  4. 前記変更可能なパラメータは、熱的パラメータ及び/又は電気的パラメータを含む、請求項1に記載の温度分布決定装置。
  5. 前記モデル提供ユニットは、初期モデルパラメータにより前記提供されたモデルを初期化し、少なくとも1つの初期モデルパラメータが、対象特有のモデルパラメータである、請求項1に記載の温度分布決定装置。
  6. 対象が生物であり、エネルギーが、生物の一部をアブレーションするために生物に印加され、
    前記温度分布決定装置が更に、アブレーションされた対象内の領域を規定するアブレーション領域を決定するアブレーション領域決定ユニットを有し、
    前記アブレーション領域決定ユニットは、前記評価された第2の温度分布が予め規定された温度閾値より高い温度を含む対象の部分を決定することによって、前記アブレーション領域を決定する、請求項1に記載の温度分布決定装置。
  7. アブレーションされるべき関心領域を提供する関心領域提供ユニットと、
    前記決定されたアブレーション領域及び前記提供された関心領域を表示するディスプレイと、
    を更に有する、請求項6に記載の温度分布決定装置。
  8. 前記温度分布測定ユニットは、前記第1の温度レンジ内で、個々の異なる第1領域における個々の異なる第1の温度分布を測定し、測定された第1の温度分布に依存して前記第1領域を変更し、
    前記モデル提供ユニットは、変更可能なパラメータに依存して、対象内の個々の異なる第1領域及び前記第2領域におけるモデル温度分布を記述するモデルを提供し、
    前記温度分布評価ユニットは、前記第1領域の第1の温度分布からの前記モデル温度分布のずれが最小にされるように前記モデルパラメータを変更することによって、エネルギーが対象に印加される間、前記第2の温度レンジ内で、前記第2領域における第2の温度分布を評価する、請求項1に記載の温度分布決定装置。
  9. 前記温度分布測定ユニットは、前記第1領域の位置を変えることによって、前記第1領域を変更する、請求項8に記載の温度分布決定装置。
  10. エネルギーを対象に印加するシステムであって、エネルギーを対象に印加するエネルギー印加素子と、請求項1に記載の温度分布決定装置と、を有するシステム。
  11. 前記システムは、決定された温度分布に依存して前記エネルギー印加素子を制御するエネルギー印加制御ユニットを更に有する、請求項10に記載のシステム。
  12. エネルギーを対象に印加することによって生じる対象内の温度分布を決定する温度分布決定方法であって、エネルギーはエネルギー印加素子を使用することによって印加され、前記温度分布決定方法は、
    温度分布測定ユニットによって、エネルギーが対象に印加される間、第1の温度レンジ内で、対象内の第1領域における第1の温度分布を測定するステップであって、前記温度分布測定ユニットが、前記第1領域において超音波データを取得する超音波プローブと、前記取得された超音波データに基づいて前記第1の温度分布を決定する超音波温度測定ユニットと、を有し、前記測定するステップが、前記エネルギー印加素子のところの温度を測定することを更に含む、第1の温度分布を測定するステップと、
    モデル提供ユニットによって、変更可能なモデルパラメータに依存して、対象内の第1領域及び該第1領域より前記エネルギー印加素子に近い第2領域における並びに前記エネルギー印加素子のところのモデル温度分布を記述するモデルを提供するステップと、
    温度分布評価ユニットによって、前記第1領域の第1の温度分布から及び前記エネルギー印加素子のところで測定された温度からの前記モデル温度分布のずれが最小にされるように前記モデルパラメータを変更することによって、エネルギーが対象に印加される間、前記第1の温度レンジと異なる第2の温度レンジ内で、前記第2領域における第2の温度分布を評価するステップと、
    を含む温度分布決定方法。
  13. エネルギー印加素子を使用することによって、エネルギーを対象に印加することによって生じる対象内の温度分布を決定するためのコンピュータプログラムであって、コンピュータプログラムが請求項1に記載の温度分布決定装置を制御するコンピュータにおいて実行されるとき、前記温度分布決定装置に、請求項12に記載の温度分布決定方法の各ステップを実効させるプログラムコード手段を含むコンピュータプログラム。
JP2015542387A 2012-11-19 2013-11-11 温度分布決定装置 Expired - Fee Related JP6280558B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261727789P 2012-11-19 2012-11-19
US61/727,789 2012-11-19
PCT/IB2013/060048 WO2014076621A1 (en) 2012-11-19 2013-11-11 Temperature distribution determining apparatus

Publications (3)

Publication Number Publication Date
JP2016502434A JP2016502434A (ja) 2016-01-28
JP2016502434A5 JP2016502434A5 (ja) 2016-12-28
JP6280558B2 true JP6280558B2 (ja) 2018-02-14

Family

ID=49713433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015542387A Expired - Fee Related JP6280558B2 (ja) 2012-11-19 2013-11-11 温度分布決定装置

Country Status (5)

Country Link
US (1) US10004479B2 (ja)
EP (1) EP2919694B1 (ja)
JP (1) JP6280558B2 (ja)
CN (1) CN104812324B (ja)
WO (1) WO2014076621A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403029B2 (en) 2007-07-18 2016-08-02 Visualase, Inc. Systems and methods for thermal therapy
CN106132328B (zh) * 2014-10-15 2019-01-01 奥林巴斯株式会社 用于能量处置器具的控制装置以及能量处置***
WO2016108128A1 (en) 2014-12-30 2016-07-07 Koninklijke Philips N.V. Patient-specific ultrasound thermal strain-to-temperature calibration
US20180028261A1 (en) * 2015-02-17 2018-02-01 Koninklijke Philips N.V. Device and method for assisting in tissue ablation
KR102419454B1 (ko) * 2015-04-02 2022-07-12 하트플로우, 인크. 생체열 전달의 개인화된 추정치들을 제공하기 위한 시스템들 및 방법들
US10448838B2 (en) * 2015-10-19 2019-10-22 Biosense Webster (Israel) Ltd. Illustrating error in a temperature distribution map
CN106510651B (zh) * 2016-12-09 2019-04-16 广州视源电子科技股份有限公司 一种体温预测算法的评估方法及装置
US11497648B2 (en) * 2017-05-12 2022-11-15 Zoll Circulation, Inc. Advanced systems and methods for patient body temperature control
US11992433B2 (en) 2017-05-12 2024-05-28 Zoll Circulation, Inc. Advanced systems and methods for patient body temperature control
TWI787752B (zh) * 2017-05-31 2022-12-21 荷蘭商耐克創新有限合夥公司 在製程中監測對物品施加表面處理的方法及系統
CN107526928B (zh) * 2017-08-21 2021-06-25 北京工业大学 一种基于特性参数反馈的微波热消融温度场仿真方法
EP3517065A1 (en) * 2018-01-26 2019-07-31 Koninklijke Philips N.V. Planning apparatus for determining an ablation probe parameter for a single probe or for multiple ablation probes
JP7357007B2 (ja) * 2018-05-29 2023-10-05 コーニンクレッカ フィリップス エヌ ヴェ 熱アブレーションのレベルを推定するための装置及び方法
WO2020033947A1 (en) * 2018-08-10 2020-02-13 Covidien Lp Systems for ablation visualization
EP3946590B1 (en) 2019-03-25 2024-05-08 Creaholic S.A. Treatment parameters for acoustic wave stimulation
CN113768484B (zh) * 2020-06-10 2022-06-24 上海美杰医疗科技有限公司 生物组织个性化血流灌注率评估方法及***
CN113221452B (zh) * 2021-04-29 2022-09-09 天津大学 一种基于分布式光纤的办公空间温度预测***
CN113405686B (zh) * 2021-05-19 2022-07-01 中国原子能科学研究院 一种温度测量方法
CN114427913B (zh) * 2022-01-20 2024-03-22 浙江华感科技有限公司 一种测温方法、装置、电子设备及存储介质

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681103A (en) * 1985-03-11 1987-07-21 Diasonics, Inc. Ultrasound guided surgical instrument guide and method
US5224492A (en) * 1990-06-13 1993-07-06 Omron Corporation Thermotherapy apparatus
JPH04352971A (ja) 1991-05-29 1992-12-08 Toshiba Corp 生体内部の測温方法
US6423002B1 (en) * 1999-06-24 2002-07-23 Acuson Corporation Intra-operative diagnostic ultrasound multiple-array transducer probe and optional surgical tool
JP3875841B2 (ja) 2000-03-28 2007-01-31 アロカ株式会社 医療システム
US7520877B2 (en) 2000-06-07 2009-04-21 Wisconsin Alumni Research Foundation Radiofrequency ablation system using multiple prong probes
US7125409B2 (en) * 2001-10-22 2006-10-24 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US7166075B2 (en) * 2002-03-08 2007-01-23 Wisconsin Alumni Research Foundation Elastographic imaging of in vivo soft tissue
US8123691B2 (en) * 2003-08-19 2012-02-28 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus for fixedly displaying a puncture probe during 2D imaging
US8016757B2 (en) * 2005-09-30 2011-09-13 University Of Washington Non-invasive temperature estimation technique for HIFU therapy monitoring using backscattered ultrasound
WO2007134258A2 (en) * 2006-05-12 2007-11-22 Vytronus, Inc. Device for ablating body tissue
RU2009119498A (ru) 2006-10-24 2010-11-27 Конинклейке Филипс Электроникс, Н.В. (Nl) Механизм обратной связи формирования термальных изображений для оптимизации радиочастотной абляционной терапии
TWI406684B (zh) 2008-01-16 2013-09-01 Univ Chang Gung 非侵入式超音波即時溫度量測裝置及其方法
US20110060221A1 (en) * 2009-09-04 2011-03-10 Siemens Medical Solutions Usa, Inc. Temperature prediction using medical diagnostic ultrasound
EP2528493B1 (en) * 2010-01-28 2017-04-19 Brainlab AG Method and apparatus for estimating temperature in a body
EP2387963A1 (en) 2010-05-17 2011-11-23 Koninklijke Philips Electronics N.V. Temperature distribution determining apparatus
US8900145B2 (en) 2011-03-10 2014-12-02 University Of Washington Through Its Center For Commercialization Ultrasound systems and methods for real-time noninvasive spatial temperature estimation

Also Published As

Publication number Publication date
CN104812324B (zh) 2018-03-30
EP2919694B1 (en) 2018-06-20
US20150282786A1 (en) 2015-10-08
US10004479B2 (en) 2018-06-26
EP2919694A1 (en) 2015-09-23
WO2014076621A1 (en) 2014-05-22
JP2016502434A (ja) 2016-01-28
CN104812324A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
JP6280558B2 (ja) 温度分布決定装置
EP3016593B1 (en) Temperature distribution determining apparatus.
EP2621388B1 (en) System for temperature feedback for adaptive radio frequency ablation
JP4658621B2 (ja) 心臓組織のアブレーションの予測および評価
US11298028B2 (en) Temperature distribution determination apparatus
JP5755325B2 (ja) 温度分布決定装置
US10849679B2 (en) Heat sink parameter determination apparatus
US10660615B2 (en) Patient-specific ultrasound thermal strain-to-temperature calibration

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180119

R150 Certificate of patent or registration of utility model

Ref document number: 6280558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees