JP6279350B2 - Visible light source - Google Patents

Visible light source Download PDF

Info

Publication number
JP6279350B2
JP6279350B2 JP2014041439A JP2014041439A JP6279350B2 JP 6279350 B2 JP6279350 B2 JP 6279350B2 JP 2014041439 A JP2014041439 A JP 2014041439A JP 2014041439 A JP2014041439 A JP 2014041439A JP 6279350 B2 JP6279350 B2 JP 6279350B2
Authority
JP
Japan
Prior art keywords
visible light
refractive index
infrared light
filament
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014041439A
Other languages
Japanese (ja)
Other versions
JP2015167105A (en
Inventor
松本 貴裕
貴裕 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2014041439A priority Critical patent/JP6279350B2/en
Publication of JP2015167105A publication Critical patent/JP2015167105A/en
Application granted granted Critical
Publication of JP6279350B2 publication Critical patent/JP6279350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は照明用光源、自動車用ランプ、プロジェクタ用光源、液晶(LCD)バックライト光源等の各種光源として用いられる可視光源に関する。   The present invention relates to a visible light source used as various light sources such as an illumination light source, an automobile lamp, a projector light source, and a liquid crystal (LCD) backlight light source.

タングステン(W)等のフィラメントに電流を流すことによりフィラメントを加熱して発光源とする可視光源が広く用いられている。   A visible light source is widely used in which an electric current is passed through a filament such as tungsten (W) to heat the filament and use it as a light source.

図6は一般的な可視光源の放射光スペクトルを示すグラフである。図6に示すように、たとえばフィラメント温度3000Kにおける赤外光成分が90%以上存在するために、フィラメントの入力電力の可視光への変換効率は低く、約15 lm/Wと低い値となる。尚、蛍光灯の場合の入力電力から可視光への変換効率は約90 lm/Wである。従って、可視光源は太陽光に近い良演色性の放射スペクトルを有するにも拘らず、環境負荷の点からその使用がなされなくなりつつある。   FIG. 6 is a graph showing a radiation spectrum of a general visible light source. As shown in FIG. 6, for example, since the infrared light component at a filament temperature of 3000 K is 90% or more, the conversion efficiency of the filament input power into visible light is low, which is a low value of about 15 lm / W. In the case of a fluorescent lamp, the conversion efficiency from input power to visible light is about 90 lm / W. Therefore, although a visible light source has a good color rendering radiation spectrum close to that of sunlight, it is not being used from the viewpoint of environmental load.

図6に示すように、フィラメントの入力電力から可視光への変換効率を向上させるためには、フィラメント温度を上げればよい。従って、可視光源を高変換効率化、高輝度化、長寿命化する試みとして以下の従来の可視光源がある。   As shown in FIG. 6, in order to improve the conversion efficiency from the input power of the filament to visible light, the filament temperature may be increased. Therefore, there are the following conventional visible light sources as an attempt to increase the conversion efficiency, the brightness, and the lifetime of the visible light source.

第1の従来の可視光源は、光源内部に不活性ガス及びハロゲンガスを封入した自動車用ランプとして用いられるハロゲン電球である(参照:特許文献1、2)。これにより、フィラメント温度をより高くしてフィラメントの入力電力の可視光への変換効率を向上せしめると同時に、フィラメントの寿命を伸ばす。この高変換効率化及び長寿命化に際しては、封入ガスの成分及び圧力の制御が重要である。   The first conventional visible light source is a halogen light bulb used as an automobile lamp in which an inert gas and a halogen gas are sealed inside the light source (see: Patent Documents 1 and 2). As a result, the filament temperature is raised to improve the conversion efficiency of the filament input power into visible light, and at the same time, the filament life is extended. In order to increase the conversion efficiency and extend the life, it is important to control the composition and pressure of the sealed gas.

しかしながら、上述の第1の従来の可視光源においては、ハロゲンサイクルを利用した寿命延伸効果を図ることができるが、高い変換効率の向上は困難であり、せいぜい20 lm/W程度で蛍光灯の変換効率90 lm/Wに遠く及ばない。   However, in the first conventional visible light source described above, it is possible to achieve a life extension effect using a halogen cycle, but it is difficult to improve the high conversion efficiency, and conversion of a fluorescent lamp at about 20 lm / W at most. The efficiency is far from 90 lm / W.

第2の従来の可視光源においては、フィラメント自体に微細構造体を形成し、この微細構造体の物理的効果により赤外光を抑制する(参照:特許文献3、4、5、6)。これにより、フィラメント温度をより高くしてフィラメントの入力電力から可視光への変換効率を向上せしめる。   In the second conventional visible light source, a fine structure is formed on the filament itself, and infrared light is suppressed by the physical effect of the fine structure (refer to Patent Documents 3, 4, 5, and 6). As a result, the filament temperature is increased to improve the conversion efficiency from the input power of the filament to visible light.

しかしながら、上述の第2の従来の可視光源においては、微細構造体の物理的効果つまり共振器構造による赤外光の抑制効果として赤外光スペクトルのごく一部分に対してしか放射増強及び抑制効果がない(参照:非特許文献1)。つまり、ある波長が抑制されると、他の波長が増強される。従って、広範囲の赤外光全体に亘る抑制効果は非常に困難である。この結果、やはり、高い変換効率の向上は困難である。また、微細構造を形成する際に、電子ビームリソグラフィ等の高度の微細加工技術を利用しているので、製造コストが高くなる。さらに、微細構造を形成した高融点材料であるタングステン等よりなるフィラメントは1000℃程度の加熱温度で溶融かつ破壊する。   However, in the above-described second conventional visible light source, the physical effect of the fine structure, that is, the suppression effect of the infrared light by the resonator structure, has the radiation enhancement and suppression effect for only a part of the infrared light spectrum. No (Ref: Non-Patent Document 1). That is, when one wavelength is suppressed, other wavelengths are enhanced. Therefore, the suppression effect over the wide infrared light is very difficult. As a result, it is still difficult to improve high conversion efficiency. In addition, when a fine structure is formed, since a high-level fine processing technique such as electron beam lithography is used, the manufacturing cost increases. Furthermore, a filament made of tungsten or the like, which is a high melting point material having a fine structure, melts and breaks at a heating temperature of about 1000 ° C.

第3の従来の可視光源においては、光源ガラスの表面に赤外光反射多層膜を被覆し、赤外光反射多層膜により可視光以外の赤外光を反射し、再度、この赤外光をフィラメントに吸収させてフィラメントを再加熱する(参照:特許文献7、8、9)。これにより、フィラメント温度をより高くしてフィラメントの入力電力の可視光への変換効率を向上せしめる。   In the third conventional visible light source, the surface of the light source glass is coated with an infrared light reflecting multilayer film, and infrared light other than visible light is reflected by the infrared light reflecting multilayer film. The filament is absorbed and reheated (refer to Patent Documents 7, 8, and 9). This raises the filament temperature and improves the conversion efficiency of the filament input power into visible light.

特開昭60−253146号公報JP-A-60-253146 特開昭62−10854号公報Japanese Patent Laid-Open No. 62-10854 特表2001−519079号公報JP 2001-519079 特開平6−5263号公報JP-A-6-5263 特開平6−2167号公報JP-A-6-2167 特開2006−205332号公報JP 2006-205332 A 特開昭59−58752号公報JP 59-58752 A 特表昭62−501109号公報JP-T 62-501109 特開2000−123795号公報JP 2000-123795 A

F.Kusunoki et al., "Narrow-Band Thermal Radiation with Low Directivity by Resonant Modes inside Tungusten Microcavities", Japanese Journal of Applied Physics, Vol.43, No.8A, pp.5253-5258, 2004F. Kusunoki et al., "Narrow-Band Thermal Radiation with Low Directivity by Resonant Modes inside Tungusten Microcavities", Japanese Journal of Applied Physics, Vol.43, No.8A, pp.5253-5258, 2004

上述の第3の従来の可視光源においては、赤外光反射多層膜の設計は、反射赤外光のある波長λに対して厚さが異なる低屈折率層及び高屈折率層の1つの組を積層する。従って、波長λが範囲を有していれば、その範囲の中心波長λ、λ、…、λに対して組数Nの積層を必要とする。また、同一中心波長λでも入射角θが範囲を有していれば、積層数は増加する。たとえば、波長λ=0.8μm〜3.0μmの赤外光を入射角θ=0°〜30°で95%以上反射させたい場合には、図7の(A)に示すように、フィラメント101、フィラメント101を包容する石英管102及び石英管102の外面に形成された赤外光反射多層膜103Aよりなる可視光源において、厚さが異なる低屈折率層及び高屈折率層の組を30組つまり60層必要とし、この場合、フィラメント101から石英管102、赤外光反射多層膜103Aへの赤外光反射率が角度依存性を有する。つまり、入射角θが0〜30°の場合には、赤外光反射率は大きいが、入射角θが30〜90°の場合には、赤外光反射率が著しく低下し、従って、赤外光が赤外光反射多層膜103Aから外部空間へ漏れる。この結果、やはり高い変換効率の向上は困難であり、せいぜい20 lm/W程度で蛍光灯の変換効率90 lm/Wに遠く及ばないという課題がある。尚、図7の(A)においては、石英管102への入射角θ=0°〜30°は、石英管102の屈折率n=1.4とすれば、赤外光反射多層膜103Aへの入射角θ=0°〜21°となる。他方、波長λ=0.8μm〜3.0μmの赤外光を入射角θ=0°〜90°で95%以上反射させたい場合には、図7の(B)に示すように、フィラメント101、フィラメント101を包容する石英管102及び石英管102の外面に形成された赤外光反射多層膜103Bよりなる可視光源において、厚さが異なる低屈折率層及び高屈折率層の組を100組つまり200層必要とし、この場合、フィラメント101から石英管102、赤外光反射多層膜103Bへの赤外光反射率が角度依存性を有せず、入射角θ1が0〜90°で、赤外光反射率は大きい。しかしながら、層数の増大により製造コストが高いという課題がある。尚、図7の(B)においては、石英管102への入射角θ=0°〜90°は、石英管102の屈折率n=1.4とすれば、赤外光反射多層膜103Bへの入射角θ=0°〜45°となる。 In the third conventional visible light source described above, the design of the infrared light reflecting multilayer film is a combination of a low refractive index layer and a high refractive index layer having different thicknesses for a certain wavelength λ of the reflected infrared light. Are laminated. Therefore, if the wavelength λ has a range, N sets of layers are required for the center wavelengths λ 1 , λ 2 ,. Further, if the incident angle θ has a range even at the same center wavelength λ, the number of stacked layers increases. For example, when it is desired to reflect 95% or more of infrared light having a wavelength λ = 0.8 μm to 3.0 μm at an incident angle θ 1 = 0 ° to 30 °, as shown in FIG. 101, in a visible light source comprising a quartz tube 102 enclosing the filament 101 and an infrared light reflecting multilayer film 103A formed on the outer surface of the quartz tube 102, a set of 30 low refractive index layers and high refractive index layers having different thicknesses is provided. In this case, the infrared light reflectance from the filament 101 to the quartz tube 102 and the infrared light reflecting multilayer film 103A has an angle dependency. That is, when the incident angle θ 1 is 0 to 30 °, the infrared light reflectance is large, but when the incident angle θ 1 is 30 to 90 °, the infrared light reflectance is remarkably lowered. Infrared light leaks from the infrared light reflecting multilayer film 103A to the external space. As a result, it is still difficult to improve high conversion efficiency, and there is a problem that the conversion efficiency of fluorescent lamps is not far from 90 lm / W at most at about 20 lm / W. In FIG. 7A, the incident angle θ 1 = 0 ° to 30 ° to the quartz tube 102 is an infrared light reflecting multilayer film if the refractive index n 2 of the quartz tube 102 is 1.4. The incident angle to 103A is θ 2 = 0 ° to 21 °. On the other hand, when it is desired to reflect 95% or more of infrared light having a wavelength λ = 0.8 μm to 3.0 μm at an incident angle θ 1 = 0 ° to 90 °, as shown in FIG. 101, in a visible light source comprising a quartz tube 102 enclosing the filament 101 and an infrared light reflecting multilayer film 103B formed on the outer surface of the quartz tube 102, a set of a low refractive index layer and a high refractive index layer having different thicknesses is set to 100. In this case, the infrared light reflectance from the filament 101 to the quartz tube 102 and the infrared light reflecting multilayer film 103B has no angle dependency, and the incident angle θ1 is 0 to 90 °. Infrared light reflectance is large. However, there is a problem that the manufacturing cost is high due to the increase in the number of layers. In FIG. 7B, the incident angle θ 1 = 0 ° to 90 ° to the quartz tube 102 is an infrared light reflecting multilayer film if the refractive index n 2 of the quartz tube 102 is 1.4. The incident angle to 103B is θ 2 = 0 ° to 45 °.

このように、上述の第3の従来の可視光源においては、変換効率と製造コストとがトレードオフの関係にある。   Thus, in the third conventional visible light source described above, the conversion efficiency and the manufacturing cost are in a trade-off relationship.

上述の課題を解決するために、本発明に係る可視光源は、フィラメントと、フィラメントを包容する可視光及び赤外光に対して透明な透明基材と、透明基材の外面を被覆し、透明基材の屈折率より大きい屈折率を有する高屈折率層と、高屈折率層の外面を被覆する赤外光反射多層膜とを具備し、高屈折率層の厚さは1μm〜100μmである。透明基材への入射角は赤外光反射多層膜へのより小さな入射角に変換され、透明基材への入射角の広い範囲で赤外光反射多層膜の赤外光反射率が大きくなる。従って、透明基材への入射角に対する赤外光反射率の角度依存性は小さくなる。


In order to solve the above-described problems, a visible light source according to the present invention covers a filament, a transparent base material transparent to visible light and infrared light surrounding the filament, and an outer surface of the transparent base material. It comprises a high refractive index layer having a refractive index greater than that of the substrate and an infrared light reflective multilayer film covering the outer surface of the high refractive index layer, and the thickness of the high refractive index layer is 1 μm to 100 μm. . The incident angle to the transparent substrate is converted to a smaller incident angle to the infrared light reflecting multilayer film, and the infrared light reflectance of the infrared light reflecting multilayer film is increased over a wide range of incident angles to the transparent substrate. . Therefore, the angle dependency of the infrared light reflectance with respect to the incident angle to the transparent substrate is reduced.


本発明によれば、透明基材への入射角に対して赤外光反射率の角度依存性が小さくなるので、赤外光反射率を高くでき、従って、赤外光の外部空間への漏れを小さくでき、入力電力の可視光への変換効率を高めることができる。   According to the present invention, since the angle dependency of the infrared light reflectivity with respect to the incident angle to the transparent substrate is reduced, the infrared light reflectivity can be increased, and accordingly, the leakage of infrared light to the external space. And the conversion efficiency of input power into visible light can be increased.

本発明に係る可視光源の原理を説明するための放射光スペクトルを示すグラフである。It is a graph which shows the emitted light spectrum for demonstrating the principle of the visible light source which concerns on this invention. 本発明に係る可視光源の実施の形態を示す断面図である。It is sectional drawing which shows embodiment of the visible light source which concerns on this invention. 図2の可視光源の動作を説明するための図である。It is a figure for demonstrating operation | movement of the visible light source of FIG. 図2の赤外光反射多層膜の詳細を示す断面図である。It is sectional drawing which shows the detail of the infrared light reflection multilayer film of FIG. 図2の可視光源を白熱電球として構成した一部切欠き断面図である。FIG. 3 is a partially cutaway cross-sectional view in which the visible light source of FIG. 2 is configured as an incandescent bulb. 一般的な可視光源の放射光スペクトルを示すグラフである。It is a graph which shows the emitted light spectrum of a common visible light source. 第3の従来の可視光源の課題を説明するための図である。It is a figure for demonstrating the subject of the 3rd conventional visible light source.

本発明の可視光源の原理を図1を用いて説明する。すなわち、2μm以上の赤外光領域でほぼ1、かつ0.8μm〜0.35μmの可視光領域で急激に0に落ち込むような反射率特性R(λ)を有する単一の赤外光反射多層膜を真空中のフィラメント近傍に形成し、0.35〜0.8μmの可視光領域に放射強度のピークを有するようにする。このような物理的特性を作り出すことによって効率の良い可視光源を実現することができる。このとき、赤外光反射多層膜への入射角を小さくするために、赤外光反射多層膜光入射面側に新たに高屈折率層を設ける。   The principle of the visible light source of the present invention will be described with reference to FIG. That is, a single infrared light reflection multilayer having reflectivity characteristics R (λ) that substantially falls to 1 in the infrared light region of 2 μm or more and suddenly drops to 0 in the visible light region of 0.8 μm to 0.35 μm. A film is formed in the vicinity of a filament in a vacuum so as to have a peak of radiation intensity in a visible light region of 0.35 to 0.8 μm. An efficient visible light source can be realized by creating such physical characteristics. At this time, in order to reduce the incident angle to the infrared light reflecting multilayer film, a high refractive index layer is newly provided on the light incident surface side of the infrared light reflecting multilayer film.

放射率が波長に依存せずに一定の材料,例えば黒体またはWよりなる灰色体でフィラメントを構成した場合,フィラメントの放射光スペクトルE(λ)はプランクの放射則に従う。つまり、数1で示される。

Figure 0006279350
但し、α = 3.747×10 W・μm/m
β = 1.4387×10 μm・K When the filament is made of a material whose emissivity does not depend on the wavelength, for example, a black body or a gray body made of W, the emitted light spectrum E B (λ) of the filament follows Planck's radiation law. That is, it is expressed by the following equation (1).
Figure 0006279350
However, α = 3.747 × 10 8 W ・ μm 4 / m 2
β = 1.4387 × 10 4 μm ・ K

この場合、図1のE(λ)に示すように、入力電力の殆ど全て(90%以上)が赤外光に変換される。 In this case, as shown by E B (λ) in FIG. 1, almost all of the input power (90% or more) is converted into infrared light.

ところで、図1のR(λ)に示すような反射率を有する構造をフィラメント周囲に形成すると、波長λでの放射光スペクトルはε(λ)・E (λ)で表わされるようになり、従って、数2で示される。

Figure 0006279350
By the way, when a structure having reflectivity as shown in FIG. 1 R (λ) is formed around the filament, the emitted light spectrum at the wavelength λ is expressed by ε (λ) · E B (λ). Therefore, it is expressed by Equation 2.
Figure 0006279350

ここで、放射率ε(λ)と反射率R(λ)は以下のキルヒホッフの法則に従うので、反射率特性を考慮することによって,所望の放射光スペクトルを得ることができる。
ε(λ) = 1 − R(λ)
Here, since the emissivity ε (λ) and the reflectivity R (λ) follow Kirchhoff's law below, a desired radiated light spectrum can be obtained by considering the reflectivity characteristics.
ε (λ) = 1-R (λ)

図1のε(λ)・E (λ)で示されるように,この場合は入力電力の殆ど全てが可視光に変換され、可視光放射の観点からみると効率の良い光源を形成することが出来る。その際,本発明で得られる可視光源の放射光の全エネルギーPは図1のε(λ)・E (λ)を波長λで積分した値で表わされる。つまり、数3で示される。

Figure 0006279350
As shown by ε (λ) · E B (λ) in FIG. 1, in this case, almost all of the input power is converted into visible light, and an efficient light source is formed from the viewpoint of visible light emission. I can do it. At that time, the total energy P R of the radiation of the visible light source obtained by the present invention is represented by the integral value of ε (λ) · E B 1 a (lambda) at a wavelength lambda. That is, it is expressed by the following equation (3).
Figure 0006279350

すなわち、上述の赤外光反射多層膜によってフィラメント近傍を覆うことにより、必要な可視光を透過させる一方、可視光以外の不要な赤外光を反射させ、再度フィラメントに吸収させてこれを再加熱する。これにより、赤外光の外部空間への出射を抑制すると共に、入力電力から可視光への変換効率を高める可視光源を実現する。その際に、赤外光反射多層膜に高屈折率層を設けて赤外光反射多層膜に対する入射角を小さくすることにより、赤外光反射率の角度依存性を小さくする。   That is, by covering the vicinity of the filament with the above-mentioned infrared light reflecting multilayer film, the necessary visible light is transmitted, while unnecessary infrared light other than visible light is reflected and absorbed by the filament again to reheat it. To do. This realizes a visible light source that suppresses the emission of infrared light to the external space and increases the conversion efficiency from input power to visible light. At this time, the angle dependency of the infrared light reflectance is reduced by providing a high refractive index layer in the infrared light reflecting multilayer film to reduce the incident angle to the infrared light reflecting multilayer film.

図2は本発明に係る可視光源の実施の形態を示す断面図である。   FIG. 2 is a sectional view showing an embodiment of a visible light source according to the present invention.

図2において、高融点金属たとえばタングステン(W)よりフィラメント1の近傍を可視光及び赤外光に対して透明な透明基材よりなる管、例えば石英管2で被覆し、石英管2の外面を石英管2の屈折率nより大きい屈折率nを有する高屈折率層3で被覆し、高屈折率層3の外面を赤外光反射多層膜4で被覆する。尚、赤外光反射多層膜4は可視光を透過させる。また、石英管2の端部には可視光及び赤外光を全反射する白色散乱体(もしくはミラー)5を設ける。 In FIG. 2, the vicinity of the filament 1 is covered with a tube made of a transparent base material transparent to visible light and infrared light, for example, a quartz tube 2 from a refractory metal such as tungsten (W), and the outer surface of the quartz tube 2 is covered. The quartz tube 2 is covered with a high refractive index layer 3 having a refractive index n 3 greater than the refractive index n 2 , and the outer surface of the high refractive index layer 3 is covered with an infrared light reflecting multilayer film 4. The infrared light reflecting multilayer film 4 transmits visible light. A white scatterer (or mirror) 5 that totally reflects visible light and infrared light is provided at the end of the quartz tube 2.

図3は図2の可視光源の動作を説明するための断面図である。図3においては、スネルの法則により次式が成立する。
sinθ=nsinθ=nsinθ
但し、nはフィラメント1が存在する真空中の屈折率であって、1.0、
は石英管2の石英(SiO)の屈折率であって、1.4、
は高屈折率層3の屈折率であって、たとえば酸化ジルコニウム(ZrO)もしくは酸化ハウニウム(HfO)の屈折率2.0、
θは石英管2への入射角、
θは高屈折率層3への入射角、
θは赤外光反射多層膜4への入射角
である。従って、石英管2への入射角θが0〜90°のときには、赤外光反射多層膜4への入射角θは0〜30°となる。言い換えると、真空中で立体角2π内(90°半球方向)に放射された光は高屈折率層3内で立体角π/6(30°方向)の光に変換される。尚、この場合、石英管2内での立体角はπ/4(45°方向)である。このように、高屈折率層3を石英管2と赤外光反射多層膜4との間に挿入することにより、赤外光反射多層膜4への放射をより狭い立体角内に寄せ集めることができ、これにより、赤外光反射多層膜4で高い可視光透過性及び赤外光反射性を達成できる。この結果、より少ない層数の赤外光反射多層膜4で大きな入射角θの範囲(たとえば0°〜90°)の赤外光を反射できる。
FIG. 3 is a cross-sectional view for explaining the operation of the visible light source of FIG. In FIG. 3, the following equation is established by Snell's law.
n 1 sin θ 1 = n 2 sin θ 2 = n 3 sin θ 3
However, n 1 is a refractive index in vacuum filament 1 exists, 1.0,
n 2 is the refractive index of quartz (SiO 2 ) of the quartz tube 2 and is 1.4,
n 3 is the refractive index of the high refractive index layer 3, for example, a refractive index of zirconium oxide (ZrO 2 ) or haonium oxide (HfO 2 ) of 2.0,
θ 1 is the angle of incidence on the quartz tube 2,
θ 2 is an incident angle to the high refractive index layer 3,
θ 3 is an incident angle to the infrared light reflective multilayer film 4. Therefore, when the incident angle θ 1 to the quartz tube 2 is 0 to 90 °, the incident angle θ 3 to the infrared light reflecting multilayer film 4 is 0 to 30 °. In other words, light emitted in a solid angle 2π (90 ° hemispherical direction) in a vacuum is converted into light having a solid angle π / 6 (30 ° direction) in the high refractive index layer 3. In this case, the solid angle in the quartz tube 2 is π / 4 (45 ° direction). In this way, by inserting the high refractive index layer 3 between the quartz tube 2 and the infrared light reflecting multilayer film 4, the radiation to the infrared light reflecting multilayer film 4 is gathered within a narrow solid angle. Thereby, high visible light transmissivity and infrared light reflectivity can be achieved with the infrared light reflective multilayer film 4. As a result, infrared light having a large incident angle θ 1 (for example, 0 ° to 90 °) can be reflected by the infrared light reflecting multilayer film 4 having a smaller number of layers.

上述の高屈折率層3の最小厚さは、スネルの法則が適用可能な最小膜厚で決定される。具体的には、反射すべき光を赤外光の1μmの波長で考察すると,高屈折率層3の屈折率と膜厚を掛けた値が1μmの2倍以上、つまり約2μm以上となるようにする。高屈折率層3の屈折率が2の膜を考えると、最終的に膜厚は1μm以上となる。また、高屈折率層3の最大厚さは、真空蒸着等の気相成長プロセスによる製造上及びクラック防止から100μm程度が限界となる。尚、厚さが大きいたとえばZrOよりなる高屈折率層3を形成する場合には、真空蒸着等の気相成長プロセスの代りに、ZrOナノ粒子等を用いた液相成長プロセスたとえばゾルゲル及びナノ粒子溶媒の焼結を用いる。 The minimum thickness of the high refractive index layer 3 described above is determined by the minimum film thickness to which Snell's law can be applied. Specifically, when the light to be reflected is considered at a wavelength of 1 μm of infrared light, the value obtained by multiplying the refractive index of the high refractive index layer 3 and the film thickness is twice or more than 1 μm, that is, about 2 μm or more. To. Considering a film having a refractive index of 2 of the high refractive index layer 3, the film thickness finally becomes 1 μm or more. Further, the maximum thickness of the high refractive index layer 3 is limited to about 100 μm in view of manufacturing by a vapor phase growth process such as vacuum deposition and prevention of cracks. In the case of forming the high refractive index layer 3 made of ZrO 2 having a large thickness, for example, a liquid phase growth process using ZrO 2 nanoparticles or the like, for example, sol-gel and Nanoparticle solvent sintering is used.

尚、高屈折率層3を挿入する代りに、石英管2をより大きい屈折率を有する材料たとえば屈折率1.8のサファイアよりなる管を用いれば、赤外光反射多層膜4への放射をより狭い立体角内に寄せ集めることができる。しかしながら、このような高屈折率の材料管は、可視光での透明性がよくなく、製造コストが高く、耐熱性が悪く(たとえば1500K以下)、しかも平坦性がよくない等の問題がある。従って、本発明においては、これらの問題がない比較的厚い低屈折率1.4の石英管2を用い、これに比較的薄い高屈折率層3を被覆するようにしたものである。   If the quartz tube 2 is made of a material having a higher refractive index, for example, a tube made of sapphire having a refractive index of 1.8, instead of inserting the high refractive index layer 3, radiation to the infrared light reflecting multilayer film 4 is emitted. It can be gathered within a narrower solid angle. However, such a high refractive index material tube has problems such as poor transparency to visible light, high manufacturing cost, poor heat resistance (for example, 1500 K or less), and poor flatness. Therefore, in the present invention, a relatively thick low refractive index 1.4 quartz tube 2 without these problems is used, and a relatively thin high refractive index layer 3 is coated thereon.

図4は図2の赤外光反射多層膜4の詳細を示す断面図である。   FIG. 4 is a cross-sectional view showing details of the infrared light reflective multilayer film 4 of FIG.

図4において、赤外光反射多層膜4は、赤外光を透過する高耐熱性誘電体層である低屈折率層41、高屈折率層42よりなる組4−1、4−2、…、4−Nを積層することによって構成されている。各組4−i(i=1、2、…、N)は、所定の中心波長λを有する赤外光を光の干渉を利用して反射する。このときの反射条件は、
41・d41=n42・d42=λ/4
但し、n41は低屈折率層41の屈折率、
41は低屈折率層41の厚さ、
42は高屈折率層42の屈折率、
42は高屈折率層42の厚さ
である。つまり、広い波長範囲の赤外光を反射するためには、中心波長λが少し異なる複数組4−1、4−2、…、4−Nが必要となる。この場合、低屈折率層41と高屈折率層42との屈折率差が大きい程、反射できる赤外光の波長幅が大きくなるので、反射したい赤外光の波長幅に応じて低屈折率層41、高屈折率層42の材料を選択する。
In FIG. 4, the infrared light reflecting multilayer film 4 includes a set 4-1, 4-2,... Composed of a low refractive index layer 41 that is a high heat resistant dielectric layer that transmits infrared light, and a high refractive index layer 42. , 4-N are laminated. Each set 4-i (i = 1, 2,..., N) reflects infrared light having a predetermined center wavelength λ i using light interference. The reflection condition at this time is
n 41 · d 41 = n 42 · d 42 = λ i / 4
However, n 41 is the refractive index of the low refractive index layer 41,
d 41 is the thickness of the low refractive index layer 41,
n 42 is the refractive index of the high refractive index layer 42,
d 42 is the thickness of the high refractive index layer 42. That is, in order to reflect infrared light in a wide wavelength range, a plurality of sets 4-1, 4-2,..., 4-N having slightly different center wavelengths λ i are required. In this case, the greater the difference in refractive index between the low refractive index layer 41 and the high refractive index layer 42, the greater the wavelength width of the infrared light that can be reflected. The material of the layer 41 and the high refractive index layer 42 is selected.

たとえば、低屈折率層41を屈折率1.4の酸化シリコン(SiO)層とし、高屈折率層42を屈折率2.0のZrO層とする。図6に示すように、2500Kでの黒体放射は波長1200nmでピークを有するので、このピーク近傍の波長を選択した波長帯における赤外反射を高めることにより光束効率を向上させることができる。たとえば、SiO層41、ZrO層42の組数Nを26とし、合計52層積層し、この場合、SiO層41の厚さd41を200nmから50nmまで徐々に異なる値とし、また、ZrO層42の厚さd42を180nmから30nmまで徐々に異なる値とする。このようにして、少ない層数52の赤外光反射多層膜4により、中心波長λ、λ、…、λ26が1μm〜4μmの範囲でかつ赤外光反射多層膜4への入射角θが0°〜30°で良好な赤外光反射特性を得ることができる。 For example, the low refractive index layer 41 is a silicon oxide (SiO 2 ) layer having a refractive index of 1.4, and the high refractive index layer 42 is a ZrO 2 layer having a refractive index of 2.0. As shown in FIG. 6, since the black body radiation at 2500 K has a peak at a wavelength of 1200 nm, the luminous efficiency can be improved by increasing the infrared reflection in the wavelength band in which the wavelength near this peak is selected. For example, the number N of sets of the SiO 2 layer 41 and the ZrO 2 layer 42 is 26, and a total of 52 layers are laminated. In this case, the thickness d 41 of the SiO 2 layer 41 is gradually changed from 200 nm to 50 nm, the thickness d 42 of the ZrO 2 layer 42 and gradually different value from 180nm to 30 nm. In this way, lesser infrared light reflecting multilayer film 4 layer number 52, the central wavelength lambda 1, lambda 2, ..., and in the range of lambda 26 is 1μm~4μm incident angle of the infrared light reflecting multilayer film 4 theta 3 can be obtained an excellent infrared reflection properties at 0 ° to 30 °.

尚、低屈折率層41としては、SiOの代りに、MgO、MgF、Al等の高温耐熱性低屈折率材料を用いることもできる。また、高屈折率層42としては、ZrOの代りに、Ta、TiO、HfO等の酸化物系材料、ダイヤモンド、SiC等の炭水化物系材料、BN、GaN等の窒化物系材料を用いることもできる。 As the low refractive index layer 41, a high temperature heat resistant low refractive index material such as MgO, MgF 2 or Al 2 O 3 can be used instead of SiO 2 . Further, as the high refractive index layer 42, instead of ZrO 2 , oxide-based materials such as Ta 2 O 5 , TiO 2 , and HfO 2 , carbohydrate-based materials such as diamond and SiC, and nitride-based materials such as BN and GaN. Materials can also be used.

再び、図3を参照すると、入射角θが0°〜90°で石英管2に入射した放射は入射角θが0°〜30°で赤外光反射多層膜4に入射する。この結果、0.7μmより長波長の赤外光は赤外光反射多層膜4によって反射され、他方、0.4μm〜0.7μmの可視光は外部へ放射される。さらに、赤外光反射多層膜4によって反射された赤外光は高屈折率層3及び石英管2を通過してフィラメント1に吸収されてこれを再加熱する。その際に、上述の赤外光の一部分はフィラメント1に吸収されずに石英管2の端部に向かうが、この赤外光の部分は白色散乱体(もしくはミラー)5によって全反射されてフィラメント1に向かう。この結果、フィラメント1が効率よく再加熱され、従って、フィラメント1の温度がより高くなり、入力電力の可視光への変換効率を向上できる。 Referring again to FIG. 3, the radiation incident on the quartz tube 2 with the incident angle θ 1 of 0 ° to 90 ° enters the infrared light reflective multilayer film 4 with the incident angle θ 3 of 0 ° to 30 °. As a result, infrared light having a wavelength longer than 0.7 μm is reflected by the infrared light reflecting multilayer film 4, while visible light having a wavelength of 0.4 μm to 0.7 μm is emitted to the outside. Further, the infrared light reflected by the infrared light reflecting multilayer film 4 passes through the high refractive index layer 3 and the quartz tube 2 and is absorbed by the filament 1 to reheat it. At that time, a part of the above-mentioned infrared light is not absorbed by the filament 1 and goes to the end of the quartz tube 2, but this infrared light part is totally reflected by the white scatterer (or mirror) 5 and is then filamented. Head for one. As a result, the filament 1 is efficiently reheated, so that the temperature of the filament 1 becomes higher, and the conversion efficiency of input power into visible light can be improved.

図5は図2の可視光源を白熱電球として構成した一部切欠き断面図である。   FIG. 5 is a partially cutaway sectional view in which the visible light source of FIG. 2 is configured as an incandescent bulb.

図5において、少なくとも可視光に対して透明な硬質ガラスバルブにより構成される透光性気密容器51内に、フィラメント1、石英管2、高屈折率層3、赤外光反射多層膜4及び白色散乱体(ミラー)5よりなる構造体を設ける。フィラメント1はリード線52a、52b間に電気的に接続される。透光性気密容器51の封止部には口金53が接合されている。口金53は、リード線52aに接続された中心電極531、リード線52bに接続された側面電極532及び中心電極531と側面電極532とを絶縁する絶縁部533により構成されている。   In FIG. 5, a filament 1, a quartz tube 2, a high refractive index layer 3, an infrared light reflecting multilayer film 4 and a white color are contained in a light-transmitting hermetic container 51 composed of a hard glass bulb transparent to at least visible light. A structure including a scatterer (mirror) 5 is provided. The filament 1 is electrically connected between the lead wires 52a and 52b. A base 53 is joined to the sealing portion of the translucent airtight container 51. The base 53 includes a center electrode 531 connected to the lead wire 52a, a side electrode 532 connected to the lead wire 52b, and an insulating portion 533 that insulates the center electrode 531 from the side electrode 532.

透光性気密容器51内部は10−1〜10−6Paの高真空になっている。但し、10〜10−1Paの酸素(0)、水素(H)、ハロゲンガス、炭化物系ガス、あるいはこれらの混合ガスを導入することもできる。この場合、ハロゲン電球と同様に、赤外光反射多層膜4の昇華及び劣化を制御し、白熱電球の高寿命化を図れる。 The inside of the translucent airtight container 51 is in a high vacuum of 10 −1 to 10 −6 Pa. However, 10 5 to 10 −1 Pa of oxygen (0 2 ), hydrogen (H 2 ), halogen gas, carbide gas, or a mixed gas thereof can be introduced. In this case, similarly to the halogen light bulb, sublimation and deterioration of the infrared light reflective multilayer film 4 can be controlled, and the life of the incandescent light bulb can be increased.

さらに、石英管2は石英でなく、可視光及び赤外光に対して透明な他の透明材料たとえばサファイア等により形成してもよい。   Furthermore, the quartz tube 2 may be formed of other transparent material that is transparent to visible light and infrared light, such as sapphire, instead of quartz.

さらにまた、Wよりなるフィラメント1はより低反射率の黒体フィラメントたとえば炭素系フィラメントに代えることもできる。黒体フィラメントは赤外光反射多層膜4によって折り返された赤外光を再度反射せずにより多く吸収する。従って、フィラメント自体の温度を上昇させ、この結果、より高光束効率の可視光源を実現できる。黒体フィラメントでの反射率は光波長λ=2μm及び0.6μmに対して共に0となり、従って、可視光の外部空間への出力は25%減衰する一方、赤外光は50%以上抑制される。この結果、総計として黒体フィラメントを用いた場合、Wフィラメントの場合に比較して、光束効率を2倍以上向上させることができる。   Furthermore, the filament 1 made of W can be replaced with a black body filament having a lower reflectance, such as a carbon-based filament. The black body filament absorbs more infrared light reflected by the infrared light reflecting multilayer film 4 without reflecting it again. Therefore, the temperature of the filament itself is raised, and as a result, a visible light source with higher luminous flux efficiency can be realized. The reflectivity at the black body filament is 0 for both light wavelengths λ = 2 μm and 0.6 μm. Therefore, the output of visible light to the external space is attenuated by 25%, while infrared light is suppressed by 50% or more. The As a result, when the black body filament is used as the total, the luminous efficiency can be improved by two times or more as compared with the case of the W filament.

さらにまた、本発明は上述の実施の形態の自明の範囲内のいかなる変更にも適用し得る。   Furthermore, the present invention can be applied to any modifications within the obvious scope of the above-described embodiments.

1:フィラメント
2:石英管
3:高屈折率層
4:赤外光反射多層膜
5:白色散乱体(ミラー)
51:透光性気密容器
52a、52b:リード線
53:口金
531:中心電極
532:側面電極
533:絶縁部
101:フィラメント
102:石英管
103:赤外光反射多層膜
1: Filament 2: Quartz tube 3: High refractive index layer 4: Infrared light reflecting multilayer film 5: White scatterer (mirror)
51: Translucent airtight container 52a, 52b: Lead wire 53: Base 531: Center electrode 532: Side electrode 533: Insulating part 101: Filament 102: Quartz tube 103: Infrared light reflecting multilayer film

Claims (6)

フィラメントと、
前記フィラメントを包容する可視光及び赤外光に対して透明な透明基材と、
前記透明基材の外面を被覆し、前記透明基材の屈折率より大きい屈折率を有する高屈折率層と、
前記高屈折率層の外面を被覆する赤外光反射多層膜と
を具備し、
前記高屈折率層の厚さは1μm〜100μmである可視光源。
Filament,
A transparent substrate transparent to visible light and infrared light that encloses the filament;
A high refractive index layer that coats the outer surface of the transparent substrate and has a refractive index greater than the refractive index of the transparent substrate;
An infrared light reflective multilayer film covering the outer surface of the high refractive index layer ,
The visible light source , wherein the high refractive index layer has a thickness of 1 μm to 100 μm .
前記透明基材は管状であり、
さらに、前記透明基材の端部に可視光及び赤外光を反射する白色散乱体もしくはミラーを具備する請求項1に記載の可視光源。
The transparent substrate is tubular;
Furthermore, the visible light source of Claim 1 which comprises the white scatterer or mirror which reflects visible light and infrared light in the edge part of the said transparent base material.
前記透明基材は石英である請求項1に記載の可視光源。   The visible light source according to claim 1, wherein the transparent substrate is quartz. 前記透明基材はサファイアである請求項1に記載の可視光源。   The visible light source according to claim 1, wherein the transparent substrate is sapphire. 前記フィラメントは高融点金属よりなる請求項1に記載の可視光源。   The visible light source according to claim 1, wherein the filament is made of a refractory metal. 前記フィラメントは炭素系材料よりなる請求項1に記載の可視光源。   The visible light source according to claim 1, wherein the filament is made of a carbon-based material.
JP2014041439A 2014-03-04 2014-03-04 Visible light source Active JP6279350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014041439A JP6279350B2 (en) 2014-03-04 2014-03-04 Visible light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014041439A JP6279350B2 (en) 2014-03-04 2014-03-04 Visible light source

Publications (2)

Publication Number Publication Date
JP2015167105A JP2015167105A (en) 2015-09-24
JP6279350B2 true JP6279350B2 (en) 2018-02-14

Family

ID=54257898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014041439A Active JP6279350B2 (en) 2014-03-04 2014-03-04 Visible light source

Country Status (1)

Country Link
JP (1) JP6279350B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL178924C (en) * 1975-10-13 1986-06-02 Philips Nv ELECTRIC REFLECTOR LAMP.
WO1986002775A1 (en) * 1984-10-23 1986-05-09 Duro-Test Corporation Variable index film for transparent heat mirrors
JPS61219004A (en) * 1985-03-25 1986-09-29 Canon Inc Multilayer film reflecting mirror
JP2550709B2 (en) * 1989-06-17 1996-11-06 東芝ライテック株式会社 Lighting equipment
US7368870B2 (en) * 2004-10-06 2008-05-06 Hewlett-Packard Development Company, L.P. Radiation emitting structures including photonic crystals
JP2006259124A (en) * 2005-03-16 2006-09-28 Kawai Optical Co Ltd Cold mirror
US8179030B2 (en) * 2009-11-30 2012-05-15 General Electric Company Oxide multilayers for high temperature applications and lamps

Also Published As

Publication number Publication date
JP2015167105A (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5689934B2 (en) light source
US20060226777A1 (en) Incandescent lamp incorporating extended high-reflectivity IR coating and lighting fixture incorporating such an incandescent lamp
WO2013099759A1 (en) Light source device and filament
WO2019244506A1 (en) Optical wavelength conversion material, optical wavelength conversion device, and light emitting device
KR930008354B1 (en) Double bulb type halogen lampin which space between inner and outer bulbs is filled with a weak oxidation gas
US20070138926A1 (en) Method for optimizing lamp spectral output
JP6371075B2 (en) filament
CN109075018B (en) Heat radiation light source
JP6279350B2 (en) Visible light source
WO2019208252A1 (en) Infrared radiation device
JP6153734B2 (en) Light source device
US8823250B2 (en) High efficiency incandescent lighting
US20150153487A1 (en) Wavelength-converting device
JP2007511037A (en) Electric lamp with optical interference film
US20080106176A1 (en) Reflector Lamp With Halogen Filling
JP2015167111A (en) visible light source
JP6255189B2 (en) Luminescent body, light source device, thermal radiation device, thermionic emission device, and incandescent bulb
TWI396308B (en) Light emitting device and method of manufacturing the same
JP6253313B2 (en) Filament and light source using the same
JP3153050B2 (en) Incandescent light bulb
JP6239839B2 (en) Light source device and filament
JP6302651B2 (en) Incandescent bulb and filament
JP6880874B2 (en) heater
JP2022076133A (en) heater
JP2971773B2 (en) Multilayer film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180117

R150 Certificate of patent or registration of utility model

Ref document number: 6279350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250