JP6277982B2 - Manufacturing method of electrolyte membrane - Google Patents

Manufacturing method of electrolyte membrane Download PDF

Info

Publication number
JP6277982B2
JP6277982B2 JP2015055854A JP2015055854A JP6277982B2 JP 6277982 B2 JP6277982 B2 JP 6277982B2 JP 2015055854 A JP2015055854 A JP 2015055854A JP 2015055854 A JP2015055854 A JP 2015055854A JP 6277982 B2 JP6277982 B2 JP 6277982B2
Authority
JP
Japan
Prior art keywords
ionomer
electrolyte membrane
treatment
electrolyte
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015055854A
Other languages
Japanese (ja)
Other versions
JP2016177929A (en
JP2016177929A5 (en
Inventor
恭司郎 井上
恭司郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015055854A priority Critical patent/JP6277982B2/en
Publication of JP2016177929A publication Critical patent/JP2016177929A/en
Publication of JP2016177929A5 publication Critical patent/JP2016177929A5/ja
Application granted granted Critical
Publication of JP6277982B2 publication Critical patent/JP6277982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、電解質膜の製造方法に関する。   The present invention relates to a method for manufacturing an electrolyte membrane.

電解質膜には、イオン伝導性が求められることから、電解質膜前駆体を加水分解してイオン伝導性を付与する製造方法が知られている(例えば、特許文献1)。   Since the electrolyte membrane is required to have ion conductivity, a production method is known in which an electrolyte membrane precursor is hydrolyzed to impart ion conductivity (for example, Patent Document 1).

特開平2014−26901号公報Japanese Patent Application Laid-Open No. 2014-26901

ところで、イオン伝導性付与のための加水分解処理では、電解質前駆体を搬送しつつ各種処理液中に浸漬させていることから、電解質前駆体の搬送に伴って薬液の攪拌が起き、液表面から空気を巻き込んで気泡を生じ得る。また、加水分解処理の過程で処理液を所定温度に加熱することもなされ、処理液に溶解していた気体(多くは空気)が加熱に伴って気泡化することも起き得る。こうして生じた気泡が電解質前駆体に付着したままであると、気泡付着箇所での加水分解処理が進まずにイオン伝導性が付与できないことも有り得るので、気泡の生成を抑制することが望ましい。気泡の生成は、電解質前駆体の搬送状況を工夫したり、消泡剤と称される既存薬液を添加することで抑制できることが知られている。本願は、こうしたことを踏まえ、加水分解処理の過程での気泡生成に伴うイオン伝導性の付与阻害を抑制可能な電解質膜の製造手法を提案することを、その課題とする。   By the way, in the hydrolysis treatment for imparting ionic conductivity, since the electrolyte precursor is transported and immersed in various processing liquids, the chemical solution is agitated as the electrolyte precursor is transported, and from the liquid surface. Air can be entrained to produce bubbles. Further, the treatment liquid may be heated to a predetermined temperature in the course of the hydrolysis treatment, and gas (mostly air) dissolved in the treatment liquid may be bubbled with heating. If the bubbles generated in this manner remain attached to the electrolyte precursor, it may be impossible to impart ion conductivity without proceeding with the hydrolysis treatment at the bubble attachment site, so it is desirable to suppress the generation of bubbles. It is known that the generation of bubbles can be suppressed by devising the state of conveyance of the electrolyte precursor or adding an existing chemical solution called an antifoaming agent. This application makes it the subject to propose the manufacturing method of the electrolyte membrane which can suppress the provision inhibition of the ion conductivity accompanying the bubble production | generation in the process of a hydrolysis process based on such a thing.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms.

(1)本発明の一形態によれば、電解質膜の製造方法が提供される。この電解質膜の製造方法は、電解質膜前駆体の加水分解処理に用いる処理液を、前記電解質膜の樹脂と同質のアイオノマーが溶解した処理液に調製する工程と、前記電解質膜前駆体を、前記調製された前記処理液に含浸させる工程とを備える。そして、前記処理液は、前記電解質膜がイオン伝導性を発揮するために有するイオン交換基の1当量に対応するアイオノマーの乾燥樹脂重量で定義される当量重量が1500以上で1900以下のアイオノマーを、少なくとも0.001wt%、溶解して含有する。 (1) According to one form of this invention, the manufacturing method of an electrolyte membrane is provided. The method for producing an electrolyte membrane includes a step of preparing a treatment solution used for hydrolysis treatment of an electrolyte membrane precursor into a treatment solution in which an ionomer of the same quality as the resin of the electrolyte membrane is dissolved, and the electrolyte membrane precursor Impregnating the prepared treatment liquid. Then, the treatment liquid contains an ionomer having an equivalent weight defined by a dry resin weight of an ionomer corresponding to one equivalent of an ion exchange group that the electrolyte membrane has to exhibit ion conductivity, and 1500 or more and 1900 or less. At least 0.001 wt% is dissolved and contained.

この形態の電解質膜の製造方法は、アイオノマーが溶解した処理液を用いて電解質膜前駆体を加水分解処理に処して、イオン伝導性が付与された電解質膜を得る。アイオノマーは、介在するイオンによる凝集の状況に応じて親水部と疎水部を混在させ、電解質膜のイオン交換基の1当量に対する当量重量が大きいほど、親水部の占有域が小さくなり、疎水部の占有域が大きくなる。これより、当量重量で親水部と疎水部の比を規定することを可能とする。   In this method of manufacturing an electrolyte membrane, the electrolyte membrane precursor is subjected to a hydrolysis treatment using a treatment solution in which an ionomer is dissolved to obtain an electrolyte membrane imparted with ion conductivity. An ionomer mixes a hydrophilic part and a hydrophobic part depending on the state of aggregation due to intervening ions, and the larger the equivalent weight for one equivalent of the ion exchange group of the electrolyte membrane, the smaller the occupied area of the hydrophilic part and the hydrophobic part. Occupied area increases. This makes it possible to define the ratio between the hydrophilic part and the hydrophobic part with an equivalent weight.

ところで、高級アルコールや、脂肪酸系、シリコーン系の一般的な消泡剤は、占有域の小さな親水部と占有域の大きな疎水部を併せ持ち、次のようにして消泡機能を発揮する。消泡剤は、界面活性剤を含有し、この界面活性剤が泡を捉え、親水部と疎水部が界面活性剤中に入り込んで、界面活性剤表面の泡の不安定化をもたらして気泡を破り、消泡している。そうすると、既述したように当量重量で親水部と疎水部の比を規定したアイオノマーにあっても、1500以上の当量重量であれば、消泡剤と同じように占有域の小さな親水部と占有域の大きな疎水部を併せ持つようにできると共に、処理液に対する溶解性も担保できるので、消泡剤とほぼ同様の消泡機能を発揮し得る。よって、上記形態の電解質膜の製造方法によれば、当量重量が1500以上のアイオノマーを溶解して含有する処理液に電解質膜前駆体を含浸させてイオン伝導性を付与する際に、アイオノマーの上記した消泡機能により、電解質前駆体に気泡が付着しにくくできるので、気泡生成に伴うイオン伝導性の付与阻害を抑制できる。また、アイオノマーは、一般に、当量重量が大きくなって親水部の占有域が小さくなるほど難溶性となり、当量重量が小さくなって親水部の占有域が大きくなるほど易溶性となる。こうしたことから、アイオノマーを溶解して含有するに当たり、アイオノマーの当量重量が1900以下とすることで、アイオノマーの溶解を担保して、消泡機能の実効性を確保できる。   By the way, higher alcohols, fatty acid-based, and silicone-based general antifoaming agents have both a hydrophilic portion with a small occupied area and a hydrophobic portion with a large occupied area, and exhibit an antifoaming function as follows. The antifoaming agent contains a surfactant, and this surfactant catches bubbles, and the hydrophilic part and the hydrophobic part enter into the surfactant, resulting in the destabilization of the foam on the surface of the surfactant and the formation of bubbles. Torn and defoamed. Then, as described above, even in an ionomer in which the ratio between the hydrophilic part and the hydrophobic part is defined by the equivalent weight, if the equivalent weight is 1500 or more, the hydrophilic part and the occupied part having a small occupation area are obtained as in the case of the antifoaming agent. Since it can have a large hydrophobic part at the same time, and can guarantee the solubility in the treatment liquid, it can exhibit an antifoaming function almost the same as that of the antifoaming agent. Therefore, according to the method for producing an electrolyte membrane of the above form, when the ionomer having an equivalent weight of 1500 or more dissolved therein is impregnated with the electrolyte membrane precursor to impart ion conductivity, the ionomer described above is provided. Since the defoaming function can prevent bubbles from adhering to the electrolyte precursor, it is possible to suppress the impairing of ion conductivity accompanying the generation of bubbles. In general, ionomers become less soluble as the equivalent weight increases and the area occupied by the hydrophilic portion decreases, and the ionomer decreases as the equivalent weight decreases and the area occupied by the hydrophilic portion increases. Therefore, when the ionomer is dissolved and contained, by setting the equivalent weight of the ionomer to 1900 or less, it is possible to ensure the dissolution of the ionomer and to ensure the effectiveness of the defoaming function.

この形態の電解質膜の製造方法は、処理液に当量重量が1500以上で1900以下のアイオノマーを、少なくとも0.001wt%、溶解して含有するので、消泡機能を発揮し得る最小限のアイオノマーを含有して、電解質前駆体への気泡付着を抑制、もしくは回避する。この場合、アイオノマーの含有量は少なくとも0.001wt%であれば、アイオノマーの消泡機能は発揮され、0.001wt%を越えてアイオノマーを溶解して含有しても、溶解しているアイオノマーの消泡機能は発揮されるので、上限を規定する必要性は低い。   In this method of manufacturing an electrolyte membrane, an ionomer having an equivalent weight of 1500 or more and 1900 or less is dissolved and contained in the treatment liquid at least 0.001 wt%, so that a minimum ionomer capable of exhibiting a defoaming function is contained. It contains and suppresses or avoids bubble adhesion to the electrolyte precursor. In this case, if the content of the ionomer is at least 0.001 wt%, the defoaming function of the ionomer is exerted, and even if the ionomer is dissolved and contained exceeding 0.001 wt%, the dissolved ionomer can be eliminated. Since the foam function is exhibited, there is little need to define an upper limit.

上記した一般的な消泡剤を加えた処理液での加水分解処理では、消泡剤が電解質前駆体に付着したままとなることが起き得る。消泡剤は、電解質膜の樹脂とは異質な薬剤配合であることから、電解質前駆体に含まれる触媒の被毒や電解質膜の樹脂の性状変化を起こし、電解質膜の発電性能の低下を招くことが危惧される。これに対し、上記形態の電解質膜の製造方法によれば、処理液に含有するアイオノマーを電解質膜の樹脂と同質とすることで、アイオノマーが電解質前駆体に付着したままであっても、電解質前駆体から得られた電解質膜の発電性能の低下を招かないようにできる。   In the hydrolysis treatment with the treatment liquid to which the above general antifoaming agent is added, the antifoaming agent may remain attached to the electrolyte precursor. Since the antifoaming agent has a different chemical composition from the resin of the electrolyte membrane, it causes poisoning of the catalyst contained in the electrolyte precursor and changes in the properties of the resin of the electrolyte membrane, leading to a decrease in power generation performance of the electrolyte membrane. It is feared that. On the other hand, according to the method for manufacturing an electrolyte membrane of the above aspect, by making the ionomer contained in the treatment liquid the same quality as the resin of the electrolyte membrane, even if the ionomer remains attached to the electrolyte precursor, the electrolyte precursor It is possible to prevent a decrease in power generation performance of the electrolyte membrane obtained from the body.

(2)上記形態の電解質膜の製造方法において、前記アイオノマーが含有された処理液は、前記アイオノマーが0.01〜0.5wt%の範囲で溶解して含有された処理液に調製されているようにしてもよい。こうすれば、消泡機能を発揮し得るアイオノマーを過不足なく含有して溶解させることで、含有量の観点からアイオノマーの溶解と消泡機能の発現とを担保して、気泡生成に伴うイオン伝導性の付与阻害の確実な抑制を通して、電解質膜の発電性能の低下を招かないようにできる。 (2) In the method for manufacturing an electrolyte membrane of the above aspect, the treatment liquid containing the ionomer is prepared as a treatment liquid containing the ionomer dissolved in a range of 0.01 to 0.5 wt%. You may do it. In this way, the ionomer that can exhibit the defoaming function is contained and dissolved without excess or deficiency, so that ionomer dissolution and expression of the defoaming function are ensured from the viewpoint of content, and ion conduction accompanying bubble generation Through the reliable suppression of the impairing of imparting property, the power generation performance of the electrolyte membrane can be prevented from being lowered.

なお、本発明は、種々の態様で実現することが可能である。例えば、電解質膜の製造装置や電解質膜を有する燃料電池の製造方法、加水分解処理方法、加水分解処理装置、加水分解処理に用いる処理液の調製方法などの形態で実現することができる。   Note that the present invention can be realized in various modes. For example, the present invention can be realized in the form of an apparatus for manufacturing an electrolyte membrane, a method for manufacturing a fuel cell having an electrolyte membrane, a hydrolysis treatment method, a hydrolysis treatment apparatus, a method for preparing a treatment liquid used for the hydrolysis treatment, and the like.

実施形態としての電解質膜の製造方法を採用して作製した燃料電池を構成する単セル10の概略構成図である。It is a schematic block diagram of the single cell 10 which comprises the fuel cell produced by employ | adopting the manufacturing method of the electrolyte membrane as embodiment. 単セル10の製造工程を説明する工程図である。3 is a process diagram for explaining a manufacturing process of the single cell 10. 電解質膜13の製造工程を示す工程図である。FIG. 6 is a process diagram showing a manufacturing process of the electrolyte membrane 13. 本実施形態における加水分解処理の概要を説明する説明図である。It is explanatory drawing explaining the outline | summary of the hydrolysis process in this embodiment. 実施形態品1〜3および比較例品1〜3の電解質前駆体の加水分解処理過程における付着気泡数の計測結果を示す説明図である。It is explanatory drawing which shows the measurement result of the number of bubbles attached in the hydrolysis process of the electrolyte precursor of embodiment products 1-3 and comparative example products 1-3. セル電圧の測定結果を示すグラフである。It is a graph which shows the measurement result of a cell voltage.

以下、本発明の実施の形態について、図面に基づき説明する。図1は実施形態としての電解質膜の製造方法を採用して作製した燃料電池を構成する単セル10の概略構成図である。実施形態の燃料電池は、固体高分子型燃料電池であり、単セル10を複数積層したスタック構造を有している。図示するように、単セル10は、電解質膜の膜面に電極を接合した膜電極接合体(以下、MEAとも呼ぶ)12と、膜電極接合体12(MEA12)を両側から挟持してサンドイッチ構造を形成する一対のガス拡散層16,17と、このサンドイッチ構造をさらに両側から挟持する一対のセパレータ20,21とから構成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a unit cell 10 constituting a fuel cell manufactured by employing the method for manufacturing an electrolyte membrane as an embodiment. The fuel cell according to the embodiment is a polymer electrolyte fuel cell and has a stack structure in which a plurality of single cells 10 are stacked. As shown in the figure, a single cell 10 has a sandwich structure in which a membrane electrode assembly (hereinafter also referred to as MEA) 12 having electrodes joined to the membrane surface of an electrolyte membrane and a membrane electrode assembly 12 (MEA 12) are sandwiched from both sides. And a pair of separators 20 and 21 sandwiching the sandwich structure from both sides.

MEA12は、電解質膜13と、電解質膜13の両面に形成されたアノード(燃料極)14およびカソード(酸素極)15を備える。電解質膜13は、フッ素系樹脂(例えば、パーフルオロスロホン酸樹脂)により形成されたイオン伝導性(プロトン伝導性)のイオン交換膜であり、湿潤状態で良好な電気伝導性を示す。電解質膜13については、後で詳しく説明する。アノード14およびカソード15は、電気化学反応を促進する触媒(例えば白金(Pt))が担持されたガス拡散性を有する触媒電極である。   The MEA 12 includes an electrolyte membrane 13, and an anode (fuel electrode) 14 and a cathode (oxygen electrode) 15 formed on both surfaces of the electrolyte membrane 13. The electrolyte membrane 13 is an ion-conducting (proton-conducting) ion-exchange membrane formed of a fluorine-based resin (for example, perfluorosulphonic acid resin), and exhibits good electrical conductivity in a wet state. The electrolyte membrane 13 will be described in detail later. The anode 14 and the cathode 15 are gas diffusible catalyst electrodes on which a catalyst that promotes an electrochemical reaction (for example, platinum (Pt)) is supported.

ガス拡散層16,17は、ガス透過性および導電性を有する部材によって構成されている。本実施形態では、ガス拡散層16,17は、カーボンクロスやカーボンペーパなどのカーボン多孔質部材によって形成されている。ガス拡散層16,17を設けることによって、電極に対するガス供給効率を向上させると共に、セパレータ20,21と電極との間の集電性を高めることができ、さらに電解質膜13を保護することができる。なお、ガス拡散層16,17は、カーボン多孔質部材に換えて、チタンやステンレスなどの金属多孔質材など、他の導電性多孔質部材により形成する構成としてもよい。   The gas diffusion layers 16 and 17 are configured by members having gas permeability and conductivity. In the present embodiment, the gas diffusion layers 16 and 17 are formed of a carbon porous member such as carbon cloth or carbon paper. By providing the gas diffusion layers 16 and 17, the gas supply efficiency to the electrodes can be improved, the current collecting property between the separators 20 and 21 and the electrodes can be improved, and the electrolyte membrane 13 can be further protected. . The gas diffusion layers 16 and 17 may be formed of other conductive porous members such as a metal porous material such as titanium or stainless steel instead of the carbon porous member.

セパレータ20,21は、ガス不透過の導電性部材であり、例えば、カーボンを圧縮してガス不透過とした緻密質カーボンや、金属製部材などにより形成される。セパレータ20,21は、その表面に所定の形状のリブ部を形成しており、隣接するガス拡散層16,17との間に、燃料ガス及び酸化ガスの単セル内流路20P、21Pを形成する。単セル10を積層して燃料電池を構成し発電を行う際には、単セル内流路20Pに燃料ガス(水素ガス)が、単セル内流路21Pには酸化ガス(酸素を含む空気)がそれぞれ供給される。そして、ガス拡散層16,17およびアノード14、カソード15を介して、電解質膜13において燃料ガスと酸化ガスとが電気化学反応を起こし発電する。   The separators 20 and 21 are gas-impermeable conductive members, and are formed of, for example, dense carbon that has been made gas impermeable by compressing carbon, a metal member, or the like. The separators 20 and 21 are formed with rib portions of a predetermined shape on the surfaces thereof, and the fuel gas and oxidizing gas flow paths 20P and 21P are formed between the gas diffusion layers 16 and 17 adjacent to each other. To do. When the single cell 10 is stacked to form a fuel cell and perform power generation, the fuel gas (hydrogen gas) is supplied to the flow path 20P in the single cell, and the oxidizing gas (air containing oxygen) is supplied to the flow path 21P of the single cell. Are supplied respectively. Then, the fuel gas and the oxidizing gas cause an electrochemical reaction in the electrolyte membrane 13 through the gas diffusion layers 16 and 17, the anode 14, and the cathode 15, thereby generating electric power.

次に、燃料電池の製造方法について説明する。図2は単セル10の製造工程を説明する工程図である。図示するように、単セル10の製造工程として、最初に、電解質膜13を製造する(ステップS110)。電解質膜13の製造方法については後で詳しく説明する。電解質膜13の製造後、電解質膜13の一方の面にアノード14を、他方の面にカソード15をそれぞれ形成してMEA12を生成する(ステップS130)。具体的には、白金と炭素粉末とアイオノマーとを含む触媒インクを電解質膜13の両面に塗布し温風乾燥させることによって形成する。その後、生成したMEA12の両面に、ガス拡散層16,17としてのカーボン多孔質部材を積層し(ステップS140)、その外側をセパレータ20,21で挟持することによって単セル10を製造する(ステップS150)。   Next, a method for manufacturing a fuel cell will be described. FIG. 2 is a process diagram for explaining the manufacturing process of the single cell 10. As shown in the drawing, as a manufacturing process of the unit cell 10, first, the electrolyte membrane 13 is manufactured (step S110). The method for manufacturing the electrolyte membrane 13 will be described in detail later. After manufacturing the electrolyte membrane 13, the MEA 12 is generated by forming the anode 14 on one surface of the electrolyte membrane 13 and the cathode 15 on the other surface (step S130). Specifically, a catalyst ink containing platinum, carbon powder, and ionomer is applied to both surfaces of the electrolyte membrane 13 and dried by warm air. Thereafter, carbon porous members as the gas diffusion layers 16 and 17 are laminated on both surfaces of the generated MEA 12 (step S140), and the outside is sandwiched between the separators 20 and 21 to manufacture the single cell 10 (step S150). ).

本実施形態では、次のようにして電解質膜を製造した。図3は電解質膜13の製造工程を示す工程図である。本実施形態においては、多孔質膜を補強部材として用いた電解質膜13を製造する。電解質膜13の製造工程として、最初に、補強部材としての多孔質膜を生成する(ステップS112)。具体的には、PTFE(ポリテトラフルオロエチレン)のファインパウダーからなるペーストを、押し出し成形によって円柱状に成形する。そして、ロール圧延によって、円柱状のペーストをテープ状のPTFEテープに成形する。さらに、PTFEテープを多軸延伸機を用いて、所定の温度に加熱しながら面積比900倍に延伸加工し、厚みが約20μmの多孔質膜を生成する。   In the present embodiment, the electrolyte membrane was manufactured as follows. FIG. 3 is a process diagram showing a manufacturing process of the electrolyte membrane 13. In the present embodiment, an electrolyte membrane 13 using a porous membrane as a reinforcing member is manufactured. As a manufacturing process of the electrolyte membrane 13, first, a porous membrane as a reinforcing member is generated (step S112). Specifically, a paste made of PTFE (polytetrafluoroethylene) fine powder is formed into a cylindrical shape by extrusion molding. Then, the cylindrical paste is formed into a tape-like PTFE tape by roll rolling. Further, the PTFE tape is stretched to an area ratio of 900 times while being heated to a predetermined temperature using a multiaxial stretching machine to produce a porous film having a thickness of about 20 μm.

多孔質膜生成後、電解質前駆体からなる薄膜(以下、F型電解質薄膜とも呼ぶ)を生成する(ステップS114)。具体的には、電解質樹脂(パーフルオロスロホン酸樹脂)の前駆体高分子であるF型電解質樹脂(末端基が−SO2F:デュポン社製高分子のNafion(登録商標))を押出し成形機のT型コートハンガーダイによって厚み約12μmの薄膜に成形する。 After the porous film is generated, a thin film made of an electrolyte precursor (hereinafter also referred to as F-type electrolyte thin film) is generated (step S114). Specifically, an F-type electrolyte resin (terminal group is —SO 2 F: polymer Nafion (registered trademark) manufactured by DuPont), which is a precursor polymer of an electrolyte resin (perfluorosulphonic acid resin), is an extrusion molding machine. Is formed into a thin film having a thickness of about 12 μm.

F型電解質薄膜の生成後、多孔質膜の両面にF型電解質薄膜を貼り合わせ(ステップS116)、温度230℃で、ロールプレスによって多孔質膜にF型電解質樹脂を含浸させる含浸処理を行い、厚さ30μmの電解質膜前駆体を生成する(ステップS117)。そして、生成した電解質膜前駆体に対して加水分解処理を行うべく、加水分解処理に用いる処理液の調製(ステップS118)と、この調製済み処理液を用いた加水分解処理によってイオン伝導性を付与し、電解質膜13を生成する(ステップS120)。   After the formation of the F-type electrolyte thin film, the F-type electrolyte thin film is bonded to both sides of the porous film (Step S116), and at a temperature of 230 ° C., an impregnation treatment is performed to impregnate the porous film with the F-type electrolyte resin by a roll press. An electrolyte membrane precursor having a thickness of 30 μm is generated (step S117). And in order to perform a hydrolysis process with respect to the produced | generated electrolyte membrane precursor, ion conductivity is provided by preparation of the process liquid used for a hydrolysis process (step S118), and a hydrolysis process using this prepared process liquid Then, the electrolyte membrane 13 is generated (step S120).

次に、処理液の調製(ステップS118)と、加水分解処理(ステップS120)の詳細について説明する。ステップS118の処理液の調製は、後述の加水分解処理装置30における各種処理液に配合するアイオノマー配合液を次のようにして調合するのであり、既述したステップS112〜S117の処理と並行して、或いは、これら処理とは別個に実行可能である。また、以下に説明するように調製された後述のアイオノマー配合液を、入手するようにしてもよい。   Next, details of preparation of the treatment liquid (step S118) and hydrolysis treatment (step S120) will be described. In the preparation of the processing liquid in step S118, an ionomer blending liquid to be blended in various processing liquids in the hydrolysis treatment apparatus 30 described later is prepared as follows, and in parallel with the processing in steps S112 to S117 described above. Alternatively, these processes can be executed separately. Moreover, you may make it obtain the below-mentioned ionomer compounding liquid prepared as demonstrated below.

アイオノマー配合液の調合に当たっては、まず、イオン交換水と下記構造式のモノマーと、乳化剤パーフルオ口オクタン酸アンモニウムと、pH調製剤のリン酸水素二ナトリウム(NaHPO・2HO)とを高圧容器内に入れ、窒素ガスで十分置換し、攪拌しながら600℃に加熱する(調合ステップ1)。このモノマーは、電解質膜13の樹脂(パーフルオロスロホン酸樹脂)と同質のアイオノマーに後述の調合ステップ2にて変遷する。 In the preparation of the ionomer combination liquid, first, ion-exchanged water, a monomer having the following structural formula, an emulsifier perfluo-octammonium ammonium phosphate, and a pH adjuster, disodium hydrogen phosphate (NaH 2 PO 4 .2H 2 O). It puts in a high-pressure container, fully substitutes with nitrogen gas, and heats to 600 degreeC, stirring (preparation step 1). This monomer is changed to an ionomer of the same quality as the resin of the electrolyte membrane 13 (perfluorosulphonic acid resin) in the preparation step 2 described later.

モノマー構造式:CF=CFOCFCF(CF)O(CFSOMonomer structural formula: CF 2 = CFOCF 2 CF (CF) O (CF 2 ) 2 SO 2 F

次いで、触媒としての過硫酸アンモニウムを高圧容器内に投入し、容器内にテトラフルオロエチレンガスを導入して共重合反応を進行させ、モノマーのアイオノマー化を図る。ガスの供給圧は、生成アイオノマーの当量重量(以下、EW(equivalent weight))が1500〜1900の範囲の規定のEW値、例えば1700となるように調製して加水分解処理を行い、アイオノマー配合液を得る(調合ステップ2)。この調合ステップ2におけるEWは、本実施形態では、電解質膜13の電解質樹脂(パーフルオロスロホン酸樹脂)がイオン伝導性を発揮するために有するイオン交換基の1当量に対応するアイオノマー(パーフルオロスロホン酸樹脂)の乾燥樹脂重量で定義される。また、調合ステップ2で得られたアイオノマー配合液は、アイオノマーを0.5wt%の重量比で溶解して含有している。こうして得られたアイオノマー配合液は、以下の加水分解処理装置30における各種処理液に秤量して添加され、その後に、加水分解処理装置30での電解質前駆体の加水分解処理がなされる。   Next, ammonium persulfate as a catalyst is put into a high-pressure vessel, and tetrafluoroethylene gas is introduced into the vessel to advance a copolymerization reaction, thereby achieving monomer ionomerization. The supply pressure of the gas is adjusted so that the equivalent weight (hereinafter referred to as EW (equivalent weight)) of the produced ionomer is a specified EW value in the range of 1500 to 1900, for example, 1700, and is hydrolyzed. Is obtained (formulation step 2). In this embodiment, the EW in the blending step 2 is an ionomer (perfluorocarbon) corresponding to one equivalent of an ion exchange group that the electrolyte resin (perfluorosulphonic acid resin) of the electrolyte membrane 13 has to exhibit ionic conductivity. Sulphonic acid resin). Moreover, the ionomer compounding liquid obtained at the preparation step 2 contains the ionomer dissolved at a weight ratio of 0.5 wt%. The ionomer compounded liquid thus obtained is weighed and added to various treatment liquids in the following hydrolysis treatment apparatus 30, and thereafter, the electrolyte precursor is hydrolyzed in the hydrolysis treatment apparatus 30.

図4は本実施形態における加水分解処理の概要を説明する説明図である。本実施形態における加水分解処理(図3:ステップS120)は、電解質膜製造装置としての加水分解処理装置30によって行う。加水分解処理装置30は、繰出部32と、アルカリ処理部40と、水洗部50と、酸処理部52と、水洗部54と、巻取部34と、搬送ローラーR1〜R9とを備える。   FIG. 4 is an explanatory diagram for explaining the outline of the hydrolysis treatment in the present embodiment. The hydrolysis treatment in the present embodiment (FIG. 3: step S120) is performed by the hydrolysis treatment device 30 as the electrolyte membrane manufacturing device. The hydrolysis treatment apparatus 30 includes a feeding part 32, an alkali treatment part 40, a water washing part 50, an acid treatment part 52, a water washing part 54, a winding part 34, and transport rollers R1 to R9.

繰出部32には、電解質膜前駆体からなる薄膜ロールRLがセットされている。薄膜ロールRLは、図3のステップS112〜ステップS118によって生成した電解質膜前駆体からなる帯状の薄膜FLに、搬送補助用バックシート(図示省略)を貼り付け、ロール状に巻き取ったものである。繰出部32は、搬送補助用バックシートが貼り合わされた薄膜FLを、各処理部(アルカリ処理部40,水洗部50,酸処理部52,水洗部54)に向けて繰り出す。搬送ローラーR1〜R9は、繰出部32から繰り出された薄膜FLを、各処理部に搬送するための搬送路を構成し、最終的に、薄膜FLを巻取部34へと搬送する。   A thin film roll RL made of an electrolyte membrane precursor is set in the feeding portion 32. The thin film roll RL is obtained by attaching a back sheet for conveyance assistance (not shown) to the belt-shaped thin film FL made of the electrolyte film precursor generated in steps S112 to S118 in FIG. . The feeding unit 32 feeds the thin film FL on which the conveyance assisting backsheet is bonded to each processing unit (the alkali processing unit 40, the water washing unit 50, the acid processing unit 52, and the water washing unit 54). The transport rollers R <b> 1 to R <b> 9 constitute a transport path for transporting the thin film FL fed from the feed unit 32 to each processing unit, and finally transport the thin film FL to the winding unit 34.

アルカリ処理部40は、温度と濃度とを調製(濃度40%/温度80℃)した処理液たるアルカリ水溶液(本実施形態においては水酸化ナトリウム水溶液)を液槽に貯留し、温度、並びに濃度を維持する。また、アルカリ処理部40は、上記のアルカリ水溶液に調合ステップ2で調合済みのアイオノマー配合液(濃度:0.5wt%)がアルカリ水溶液に秤量して添加され、アルカリ水溶液液槽におけるアイオノマーの濃度が0.001〜0.5wt%の範囲で溶解して含有されるよう、常時、調製されている。このアイオノマー濃度は、電解質膜13における樹脂の性状により予め規定されており、アルカリ処理部40では、この規定されたアイオノマー濃度となるよう、アイオノマー配合液(濃度:0.5wt%)が秤量して添加される。このようにして水酸化ナトリウム水溶液を貯留したアルカリ処理部40は、繰出部32から繰り出された薄膜FL(電解質前駆体)を、アイオノマー配合液が添加済みで温度と濃度とが調製されたアルカリ水溶液に浸漬することによってアルカリ処理を行う。アルカリ処理部40におけるアルカリ処理によって、薄膜FLのF型電解質樹脂に以下の反応が起こり、末端基が−SO2Fから−SO3Naに変化する。 The alkali treatment unit 40 stores an alkaline aqueous solution (in this embodiment, a sodium hydroxide aqueous solution), which is a treatment liquid whose temperature and concentration are adjusted (concentration 40% / temperature 80 ° C.), in the liquid tank. maintain. In addition, the alkali treatment unit 40 is prepared by weighing and adding the ionomer compounded liquid (concentration: 0.5 wt%) already prepared in the preparation step 2 to the alkaline aqueous solution, so that the ionomer concentration in the alkaline aqueous solution tank is increased. It is always prepared to be dissolved and contained in the range of 0.001 to 0.5 wt%. This ionomer concentration is defined in advance by the properties of the resin in the electrolyte membrane 13, and in the alkali treatment unit 40, the ionomer compound solution (concentration: 0.5 wt%) is weighed so as to obtain the prescribed ionomer concentration. Added. Thus, the alkali treatment part 40 which stored sodium hydroxide aqueous solution is the alkaline aqueous solution by which the ionomer compounding liquid was added and the temperature and density | concentration were prepared for the thin film FL (electrolyte precursor) drawn | fed out from the supply part 32. Alkali treatment is performed by immersing the substrate in the surface. By the alkali treatment in the alkali treatment unit 40, the following reaction occurs in the F-type electrolyte resin of the thin film FL, and the terminal group is changed from —SO 2 F to —SO 3 Na.

−SO2F+2NaOH → −SO3Na+NaF+H2 -SO 2 F + 2NaOH → -SO 3 Na + NaF + H 2 0

水洗部50は、処理液としての純水を所定温度(30℃)で液槽に貯留し、純水には調合ステップ2で調合済みのアイオノマー配合液(濃度:0.5wt%)が秤量して添加され、純水液槽におけるアイオノマーの濃度が0.001〜0.5wt%の範囲で溶解して含有されるよう、常時、調製されている。このアイオノマー濃度は、予め規定されており、水洗部50では、この規定されたアイオノマー濃度となるよう、アイオノマー配合液(濃度:0.5wt%)が秤量して添加される。水洗部50は、アルカリ処理部40を通過した薄膜FLを、アイオノマー配合液合添加済みの純水に浸漬することによって、アルカリ処理後の薄膜FLからアルカリ水溶液を洗い流す。   The washing unit 50 stores pure water as a treatment liquid in a liquid tank at a predetermined temperature (30 ° C.), and the ionomer mixture liquid (concentration: 0.5 wt%) prepared in the preparation step 2 is weighed in the pure water. The concentration of the ionomer in the pure water tank is always prepared so as to be dissolved and contained in the range of 0.001 to 0.5 wt%. The ionomer concentration is defined in advance, and the water-washing unit 50 weighs and adds the ionomer compound solution (concentration: 0.5 wt%) so as to obtain the defined ionomer concentration. The water washing section 50 rinses the aqueous alkaline solution from the thin film FL after the alkali treatment by immersing the thin film FL that has passed through the alkali treatment section 40 in pure water that has been added with the ionomer compound solution.

酸処理部52は、処理液としての硝酸溶液を所定温度(80℃)で液槽に貯留し、硝酸溶液には調合ステップ2で調合済みのアイオノマー配合液(濃度:0.5wt%)が秤量して添加され、硝酸溶液液槽におけるアイオノマーの濃度が0.001〜0.5wt%の範囲で溶解して含有されるよう、常時、調製されている。このアイオノマー濃度は、予め規定されており、酸処理部52では、この規定されたアイオノマー濃度となるよう、アイオノマー配合液(濃度:0.5wt%)が秤量して添加される。酸処理部52は、このようにしてアイオノマー配合液合添加済みの硝酸溶液に薄膜FLを浸漬して、アルカリ処理後の薄膜FLに対して酸処理を行う。具体的には、酸処理部52に収容されている硝酸溶液に所定時間、薄膜FLを浸漬する。酸処理部52における酸処理によって、薄膜FLに以下の反応が起こり、末端機が、−SO3Naから−SO3Hに変化する。 The acid treatment unit 52 stores a nitric acid solution as a treatment liquid in a liquid tank at a predetermined temperature (80 ° C.), and the nitric acid solution is weighed with an ionomer compound liquid (concentration: 0.5 wt%) prepared in the preparation step 2. The concentration of the ionomer in the nitric acid solution bath is always prepared so as to be dissolved and contained in the range of 0.001 to 0.5 wt%. The ionomer concentration is specified in advance, and the acid treatment unit 52 weighs and adds the ionomer compound solution (concentration: 0.5 wt%) so as to obtain the specified ionomer concentration. The acid treatment unit 52 performs the acid treatment on the thin film FL after the alkali treatment by immersing the thin film FL in the nitric acid solution that has been added with the ionomer mixture. Specifically, the thin film FL is immersed in a nitric acid solution accommodated in the acid treatment unit 52 for a predetermined time. By acid treatment in the acid treatment unit 52, it occurs following reaction in the thin film FL, terminal device changes from -SO 3 Na in -SO 3 H.

−SO3Na+HNO3 → −SO3H+NaNO3 -SO 3 Na + HNO 3 → -SO 3 H + NaNO 3

水洗部54は、処理液としての純水を所定温度(30℃)で液槽に貯留し、純水には調合ステップ2で調合済みのアイオノマー配合液(濃度:0.5wt%)が秤量して添加され、純水液槽におけるアイオノマーの濃度が0.001〜0.5wt%の範囲で溶解して含有されるよう、常時、調製されている。このアイオノマー濃度は、予め規定されており、水洗部54では、この規定されたアイオノマー濃度となるよう、アイオノマー配合液(濃度:0.5wt%)が秤量されて添加される。水洗部54は、このようにしてアイオノマー配合液合添加済みの純水に酸処理後の薄膜FLを浸漬して、当該薄膜から硝酸を洗い流す。   The washing unit 54 stores pure water as a treatment liquid in a liquid tank at a predetermined temperature (30 ° C.), and the ionomer compounded liquid (concentration: 0.5 wt%) prepared in the preparation step 2 is weighed in the pure water. The concentration of the ionomer in the pure water tank is always prepared so as to be dissolved and contained in the range of 0.001 to 0.5 wt%. The ionomer concentration is prescribed in advance, and the ionomer compound solution (concentration: 0.5 wt%) is weighed and added to the washing unit 54 so as to obtain the prescribed ionomer concentration. The rinsing section 54 immerses the acid-treated thin film FL in the pure water to which the ionomer compound liquid has been added in this way, and rinses the nitric acid from the thin film.

巻取部34は、水洗部54を通過し乾燥させた薄膜FLを巻き取る。加水分解処理装置30の各処理部が行う処理によって、薄膜FLは、プロトン伝導性を備えないF型電解質樹脂から、プロトン伝導性が付与されたH型電解質樹脂(高分子鎖末端が−SO3H)からなる電解質膜に変化する。加水分解処理装置30は、アルカリ処理部40でのアルカリ処理、水洗部50での水洗、酸処理部52での酸処理および水洗部54での水洗を経て、薄膜FL(ステップS117で得た電解質前駆体)を加水分解処理に処する。なお、巻取部34に巻き取った薄膜FLは、その後、所定形状に裁断され、図2に示したステップS130〜ステップS150を経て単セルに組み込まれる。 The winding unit 34 winds the thin film FL that has passed through the water washing unit 54 and has been dried. The thin film FL is changed from an F-type electrolyte resin having no proton conductivity to an H-type electrolyte resin to which proton conductivity is imparted (the polymer chain end is —SO 3). H). The hydrolysis treatment apparatus 30 passes through the alkali treatment in the alkali treatment section 40, the water washing in the water washing section 50, the acid treatment in the acid treatment section 52, and the water washing in the water washing section 54, and then the thin film FL (the electrolyte obtained in step S117). The precursor is subjected to a hydrolysis treatment. The thin film FL taken up by the take-up unit 34 is then cut into a predetermined shape and incorporated into a single cell through steps S130 to S150 shown in FIG.

次に、加水分解処理装置30におけるアルカリ処理部40、水洗部50、酸処理部52および水洗部54の液槽の各処理液に既述したようにアイオノマーを溶解させた加水分解処理の効果を評価するため、電解質膜13を以下の実施形態品1〜3および比較例品1〜3として加水分解処理装置30にて製造した。   Next, the effect of the hydrolysis treatment in which the ionomer is dissolved as described above in each treatment solution of the alkali treatment unit 40, the water washing unit 50, the acid treatment unit 52, and the water washing unit 54 in the hydrolysis treatment apparatus 30. In order to evaluate, the electrolyte membrane 13 was manufactured with the hydrolysis processing apparatus 30 as the following embodiment goods 1-3 and the comparative example goods 1-3.

実施形態品1の作製に当たり、既述した調合ステップ2において、EWが1700としたアイオノマー配合液を調合し、このアイオノマー配合液を、アルカリ処理部40のアルカリ水溶液、水洗部50および水洗部54の純水、酸処理部52の硝酸溶液に、アイオノマー(EW=1700)が0.02wt%の重量比で溶解するよう配合した。そして、上記の各処理部の処理液がアイオノマー溶解後(EW=1700/溶解比=0.02wt%)の処理液とされた加水分解処理装置30にて、ステップS117の電解質膜前駆体(厚さ30μmの薄膜FL:図4参照)を加水分岐処理に処し、実施形態品1を得た。なお、EWの調製は、調合ステップ1における窒素ガスの置換ガス圧調製でなされる。   In preparation of the product 1 of the embodiment, in the preparation step 2 described above, an ionomer combination liquid having an EW of 1700 is prepared, and this ionomer combination liquid is added to the alkaline aqueous solution of the alkali treatment unit 40, the water washing unit 50, and the water washing unit 54. The ionomer (EW = 1700) was blended in the pure water and the nitric acid solution of the acid treatment unit 52 so as to dissolve at a weight ratio of 0.02 wt%. Then, in the hydrolysis treatment apparatus 30 in which the treatment liquid of each of the treatment sections is a treatment liquid after ionomer dissolution (EW = 1700 / dissolution ratio = 0.02 wt%), the electrolyte membrane precursor (thickness in step S117) A 30 μm thin film FL (see FIG. 4) was subjected to a hydrobranching treatment to obtain an embodiment product 1. The EW is prepared by adjusting the replacement gas pressure of nitrogen gas in the preparation step 1.

実施形態品2を得るに当たっては、EWが1500としたアイオノマー配合液を調合し、このアイオノマー配合液を、アルカリ処理部40のアルカリ水溶液、水洗部50および水洗部54の純水、酸処理部52の硝酸溶液に、アイオノマー(EW=1500)が0.01wt%の重量比で溶解するよう配合した。そして、上記の各処理部の処理液がアイオノマー溶解後(EW=1500/溶解比=0.01wt%)の処理液とされた加水分解処理装置30にて、ステップS117の電解質膜前駆体(厚さ30μmの薄膜FL:図4参照)を加水分岐処理に処し、実施形態品2を得た。なお、EWの調製は、調合ステップ1における窒素ガスの置換ガス圧調製でなされる。   In obtaining the embodiment product 2, an ionomer blending solution having an EW of 1500 is prepared, and this ionomer blending solution is used as an alkaline aqueous solution of the alkali treatment unit 40, pure water of the water washing unit 50 and the water washing unit 54, and an acid treatment unit 52. In the nitric acid solution, ionomer (EW = 1500) was blended so as to dissolve at a weight ratio of 0.01 wt%. Then, in the hydrolysis treatment apparatus 30 in which the treatment liquid of each of the treatment sections is a treatment liquid after ionomer dissolution (EW = 1500 / dissolution ratio = 0.01 wt%), the electrolyte membrane precursor (thickness in step S117) A 30 μm thin film FL (see FIG. 4) was subjected to a hydrobranching treatment to obtain an embodiment product 2. The EW is prepared by adjusting the replacement gas pressure of nitrogen gas in the preparation step 1.

実施形態品3を得るに当たっては、EWが1900としたアイオノマー配合液を調合し、このアイオノマー配合液を、アルカリ処理部40のアルカリ水溶液、水洗部50および水洗部54の純水、酸処理部52の硝酸溶液に、アイオノマー(EW=1900)が0.5wt%の重量比で溶解するよう配合した。そして、上記の各処理部の処理液がアイオノマー溶解後(EW=1900/溶解比=0.5wt%)の処理液とされた加水分解処理装置30にて、ステップS117の電解質膜前駆体(厚さ30μmの薄膜FL:図4参照)を加水分岐処理に処し、実施形態品3を得た。なお、EWの調製は、調合ステップ1における窒素ガスの置換ガス圧調製でなされる。   In obtaining the embodiment product 3, an ionomer blending solution having an EW of 1900 is prepared, and this ionomer blending solution is used as an alkaline aqueous solution in the alkali treatment unit 40, pure water in the washing unit 50 and the washing unit 54, and an acid treatment unit 52. In the nitric acid solution, ionomer (EW = 1900) was blended so as to dissolve at a weight ratio of 0.5 wt%. Then, in the hydrolysis treatment apparatus 30 in which the treatment liquid of each of the treatment units is a treatment liquid after ionomer dissolution (EW = 1900 / dissolution ratio = 0.5 wt%), the electrolyte membrane precursor (thickness in step S117) A 30 μm thin film FL (see FIG. 4) was subjected to a hydrobranching treatment to obtain an embodiment product 3. The EW is prepared by adjusting the replacement gas pressure of nitrogen gas in the preparation step 1.

比較例品1を得るに当たっては、アルカリ処理部40のアルカリ水溶液、水洗部50および水洗部54の純水、酸処理部52の硝酸溶液を、アイオノマーを配合しない既存の処理液として、ステップS117の電解質膜前駆体(厚さ30μmの薄膜FL:図4参照)を加水分岐処理に処し、比較例品1を得た。   In obtaining the comparative product 1, the alkaline aqueous solution of the alkali treatment unit 40, the pure water of the water washing unit 50 and the water washing unit 54, and the nitric acid solution of the acid treatment unit 52 are used as existing treatment liquids that do not contain an ionomer. The electrolyte membrane precursor (thin film FL having a thickness of 30 μm: see FIG. 4) was subjected to a hydrobranching treatment to obtain Comparative Example Product 1.

比較例品2を得るに当たっては、市販の消泡剤(高級アルコール系消泡剤)を、アルカリ処理部40のアルカリ水溶液、水洗部50および水洗部54の純水、酸処理部52の硝酸溶液に、0.02wt%の重量比で配合した。そして、上記の各処理部の処理液が消泡剤配合後の処理液とされた加水分解処理装置30にて、ステップS117の電解質膜前駆体(厚さ30μmの薄膜FL:図4参照)を加水分岐処理に処し、比較例品2を得た。   In order to obtain Comparative Example Product 2, a commercially available antifoaming agent (higher alcohol-based antifoaming agent) was used, an alkaline aqueous solution in the alkali treatment unit 40, pure water in the water washing unit 50 and the water washing unit 54, and a nitric acid solution in the acid treatment unit 52. In a weight ratio of 0.02 wt%. Then, in the hydrolysis treatment apparatus 30 in which the treatment liquid of each of the treatment sections is the treatment liquid after the addition of the antifoaming agent, the electrolyte membrane precursor (thin film FL having a thickness of 30 μm: see FIG. 4) in step S117 is used. The product of Comparative Example 2 was obtained by subjecting it to a hydrobranching treatment.

比較例品3を得るに当たっては、調合ステップ1で用いるモノマーを以下の構造式のモノマーとし、調合ステップ2における窒素ガスの置換ガス圧調製を経て、EWが800としたアイオノマー配合液を調合した。そして、このアイオノマー配合液を、アルカリ処理部40のアルカリ水溶液、水洗部50および水洗部54の純水、酸処理部52の硝酸溶液に、アイオノマー(EW=800)が0.01wt%の重量比で溶解するよう配合した。そして、上記の各処理部の処理液がアイオノマー溶解後(EW=800/溶解比=0.01wt%)の処理液とされた加水分解処理装置30にて、ステップS117の電解質膜前駆体(厚さ30μmの薄膜FL:図4参照)を加水分岐処理に処し、比較例品3を得た。   In obtaining Comparative Example Product 3, a monomer having the following structural formula was used as the monomer used in Formulation Step 1, and an ionomer compounded liquid having an EW of 800 was prepared by adjusting the replacement gas pressure of nitrogen gas in Formulation Step 2. And this ionomer compounded liquid is added to the alkaline aqueous solution of the alkali treatment unit 40, the pure water of the water washing unit 50 and the water washing unit 54, and the nitric acid solution of the acid treatment unit 52 to a weight ratio of 0.01 wt% of ionomer (EW = 800). So as to dissolve. Then, in the hydrolysis treatment apparatus 30 in which the treatment liquid of each of the treatment units is a treatment liquid after ionomer dissolution (EW = 800 / dissolution ratio = 0.01 wt%), the electrolyte membrane precursor (thickness in step S117) The thin film FL having a thickness of 30 μm (see FIG. 4) was subjected to a hydrobranching treatment to obtain a comparative product 3.

モノマー構造式:CF=CFO(CFSOMonomer structural formula: CF 2 ═CFO (CF 2 ) 3 SO 2 F

上記した実施形態品1〜3および比較例品1〜3の電解質前駆体を加水分解処理装置30にて100mの長さに亘って加水分解処理に処する過程において、アルカリ処理部40のアルカリ水溶液液槽、水洗部50および水洗部54の純水液槽、酸処理部52の硝酸溶液液槽の内部を目視観察し、各液槽での気泡発生の有無を調べて、発生した気泡をカウントした。気泡カウントは、電解質膜13の表面に付着して観察された気泡の数となる。図5は実施形態品1〜3および比較例品1〜3の電解質前駆体の加水分解処理過程における付着気泡数の計測結果を示す説明図である。   In the process of subjecting the electrolyte precursors of the above-mentioned embodiment products 1 to 3 and comparative product 1 to 3 to a hydrolysis treatment over a length of 100 m in the hydrolysis treatment device 30, an alkaline aqueous solution of the alkali treatment unit 40 The inside of the tank, the pure water liquid tank of the water washing section 50 and the water washing section 54, and the inside of the nitric acid solution liquid tank of the acid treatment section 52 were visually observed, and the presence or absence of generation of bubbles in each liquid tank was examined, and the generated bubbles were counted. . The bubble count is the number of bubbles observed attached to the surface of the electrolyte membrane 13. FIG. 5 is an explanatory diagram showing the measurement results of the number of bubbles attached in the process of hydrolysis of the electrolyte precursors of the embodiment products 1 to 3 and the comparative product products 1 to 3.

図5から明らかなように、EWが1500〜1900に調製されたアイオノマーが重量比で0.01〜0.5wt%溶解したアルカリ処理用のアルカリ水溶液、洗浄用の純水および酸処理用の硝酸溶液を用いた本実施形態の加水分解処理では、市販の消泡剤を用いた場合と同等以上の消泡効果が得られた。比較例品2で用いた高級アルコール系の消泡は、占有域の小さな親水部と占有域の大きな疎水部を併せ持ち、界面活性剤が捉えた泡の安定化を、親水部と疎水部が界面活性剤中に入り込んで損ない、消泡している。そうすると、1500〜1900のEWとされたアイオノマーは、既存の消泡剤(高級アルコール系消泡剤)と同様な占有域の小さな親水部と占有域の大きな疎水部を上記範囲のEWにより併せ持った上で、処理液に容易に溶解(0.01〜0.5wt%)することから、消泡剤とほぼ同様の消泡機能を発揮し得る事が実証された。また、EWが800というアイオノマーでは、消泡機能が見られなかった。これらの事象から、本実施形態の電解質膜の製造方法によれば、EWが1500〜1900の範囲のアイオノマーを溶解して含有する加水分解処理用の処理液(アルカリ処理用のアルカリ水溶液、洗浄用に純水および酸処理用の硝酸溶液)に電解質膜前駆体(薄膜FL:図4参照)を含浸させてイオン伝導性を付与する際に、アイオノマーの上記した消泡機能により、電解質前駆体に気泡が付着しにくくできるので、気泡生成に伴うイオン伝導性の付与阻害を抑制できる。   As is apparent from FIG. 5, an alkaline aqueous solution for alkali treatment in which an ionomer prepared with an EW of 1500 to 1900 is dissolved by 0.01 to 0.5 wt% by weight, pure water for washing, and nitric acid for acid treatment. In the hydrolysis treatment of this embodiment using a solution, an antifoaming effect equal to or higher than that obtained when a commercially available antifoaming agent was used was obtained. The higher alcohol-based antifoam used in Comparative Example 2 has both a small occupied area and a large occupied hydrophobic part to stabilize the foam captured by the surfactant. It breaks into the activator and is defoamed. As a result, the ionomers having an EW of 1500 to 1900 have both a hydrophilic portion with a small occupied area and a hydrophobic portion with a large occupied area similar to those of the existing antifoaming agent (higher alcohol-based antifoaming agent) in the above range of EW. From the above, it was proved that the antifoaming function almost the same as that of the antifoaming agent can be exhibited because it is easily dissolved (0.01 to 0.5 wt%) in the treatment liquid. Further, in the ionomer having an EW of 800, no defoaming function was observed. From these events, according to the method for manufacturing an electrolyte membrane of the present embodiment, a treatment liquid for hydrolysis treatment containing an ionomer having an EW in the range of 1500 to 1900 (an alkaline aqueous solution for alkali treatment, a washing solution). When impregnating an electrolyte membrane precursor (thin film FL: see FIG. 4) with pure water and a nitric acid solution for acid treatment to impart ionic conductivity, the ionomer has the above-mentioned defoaming function, so that the electrolyte precursor Since bubbles can hardly adhere, it is possible to suppress the inhibition of imparting ion conductivity accompanying the generation of bubbles.

次に、上記した実施形態品1〜3および比較例品1〜3によって得られた電解質膜の性能評価を行うため、各電解質膜を用いてMEA12を作製し、燃料電池としての性能評価を行った。この性能評価は、実施形態品1〜3および比較例品1〜3によって得られた電解質膜13を含むMEA12を用いて単セル10とし、この単セル10において、単セル内流路20Pと単セル内流路21Pに、燃料ガス(水素)と酸化ガス(空気)を供給し、所定の温度下および電流値におけるセル電圧を測定した。図6はセル電圧の測定結果を示すグラフである。このグラフは、横軸を電流密度とし、低電流密度から高電流密度まで推移させた場合のセル電圧推移を表している。   Next, in order to evaluate the performance of the electrolyte membranes obtained by the above-described embodiment products 1 to 3 and comparative example products 1 to 3, the MEA 12 was prepared using each electrolyte membrane, and the performance evaluation as a fuel cell was performed. It was. In this performance evaluation, the single cell 10 is formed by using the MEA 12 including the electrolyte membrane 13 obtained by the embodiment products 1 to 3 and the comparative products 1 to 3. Fuel gas (hydrogen) and oxidizing gas (air) were supplied to the in-cell flow path 21P, and the cell voltage at a predetermined temperature and current value was measured. FIG. 6 is a graph showing the measurement result of the cell voltage. In this graph, the horizontal axis represents the current density, and the cell voltage transition when the transition is made from the low current density to the high current density is shown.

図9に示された通り、消泡剤が配合された処理液を用いた加水分解処理を受けた比較例品2は、低電流密度から高電流密度までに亘って、他のものよりもセル電圧が低下した。また、高電流密度ほど、電圧低下が著しくなった。このことは、次のように推考できる。比較例品2は、消泡剤が配合されている故に、図5に示すように、確実な消泡をもたらすことができるものの、消泡剤が電解質前駆体に付着して残存すると想定される。消泡剤は、電解質膜13の樹脂(本実施形態ではパーフルオロスロホン酸樹脂)とは異質な薬剤配合であることから、電解質前駆体に含まれる触媒の被毒や電解質膜の樹脂の性状変化を起こし、低電流密度から高電流密度までに亘ってセル電圧の低下を招いたと想定される。高電流密度ほど電圧低下が著しいのは、高電流密度域では活発に生成水が発生し、その生成水が消泡剤の親水部に捕捉され勝ちとなってフラッディングが顕著に起きていることが一因と想定される。   As shown in FIG. 9, the comparative example product 2 that has undergone the hydrolysis treatment using the treatment liquid in which the antifoaming agent is blended has a cell more than the others from low current density to high current density. The voltage has dropped. Moreover, the voltage drop became more remarkable as the current density increased. This can be inferred as follows. Since the antifoaming agent is blended in Comparative Example Product 2 as shown in FIG. 5, it is assumed that the antifoaming agent remains attached to the electrolyte precursor, although it can provide reliable defoaming. . Since the antifoaming agent has a different chemical composition from the resin of the electrolyte membrane 13 (perfluorosulphonic acid resin in this embodiment), the poisoning of the catalyst contained in the electrolyte precursor and the properties of the electrolyte membrane resin It is assumed that the cell voltage was lowered from a low current density to a high current density. The higher the current density, the more significant the voltage drop is because the generated water is actively generated in the high current density region, and the generated water is likely to be trapped in the hydrophilic part of the antifoaming agent and flooding is remarkable. This is assumed to be a cause.

上記した比較例品2以外の実施形態品1〜3および比較例品1、比較例品3では、中電流密度域まで、ほぼ同様のセル電圧推移となり、電流密度が高まるにつれて、実施形態品1〜3では、比較例品1と比較例品3ほどの電圧低下は見られなかった。実施形態品1〜3と比較例品1との相違点は、加水分解処理における処理液がアイオノマーを溶解している、溶解していないである。そうすると、実施形態品1〜3は、上記の相違により、図5に示す消泡効果(気泡生成に伴うイオン伝導性の付与阻害抑制)と相まって、比較例品1に比して良好な発電性能を発揮できる事が判明した。実施形態品1〜3と比較例品3との相違点は、加水分解処理における処理液に溶解したアイオノマーのEW値である。そうすると、実施形態品1〜3は、EW値の相違により、図5に示す消泡効果(気泡生成に伴うイオン伝導性の付与阻害抑制)が同等でありながら、比較例品3に比して良好な発電性能を発揮できる事が判明した。また、実施形態品1〜3は、高電流密度域でのセル電圧低下が小さいことから、長時間の発電運転に対する耐久性も確保できると推定される。   In the embodiment products 1 to 3 and the comparative product 1 and the comparative product 3 other than the comparative product 2 described above, the cell voltage transition is almost the same up to the middle current density region. In -3, the voltage drop of the comparative example goods 1 and the comparative example goods 3 was not seen. The difference between the embodiment products 1 to 3 and the comparative product 1 is that the treatment liquid in the hydrolysis treatment is dissolving the ionomer. As a result, the embodiment products 1 to 3 have better power generation performance than the comparative product 1 due to the above-mentioned difference, coupled with the defoaming effect (inhibition inhibition of imparting ionic conductivity associated with bubble generation) shown in FIG. It was found that can be demonstrated. The difference between the embodiment products 1 to 3 and the comparative product 3 is the EW value of the ionomer dissolved in the treatment liquid in the hydrolysis treatment. Then, the embodiment products 1 to 3 have the same defoaming effect (inhibition suppression of ion conductivity accompanying bubble generation) due to the difference in the EW value, but compared with the comparative product 3 It was found that good power generation performance can be demonstrated. Moreover, it is estimated that embodiment goods 1-3 can also ensure the durability with respect to a long-time power generation operation from the small cell voltage fall in a high current density area.

本発明は、上述の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、上述の課題の一部または全部を解決するために、あるいは、上述の効果の一部または全部を達成するために、適宜、差し替えや組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。   The present invention is not limited to the above-described embodiments, examples, and modifications, and can be realized with various configurations without departing from the spirit thereof. For example, the technical features in the embodiments, examples, and modifications corresponding to the technical features in each embodiment described in the summary section of the invention are to solve some or all of the above-described problems, or In order to achieve part or all of the above-described effects, replacement or combination can be performed as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

上記の実施形態では、加水分解処理に含まれるアルカリ処理に用いる物質として水酸化ナトリウムを採用したが、それに限らず、他の物質を採用するとしてもよい。例えば、水酸化カリウムや、水酸化リチウム、水酸化カルシウムなどイオン化傾向が比較的高いアルカリ金属水酸化物を採用することができる。酸処理についても同様であり、硝酸に限られるわけではない。   In said embodiment, although sodium hydroxide was employ | adopted as a substance used for the alkali treatment contained in a hydrolysis process, you may employ | adopt not only that but another substance. For example, an alkali metal hydroxide having a relatively high ionization tendency such as potassium hydroxide, lithium hydroxide, or calcium hydroxide can be used. The same applies to the acid treatment, and is not limited to nitric acid.

上記の実施形態では、EWが調製されたアイオノマーを加水分解処理装置30におけるアルカリ処理液、洗浄液、酸処理用処理液の各処理液に溶解させたが、薬液洗浄を行うための水洗部50の洗浄水については、後工程の酸処理部52でのアイオノマーによる気泡消失を図ることができることから、アイオノマーの溶解を省略してもよい。   In the above embodiment, the ionomer prepared with EW is dissolved in each of the alkali treatment solution, the washing solution, and the acid treatment solution in the hydrolysis treatment apparatus 30, but the water washing unit 50 for performing the chemical solution washing is used. With respect to the washing water, it is possible to eliminate bubbles due to the ionomer in the acid treatment unit 52 in the subsequent step, and thus dissolution of the ionomer may be omitted.

上記実施形態においては、加水分解処理によって生成した電解質膜を燃料電池に用いるとしたが、電解コンデンサー(電気二重層コンデンサーなど)に用いるとしてもよい。また、生成した電解質膜を、イオン交換膜として他の用途に用いるとしてもよい。例えば、人口の皮膚や透析装置などに用いることが可能である。   In the above embodiment, the electrolyte membrane produced by the hydrolysis treatment is used for the fuel cell, but it may be used for an electrolytic capacitor (such as an electric double layer capacitor). Further, the produced electrolyte membrane may be used for other purposes as an ion exchange membrane. For example, it can be used for artificial skin and dialysis machines.

10…単セル
12…膜電極接合体
13…電解質膜
14…アノード
15…カソード
16…ガス拡散層
20…セパレータ
20P…単セル内流路
21P…単セル内流路
30…加水分解処理装置
32…繰出部
34…巻取部
40…アルカリ処理部
50…水洗部
52…酸処理部
54…水洗部
FL…薄膜
R1…搬送ローラー
RL…薄膜ロール
DESCRIPTION OF SYMBOLS 10 ... Single cell 12 ... Membrane electrode assembly 13 ... Electrolyte membrane 14 ... Anode 15 ... Cathode 16 ... Gas diffusion layer 20 ... Separator 20P ... Single-cell flow path 21P ... Single-cell flow path 30 ... Hydrolysis processing apparatus 32 ... Feeding part 34 ... Winding part 40 ... Alkali treatment part 50 ... Water washing part 52 ... Acid treatment part 54 ... Water washing part FL ... Thin film R1 ... Conveying roller RL ... Thin film roll

Claims (2)

電解質膜の製造方法であって、
電解質膜前駆体の加水分解処理に用いる処理液を、前記電解質膜の樹脂と同質のアイオノマーが溶解した処理液に調製する工程と、
前記電解質膜前駆体を、前記調製された前記処理液に含浸させる工程とを備え、
前記処理液は、前記電解質膜がイオン伝導性を発揮するために有するイオン交換基の1当量に対応するアイオノマーの乾燥樹脂重量で定義される当量重量が1500以上で1900以下のアイオノマーを、少なくとも0.001wt%、溶解して含有する
電解質膜の製造方法。
An electrolyte membrane manufacturing method comprising:
Preparing a treatment liquid used for the hydrolysis treatment of the electrolyte membrane precursor into a treatment liquid in which an ionomer of the same quality as the resin of the electrolyte membrane is dissolved;
Impregnating the electrolyte membrane precursor with the prepared treatment liquid,
The treatment liquid contains an ionomer having an equivalent weight defined by a dry resin weight of an ionomer corresponding to one equivalent of an ion exchange group that the electrolyte membrane has to exhibit ion conductivity at least 0 and 1900 or less. A manufacturing method of an electrolyte membrane containing 0.001 wt% dissolved.
前記アイオノマーが含有された処理液は、前記アイオノマーが0.01〜0.5wt%の範囲で溶解して含有された処理液に調製されている、請求項1に記載の電解質膜の製造方法。 The method for producing an electrolyte membrane according to claim 1, wherein the treatment liquid containing the ionomer is prepared as a treatment liquid containing the ionomer dissolved in a range of 0.01 to 0.5 wt%.
JP2015055854A 2015-03-19 2015-03-19 Manufacturing method of electrolyte membrane Active JP6277982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015055854A JP6277982B2 (en) 2015-03-19 2015-03-19 Manufacturing method of electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015055854A JP6277982B2 (en) 2015-03-19 2015-03-19 Manufacturing method of electrolyte membrane

Publications (3)

Publication Number Publication Date
JP2016177929A JP2016177929A (en) 2016-10-06
JP2016177929A5 JP2016177929A5 (en) 2017-06-01
JP6277982B2 true JP6277982B2 (en) 2018-02-14

Family

ID=57070799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015055854A Active JP6277982B2 (en) 2015-03-19 2015-03-19 Manufacturing method of electrolyte membrane

Country Status (1)

Country Link
JP (1) JP6277982B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210028824A (en) * 2019-09-05 2021-03-15 현대자동차주식회사 Polymer Electrolyte Membrane for Fuel Cell and Method for Manufacturing The Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114020A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Manufacturing method of polyelectrolyte membrane, the polyelectrolyte membrane, and solid polymer fuel cell
JP5772752B2 (en) * 2012-07-30 2015-09-02 トヨタ自動車株式会社 Electrolyte membrane manufacturing method and electrolyte membrane manufacturing apparatus
JP5692284B2 (en) * 2013-05-21 2015-04-01 トヨタ自動車株式会社 Manufacturing method and apparatus for manufacturing reinforced electrolyte membrane
JP6417116B2 (en) * 2013-05-31 2018-10-31 旭化成株式会社 Polymer electrolyte composition, and polymer electrolyte membrane, electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell using the same

Also Published As

Publication number Publication date
JP2016177929A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
KR102112648B1 (en) Polymer electrolyte membrane
JP5823601B2 (en) Polymer electrolyte membrane
US8148027B2 (en) Electrode composite material
EP2613390B1 (en) Fluorine-containing polymer electrolyte membrane
CN106459294B (en) High oxygen permeability ionomer
JP6328355B1 (en) Electrolyte membrane and method for producing the same
KR20070058630A (en) Fuel cell durability
EP2858155B1 (en) Membrane electrode assembly for solid polymer fuel cell, method for producing same, and solid polymer fuel cell
JP5525629B2 (en) Method for producing solid polymer electrolyte concentrated solution, composition for binder, solid polymer electrolyte membrane, and solid polymer fuel cell
JP5207582B2 (en) Manufacturing method of electrolyte membrane with little dimensional change
KR101764069B1 (en) Method of preparing reinforced composite membrane using perfluorinated ionomer nanodispersion and reinforced composite membrane prepared by the same method
JP5772752B2 (en) Electrolyte membrane manufacturing method and electrolyte membrane manufacturing apparatus
JP6277982B2 (en) Manufacturing method of electrolyte membrane
US20190081342A1 (en) Method of producing membrane electrode assembly
JPH06342667A (en) High molecular type fuel cell
JP2006160902A (en) Polyelectrolyte membrane and its manufacturing method
EP4060777A1 (en) Polymer electrolyte membrane, method for preparing the membrane and fuel cell comprising the membrane
JPH0285387A (en) Sheetlike electrode material containing ion exchange resin, composite material thereof and production thereof
Park et al. Characterization studies of a new MEA structure for polymer electrolyte fuel cells
US20230057420A1 (en) Ion exchange membrane, membrane electrode assembly, fuel cell, redox flow secondary battery, water electrolyzer, and electrolyzer for organic hydride synthesis
JP2023026321A (en) Ion exchange membrane, membrane electrode assembly, fuel cell, redox flow secondary battery, water electrolyzer, and electrolyzer for organic hydride synthesis
JP4188789B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell
JPH11167925A (en) Electrode for fuel cell and its manufacture
JP2004131569A (en) Ion-exchange composite membrane and method for producing the same
JP2006236630A (en) Solid electrolyte and electrochemistry system using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170411

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180101

R151 Written notification of patent or utility model registration

Ref document number: 6277982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151