JP6270498B2 - Radiation detection element and method for manufacturing radiation detection element - Google Patents

Radiation detection element and method for manufacturing radiation detection element Download PDF

Info

Publication number
JP6270498B2
JP6270498B2 JP2014008456A JP2014008456A JP6270498B2 JP 6270498 B2 JP6270498 B2 JP 6270498B2 JP 2014008456 A JP2014008456 A JP 2014008456A JP 2014008456 A JP2014008456 A JP 2014008456A JP 6270498 B2 JP6270498 B2 JP 6270498B2
Authority
JP
Japan
Prior art keywords
substrate
electrode
detection element
radiation detection
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014008456A
Other languages
Japanese (ja)
Other versions
JP2015137885A (en
Inventor
充 三上
充 三上
村上 幸司
幸司 村上
朗 野田
朗 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014008456A priority Critical patent/JP6270498B2/en
Publication of JP2015137885A publication Critical patent/JP2015137885A/en
Application granted granted Critical
Publication of JP6270498B2 publication Critical patent/JP6270498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、化合物半導体結晶を基板とする放射線検出素子、およびこの放射線検出素子を製造する方法に関する。   The present invention relates to a radiation detection element using a compound semiconductor crystal as a substrate, and a method for manufacturing the radiation detection element.

従来、放射線検出素子の基板として用いるための、直接変換型化合物半導体の開発が進められてきている。その中でもII-VI族化合物半導体であるテルル化カドミウム(CdTe)、セレンテルル化カドミウム(CdSeTe)、テルル化亜鉛カドミウム(CdZnTe)、セレンテルル化亜鉛カドミウム(CdZnSeTe)は、近年有力な材料として注目されている。これらを基板とする放射線検出素子を備える放射線検出器は、シリコンやゲルマニウムを基板としたものに比べ、(1)原子番号が比較的大きいことから放射線の検出効率が高い、(2)バンドギャップが大きいので、熱ノイズ電流の影響が少なく冷却装置が不要であり、装置の小型化が可能、という利点がある。   Conventionally, development of a direct conversion type compound semiconductor for use as a substrate of a radiation detection element has been advanced. Among them, cadmium telluride (CdTe), cadmium selenite telluride (CdSeTe), zinc cadmium telluride (CdZnTe) and zinc cadmium selenite telluride (CdZnSeTe), which are II-VI group compound semiconductors, have been attracting attention as promising materials in recent years. . Radiation detectors equipped with radiation detection elements based on these substrates have (1) a relatively high atomic number because of the relatively large atomic number compared to silicon and germanium substrates, and (2) a band gap. Since it is large, there is an advantage that the influence of the thermal noise current is small, a cooling device is unnecessary, and the device can be downsized.

特に、近年では、検出特性を高めるため、基板の一方の主面に金(Au)や白金(Pt)等の仕事関数の大きな金属で、基板とオーミック接合する電極(以下第1電極)が形成され、他方の主面にインジウム(In)やアルミニウム(Al)等の仕事関数の小さな金属で、基板にショットキー接合する電極(以下第2電極)が形成されたショットキー型の放射線検出素子の開発が進められている(特許文献1、非特許文献1参照)。ショットキー型の放射線検出素子は、リーク電流を抑えることができることから、より高い電圧を印加することが可能となり、微弱な放射線の検出も可能となる。   In particular, in recent years, in order to improve detection characteristics, an electrode (hereinafter referred to as a first electrode) is formed on one main surface of the substrate with a metal having a large work function such as gold (Au) or platinum (Pt), which is in ohmic contact with the substrate. And a Schottky type radiation detecting element in which an electrode (hereinafter referred to as a second electrode) formed with a metal having a small work function, such as indium (In) or aluminum (Al), on the other main surface, is formed on the substrate. Development is in progress (see Patent Document 1 and Non-Patent Document 1). Since the Schottky type radiation detection element can suppress a leak current, it is possible to apply a higher voltage and detect weak radiation.

特開2004−137482号公報JP 2004-137482 A

放射線vol.30,No.1(2004)Radiation vol. 30, no. 1 (2004)

しかしながら、従来のショットキー型の放射線検出素子を用いた放射線検出器によって放射線計数スペクトルを得た場合、図4(b)に示すように、低エネルギー側の裾が持ち上がる、といった現象が見られることがあった。この裾の持ち上がりは、素子のエネルギー分解能を劣化させる原因となっている。   However, when a radiation count spectrum is obtained by a radiation detector using a conventional Schottky type radiation detection element, a phenomenon that the bottom of the low energy side is lifted as shown in FIG. 4B is observed. was there. This lifting of the skirt causes the energy resolution of the element to deteriorate.

本発明は、上記課題に鑑みてなされたもので、基板の一方の主面に、基板とショットキー接合する第1電極が形成され、他方の主面に、基板とオーミック接合する第2電極が形成された放射線検出素子を備えた放射線検出器において、放射線計数スペクトルの低エネルギー側の裾が持ち上がらないようにすることを目的とする。   The present invention has been made in view of the above problems. A first electrode that is Schottky bonded to the substrate is formed on one main surface of the substrate, and a second electrode that is ohmic-bonded to the substrate is formed on the other main surface. An object of the present invention is to prevent a skirt on the low energy side of a radiation count spectrum from being lifted in a radiation detector including the formed radiation detection element.

発明者は、上記課題の解決のために鋭意研究を進めたところ、基板を形成するCdTe等の化合物半導体と第2電極との接合部の状態が、放射線計数スペクトルの低エネルギー側の裾の持ち上がりと大きく関係していることを見出した。具体的には、接合部に含まれる酸素が放射線検出素子の検出特性を劣化させていることが分かった。すなわち、化合物半導体と第2電極との接合部に酸素が含まれると、その酸素がキャリアをトラップする準位を形成してしまうので、放射線を受けることにより生成されたキャリアがトラップされてしまう。このキャリアは、本来、放射線の検出信号となるものであり、そのキャリアがトラップされて取り出せなくなるということは、検出信号の劣化に繋がる。従って、基板と第2電極との接合部における酸素濃度を低くすることが必要である。
そこで、更に研究を進めた結果、第2電極を形成する前に行っている基板の表面処理方法を工夫することで、接合部の酸素濃度を下げることができるという知見を得て本発明に至った。
The inventor has intensively studied to solve the above problems, and as a result, the state of the joint between the compound semiconductor such as CdTe and the second electrode forming the substrate is raised on the lower energy side of the radiation counting spectrum. It was found that it is greatly related. Specifically, it was found that oxygen contained in the joint deteriorates the detection characteristics of the radiation detection element. That is, when oxygen is contained in the junction between the compound semiconductor and the second electrode, the oxygen forms a level for trapping carriers, so that carriers generated by receiving radiation are trapped. This carrier is essentially a radiation detection signal, and the fact that the carrier is trapped and cannot be taken out leads to deterioration of the detection signal. Therefore, it is necessary to reduce the oxygen concentration at the junction between the substrate and the second electrode.
Therefore, as a result of further research, the inventors have obtained the knowledge that the oxygen concentration at the junction can be lowered by devising the substrate surface treatment method performed before forming the second electrode. It was.

本発明は、基板と、前記基板の一方の主面に、前記基板とオーミック接合するように形成された第1電極と、前記基板の他方の主面に、前記基板とショットキー接合するように形成された第2電極と、を備える放射線検出素子であって、前記基板と前記第2電極との接合部のうち、前記第2電極を構成する元素の濃度が50%となる箇所から前記他方の主面と直交する方向に±15nmの範囲における酸素濃度が1原子%以下となっていることを特徴とする。   The present invention provides a substrate, a first electrode formed on one main surface of the substrate so as to be in ohmic contact with the substrate, and a Schottky junction with the substrate on the other main surface of the substrate. A radiation detection element comprising: the second electrode formed; and the other of the junction part between the substrate and the second electrode from a position where the concentration of the element constituting the second electrode is 50%. The oxygen concentration in the range of ± 15 nm in the direction orthogonal to the main surface of the film is 1 atomic% or less.

従来は、基板と第2電極との接合部に存在する酸素がキャリアをトラップする準位を形成することで、検出信号が劣化していたが、本発明に係る放射線検出素子は、接合部における酸素濃度が低いので、生成されたキャリアがトラップされることなく検出信号となる。従って、本発明に係る放射線検出素子を用いれば、放射線計数スペクトルの低エネルギー側の裾が持ち上がらないようにすることができる。   Conventionally, the detection signal is deteriorated by forming a level at which oxygen present at the junction between the substrate and the second electrode traps carriers. However, the radiation detection element according to the present invention is provided at the junction. Since the oxygen concentration is low, the generated carrier becomes a detection signal without being trapped. Therefore, if the radiation detection element according to the present invention is used, it is possible to prevent the bottom of the low energy side of the radiation count spectrum from being lifted.

また、本発明は、基板と、前記基板の一方の主面に、前記基板とオーミック接合するように形成された第1電極と、前記基板の他方の主面に、前記基板とショットキー接合するように形成された第2電極と、を備える放射線検出素子の製造方法において、前記基板の他方の主面を、酸素を含まないエッチングガスを用いてドライエッチングし、その後、前記基板を非酸化性雰囲気に晒したまま、前記他方の主面に前記第2電極を形成することを特徴とする。
なお、「酸素を含まないエッチングガス」は、気体酸素が混合されていないガスと、酸素が成分として含まれていない分子からなるガスの両方を指す。
The present invention also includes a substrate, a first electrode formed on one main surface of the substrate so as to be in ohmic contact with the substrate, and a Schottky junction with the substrate on the other main surface of the substrate. In the manufacturing method of the radiation detecting element comprising the second electrode formed as described above, the other main surface of the substrate is dry-etched using an etching gas not containing oxygen, and then the substrate is made non-oxidizing The second electrode is formed on the other main surface while being exposed to the atmosphere.
The “etching gas not containing oxygen” refers to both a gas not containing gaseous oxygen and a gas composed of molecules not containing oxygen as a component.

従来は、エッチャントに含まれる酸素が、エッチングの際に基板表面に付着し、第2電極の形成後も、基板と第2電極との接合部に残留してしまっていたが、本発明に係る放射線検出素子の製造方法によれば、エッチングの際に基板に酸素が付着することがなくなるので、基板と第2電極との接合部における酸素濃度を下げることができる。   Conventionally, oxygen contained in the etchant adheres to the surface of the substrate during etching and remains at the junction between the substrate and the second electrode even after the formation of the second electrode. According to the method for manufacturing a radiation detection element, oxygen does not adhere to the substrate during etching, so that the oxygen concentration at the junction between the substrate and the second electrode can be lowered.

本発明によれば、基板の一方の主面に、基板とショットキー接合する第1電極が形成され、他方の主面に、基板とオーミック接合する第2電極が形成された放射線検出素子を備えた放射線検出器において、放射線計数スペクトルの低エネルギー側の裾が持ち上がらないようにすることができる。   According to the present invention, the radiation detection element having the first electrode that is Schottky-bonded to the substrate on one main surface of the substrate and the second electrode that is ohmic-bonded to the substrate is formed on the other main surface. In the radiation detector, it is possible to prevent the bottom of the low energy side of the radiation counting spectrum from being lifted.

本発明の実施形態に係る放射線検出素子の一例を示す斜視図である。It is a perspective view which shows an example of the radiation detection element which concerns on embodiment of this invention. (a)は図1に示した放射線検出素子のII−II断面図、(b)は図1の放射線検出素子における、(a)の矢印に沿って調べた場合の組成の変化を示すグラフ、(c)は(b)の一部を縦方向に拡大したグラフである。(A) is II-II sectional drawing of the radiation detection element shown in FIG. 1, (b) is a graph which shows the change of a composition when investigated along the arrow of (a) in the radiation detection element of FIG. (C) is the graph which expanded a part of (b) to the vertical direction. (a)は従来の放射線検出素子の断面図、(b)は従来の放射線検出素子における、(a)の矢印に沿って調べた場合の組成の変化を示すグラフ、(c)は(b)の一部を縦方向に拡大したグラフである。(A) is sectional drawing of the conventional radiation detection element, (b) is a graph which shows the change of a composition when investigated along the arrow of (a) in the conventional radiation detection element, (c) is (b). It is the graph which expanded a part of in the vertical direction. (a)は図1の放射線検出素子によって得られた放射線スペクトル、(b)は従来の放射線検出素子によって得られた放射線スペクトルである。(A) is a radiation spectrum obtained by the radiation detection element of FIG. 1, and (b) is a radiation spectrum obtained by a conventional radiation detection element.

以下、図面を参照して、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔放射線検出素子の構成〕
まず、本実施形態の放射線検出素子の構成について説明する。図1は本実施形態の放射線検出素子10の一例を示す斜視図、図2(a)は図1のII−II断面図、図2(b)は(a)の矢印に沿う方向の組成の変化を示すグラフ、図2(c)は(b)の一部を縦方向に拡大したグラフである。
放射線検出素子10は、図1に示すように、基板1、基板1の一方の主面(以下A面1a)に形成されたオーミック電極2、基板1の他方の主面(以下B面1b)に形成されたショットキー電極3、で構成されている。
[Configuration of radiation detection element]
First, the structure of the radiation detection element of this embodiment is demonstrated. 1 is a perspective view showing an example of the radiation detection element 10 of the present embodiment, FIG. 2A is a cross-sectional view taken along the line II-II in FIG. 1, and FIG. 2B is a composition in the direction along the arrow in FIG. FIG. 2C is a graph in which a part of FIG. 2B is enlarged in the vertical direction.
As shown in FIG. 1, the radiation detection element 10 includes a substrate 1, an ohmic electrode 2 formed on one main surface (hereinafter referred to as A surface 1a) of the substrate 1, and the other main surface (hereinafter referred to as B surface 1b) of the substrate 1. The Schottky electrode 3 is formed.

基板1は、II−VI族化合物半導体単結晶であるテルル化カドミウム(CdTe)単結晶、セレンテルル化カドミウム(CdSeTe)単結晶、テルル化亜鉛カドミウム(CdZnTe)単結晶、またはセレンテルル化亜鉛カドミウム(CdZnSeTe)単結晶、で、主面が矩形(図は正方形)の薄い板状に形成されている。また、基板1の主面は、所定の結晶面(例えば(111)面)となっている。
オーミック電極2は、金(Au)、白金(Pt)等の仕事関数の大きな金属の薄膜で基板11のA面1a全体を覆うように形成されている。すなわち、オーミック電極2は、基板1とオーミック接合している。
ショットキー電極3は、例えばインジウム(In)やアルミニウム(Al)等の仕事関数の小さな金属の薄膜で形成されている。すなわち、ショットキー電極3は、基板1とショットキー接合している。なお、ショットキー電極3は、B面1b全体を覆うように形成したものとしてもよいし、図1に示したように、複数の微小なピクセル状のものをマトリクス(行列)状に配列したものとしてもよい。
The substrate 1 includes a cadmium telluride (CdTe) single crystal, a cadmium telluride (CdSeTe) single crystal, a cadmium zinc telluride (CdZnTe) single crystal, or a cadmium zinc telluride (CdZnSeTe). It is a single crystal and is formed in a thin plate shape whose main surface is rectangular (square in the figure). The main surface of the substrate 1 is a predetermined crystal plane (for example, (111) plane).
The ohmic electrode 2 is formed so as to cover the entire A surface 1a of the substrate 11 with a thin metal film having a large work function such as gold (Au) or platinum (Pt). That is, the ohmic electrode 2 is in ohmic contact with the substrate 1.
The Schottky electrode 3 is formed of a thin metal film having a small work function such as indium (In) or aluminum (Al). That is, the Schottky electrode 3 is in Schottky junction with the substrate 1. Note that the Schottky electrode 3 may be formed so as to cover the entire B surface 1b, or as shown in FIG. 1, a plurality of minute pixel-like elements arranged in a matrix. It is good.

また、図2(a)に示すように、基板1の内部(Inが含まれない領域)の所定箇所を起点Oとして、矢印が示す方向(B面1bと直交し、ショットキー電極3に近づく方向)に向かうに従って、放射線検出素子10の組成がどのように変化していくかを、エネルギー分散型蛍光X線分析法を用いて調べると、図2(b)に示すようなグラフが得られる。そして、In濃度が50%となる箇所を通り、B面1bと並行な面を基板1とショットキー電極3の界面Sと定義し、起点Oから界面Sまでの距離を得られたグラフから求め(図2の場合は起点から約22nm)、界面Sから界面Sと直交する方向に向かって±15nmの範囲(起点から約6〜36nmの部位、以下界面近傍領域T)における酸素濃度を調べると、図2(c)に示すように、1at%未満となっている。   Further, as shown in FIG. 2A, a predetermined location inside the substrate 1 (region not including In) is a starting point O, and the direction indicated by the arrow (perpendicular to the B surface 1b and approaches the Schottky electrode 3). If the energy dispersive X-ray fluorescence analysis method is used to examine how the composition of the radiation detection element 10 changes in the direction (direction), a graph as shown in FIG. 2B is obtained. . Then, a surface passing through a portion where the In concentration is 50% and parallel to the B surface 1b is defined as the interface S between the substrate 1 and the Schottky electrode 3, and the distance from the starting point O to the interface S is obtained from the obtained graph. (In the case of FIG. 2, about 22 nm from the starting point), when examining the oxygen concentration in the range of ± 15 nm from the interface S in the direction orthogonal to the interface S (part of about 6 to 36 nm from the starting point, hereinafter the interface vicinity region T) As shown in FIG. 2C, it is less than 1 at%.

〔放射線検出素子の製造方法〕
次に、上記放射線検出素子の製造方法について説明する。
放射線検出素子10は、基板製造工程、電極形成工程、ダイシング工程を経て製造される。
はじめに行われる基板製造工程は、切断工程、研磨工程からなる。
切断工程では、CdTe等の単結晶インゴットを所定の結晶面に沿って切断することにより薄い円盤状のウェハ(基板1)を切り出す。
切断工程の後は、研磨工程に移る。研磨工程では、切り出したウェハの切断面をアルミナ粉末等の研磨剤を用いて物理的に鏡面研磨する。この研磨工程は、ウェハ毎に複数回繰り返してもよい。
[Method of manufacturing radiation detection element]
Next, the manufacturing method of the said radiation detection element is demonstrated.
The radiation detection element 10 is manufactured through a substrate manufacturing process, an electrode forming process, and a dicing process.
The substrate manufacturing process performed first includes a cutting process and a polishing process.
In the cutting step, a thin disk-shaped wafer (substrate 1) is cut out by cutting a single crystal ingot such as CdTe along a predetermined crystal plane.
After the cutting process, the process proceeds to the polishing process. In the polishing step, the cut surface of the cut wafer is physically mirror-polished using an abrasive such as alumina powder. This polishing step may be repeated multiple times for each wafer.

基板製造工程の後は電極形成工程に移る。電極形成工程は、表面処理工程、ショットキー電極形成工程、オーミック電極形成工程からなる。
表面処理工程では、まず、基板製造工程で製造されたウェハを製造装置にセットし、ウェハのB面1bを、ドライエッチング(プラズマエッチングや反応性イオンエッチング)する。具体的には、酸素を含まないエッチングガス(例えば、アルゴン(Ar)、ヘリウム(He)、ネオン(Ne)、窒素(N2)等他の不活性ガス、フッ素(F2)、塩素(Cl2)、フッ化水素(HF)、塩化水素(HCl)等のハロゲン系ガス、またはハイドライド系のガス)を、イオンまたはラジカルにしたものを、基板に衝突させることにより、B面1bに付着した異物や加工変質層を除去する。従来は、ブロメタ等、酸素を含むエッチャントでエッチングしていたため、この工程でエッチャントの酸素がウェハ表面に付着する可能性があったが、本実施形態のようにすることで、ウェハ表面に酸素が付着することがない。
After the substrate manufacturing process, the process proceeds to an electrode forming process. The electrode forming process includes a surface treatment process, a Schottky electrode forming process, and an ohmic electrode forming process.
In the surface treatment process, first, the wafer manufactured in the substrate manufacturing process is set in a manufacturing apparatus, and the B surface 1b of the wafer is dry-etched (plasma etching or reactive ion etching). Specifically, an etching gas not containing oxygen (for example, other inert gases such as argon (Ar), helium (He), neon (Ne), nitrogen (N2), fluorine (F2), chlorine (Cl2), Foreign matter or processing adhering to the B surface 1b by causing ions or radicals of halogen-based gas such as hydrogen fluoride (HF) or hydrogen chloride (HCl) or hydride-based gas to collide with the substrate. Remove the altered layer. Conventionally, since etching was performed with an etchant containing oxygen such as brometa, there was a possibility that the oxygen of the etchant might adhere to the wafer surface in this step. However, by using this embodiment, oxygen is added to the wafer surface. There is no adhesion.

表面処理工程の後はショットキー電極形成工程に移る。ショットキー電極形成工程は、形成しようとするショットキー電極の数や大きさによって処理が異なる。ピクセル状のショットキー電極3を複数形成する場合は、ウェハのB面1b全体にフォトレジストを塗布し、ピクセル電極パターンが描かれたフォトマスクを用いてフォトレジストを露光する。そして、現像することにより感光したフォトレジストを除去する。そして、メタノールを用いてウェハからブロメタ液を除去し、純水を用いてウェハからメタノールを除去する。その後、ウェハのB面1bのフォトレジストの除去された(B面1bが露出した)箇所に、蒸着やスパッタリングなどの物理気相堆積(PVD)法、或いは化学気相堆積(CVD)法を用いてIn層を形成する。このIn層が所定の膜厚まで成長したものがショットキー電極3となる。一方、B面1b全体を覆うようなショットキー電極3を形成する場合は、上述したフォトレジスト膜形成する工程を経ずに、表面処理を終えたウェハのB面1b全体にPVD法またはCVD法でIn層を形成していくことによりショットキー電極3を形成する。   After the surface treatment process, the process proceeds to a Schottky electrode formation process. The processing of the Schottky electrode forming process varies depending on the number and size of Schottky electrodes to be formed. When a plurality of pixel-shaped Schottky electrodes 3 are formed, a photoresist is applied to the entire B surface 1b of the wafer, and the photoresist is exposed using a photomask on which a pixel electrode pattern is drawn. Then, the exposed photoresist is removed by development. Then, the brometa solution is removed from the wafer using methanol, and the methanol is removed from the wafer using pure water. Thereafter, a physical vapor deposition (PVD) method such as vapor deposition or sputtering, or a chemical vapor deposition (CVD) method is used on the B surface 1b of the wafer where the photoresist is removed (the B surface 1b is exposed). Then, an In layer is formed. The In layer grown to a predetermined thickness is the Schottky electrode 3. On the other hand, when the Schottky electrode 3 is formed so as to cover the entire B surface 1b, the PVD method or the CVD method is applied to the entire B surface 1b of the wafer after the surface treatment without passing through the above-described photoresist film forming step. The Schottky electrode 3 is formed by forming the In layer in step (b).

ショットキー電極形成工程の後はオーミック電極形成工程に移る。オーミック電極形成工程では、ウェハを塩化白金酸(IV)六水和物水溶液に塩酸を混合しためっき液に浸漬し、ウェハのA面1a全体にPtを析出させることでPt層を形成する。このPt層が所定の膜厚まで成長したものがオーミック電極2となる。オーミック電極2が形成された後は、不要になったフォトレジストを除去し、純水を用いてウェハを洗浄する。そして、ウェハに窒素ガスを噴きつけることによりウェハを乾燥させて電極形成工程を終了する。   After the Schottky electrode forming process, the process proceeds to the ohmic electrode forming process. In the ohmic electrode forming step, the wafer is immersed in a plating solution in which hydrochloric acid is mixed with a chloroplatinic acid (IV) hexahydrate solution, and Pt is deposited on the entire A surface 1a of the wafer to form a Pt layer. The Pt layer grown to a predetermined film thickness is the ohmic electrode 2. After the ohmic electrode 2 is formed, the unnecessary photoresist is removed, and the wafer is washed with pure water. Then, the wafer is dried by spraying nitrogen gas onto the wafer, and the electrode forming step is completed.

電極形成工程の後はダイシング工程に移る。ダイシング工程では、A面1aにオーミック電極2、B面1bにショットキー電極3が形成されたウェハを切断して複数の基板1に分割するとともに、個々の放射線検出素子10をウェハから切り出す。
以上の各工程を経ることにより、界面近傍領域Tにおける酸素濃度が低い本実施形態の放射線検出素子10が製造される。
After the electrode forming process, the process proceeds to a dicing process. In the dicing process, the wafer having the ohmic electrode 2 formed on the A surface 1a and the Schottky electrode 3 formed on the B surface 1b is cut and divided into a plurality of substrates 1, and the individual radiation detection elements 10 are cut out from the wafer.
Through the above steps, the radiation detection element 10 of the present embodiment having a low oxygen concentration in the interface vicinity region T is manufactured.

〔放射線検出素子の特性〕
次に、上記放射線検出素子の特性について説明する。
発明者は、本実施形態の放射線検出素子のエネルギー分解能と、従来の放射線検出素子のエネルギー分解能の差を確認するために、下記3種類の実験(実施例1,2および比較例)を行った。
[Characteristics of radiation detector]
Next, the characteristics of the radiation detection element will be described.
The inventor conducted the following three types of experiments (Examples 1, 2 and Comparative Example) in order to confirm the difference between the energy resolution of the radiation detection element of this embodiment and the energy resolution of the conventional radiation detection element. .

(実施例1)
まず、CdZnTe基板の(111)B面にArガスでプラズマエッチングを行って表面の加工変質層を除去した。この後、基板を真空蒸着炉内にセットし、B面全体にInを厚さ300nmとなるまで蒸着してショットキー電極を形成した。そして、炉内を真空引きし、基板を200℃でアニールした。その後、基板の(111)A面全体に無電解めっきでPtを厚さ50nmとなるまで析出させオーミック電極を形成した。
このようにして作成した実施例サンプルの、基板とショットキー電極との接合部におけるB面と直交する方向の組成の変化をエネルギー分散型蛍光X線分析法で調べたところ、図2(b),(c)に示したグラフが得られた。このグラフからは、界面近傍領域T(起点から約6〜36nm)における酸素濃度は1at%未満であることが見て取れる。
そして、この実施例サンプルを用いて放射線検出器を構成し、この放射線検出器にCo57を放射線源とする放射線を照射したところ、図4(a)に示すMCAスペクトルが得られた。このスペクトルからは、Co57が固有にもつ122.2keVのピークが鋭く現れ、低エネルギー側のスペクトルの裾野が下がっていることも見て取れる。なお、このピークの印加電圧500Vにおける半値幅は4.3%と低かった。
Example 1
First, the (111) B surface of the CdZnTe substrate was subjected to plasma etching with Ar gas to remove the work-affected layer on the surface. Thereafter, the substrate was set in a vacuum vapor deposition furnace, and In was vapor-deposited on the entire B surface to a thickness of 300 nm to form a Schottky electrode. Then, the inside of the furnace was evacuated and the substrate was annealed at 200 ° C. Thereafter, Pt was deposited on the entire (111) A surface of the substrate by electroless plating to a thickness of 50 nm to form an ohmic electrode.
When the change in the composition in the direction perpendicular to the B-plane at the junction between the substrate and the Schottky electrode in the sample of the example prepared as described above was examined by energy dispersive X-ray fluorescence analysis, FIG. The graph shown in (c) was obtained. From this graph, it can be seen that the oxygen concentration in the interface vicinity region T (about 6 to 36 nm from the starting point) is less than 1 at%.
And when the radiation detector was comprised using this Example sample and this radiation detector was irradiated with the radiation which used Co57 as a radiation source, the MCA spectrum shown to Fig.4 (a) was obtained. From this spectrum, it can be seen that the peak of 122.2 keV inherent to Co57 appears sharply, and the base of the spectrum on the low energy side is lowered. The full width at half maximum at an applied voltage of 500 V at this peak was as low as 4.3%.

(実施例2)
次に、実施例1と同じCdZnTe基板の(111)B面にArガスでプラズマエッチングを行って表面の加工変質層を除去した。この後、B面にピクセル電極パターン形状の開口を有するマスクを形成し、基板を真空蒸着炉内にセットして、マスクの開口から露出したB面にInを厚さ300nmとなるまで蒸着してピクセル状のショットキー電極を複数形成した。そして、炉内を真空引きし、基板を200℃でアニールした。その後、基板の(111)A面全体に無電解めっきでPtを厚さ50nmとなるまで析出させオーミック電極を形成した。
このようにして作成した実施例サンプルの、基板とショットキー電極との接合部におけるB面と直交する方向の組成の変化をエネルギー分散型蛍光X線分析法で調べたところ、実施例1と同様の、界面近傍領域Tにおける酸素濃度が1at%未満となっているグラフが得られた。
そして、この実施例サンプルを用いて放射線検出器を構成し、この放射線検出器にCo57を放射線源とする放射線を照射したところ、実施例1と同様の、122.2keVのピークが鋭く現れ、低エネルギー側のスペクトルの裾野が下がっているMCAスペクトルが得られた。
(Example 2)
Next, the (111) B surface of the same CdZnTe substrate as in Example 1 was subjected to plasma etching with Ar gas to remove the work-affected layer on the surface. Thereafter, a mask having an opening in the shape of a pixel electrode pattern is formed on the B surface, the substrate is set in a vacuum evaporation furnace, and In is deposited on the B surface exposed from the opening of the mask to a thickness of 300 nm. A plurality of pixel-shaped Schottky electrodes were formed. Then, the inside of the furnace was evacuated and the substrate was annealed at 200 ° C. Thereafter, Pt was deposited on the entire (111) A surface of the substrate by electroless plating to a thickness of 50 nm to form an ohmic electrode.
When the change in the composition in the direction perpendicular to the B-plane at the junction between the substrate and the Schottky electrode in the sample of the example prepared as described above was examined by energy dispersive X-ray fluorescence analysis, it was the same as in Example 1. A graph in which the oxygen concentration in the interface vicinity region T is less than 1 at% was obtained.
Then, when a radiation detector was configured using the sample of this example, and this radiation detector was irradiated with radiation using Co57 as a radiation source, a peak of 122.2 keV similar to that of Example 1 appeared sharply, and low An MCA spectrum in which the base of the spectrum on the energy side was lowered was obtained.

(比較例)
次に、実施例1,2と同じCdZnTe基板(111)B面に臭素(Br)とメタノールとの混合溶液でエッチングを行って表面の加工変質層を除去した。この臭素-メタノール混合溶液はCdZnSeTe等の化合物半導体では表面処理によく使われるエッチャントである。この前処理後、基板を真空蒸着炉内にセットし、B面にInを厚さ300nm蒸着してショットキー電極を形成した。そして、炉内を真空引きし、基板を200℃でアニールした。その後、基板の(111)A面に無電解めっきでPtを厚さ50nmとなるまで析出させオーミック電極を形成した。
このようにして作成した比較例サンプルの基板とショットキー電極との接合部における、B面と直交する方向の組成の変化をエネルギー分散型蛍光X線分析法で調べたところ、図3(b),(c)に示すグラフが得られた。このグラフからは、界面近傍領域T(起点Oから約2〜32nm)において酸素濃度が1at%以上の領域が多く見られること、特に当該領域Tのショットキー電極近傍(起点Oから23〜24nm付近)では3at%にまで達していることが見て取れる。
そして、この比較例サンプルを用いて放射線検出器を構成し、この放射線検出器にCo57を放射線源とする放射線を照射したところ、図4(b)に示すMCAスペクトルが得られた。このスペクトルからは、122.2keVに鋭いピークは見られず、低エネルギーの肩に盛り上がりがあることが見て取れる。なお、このピークの印加電圧500Vにおける半値幅は7.0%と高かった。
(Comparative example)
Next, etching was performed on the same CdZnTe substrate (111) B surface as in Examples 1 and 2 with a mixed solution of bromine (Br) and methanol to remove the work-affected layer on the surface. This bromine-methanol mixed solution is an etchant often used for surface treatment in a compound semiconductor such as CdZnSeTe. After this pretreatment, the substrate was set in a vacuum evaporation furnace, and a 300 nm thick In was evaporated on the B surface to form a Schottky electrode. Then, the inside of the furnace was evacuated and the substrate was annealed at 200 ° C. Thereafter, Pt was deposited on the (111) A surface of the substrate by electroless plating to a thickness of 50 nm to form an ohmic electrode.
When the change in the composition in the direction orthogonal to the B-plane at the junction between the substrate of the comparative example sample thus prepared and the Schottky electrode was examined by energy dispersive X-ray fluorescence analysis, FIG. The graph shown in (c) was obtained. From this graph, it can be seen that there are many regions where the oxygen concentration is 1 at% or more in the interface vicinity region T (about 2 to 32 nm from the origin O), especially in the vicinity of the Schottky electrode in the region T (from 23 to 24 nm from the origin O). ), It can be seen that it has reached 3 at%.
Then, a radiation detector was configured using this comparative sample, and when this radiation detector was irradiated with radiation using Co57 as a radiation source, the MCA spectrum shown in FIG. 4B was obtained. From this spectrum, it can be seen that there is no sharp peak at 122.2 keV and there is a rise in the shoulder of low energy. The full width at half maximum at an applied voltage of 500 V at this peak was as high as 7.0%.

上記実験から、本実施形態のように、基板1のB面(他方の主面)1bを、酸素を含まないエッチングガスを用いてドライエッチングし、その後、基板1を非酸化性雰囲気に晒したまま、B面1bにショットキー電極(第2電極)3を形成し、基板1とショットキー電極3との接合部のうち、境界近傍領域T(In(第2電極を構成する元素)の濃度が50%となる箇所からB面1bと直交する方向に±15nmの範囲)における酸素濃度が1原子%以下となるようにすることにより、放射線計数スペクトルの低エネルギー側の持ち上がりを従来よりも少なくでき、その分だけピークを鋭く(半値幅を小さく)できることが判明した。スペクトルのピークが鋭いほど、放射線検出素子のエネルギー分解能が高いことを示すので、本実施形態の放射線検出素子は、従来のものに比べ、高い精度で放射線を検出することができるということになる。なお、プラズマエッチングによる表面処理は、基板表面の結晶構造を破壊してしまうことが懸念されたが、今回の実験では、良好な放射線検出特性が得られたことから、表面へのダメージはないか、あっても素子特性に影響のない無視できるレベルであることが分かった。   From the above experiment, as in this embodiment, the B surface (the other main surface) 1b of the substrate 1 was dry-etched using an etching gas not containing oxygen, and then the substrate 1 was exposed to a non-oxidizing atmosphere. The Schottky electrode (second electrode) 3 is formed on the B surface 1b as it is, and the concentration in the vicinity of the boundary T (In (element constituting the second electrode)) in the junction between the substrate 1 and the Schottky electrode 3 By increasing the oxygen concentration in the range of ± 15 nm in the direction perpendicular to the B-plane 1b from the point where the value is 50%), the radiation count spectrum has less lift on the low energy side than before. It was found that the peak can be sharpened by that much (half-value width is reduced). The sharper the peak of the spectrum, the higher the energy resolution of the radiation detection element. Therefore, the radiation detection element of this embodiment can detect radiation with higher accuracy than the conventional one. In addition, there was concern that the surface treatment by plasma etching would destroy the crystal structure of the substrate surface, but in this experiment, good radiation detection characteristics were obtained, so there was no damage to the surface. It was found that the level was negligible without affecting the device characteristics.

以上、本発明を実施形態に基づいて具体的に説明してきたが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
例えば、上記実施形態では、A面にオーミック電極を形成し、B面にショットキー電極を形成した素子について説明したが、A面にショットキー電極を形成し、B面にオーミック電極を形成したものとしてもよい。
また、上記実施形態では、オーミック電極をA面全体を覆うように形成したものとしたが、B面全体を覆うようなショットキー電極を形成する場合には、オーミック電極を複数のピクセル状のものとしてもよい。
また、上記実施形態では、基板の鏡面研磨の後、直ちにドライエッチングを行ったが、ウェットエッチングを行った後、更にドライエッチングを行うようにしてもよい。
また、上記実施形態では、ショットキー電極を形成した後にオーミック電極を形成するようにしたが、オーミック電極を形成した後にショットキー電極を形成するようにしてもよい。
As mentioned above, although this invention was concretely demonstrated based on embodiment, this invention is not limited to the said embodiment, It can change in the range which does not deviate from the summary.
For example, in the above-described embodiment, the element in which the ohmic electrode is formed on the A surface and the Schottky electrode is formed on the B surface has been described. However, the Schottky electrode is formed on the A surface and the ohmic electrode is formed on the B surface. It is good.
In the above embodiment, the ohmic electrode is formed so as to cover the entire A surface. However, in the case of forming a Schottky electrode that covers the entire B surface, the ohmic electrode has a plurality of pixel shapes. It is good.
In the above embodiment, dry etching is performed immediately after mirror polishing of the substrate. However, dry etching may be performed after wet etching.
In the above embodiment, the ohmic electrode is formed after the Schottky electrode is formed. However, the Schottky electrode may be formed after the ohmic electrode is formed.

10 放射線検出素子
1 基板
1a A面(一方の主面)
1b B面(他方の主面)
2 オーミック電極(第1電極)
3 ショットキー電極(第2電極)
10 Radiation detection element 1 Board | substrate 1a A surface (one main surface)
1b B surface (the other main surface)
2 Ohmic electrode (first electrode)
3 Schottky electrode (second electrode)

Claims (2)

基板と、前記基板の一方の主面に、前記基板とオーミック接合するように形成された第1電極と、前記基板の他方の主面に、前記基板とショットキー接合するように形成された第2電極と、を備える放射線検出素子であって、
前記基板と前記第2電極との接合部のうち、前記第2電極を構成する元素の濃度が50%となる箇所から前記他方の主面と直交する方向に±15nmの範囲における酸素濃度が1原子%以下となっていることを特徴とする放射線検出素子。
A substrate, a first electrode formed on one main surface of the substrate so as to be in ohmic contact with the substrate, and a first electrode formed on the other main surface of the substrate so as to be Schottky bonded with the substrate. A radiation detection element comprising two electrodes,
Of the junction between the substrate and the second electrode, the oxygen concentration in the range of ± 15 nm in a direction perpendicular to the other main surface from a portion where the concentration of the element constituting the second electrode is 50% is 1 A radiation detecting element characterized in that it is at most atomic%.
基板と、前記基板の一方の主面に、前記基板とオーミック接合するように形成された第1電極と、前記基板の他方の主面に、前記基板とショットキー接合するように形成された第2電極と、を備える放射線検出素子の製造方法において、
前記基板の他方の主面を、酸素を含まないエッチングガスを用いてドライエッチングし、
その後、前記基板を非酸化性雰囲気に晒したまま、前記他方の主面に前記第2電極を形成することを特徴とする放射線検出素子の製造方法。
A substrate, a first electrode formed on one main surface of the substrate so as to be in ohmic contact with the substrate, and a first electrode formed on the other main surface of the substrate so as to be Schottky bonded with the substrate. In a method for manufacturing a radiation detection element comprising two electrodes,
The other main surface of the substrate is dry-etched using an etching gas not containing oxygen,
Thereafter, the second electrode is formed on the other main surface while the substrate is exposed to a non-oxidizing atmosphere.
JP2014008456A 2014-01-21 2014-01-21 Radiation detection element and method for manufacturing radiation detection element Active JP6270498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014008456A JP6270498B2 (en) 2014-01-21 2014-01-21 Radiation detection element and method for manufacturing radiation detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014008456A JP6270498B2 (en) 2014-01-21 2014-01-21 Radiation detection element and method for manufacturing radiation detection element

Publications (2)

Publication Number Publication Date
JP2015137885A JP2015137885A (en) 2015-07-30
JP6270498B2 true JP6270498B2 (en) 2018-01-31

Family

ID=53768986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014008456A Active JP6270498B2 (en) 2014-01-21 2014-01-21 Radiation detection element and method for manufacturing radiation detection element

Country Status (1)

Country Link
JP (1) JP6270498B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221340A (en) * 1994-01-31 1995-08-18 Hitachi Chem Co Ltd Semiconductor radiation detector
JP2981712B2 (en) * 1994-06-03 1999-11-22 株式会社ジャパンエナジー Manufacturing method of semiconductor radiation detector
JP3597392B2 (en) * 1998-08-07 2004-12-08 シャープ株式会社 2D image detector
JP2009164215A (en) * 2007-12-28 2009-07-23 Fujifilm Corp Radiological image detecting device and manufacturing method of the radiological image detecting device

Also Published As

Publication number Publication date
JP2015137885A (en) 2015-07-30

Similar Documents

Publication Publication Date Title
US9847369B2 (en) High-performance radiation detectors and methods of fabricating thereof
US9634055B2 (en) Radiation detectors and methods of fabricating radiation detectors
JP4026339B2 (en) SiC electrode and manufacturing method thereof
Wei et al. A solar‐blind UV detector based on graphene‐microcrystalline diamond heterojunctions
US11018238B2 (en) Structure, method for manufacturing same, semiconductor element, and electronic circuit
Liu et al. 1.2 kV GaN Schottky barrier diodes on free-standing GaN wafer using a CMOS-compatible contact material
Sun et al. A high responsivity and controllable recovery ultraviolet detector based on a WO 3 gate AlGaN/GaN heterostructure with an integrated micro-heater
Maslyanchuk et al. Capabilities of CdTe-Based Detectors With ${\mathrm {MoO}} _ {x} $ Contacts for Detection of X-and $\gamma $-Radiation
Maslyanchuk et al. Performance Comparison of X-and $\gamma $-Ray CdTe Detectors With MoO x, TiO x, and TiN Schottky Contacts
JP6270498B2 (en) Radiation detection element and method for manufacturing radiation detection element
CN110265500B (en) 4H-SiC pixel Schottky radiation detector and preparation method thereof
JP2013157494A (en) Radiation detecting element, radiation detector and radiation detecting element manufacturing method
CN114063140B (en) Preparation method of diamond neutron detector for eliminating polarization effect
JP2016029380A (en) Method of manufacturing radiation detection element
JP2013118213A (en) Silicon carbide semiconductor device and manufacturing method of the same
Raynal et al. GaAs WET and siconi cleaning sequences for an efficient oxide removal
Yoshida et al. Dynamic variation of carrier transport properties of recessed Au-free ohmic contacts to InAlN/AlN/GaN on Si-wafer
WO2020066070A1 (en) Radiation detection element and production method for radiation detection element
JP5541190B2 (en) Metal impurity concentration evaluation method for P-type silicon wafer
JP5564928B2 (en) DLTS measurement electrode and manufacturing method thereof
JP7220572B2 (en) Method for preparing electrode for DLTS measurement
Kumar Ohmic contacts to homoepitaxially grown p-type and n-type germanium
Maslyanchuk et al. CdTe based X/γ-ray detector with MoOx contacts
KR100947786B1 (en) Method to evaluate bulk metallic impurities in wafer
JPH085749A (en) Semiconductor radiation detector and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R150 Certificate of patent or registration of utility model

Ref document number: 6270498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250