JP6270345B2 - Optical element manufacturing method - Google Patents

Optical element manufacturing method Download PDF

Info

Publication number
JP6270345B2
JP6270345B2 JP2013118876A JP2013118876A JP6270345B2 JP 6270345 B2 JP6270345 B2 JP 6270345B2 JP 2013118876 A JP2013118876 A JP 2013118876A JP 2013118876 A JP2013118876 A JP 2013118876A JP 6270345 B2 JP6270345 B2 JP 6270345B2
Authority
JP
Japan
Prior art keywords
workpiece
optical element
tool
manufacturing
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013118876A
Other languages
Japanese (ja)
Other versions
JP2014235406A (en
Inventor
裕樹 宮内
裕樹 宮内
井出 邦仁
邦仁 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013118876A priority Critical patent/JP6270345B2/en
Publication of JP2014235406A publication Critical patent/JP2014235406A/en
Application granted granted Critical
Publication of JP6270345B2 publication Critical patent/JP6270345B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)

Description

本発明は、球面レンズ等の部品の製造方法および加工装置に関するものである。   The present invention relates to a method for manufacturing a component such as a spherical lens and a processing apparatus.

従来、球面レンズ等の光学素子の研磨加工方法としては、発泡ポリウレタン等の弾性体工具に砥粒を含む研磨スラリーを供給し、工具に砥粒を一時的に保持させ、被加工物に前記砥粒を一定荷重で接触させる。そして工具と被加工物を相対的に回転および揺動させることで、被加工物を破壊しながら除去を行う遊離砥粒研磨方法が一般的である。この加工動作により、被加工物を所望の形状に加工するとともに、平滑化された面を得る。この遊離砥粒研磨方法における研磨量は、工具と被加工物の接触圧力、工具と被加工物の相対速度および工具と被加工物の接触時間(滞留時間)に比例することが知られている。しかし、工具と被加工物を相対的に回転及び揺動させる遊離砥粒研磨方法は、工具の中心部と周辺部における被加工物に対する相対速度が異なる。ゆえに、工具と被加工物の相対速度、工具と被加工物の接触時間を被加工面全面にわたって常に一定とすることは困難である。また、所望の形状にするためには、被加工物の被加工面全面にわたって接触圧力を制御しなければならないが、遊離砥粒研磨方法は工具に対して一定の荷重を被加工物に加えながら行なう加工方法である。しかも被加工面全面の研磨量は一定ではなく、さらに、砥粒により工具も摩耗してしまい、工具も刻一刻と形状が変化してしまうため、接触圧力を制御することは不可能であった。所望の形状を有する被加工物を得るためには、接触圧力、相対速度、滞留時間の条件を逐一適切に設定し直す必要があり、このような加工条件の設定は、熟練した技能を必要とすることが多かった。そのため、相対速度、滞留時間の条件設定によって所望の形状を得るための装置および方法について提案がなされている。例えば特許文献1に示される研磨装置は、被加工物の工具に対する揺動幅をあらかじめ設定される範囲で制御可能な装置である。この装置によれば、被加工物と工具の揺動幅をあらかじめ設定した範囲で連続的に変化させられるため、研磨量のムラを平均化することができる。また、特許文献2に示される方法は、被加工物および工具の揺動幅を一定にしたまま、揺動中心位置を連続的に変化させる方法である。この方法によれば、工具位置による接触圧力のムラを分散させることで、被加工物の研磨量ムラを抑えることができる。   Conventionally, as a polishing method for an optical element such as a spherical lens, a polishing slurry containing abrasive grains is supplied to an elastic tool such as polyurethane foam, the abrasive grains are temporarily held by a tool, and the abrasive is applied to a workpiece. The grains are brought into contact with a constant load. A loose abrasive polishing method is generally used in which removal is performed while destroying the workpiece by relatively rotating and swinging the tool and the workpiece. By this processing operation, the workpiece is processed into a desired shape and a smoothed surface is obtained. The amount of polishing in this loose abrasive polishing method is known to be proportional to the contact pressure between the tool and the workpiece, the relative speed between the tool and the workpiece, and the contact time (residence time) between the tool and the workpiece. . However, in the loose abrasive polishing method in which the tool and the workpiece are relatively rotated and oscillated, the relative speed with respect to the workpiece in the central portion and the peripheral portion of the tool is different. Therefore, it is difficult to keep the relative speed between the tool and the workpiece and the contact time between the tool and the workpiece always constant over the entire surface to be processed. Further, in order to obtain a desired shape, the contact pressure must be controlled over the entire work surface of the work piece, but the loose abrasive polishing method applies a certain load to the work piece against the tool. This is a processing method to be performed. Moreover, the amount of polishing of the entire surface to be processed is not constant, and the tool is also worn by the abrasive grains, and the shape of the tool changes every moment, so it is impossible to control the contact pressure. . In order to obtain a workpiece having a desired shape, it is necessary to properly reset the conditions of contact pressure, relative speed, and residence time one by one. Setting of such processing conditions requires skilled skills. There were many things to do. Therefore, an apparatus and a method for obtaining a desired shape by setting conditions of relative speed and residence time have been proposed. For example, a polishing apparatus disclosed in Patent Document 1 is an apparatus that can control a swing width of a workpiece with respect to a tool within a preset range. According to this apparatus, since the rocking width of the workpiece and the tool can be continuously changed within a preset range, unevenness in the polishing amount can be averaged. The method disclosed in Patent Document 2 is a method of continuously changing the swing center position while keeping the swing width of the workpiece and the tool constant. According to this method, unevenness in the polishing amount of the workpiece can be suppressed by dispersing unevenness in the contact pressure due to the tool position.

特開平09−300191号公報JP 09-300191 A 特開2006−116678号公報JP 2006-116678 A

しかしながら、研磨スラリーを用いる遊離砥粒研磨方法においては、被加工物を破壊しながら除去を行う方法であるため、被加工物表面にキズなどの表面欠陥が生じる可能性がある。砥粒を使用している以上、あらゆる加工条件において表面欠陥の発生を防ぐことは困難である。また、工具も砥粒により摩耗してしまうため常に形状が変化してしまう。そのため、加工結果から適切な条件を逐一設定し直すという作業が必要となる。   However, since the loose abrasive polishing method using the polishing slurry is a method of removing while destroying the workpiece, surface defects such as scratches may occur on the surface of the workpiece. As long as abrasive grains are used, it is difficult to prevent the occurrence of surface defects under all processing conditions. Moreover, since the tool is also worn by the abrasive grains, the shape always changes. Therefore, an operation of resetting appropriate conditions one by one from the processing result is necessary.

さらに、上記特許文献1および2に記載の従来例では、使用する工具と被加工物との接触圧力分布によって、適切な揺動幅、揺動位置の範囲も変化する。そのため、適切な揺動幅、揺動位置の範囲を設定するには、任意の条件で試し加工を行い、その加工結果から適切な条件を設定するという作業を要する。また、目標とする形状によっても、適切な揺動幅、揺動位置の範囲は異なるため、上記と同様に試し加工の結果から適切な条件を設定するという作業が必要となる。すなわち、従来の研磨方法においては、所望の形状を得るための条件設定に多大な労力を要するという問題があった。   Furthermore, in the conventional examples described in Patent Documents 1 and 2, the appropriate swing width and swing position range also vary depending on the contact pressure distribution between the tool used and the workpiece. For this reason, in order to set the appropriate swing width and swing range, it is necessary to perform trial machining under arbitrary conditions and set appropriate conditions based on the machining results. In addition, since the appropriate swing width and swing range are different depending on the target shape, it is necessary to set an appropriate condition from the result of the trial machining as described above. That is, in the conventional polishing method, there is a problem that much labor is required for setting conditions for obtaining a desired shape.

本発明の解決すべき課題は、部品の製造方法において、加工条件を簡易に設定でき、かつ表面欠陥を生じさせず、被加工物を目標とする形状に加工するための部品の製造方法および加工装置を提供することである。   The problems to be solved by the present invention are a part manufacturing method and a part processing method for processing a workpiece into a target shape without causing surface defects, in which processing conditions can be easily set in the part manufacturing method. Is to provide a device.

本発明の光学素子の製造方法は、工具と被加工物とを相対的に移動させることで、前記被加工物を目標とする球面形状に加工することで光学素子を製造する光学素子の製造方法であって、前記工具は支持部と、前記被加工物と対向する面に形成された遷移金属を含む触媒部と、前記支持部と前記触媒部との間に配された弾性体とを有し、前記触媒部は球面形状を有し、前記触媒部と前記被加工物との間に水分子を含有する加工液を供給し、前記弾性体を収縮させることで、前記触媒部と前記被加工物とを前記加工液を介在させて接触させ、前記収縮させた弾性体の収縮量が所定の値以下になるまで加工を行なうことを特徴とする。 Method of manufacturing an optical element of the present invention, by relatively moving the tool and the workpiece, method of manufacturing an optical element for producing an optical element by processing the workpiece into a spherical shape with the target The tool includes a support portion, a catalyst portion including a transition metal formed on a surface facing the workpiece, and an elastic body disposed between the support portion and the catalyst portion. The catalyst portion has a spherical shape, and a processing liquid containing water molecules is supplied between the catalyst portion and the workpiece, and the elastic body is contracted, whereby the catalyst portion and the workpiece are contracted. The workpiece is brought into contact with the processing liquid interposed, and the processing is performed until the contraction amount of the contracted elastic body becomes a predetermined value or less.

本発明の光学素子の製造方法は、工具と被加工物とを相対的に移動させることで、前記被加工物を目標とする球面形状に加工することで光学素子を製造する光学素子の製造方法であって、前記工具は支持部と、前記被加工物と対向する面に形成された遷移金属を含む触媒部と、前記支持部と前記触媒部との間に配された弾性体とを有し、前記工具は円筒型であって、前記触媒部の前記被加工物と対向する面は円形状を有し、前記工具を工具の回転軸の回りに回転させ、前記被加工物を被加工物の回転軸の回りに回転させて、前記触媒部と前記被加工物との間に水分子を含有する加工液を供給し、前記弾性体を収縮させることで、前記触媒部と前記被加工物とを前記加工液を介在させて接触させ、前記収縮させた弾性体の収縮量が所定の値以下になるまで加工を行なうことを特徴とする。 Method of manufacturing an optical element of the present invention, by relatively moving the tool and the workpiece, method of manufacturing an optical element for producing an optical element by processing the workpiece into a spherical shape with the target The tool includes a support portion, a catalyst portion including a transition metal formed on a surface facing the workpiece, and an elastic body disposed between the support portion and the catalyst portion. The tool is cylindrical, and the surface of the catalyst portion facing the workpiece has a circular shape, and the tool is rotated around the rotation axis of the tool to process the workpiece. Rotating around the rotation axis of the object, supplying a working fluid containing water molecules between the catalyst part and the workpiece, and contracting the elastic body, the catalyst part and the workpiece The amount of contraction of the elastic body that has been contracted is less than or equal to a predetermined value. And performing processing until.

本発明の加工装置は、被加工物を保持する保持部と、前記被加工物を加工するための工具と、前記被加工物を回転軸の回りに回転させる手段と、前記工具を工具の回転軸の回りに回転させる手段と、を有する加工装置であって、前記工具は、円筒型であって、支持部と、前記被加工物と対向する面に形成された遷移金属を含む触媒部と、前記支持部と前記触媒部との間に配された弾性体とを有し、前記触媒部の前記被加工物と対向する面は円形状を有し、前記被加工物と前記触媒部の前記被加工物と対向する面に水分子を含む加工液を供給する手段をさらに有することを特徴とする。   The processing apparatus of the present invention includes a holding unit that holds a workpiece, a tool for processing the workpiece, a means for rotating the workpiece around a rotation axis, and a tool that rotates the tool. Means for rotating around an axis, wherein the tool is cylindrical, a support part, and a catalyst part including a transition metal formed on a surface facing the workpiece. An elastic body disposed between the support portion and the catalyst portion, and a surface of the catalyst portion facing the workpiece has a circular shape, and the workpiece and the catalyst portion have a circular shape. The apparatus further includes means for supplying a processing liquid containing water molecules to a surface facing the workpiece.

本発明によれば、砥粒を使用せずに被加工物を目標とする形状に加工することができ、表面欠陥のない被加工物が得られる。また、工具の摩耗を抑えることができるため、加工条件を簡易に設定することができ、加工の生産性が向上するという効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, a workpiece can be processed into the target shape, without using an abrasive grain, and the workpiece without a surface defect is obtained. Moreover, since wear of the tool can be suppressed, the machining conditions can be set easily, and the productivity of machining is improved.

本実施形態に係る製造方法を示す図である。It is a figure which shows the manufacturing method which concerns on this embodiment. 本実施形態に係る製造方法で使用される工具の例を示す図である。It is a figure which shows the example of the tool used with the manufacturing method which concerns on this embodiment. 本実施形態に係る製造方法をより詳細に示す図である。It is a figure which shows the manufacturing method which concerns on this embodiment in detail. 本実施形態に係る製造方法を示す図である。It is a figure which shows the manufacturing method which concerns on this embodiment.

図1に本発明を実施するための形態を示す。図1(a)において、工具1は回転駆動体2に、回転駆動体2は旋回駆動体3に、旋回駆動体3はX軸、Y軸に移動可能なステージ4に、ステージ4は加工装置本体(不図示)にそれぞれ取り付けられている。被加工物5は保持部6に、保持部6は回転駆動体7に、回転駆動体7はX軸、Y軸に移動可能なステージ8に、ステージ8は加工機本体(不図示)にそれぞれ取り付けられている。また、加工装置にはHOを含む加工液9を供給するための供給手段10が取り付けられている。加工装置は、任意の位置に原点Oを有している。図1(b)に、図1(a)における工具1の詳細を示す。図1(b)において、工具1は支持部11と、被加工物5表面と対向する面に触媒部12が形成され、支持部11と触媒部12の間には弾性体13を有している。前記弾性体13は、単一の弾性材料のみで構成されてもよく、複数の弾性材料で構成されてもよい。本実施形態は、加工装置の任意の位置に設定される原点Oを基準に、ステージ4、ステージ8、旋回駆動体3、回転駆動体2、回転駆動体7を駆動し、工具1および被加工物5の相対的な位置を制御する。そして、触媒部12表面と被加工物5表面(被加工面)との間に水分子(HO)を含む加工液9を介在させた状態で触媒部12と被加工物を接近させ相対的に移動させることで被加工物5の被加工面を加工する。水分子(H2O)を含む加工液9を介在させた状態で触媒部12と被加工物5を接触させるとは、触媒部12と被加工物5との間に、極めて薄い水分子を含む液膜が介在している状態を含む。以下、この状態を含め、本明細書では触媒部12と被加工物5を接触させると称する。なお、極めて薄い水分子を含む液膜の膜厚は、3Å以上10Å以下 であることが好ましい。 FIG. 1 shows an embodiment for carrying out the present invention. In FIG. 1A, the tool 1 is a rotary drive body 2, the rotary drive body 2 is a turning drive body 3, the turning drive body 3 is a stage 4 movable to the X axis and the Y axis, and the stage 4 is a processing device. Each is attached to a main body (not shown). The workpiece 5 is in the holding unit 6, the holding unit 6 is in the rotary drive 7, the rotary drive 7 is in the stage 8 movable to the X axis and Y axis, and the stage 8 is in the processing machine main body (not shown). It is attached. Further, a supply means 10 for supplying the processing liquid 9 containing H 2 O is attached to the processing apparatus. The processing apparatus has an origin O at an arbitrary position. FIG.1 (b) shows the detail of the tool 1 in Fig.1 (a). In FIG. 1B, the tool 1 has a support portion 11 and a catalyst portion 12 formed on a surface facing the surface of the workpiece 5, and an elastic body 13 is provided between the support portion 11 and the catalyst portion 12. Yes. The elastic body 13 may be composed of only a single elastic material, or may be composed of a plurality of elastic materials. In this embodiment, the stage 4, the stage 8, the turning drive body 3, the rotation drive body 2, and the rotation drive body 7 are driven with the origin O set at an arbitrary position of the processing apparatus as a reference, and the tool 1 and the workpiece Control the relative position of the object 5. Then, the catalyst unit 12 and the workpiece are brought close to each other with the machining liquid 9 containing water molecules (H 2 O) interposed between the surface of the catalyst unit 12 and the surface of the workpiece 5 (working surface). The processing surface of the workpiece 5 is processed by moving the workpiece 5 in a moving manner. When the catalyst part 12 and the workpiece 5 are brought into contact with the processing liquid 9 containing water molecules (H 2 O) interposed, the liquid containing extremely thin water molecules between the catalyst part 12 and the workpiece 5 Including the state in which the membrane is interposed. Hereinafter, in this specification, including this state, the catalyst unit 12 and the workpiece 5 are referred to as being brought into contact with each other. The film thickness of the liquid film containing extremely thin water molecules is preferably 3 mm or more and 10 mm or less.

本実施形態に係る触媒部12は、水分子(HO)からOHとHとの解離を促進させる。解離したOHとHは、被加工物を構成する酸素元素に作用し、酸素元素と他の元素のバックボンドを切断し、加水分解により被加工物表面から酸素元素を加工液中に溶け出させるとともに、バックボンドを切られた他の元素も溶出させる。この加水分解作用により、被加工物を加工する。この時、触媒部12は、水分子の解離を促進させるだけであるため、摩耗が少なく、形状の変化を十分に抑えることができる。触媒部12の材料は、加水分解による分解生成物の生成を助長する触媒物質として、少なくとも1種類以上の遷移金属元素を含む。遷移金属元素としては、Pt、Au、Ag、Cu、Ni、Cr、Mo等が挙げられるが、これらの金属元素単体でも、または遷移金属元素を含む複数の金属元素からなる合金であってもよい。また、触媒部12を弾性体14と接合する手段としては、特に限定されるものではないが、触媒材料を弾性体表面に薄膜コーティングする方法が望ましい。触媒部を薄膜コーティングする方法については、スパッタ法やCVD法、めっき法、塗布乾燥法といった一般的なコーティング方法でよく、その方法に限定されない。また、触媒部と弾性体の密着力を上げるために、触媒部と弾性体の間にはカーボンなどの中間層を設けることがより望ましい。触媒部の膜厚については、特に限定されないが、触媒が単体の元素であればその原子サイズ以上、複数の元素からなるものであればその凝集体のサイズ以上であることが望ましい。また、被加工物が光学素子である場合、一般的に500nm以下の形状精度が求められる。このとき、触媒部の膜厚の違いが被加工物の形状精度に影響をおよぼすため、膜厚は工具加工面内で均一にすることが望ましい。工具加工面での膜厚誤差を許容する場合は、被加工物の形状精度を劣化させないという観点から、500nm以下であることが望ましい。 The catalyst unit 12 according to the present embodiment promotes dissociation of OH and H + from water molecules (H 2 O). The dissociated OH and H + act on the oxygen element constituting the workpiece, cut back bonds between the oxygen element and other elements, and dissolve the oxygen element from the workpiece surface into the machining liquid by hydrolysis. As well as letting out other elements from which back bonds have been cut. The workpiece is processed by this hydrolysis action. At this time, since the catalyst part 12 only promotes dissociation of water molecules, there is little wear and the change in shape can be sufficiently suppressed. The material of the catalyst part 12 contains at least one or more transition metal elements as a catalyst substance that promotes the generation of decomposition products by hydrolysis. Examples of the transition metal element include Pt, Au, Ag, Cu, Ni, Cr, and Mo. These metal elements may be a single element or an alloy composed of a plurality of metal elements including a transition metal element. . In addition, the means for joining the catalyst portion 12 to the elastic body 14 is not particularly limited, but a method of thin-film coating the catalyst material on the elastic body surface is desirable. The method for coating the catalyst portion with a thin film may be a general coating method such as a sputtering method, a CVD method, a plating method, or a coating and drying method, and is not limited to this method. In order to increase the adhesion between the catalyst portion and the elastic body, it is more desirable to provide an intermediate layer such as carbon between the catalyst portion and the elastic body. The film thickness of the catalyst portion is not particularly limited, but it is preferably greater than the atomic size if the catalyst is a single element, or greater than the size of the aggregate if the catalyst is composed of a plurality of elements. Further, when the workpiece is an optical element, generally a shape accuracy of 500 nm or less is required. At this time, since the difference in the film thickness of the catalyst portion affects the shape accuracy of the workpiece, it is desirable that the film thickness be uniform within the tool machining surface. In the case of allowing a film thickness error on the tool processing surface, the thickness is desirably 500 nm or less from the viewpoint of not deteriorating the shape accuracy of the workpiece.

本実施形態に係る弾性体13は、特にその材料が限定されるものではないが、弾性体13の変形によって被加工物5と固体触媒12の接触面積を増大させることで、局所的な圧力増加を生じさせない機能を有することが望ましい。また、接触により弾性体13にひずみが発生した際に、塑性変形しないことが望ましい。すなわち、弾性率と降伏応力の比率が、想定されるひずみ量より十分大きいことが望ましい。一般的に、光学素子においては加工前の被加工物の形状と目標形状との最大誤差量は10μm以下であることが多い。例えば、弾性体13の厚みを1mmとし、形状誤差による変形量を10μmとすると、ひずみ量は1%である。このような場合、弾性体13の弾性率と降伏応力の比率が1%以上であることが望ましい。前記材料としては、圧縮弾性率が2000MPa以上3000MPa以下、降伏応力が1MPa以上100MPa以下であるエポキシ樹脂や、圧縮弾性率が70MPa以上700MPa、降伏応力が20MPa以上30MPa以下であるポリウレタン樹脂などの合成樹脂材料が挙げられる。被加工物への表面欠陥発生リスクをさらに低減させるという観点から、圧縮弾性率がより小さい材料が望ましい。前記材料としては、圧縮弾性率が1MPa以上10MPa以下、降伏応力が1MPa程度である発泡ポリウレタン樹脂等の発泡樹脂材料が挙げられる。また、被加工物5と固体触媒12の相対運動により発生する弾性体13のせん断変形や、遠心力による変形を小さくするという観点から、圧縮弾性率が0.1MPa以上であることが望ましい。   The material of the elastic body 13 according to the present embodiment is not particularly limited, but a local pressure increase is obtained by increasing the contact area between the workpiece 5 and the solid catalyst 12 by deformation of the elastic body 13. It is desirable to have a function that does not cause the problem. It is desirable that the elastic body 13 is not plastically deformed when the elastic body 13 is strained by contact. That is, it is desirable that the ratio between the elastic modulus and the yield stress is sufficiently larger than the assumed strain amount. Generally, in an optical element, the maximum error amount between the shape of a workpiece before processing and the target shape is often 10 μm or less. For example, when the thickness of the elastic body 13 is 1 mm and the deformation amount due to the shape error is 10 μm, the strain amount is 1%. In such a case, it is desirable that the ratio of the elastic modulus of the elastic body 13 to the yield stress is 1% or more. Examples of the material include synthetic resins such as an epoxy resin having a compressive modulus of 2000 MPa to 3000 MPa and a yield stress of 1 MPa to 100 MPa, and a polyurethane resin having a compressive modulus of 70 MPa to 700 MPa and a yield stress of 20 MPa to 30 MPa. Materials. From the viewpoint of further reducing the risk of occurrence of surface defects on the workpiece, a material having a smaller compression modulus is desirable. Examples of the material include foamed resin materials such as a foamed polyurethane resin having a compressive modulus of 1 MPa to 10 MPa and a yield stress of about 1 MPa. Further, from the viewpoint of reducing the shear deformation of the elastic body 13 generated by the relative motion of the workpiece 5 and the solid catalyst 12 and the deformation due to the centrifugal force, it is desirable that the compression elastic modulus is 0.1 MPa or more.

本実施形態に係る被加工物の材質については、特に限定されるものではない。被加工物が光学素子である場合の材料として用いられるものとしてとしては主にガラスが挙げられ、その組成としてはホウ酸を含むホウ酸塩系ガラス、リン酸を含むリン酸塩系ガラス、さらには酸化バリウム、酸化チタン、酸化ランタン等を含むガラスが挙げられる。また、リン酸塩系ガラスについては、フッ化カルシウム、フッ化バリウムなどのフッ化物を含むフツリン酸塩系ガラスも挙げられる。ガラス以外の被加工物の材質を追記してください。   The material of the workpiece according to the present embodiment is not particularly limited. Glass is mainly used as a material when the workpiece is an optical element, and the composition thereof includes borate glass containing boric acid, phosphate glass containing phosphoric acid, Includes glass containing barium oxide, titanium oxide, lanthanum oxide and the like. Examples of phosphate glass include fluorophosphate glass containing fluorides such as calcium fluoride and barium fluoride. Add the material of the workpiece other than glass.

本発明に係る加工液は、水分子(HO)を含むことが必須であるが、その組成は限定されるものではない。例えば、pH調整のためにHNOやKOHなどの成分が含まれていてもよい。また、pH緩衝液として、酢酸緩衝液やリン酸緩衝液など成分が含まれていてもよい。加工液のpHについては、加工速度の観点から2以上12以下の範囲が望ましく、さらに装置の劣化や環境負荷の低減の観点から、3以上10以下の範囲であることがより望ましい。また、加工液全体の重量に対する水分子の重量が99重量%以上になるように、加工液中に水分子(HO)を含むことが好ましく、加工液全体の重量に対して水分子以外の物質の含有量が1ppm以下であることがより好ましい。また、加工液中にpH緩衝液を含む場合は、加工液全体の重量に対する水分子の重量が95重量%以上になるように、加工液中に水分子(HO)を含むことが好ましい。そして、加工液全体の重量に対して水分子およびpH緩衝液以外の物質の含有量が1ppm以下であることがより好ましい。また、本発明においては固体粒子による被加工物の除去作用を必要としないため、加工液には固体粒子を含まないことが望ましい。 The working fluid according to the present invention must contain water molecules (H 2 O), but the composition is not limited. For example, components such as HNO 3 and KOH may be included for pH adjustment. Moreover, components, such as an acetate buffer solution and a phosphate buffer solution, may be contained as a pH buffer solution. The pH of the working fluid is preferably in the range of 2 to 12 from the viewpoint of processing speed, and more preferably in the range of 3 to 10 from the viewpoint of deterioration of the apparatus and reduction of environmental load. In addition, it is preferable that the working fluid contains water molecules (H 2 O) so that the weight of water molecules with respect to the total weight of the working fluid is 99% by weight or more. The content of the substance is more preferably 1 ppm or less. When the pH buffer solution is included in the processing liquid, it is preferable that the processing liquid contains water molecules (H 2 O) so that the weight of water molecules is 95% by weight or more based on the total weight of the processing liquid. . And it is more preferable that content of substances other than a water molecule and pH buffer solution is 1 ppm or less with respect to the weight of the whole processing liquid. Further, in the present invention, since the removal action of the workpiece by the solid particles is not required, it is desirable that the processing liquid does not contain solid particles.

次に、工具の形状について図2を用いて説明する。   Next, the shape of the tool will be described with reference to FIG.

本発明に係る工具1の形状は、特に限定されるものではないが、円筒型の工具、もしくは、触媒部12の、被加工面と対向する面が、被加工物の目標とする形状(目標形状)を転写する形状であり、たとえば球面形状を有する工具が望ましい。被加工物の目標とする形状も球面形状であることが望ましい。図2(a)、図2(b)に、円筒型工具の例を示す。図2(a)において、弾性体13に圧力が加わっていない状態において触媒部12は円形状を有し、被加工物5の目標とする形状面(加工後の形状)と接する円の径(以下、有効径と記載)をDtとする。また、被加工物5の外径をDw、円筒型工具の幅をW、触媒部12先端の曲率半径をR3とする。ここで、DtはDw/2以上であることが望ましい。R3の大きさはW以上であればよく、Wに近い値であることがより望ましい。また、触媒部12と被加工物5の接触面積を増やし、加工速度を増やす観点から、図2(b)に示すような、触媒部12の曲率半径が、被加工物の目標曲率半径R0である工具も望ましい。また、さらに加工速度を増やすという観点から、図2(c)に示されるような、触媒部12の、被加工面と対向する面が、被加工物の目標とする形状(目標形状)を転写する形状を有する工具でもよい。図2(c)において、触媒部12の被加工面と対向する面の曲率半径は、被加工物の目標とする形状の曲率半径R0に設定される。   The shape of the tool 1 according to the present invention is not particularly limited. However, the cylindrical tool or the surface of the catalyst unit 12 that faces the processing surface is a target shape of the workpiece (target For example, a tool having a spherical shape is desirable. It is desirable that the target shape of the workpiece is also a spherical shape. 2A and 2B show examples of cylindrical tools. In FIG. 2A, the catalyst portion 12 has a circular shape in a state where no pressure is applied to the elastic body 13, and the diameter of the circle that contacts the target shape surface (the processed shape) of the workpiece 5 ( Hereinafter, the effective diameter is described as Dt. Further, the outer diameter of the workpiece 5 is Dw, the width of the cylindrical tool is W, and the radius of curvature of the tip of the catalyst unit 12 is R3. Here, Dt is desirably Dw / 2 or more. The magnitude of R3 may be greater than or equal to W, and is more preferably close to W. Further, from the viewpoint of increasing the contact area between the catalyst portion 12 and the workpiece 5 and increasing the processing speed, the curvature radius of the catalyst portion 12 as shown in FIG. 2B is the target curvature radius R0 of the workpiece. Some tools are also desirable. Further, from the viewpoint of further increasing the processing speed, the surface of the catalyst portion 12 facing the processing surface as shown in FIG. 2C transfers the target shape (target shape) of the processing object. A tool having a shape to be used may be used. In FIG.2 (c), the curvature radius of the surface which opposes the to-be-processed surface of the catalyst part 12 is set to the curvature radius R0 of the target shape of a to-be-processed object.

次に、本発明の部品の製造方法の一実施形態について、図1を用いて説明する。   Next, an embodiment of a method for manufacturing a component according to the present invention will be described with reference to FIG.

図1(a)に示すように、工具1は回転駆動体2によって回転する。被加工物5は、回転駆動体7によって回転する。本実施形態では工具1および被加工物5が両方とも回転する例を示すが、工具1と被加工物5のどちらか一方が回転する形態であってもよい。回転駆動体2、ステージ4によって工具1を移動させ、回転駆動体7、ステージ8によって被加工物5移動させて、工具および被加工物を相対的に移動させる。また、旋回駆動体3、ステージ4によって工具1を被加工物5に対して揺動(円周方向に往復移動)させてもよい。弾性体13に圧力が加わっていない状態での触媒部12先端の移動軌跡を、原点Oを基準に決められる被加工物5の目標形状の面に一致させた状態で、工具1と被加工物5を相対的に移動させることが好ましい。被加工物の目標とする形状は予め求めておくことが望ましい。   As shown in FIG. 1A, the tool 1 is rotated by a rotary drive body 2. The workpiece 5 is rotated by the rotary drive body 7. In this embodiment, an example in which both the tool 1 and the workpiece 5 are rotated is shown, but either the tool 1 or the workpiece 5 may be rotated. The tool 1 is moved by the rotary drive 2 and the stage 4, and the workpiece 5 is moved by the rotary drive 7 and the stage 8, so that the tool and the workpiece are relatively moved. Further, the tool 1 may be swung (reciprocated in the circumferential direction) with respect to the workpiece 5 by the swing drive body 3 and the stage 4. The tool 1 and the work piece in a state where the movement trajectory of the tip of the catalyst part 12 in a state where no pressure is applied to the elastic body 13 is made to coincide with the surface of the target shape of the work piece 5 determined based on the origin O. It is preferable to move 5 relatively. It is desirable to obtain the target shape of the workpiece in advance.

図1(c)に、弾性体13が収縮していない状態(弾性体13に圧力が加わっていない状態)での触媒部12先端の移動軌跡を、被加工物6の加工後の目標とする形状の面に一致するように、工具1と被加工物5を相対的に移動させている状態を示す。ここでは、加工前の被加工物5が、目標とする曲率半径R0と異なる曲率半径R1を有している場合の状態を示している。図1(c)に示されるように、加工前および加工中の被加工物が目標とする形状に対する形状誤差(加工しなければならない部分)を有している場合、弾性体13が収縮(弾性変形)することによってその誤差量を吸収する。そのため、被加工物5に局所的な圧力増大を生じさせることなく触媒部12と被加工面との水分子を介した接触状態を保つことができ、表面欠陥が生じることなく被加工物5表面(被加工面)を加工できる。そして、弾性体13の収縮量が所定の値になるまで(理想的には変形が無くなるまで)加工を行うことで、図1(b)に示されるように、目標とする形状を有する被加工物が得られる。   In FIG. 1 (c), the movement locus of the tip of the catalyst unit 12 in a state where the elastic body 13 is not contracted (a state where no pressure is applied to the elastic body 13) is set as a target after processing the workpiece 6. A state in which the tool 1 and the workpiece 5 are relatively moved so as to coincide with the surface of the shape is shown. Here, a state in which the workpiece 5 before processing has a curvature radius R1 different from the target curvature radius R0 is shown. As shown in FIG. 1 (c), when the workpiece before and during processing has a shape error (a portion that must be processed) with respect to a target shape, the elastic body 13 contracts (elasticity). The amount of error is absorbed. Therefore, the contact state through the water molecules between the catalyst portion 12 and the surface to be processed can be maintained without causing a local pressure increase in the workpiece 5, and the surface of the workpiece 5 without causing surface defects. (Surface to be processed) can be processed. Then, by performing processing until the amount of contraction of the elastic body 13 reaches a predetermined value (ideally, until no deformation occurs), a workpiece having a target shape as shown in FIG. A thing is obtained.

より具体的に、既知のカーブジェネレータを用いた被加工物の製造方法の例を次に説明する。図3は、円筒形状の工具によって、凹面の球面レンズを加工する例を示したものである。図3(a)において、被加工物5の目標とする形状の曲率半径(加工後の曲率半径)をR0、被加工物5の加工前の曲率半径をR1、触媒部12の先端の有効径をDt、被加工物の回転軸をAA’、工具の回転軸をBB’、AA’とBB’のなす角度をθとする。また、有効径Dtにおける触媒部12先端の点をPt 1、Pt 2とし、被加工物の目標とする形状(加工後の形状)における回転軸AA’上の点をP0とする。このとき、R1>R0とし、AA’とBB’は同一平面上に存在するものとする。まず、θ = sin−1(Dt /2R0)となるようにAA’を旋回させ、さらにPt 1がAA’と一致するように工具をX軸方向に移動する。このときの工具および被加工物の位置関係を、図3(b)に示す。この状態で、P0とPt1が一致する方向に工具1をY軸方向に移動させることで被加工物5に触媒部12を接触させる。前記触媒部と前記被加工物の被加工面との間に水分子(HO)を含む加工液を供給しながら、前記被加工物および前記工具を回転させることで、被加工物を加工する。 More specifically, an example of a method for manufacturing a workpiece using a known curve generator will be described below. FIG. 3 shows an example of processing a concave spherical lens with a cylindrical tool. 3A, the radius of curvature of the target shape of the workpiece 5 (the radius of curvature after machining) is R0, the radius of curvature of the workpiece 5 before machining is R1, and the effective diameter of the tip of the catalyst unit 12 is Is Dt, the rotation axis of the workpiece is AA ′, the rotation axis of the tool is BB ′, and the angle between AA ′ and BB ′ is θ. Further, the point at the tip of the catalyst portion 12 at the effective diameter Dt is Pt 1 and Pt 2, and the point on the rotation axis AA ′ in the target shape of the workpiece (the shape after processing) is P 0. At this time, R1> R0 and AA ′ and BB ′ are on the same plane. First, AA ′ is turned so that θ = sin−1 (Dt / 2R0), and the tool is moved in the X-axis direction so that Pt 1 coincides with AA ′. FIG. 3B shows the positional relationship between the tool and the workpiece at this time. In this state, the catalyst unit 12 is brought into contact with the workpiece 5 by moving the tool 1 in the Y-axis direction in the direction in which P0 and Pt1 coincide. The workpiece is processed by rotating the workpiece and the tool while supplying a machining fluid containing water molecules (H 2 O) between the catalyst portion and the workpiece surface of the workpiece. To do.

さらに、Pt 2が曲率半径R0の面と一致した時、工具1のY軸方向への移動を停止させる。Pt 2が曲率半径R0の面と一致した時とは、すなわち、弾性体13に圧力が加わっていない状態(弾性体13が収縮していない状態)での触媒部12先端の移動軌跡が、被加工物5の目標とする形状(加工後の形状)R0面と一致した時である。このときの工具1および被加工物5の位置関係を、図3(c)に示す。加工初期においては、前記触媒部表面は曲率半径R1上で被加工物と水分子を介して接触するため、R1とR0の形状誤差部分(加工しなければならない部分)を吸収するように弾性体13が収縮する。弾性体13の収縮量が所定の値以下になるまで被加工物5を加工することで、図3(d)に示すように、目標とする形状の曲率半径R0を有する被加工物が得られる。このように非常に簡単な加工条件設定だけで、目標とする形状を得ることができる。   Further, when Pt 2 coincides with the surface having the curvature radius R0, the movement of the tool 1 in the Y-axis direction is stopped. When Pt 2 coincides with the surface having the radius of curvature R0, that is, the movement locus of the tip of the catalyst portion 12 in a state where no pressure is applied to the elastic body 13 (a state where the elastic body 13 is not contracted) This is when the target shape of the workpiece 5 (the shape after processing) matches the R0 plane. The positional relationship between the tool 1 and the workpiece 5 at this time is shown in FIG. In the initial stage of processing, since the surface of the catalyst part comes into contact with the work piece via the water molecule on the curvature radius R1, the elastic body absorbs the shape error part (the part that must be processed) of R1 and R0. 13 contracts. By processing the workpiece 5 until the amount of contraction of the elastic body 13 becomes a predetermined value or less, as shown in FIG. 3 (d), a workpiece having a curvature radius R0 of a target shape is obtained. . Thus, a target shape can be obtained only by setting very simple processing conditions.

弾性体の収縮が完全に無くなるまで(弾性体13の収縮量が0になるまで)加工(接触)を続けることが望ましい。しかし、弾性体の収縮量が、被加工物9に許容される仕様上の形状誤差の最大値(所定の値)以下であれば弾性体の収縮が残っている状態で加工を終了することももちろん可能である。   It is desirable to continue the processing (contact) until the elastic body is completely contracted (until the amount of contraction of the elastic body 13 becomes 0). However, if the amount of contraction of the elastic body is equal to or less than the maximum value (predetermined value) of the shape error in the specification allowed for the workpiece 9, the processing may be terminated in a state where the contraction of the elastic body remains. Of course it is possible.

触媒部と被加工物の距離が一定の距離(例えば10Åより大きく)離れると被加工物は加工されなくなる。よって、弾性体の収縮がなくなり、被加工物と弾性体の距離が一定の距離(例えば10Åより大きく)離れると、触媒部12と被加工物との接触を続けても、それ以上加工は進まない。接触時間を十分長くとればいずれは収縮量が0となり触媒部と被加工物の距離が一定の距離(例えば10Åより大きく)離れ、加工は終了する。しかし、弾性体13の収縮量を、触媒部と被加工物の水分子を介した接触により発生する少なくとも1つ以上の物理量によりモニターすることで、加工の終了を検知することができる。これにより加工時間の短縮をはかることができる。前記物理量は、荷重センサによって工具および被加工物に加わる力をモニターしてもよく、工具あるいは被加工物の回転駆動体に付加されるトルク値をモニターしてもよい。特に、モニター手段の簡易化という観点から、前記物理量は工具もしくは被加工物の回転駆動体に付加されるトルク値であることがより好ましい。前記物理量があらかじめ定められた値以下になった時点で、加工を終了する。これにより、被加工物が目標とする形状と一致した時点で加工を終了できるため、加工時間を短縮することができる。また、弾性体13を収縮させて、触媒部12先端の移動軌跡を、被加工物5の目標とする形状R0面と一致するように弾性体13を収縮させながら工具を移動させる。その時の工具および被加工物に加わる力を荷重センサによってあらかじめ計測しておく。予め計測しておいた値になった時、工具1のY軸方向への移動を停止させればよい。または、工具の触媒部12先端の移動軌跡が、被加工物5の目標とする形状R0面に一致するように弾性体13を収縮させながら工具を移動させた時の回転駆動体に付加されるトルク値を計測しておく。予め計測しておいたトルク値になった時、工具1のY軸方向への移動を停止させればよい。   If the distance between the catalyst portion and the workpiece is a certain distance (for example, greater than 10 mm), the workpiece is not processed. Therefore, when the elastic body is no longer contracted and the distance between the workpiece and the elastic body is a certain distance (for example, greater than 10 mm), the processing further proceeds even if the contact between the catalyst unit 12 and the workpiece is continued. Absent. If the contact time is made sufficiently long, the amount of shrinkage will eventually become zero, and the distance between the catalyst part and the workpiece will be a certain distance (for example, greater than 10 mm), and the processing will end. However, the end of processing can be detected by monitoring the amount of contraction of the elastic body 13 with at least one physical quantity generated by contact of the catalyst portion and the workpiece with water molecules. Thereby, the processing time can be shortened. The physical quantity may monitor a force applied to the tool and the workpiece by a load sensor, or may monitor a torque value applied to the rotary driving body of the tool or the workpiece. In particular, from the viewpoint of simplifying the monitoring means, the physical quantity is more preferably a torque value added to the rotary drive body of the tool or workpiece. When the physical quantity falls below a predetermined value, the processing is finished. Thereby, since a process can be complete | finished when a to-be-processed object corresponds with the target shape, processing time can be shortened. Further, the elastic body 13 is contracted, and the tool is moved while contracting the elastic body 13 so that the movement locus of the tip of the catalyst unit 12 coincides with the target shape R0 surface of the workpiece 5. The force applied to the tool and workpiece at that time is measured in advance by a load sensor. When the value measured in advance is reached, the movement of the tool 1 in the Y-axis direction may be stopped. Alternatively, it is added to the rotational drive body when the tool is moved while the elastic body 13 is contracted so that the movement locus of the tip of the catalyst portion 12 of the tool coincides with the target shape R0 surface of the workpiece 5. Measure the torque value. When the torque value measured in advance is reached, the movement of the tool 1 in the Y-axis direction may be stopped.

また、弾性体13が収縮(弾性変形)することによってその誤差量を吸収できるが、弾性体13が塑性変形することがないように、予め弾性体の厚みを規定しておくことが望ましい。図4において、加工前の被加工物の形状と加工後の目標形状における、被加工物の回転軸BB’方向の最大形状誤差量をtwとする。また、弾性体13のBB’方向の厚みをteとし、弾性体に対してBB’方向に変位を与えたときに降伏点となるときの変形量をΔteとする。Δteがtwより大きくなるように厚みteを予め設定しておくことが望ましい。これにより、加工初期の段階でPtとP0が一致する位置に工具を移動した場合においても、弾性体13が塑性変形することがないため、目標とする形状を有する被加工物が得られる。   Further, the error amount can be absorbed by the elastic body 13 contracting (elastically deforming), but it is desirable to preliminarily define the thickness of the elastic body so that the elastic body 13 is not plastically deformed. In FIG. 4, the maximum shape error amount in the direction of the rotation axis BB ′ of the workpiece in the shape of the workpiece before machining and the target shape after machining is tw. Further, the thickness of the elastic body 13 in the BB ′ direction is te, and the deformation amount when it becomes the yield point when the elastic body is displaced in the BB ′ direction is Δte. It is desirable to set the thickness te in advance so that Δte is larger than tw. As a result, even when the tool is moved to a position where Pt and P0 coincide with each other at the initial stage of machining, the elastic body 13 is not plastically deformed, so that a workpiece having a target shape can be obtained.

また、事前に測定される被加工物の加工速度に応じて、少なくとも触媒部の先端が被加工物に接触してから目標形状面と一致する位置までの移動速度が設定しておくことが望ましい。例えば、図4において触媒部を被加工物に一定圧力で接触させたときに測定される加工速度がVrであるとすると、工具のBB’方向への移動速度Vtは、Vr以下になるように設定される。これにより、弾性体13が降伏点となるときの変形量が小さい場合においても、弾性体13が塑性変形することがなく、より好ましい。   In addition, it is desirable to set a moving speed from at least the tip of the catalyst portion to the workpiece to a position coinciding with the target shape surface in accordance with the processing speed of the workpiece measured in advance. . For example, assuming that the processing speed measured when the catalyst portion is brought into contact with the workpiece at a constant pressure in FIG. 4 is Vr, the moving speed Vt of the tool in the BB ′ direction is Vr or less. Is set. Thereby, even when the deformation amount when the elastic body 13 becomes the yield point is small, the elastic body 13 is more preferably not plastically deformed.

以上のような被加工物の製造方法により、加工条件を簡易に設定することができるため、加工の生産性が向上し、かつ表面欠陥のない目標形状を有する光学素子を得ることが可能になる。   With the method for manufacturing a workpiece as described above, the processing conditions can be easily set, so that the productivity of processing is improved and an optical element having a target shape without surface defects can be obtained. .

1 工具
2 回転駆動体
3 旋回駆動体
4 ステージ
5 被加工物
6 保持部
7 回転駆動体
8 ステージ
9 加工液
10 供給手段
11 支持部
12 触媒部
13 弾性体
DESCRIPTION OF SYMBOLS 1 Tool 2 Rotation drive body 3 Rotation drive body 4 Stage 5 Work piece 6 Holding part 7 Rotation drive body 8 Stage 9 Work fluid 10 Supply means 11 Support part 12 Catalyst part 13 Elastic body

Claims (19)

工具と被加工物とを相対的に移動させることで、前記被加工物を目標とする球面形状に加工することで光学素子を製造する光学素子の製造方法であって、
前記工具は支持部と、前記被加工物と対向する面に形成された遷移金属を含む触媒部と、前記支持部と前記触媒部との間に配された弾性体とを有し、
前記触媒部は球面形状を有し、
前記触媒部と前記被加工物との間に水分子を含有する加工液を供給し、前記弾性体を収縮させることで、前記触媒部と前記被加工物とを前記加工液を介在させて接触させ、
前記収縮させた弾性体の収縮量が所定の値以下になるまで加工を行なうことを特徴とする光学素子の製造方法。
By relatively moving the tool and the workpiece, a method of manufacturing an optical element for producing an optical element by processing the workpiece into a spherical shape with the target,
The tool includes a support part, a catalyst part including a transition metal formed on a surface facing the workpiece, and an elastic body disposed between the support part and the catalyst part,
The catalyst portion has a spherical shape,
A working fluid containing water molecules is supplied between the catalyst portion and the workpiece, and the elastic body is contracted so that the catalyst portion and the workpiece are brought into contact with each other via the working fluid. Let
A method of manufacturing an optical element , wherein the processing is performed until a contraction amount of the contracted elastic body becomes a predetermined value or less.
前記被加工物は酸素元素を含むことを特徴とする請求項1記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 1, wherein the workpiece includes an oxygen element. 前記被加工物はガラスであることを特徴とする請求項1または2記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 1, wherein the workpiece is glass. 前記弾性体は、ポリウレタン樹脂あるいは発泡ポリウレタン樹脂であることを特徴とする請求項1乃至いずれか一項記載の光学素子の製造方法。 The elastic body, the manufacturing method of claims 1 to 3 optical element according to any one claim, characterized in that a polyurethane resin or a polyurethane foam resin. 前記触媒部は、薄膜コーティングによって形成されることを特徴とする請求項1乃至いずれか一項記載の光学素子の製造方法。 Said catalyst unit, the production method of claims 1 to 4 optical element according to any one claim, characterized in that it is formed by a thin film coating. 前記触媒部は、Pt、Au、Ag、Cu、Ni、Cr、Moいずれかの金属元素単体、Pt、Au、Ag、Cu、Ni、Cr、Moを含む金属、またはPt、Au、Ag、Cu、Ni、Cr、Moを含む複数の金属元素からなる合金であることを特徴とする請求項1乃至いずれか一項記載の光学素子の製造方法。 The catalyst portion may be a single metal element of Pt, Au, Ag, Cu, Ni, Cr, or Mo, a metal containing Pt, Au, Ag, Cu, Ni, Cr, or Mo, or Pt, Au, Ag, Cu , Ni, Cr, method for manufacturing an optical element according to claim 1 to 5 any one claim, characterized in that an alloy composed of a plurality of metal elements including Mo. 前記工具および前記被加工物のうち、少なくともいずれか一方が回転することを特徴とする請求項1乃至いずれか一項記載の光学素子の製造方法。 Wherein one of the tool and the workpiece, the manufacturing method of the optical element according to claim 1 to 6 any one claim, characterized in that at least one is rotated. 前記弾性体の収縮量は、前記工具に加わる荷重を測定することにより求めることを特徴とする請求項1乃至いずれか一項記載の光学素子の製造方法。 The amount of shrinkage of the elastic body, the manufacturing method of claims 1 to 7 or an optical element of one of claims, characterized in that determined by measuring the load applied to the tool. 前記弾性体の収縮量は、前記工具および被加工物の少なくとも一方の回転におけるトルク値により求めることを特徴とする請求項記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 7 , wherein the contraction amount of the elastic body is obtained from a torque value in rotation of at least one of the tool and the workpiece. 前記触媒部と前記被加工物とを、前記触媒部と前記被加工物との間に水分子を介在させて接触させることにより、前記触媒部により前記水分子の解離を促進させ、前記被加工物を構成する酸素元素と他の元素のバックボンドを切断し加水分解により前記酸素元素を溶出させることを特徴とする請求項2乃至いずれか一項記載の光学素子の製造方法。 The catalyst portion and the workpiece are brought into contact with each other with water molecules interposed between the catalyst portion and the workpiece, thereby promoting dissociation of the water molecules by the catalyst portion, and the workpiece the method according to claim 2 or 9 or the optical element of one of claims, characterized in that eluting said oxygen element by cutting hydrolyze back bonds of oxygen element and the other elements constituting an object. 工具と被加工物とを相対的に移動させることで、前記被加工物を目標とする球面形状に加工することで光学素子を製造する光学素子の製造方法であって、
前記工具は支持部と、前記被加工物と対向する面に形成された遷移金属を含む触媒部と、前記支持部と前記触媒部との間に配された弾性体とを有し、
前記工具は円筒型であって、前記触媒部の前記被加工物と対向する面は円形状を有し、前記工具を工具の回転軸の回りに回転させ、前記被加工物を被加工物の回転軸の回りに回転させて、
前記触媒部と前記被加工物との間に水分子を含有する加工液を供給し、前記弾性体を収縮させることで、前記触媒部と前記被加工物とを前記加工液を介在させて接触させ、
前記収縮させた弾性体の収縮量が所定の値以下になるまで加工を行なうことを特徴とする光学素子の製造方法。
By relatively moving the tool and the workpiece, a method of manufacturing an optical element for producing an optical element by processing the workpiece into a spherical shape with the target,
The tool includes a support part, a catalyst part including a transition metal formed on a surface facing the workpiece, and an elastic body disposed between the support part and the catalyst part,
The tool is cylindrical, the surface of the catalyst portion facing the workpiece has a circular shape, the tool is rotated about the rotation axis of the tool, and the workpiece is moved to the workpiece. Rotate around the rotation axis,
A working fluid containing water molecules is supplied between the catalyst portion and the workpiece, and the elastic body is contracted so that the catalyst portion and the workpiece are brought into contact with each other via the working fluid. Let
A method of manufacturing an optical element , wherein the processing is performed until a contraction amount of the contracted elastic body becomes a predetermined value or less.
前記被加工物は酸素元素を含むことを特徴とする請求項11記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 11, wherein the workpiece includes an oxygen element. 前記被加工物はガラスであることを特徴とする請求項11または12記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 11 or 12, wherein the workpiece is characterized in that it is a glass. 前記弾性体は、ポリウレタン樹脂あるいは発泡ポリウレタン樹脂であることを特徴とする請求項11乃至13いずれか一項記載の光学素子の製造方法。 The elastic body, method for manufacturing an optical element according to claim 11 or 13 to any one claim, characterized in that a polyurethane resin or a polyurethane foam resin. 前記触媒部は、薄膜コーティングによって形成されることを特徴とする請求項11乃至14いずれか一項記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 11, wherein the catalyst portion is formed by thin film coating. 前記触媒部は、Pt、Au、Ag、Cu、Ni、Cr、Moいずれかの金属元素単体、Pt、Au、Ag、Cu、Ni、Cr、Moを含む金属、またはPt、Au、Ag、Cu、Ni、Cr、Moを含む複数の金属元素からなる合金であることを特徴とする請求項11乃至15いずれか一項記載の光学素子の製造方法。 The catalyst portion may be a single metal element of Pt, Au, Ag, Cu, Ni, Cr, or Mo, a metal containing Pt, Au, Ag, Cu, Ni, Cr, or Mo, or Pt, Au, Ag, Cu , Ni, Cr, manufacturing method for an optical element according to claim 11 or 15 to any one claim, characterized in that an alloy composed of a plurality of metal elements including Mo. 前記弾性体の収縮量は、前記工具に加わる荷重を測定することにより求めることを特徴とする請求項11乃至16いずれか一項記載の光学素子の製造方法。 Contraction amount of the elastic body, method for manufacturing an optical element according to claim 11 or 16 to any one claim, characterized in that determined by measuring the load applied to the tool. 前記弾性体の収縮量は、前記工具および被加工物の少なくとも一方の回転におけるトルク値により求めることを特徴とする請求項11乃至17いずれか一項記載の光学素子の製造方法。 The amount of shrinkage of the elastic body, the manufacturing method of the tool and the workpiece at least one optical element of any one of claims 11 to 17, wherein the obtaining the torque value in the rotation. 前記触媒部と前記被加工物とを、前記触媒部と前記被加工物との間に水分子を介在させて接触させることにより、前記触媒部により前記水分子の解離を促進させ、前記被加工物を構成する酸素元素と他の元素のバックボンドを切断し加水分解により前記酸素元素を溶出させることを特徴とする請求項12乃至18いずれか一項記載の光学素子の製造方法。 The catalyst portion and the workpiece are brought into contact with each other with water molecules interposed between the catalyst portion and the workpiece, thereby promoting dissociation of the water molecules by the catalyst portion, and the workpiece the process according to claim 12 or 18 optical element according to any one claim, characterized in that eluting said oxygen element by cutting hydrolyze back bonds of oxygen element and the other elements constituting an object.
JP2013118876A 2013-06-05 2013-06-05 Optical element manufacturing method Expired - Fee Related JP6270345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013118876A JP6270345B2 (en) 2013-06-05 2013-06-05 Optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013118876A JP6270345B2 (en) 2013-06-05 2013-06-05 Optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2014235406A JP2014235406A (en) 2014-12-15
JP6270345B2 true JP6270345B2 (en) 2018-01-31

Family

ID=52138126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013118876A Expired - Fee Related JP6270345B2 (en) 2013-06-05 2013-06-05 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP6270345B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300191A (en) * 1996-05-15 1997-11-25 Nikon Corp Polishing device
JP2002086334A (en) * 2000-09-11 2002-03-26 Ricoh Co Ltd Curved surface polishing device
JP2008081389A (en) * 2006-08-28 2008-04-10 Osaka Univ Catalyst-aided chemical processing method and apparatus
JP5007384B2 (en) * 2006-10-18 2012-08-22 株式会社荏原製作所 Catalyst-assisted chemical processing method and apparatus
JP5057892B2 (en) * 2007-08-30 2012-10-24 株式会社東京精密 Polishing end point detection method and apparatus using torque change
JP4887266B2 (en) * 2007-10-15 2012-02-29 株式会社荏原製作所 Flattening method
JP5343250B2 (en) * 2009-02-19 2013-11-13 国立大学法人 熊本大学 Catalyst-assisted chemical processing method and processing apparatus using the same
JP2012148376A (en) * 2011-01-20 2012-08-09 Ebara Corp Polishing method and polishing apparatus
CN104023889B (en) * 2011-12-06 2017-04-12 国立大学法人大阪大学 Method for manufacturing solid oxide and device therefor

Also Published As

Publication number Publication date
JP2014235406A (en) 2014-12-15

Similar Documents

Publication Publication Date Title
KR101584265B1 (en) Lens spherical surface grinding method using dish-shaped grindstone
JP5166037B2 (en) Grinding wheel
JP2001246539A (en) Grinding work method for non-axisymmetric aspherical mirror
JP6911547B2 (en) Super finishing method for grooves and manufacturing method for bearings
CN101564824A (en) Method and device for polishing magneto-rheological inclined shaft
US20090280726A1 (en) Truing device and truing method for grinding wheel
JP4576255B2 (en) Tool whetstone shape creation method
JP6270345B2 (en) Optical element manufacturing method
JP5300939B2 (en) Machining method using finishing tools
TW201540419A (en) Lens-centering method for spherical center-type processing machine, lens-processing method, and spherical center-type processing machine
JPH08206953A (en) Grinding-polishing method and grinding-polishing tool and its manufacture
JP6202888B2 (en) Optical element manufacturing method
JP2010221338A (en) Apparatus for preparing processing plate and method for correcting processing plate
JP2009090414A (en) Spherical surface grinding method for lens
JP5206194B2 (en) Truing method and truing device for grinding wheel
JP6107348B2 (en) Internal grinding machine
CN107427985B (en) The grinding method of diamond surface and the device for implementing the grinding method
JP3896411B2 (en) Free curved surface precision machining tool
JP2012240176A (en) Grinding apparatus, and grinding method
Kuks Grinding aspheric surfaces of optical workpieces with a full-size tool
JP2013158890A (en) Super finishing device, and super finishing method
JP2002025951A (en) Double-sided machining apparatus and truing method of grinding means
JP2014138962A (en) Grinding device and method
JP2004276172A (en) Grinding method and method of manufacturing grinding wheel
RU2333095C1 (en) Device for combined diamond-abrasive and strengthening treatment of partial spherical surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R151 Written notification of patent or utility model registration

Ref document number: 6270345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees