JP6270316B2 - Uniaxial compressive strength estimation method - Google Patents

Uniaxial compressive strength estimation method Download PDF

Info

Publication number
JP6270316B2
JP6270316B2 JP2013003855A JP2013003855A JP6270316B2 JP 6270316 B2 JP6270316 B2 JP 6270316B2 JP 2013003855 A JP2013003855 A JP 2013003855A JP 2013003855 A JP2013003855 A JP 2013003855A JP 6270316 B2 JP6270316 B2 JP 6270316B2
Authority
JP
Japan
Prior art keywords
load
compressive strength
rotational torque
screw point
uniaxial compressive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013003855A
Other languages
Japanese (ja)
Other versions
JP2014134067A (en
Inventor
直晃 末政
直晃 末政
田中 剛
剛 田中
眞一 大和
眞一 大和
安男 菅野
安男 菅野
吉田 茂樹
茂樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Seiko Co Ltd
Japan Home Shield Corp
Original Assignee
Nitto Seiko Co Ltd
Japan Home Shield Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Seiko Co Ltd, Japan Home Shield Corp filed Critical Nitto Seiko Co Ltd
Priority to JP2013003855A priority Critical patent/JP6270316B2/en
Publication of JP2014134067A publication Critical patent/JP2014134067A/en
Application granted granted Critical
Publication of JP6270316B2 publication Critical patent/JP6270316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

本発明は、回転貫入試験による測定値に基づいて、土の一軸圧縮強さを推定する方法に関する。   The present invention relates to a method for estimating uniaxial compressive strength of soil based on a measurement value obtained by a rotary penetration test.

従来から、一軸圧縮強さは、主に飽和した粘性土の強度指標として広く用いられており、非特許文献1に示す「日本工業規格A1216
土の一軸圧縮試験」によって計測される。この試験は、ひずみ制御式圧縮装置を用いてサンプリングした共試体を圧縮し、共試体の軸ひずみを測定しながら、1分間に共試体高さの1%の圧縮ひずみが生じる速度で載荷を行い、荷重を測定する。測定した軸ひずみと荷重から、圧縮応力と圧縮ひずみの関係を表す曲線を求め、この曲線の最大値を一軸圧縮強さとするものである。
Conventionally, uniaxial compressive strength has been widely used mainly as a strength index of saturated clay, and is described in “Japanese Industrial Standard A1216” shown in Non-Patent Document 1.
It is measured by the “uniaxial compression test of soil”. In this test, a sampled sample is compressed using a strain-controlled compression device, and the sample is loaded at a rate at which a compressive strain of 1% of the sample height is generated per minute while measuring the axial strain of the sample. Measure the load. A curve representing the relationship between compressive stress and compressive strain is obtained from the measured axial strain and load, and the maximum value of this curve is defined as uniaxial compressive strength.

日本工業規格A1216 土の一軸圧縮試験Japanese Industrial Standard A1216 Soil uniaxial compression test

しかしながら、上記の一軸圧縮試験においては、土のサンプリングや専用装置の準備等、手順が多く、算出に手間がかかる問題を有していた。   However, in the above uniaxial compression test, there are many procedures such as soil sampling and the preparation of a dedicated device, and there is a problem that the calculation is troublesome.

本発明は、上記課題に鑑みて創成されたものであり、回転貫入試験による測定値から一軸圧縮強さを推定する方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for estimating uniaxial compressive strength from a measurement value obtained by a rotational penetration test.

本発明は、先端にスクリューポイントを有する貫入ロッドを地中に回転貫入し、段階的に貫入ロッドに負荷する荷重Wを変化させながら、貫入ロッドの回転トルクTを測定する貫入試験において、土の一軸圧縮強さqは、非排水せん断強さSuの二倍と定義し、非排水せん断強さSuは、スクリューポイントの表面に作用するせん断応力τと一致すると仮定し、スクリューポイントの表面に作用する水平せん断応力τは、回転トルクTおよびスクリューポイントの寸法から算出し、貫入ロッドに負荷する荷重Wがゼロの状態では、せん断応力τは水平せん断応力τと一致することから、非排水せん断強さSuを求められることにより、土の一軸圧縮強さqを算出することを特徴とする。 In the penetration test for measuring the rotational torque T of the penetrating rod while changing the load W applied to the penetrating rod in stages while rotating the penetrating rod having a screw point at the tip into the ground, The uniaxial compressive strength q u is defined as twice the undrained shear strength Su, and the undrained shear strength Su is assumed to coincide with the shear stress τ acting on the screw point surface. The acting horizontal shear stress τ h is calculated from the rotational torque T and the dimension of the screw point. When the load W applied to the penetrating rod is zero, the shear stress τ matches the horizontal shear stress τ h. By obtaining the drain shear strength Su, the uniaxial compressive strength q u of the soil is calculated.

また、前記ゼロ荷重状態の回転トルクTは、荷重Wの変化に対する回転トルクTの変化の割合に基づいて推定することが好ましい。 The rotational torque T 0 in the zero load state is preferably estimated based on the rate of change of the rotational torque T relative to the change of the load W.

本発明によれば、貫入試験による測定値である荷重及び回転トルクを試験パラメータとして用いるだけで土の一軸圧縮強さを算出することができるので、試料のサンプリングや、専用の試験装置を用いた室内実験が不要となる。 According to the present invention, it is possible to calculate the uniaxial compressive strength of the soil simply by using the load and rotational torque, which are measured values from the penetration test, as test parameters. Therefore, sample sampling and a dedicated test device were used. Laboratory experiments are not necessary.

(貫入試験)
まず、図1乃至図3は、本発明に用いる試験パラメータ(回転トルクT)を取得するための貫入試験を示す。この貫入試験は、ロッド2の先端に、貫入体の一例であるスクリューポイント3を備えて成る貫入ロッド1を地中に回転貫入するものであり、試験深度区間0.25mに対して最大7段階(250N,375N,500N,625N,750N,875N,1kN)の荷重Wを錘4により載荷しながら、貫入ロッド1の1回転あたりの回転トルクT及び貫入量Sを測定する。具体的には、図1及び図3に示すように、まず、初期荷重250Nを貫入ロッド1に載荷した状態で1回転貫入させる(S01)。このとき、貫入量Stが25cmに達していない場合(S02)には、次の荷重375Nを貫入ロッド1に載荷して1回転貫入させる(S03)。1回転毎に荷重125Nを加算し、累積貫入量ΣStが0.25mに到達するまで回転貫入する。
(Penetration test)
First, FIG. 1 thru | or FIG. 3 shows the penetration test for acquiring the test parameter (rotation torque T) used for this invention. In this penetration test, the penetration rod 1 provided with a screw point 3 as an example of a penetration body at the tip of the rod 2 is rotated and penetrated into the ground, and a maximum of seven stages with respect to a test depth section of 0.25 m. (250N, 375N, 500N, 625N , 750N, 875N, 1kN) while loading by weight 4 a load W of, measuring the torque T and the penetration amount S t per one rotation of the penetration rod 1. Specifically, as shown in FIGS. 1 and 3, first, the initial load 250N is made to penetrate once in a state of being loaded on the penetration rod 1 (S01). In this case, if the penetration amount S t has not reached the 25 cm (S02), and loading the next load 375N to penetration rod 1 rotated once penetration (S03). Adds a load 125N for each rotation, the cumulative penetration amount [sigma] s t is rotated penetrate until it reaches the 0.25 m.

また、図2及び図3に示すように、最大荷重1kNを載荷した状態において(S04)、累積貫入量ΣStが0.25mに到達していない場合は、最大荷重1kNを載荷した状態で累積貫入量ΣStが0.25mに到達するまで回転貫入を繰り返す(S05)。そして、最初の試験深度区間(深度0m〜0.25m)の測定が終了すると、回転貫入を停止し(S06)、次の試験深度区間(深度0.25m〜0.5m)を測定する。このような場合には、試験区間における測定ポイントは、7箇所以上となる。反対に、最大荷重1kNを載荷する前に累積貫入量ΣStが0.25mに到達した場合には、図1に示すように、測定ポイントは、1乃至6箇所となる。 Further, as shown in FIGS. 2 and 3, in a state where the loading of the maximum load 1kN (S04), the cumulative penetration amount [sigma] s t does not reach the 0.25m, the cumulative while loading the maximum load 1kN penetration amount [sigma] s t is repeated rotation penetration to reach the 0.25 m (S05). Then, when the measurement of the first test depth section (depth 0 m to 0.25 m) is completed, the rotation penetration is stopped (S06), and the next test depth section (depth 0.25 m to 0.5 m) is measured. In such a case, there are seven or more measurement points in the test section. Conversely, if the cumulative penetration amount [sigma] s t before loading the maximum load 1kN reaches 0.25m, as shown in FIG. 1, the measurement point is 1 to 6 places.

ところで、上記貫入試験による測定値は、ロッド2の周面摩擦による影響を受けているため、スクリューポイント3に作用する荷重W及び回転トルクが測定できていない。そこで、0.25m貫入する毎に貫入ロッド1を1cm引き上げて回転させ(S07)、このときの回転トルクTmを測定し(S08)、元の位置へ戻す(S09)。この回転トルクTmは、ロッド2の周面摩擦の算定に用いる。算定方法としては、ロッド2に作用する鉛直及び水平方向の周面摩擦をそれぞれWf、Tfとした場合、スクリューポイント3に作用する荷重W及び回転トルクTは、貫入ロッド1全体に作用する荷重Wa及びTaを用いて次式で表される。
Wa=Wf+W、Ta=Tf+T
したがって、スクリューポイント3に作用する荷重W及び回転トルクTは、次式で表される。
W=Wa−Wf、T=Ta−Tf
以下の説明においては、貫入ロッド1の回転トルクTは、ロッド2の周面摩擦を考慮したものとする。
By the way, since the measured value by the penetration test is influenced by the circumferential friction of the rod 2, the load W and the rotational torque acting on the screw point 3 cannot be measured. Therefore, every time 0.25 m penetrates, the penetrating rod 1 is pulled up by 1 cm and rotated (S07), and the rotational torque Tm at this time is measured (S08) and returned to the original position (S09). This rotational torque Tm is used for calculating the circumferential friction of the rod 2. As a calculation method, assuming that the vertical and horizontal circumferential friction acting on the rod 2 is Wf and Tf, respectively, the load W and the rotational torque T acting on the screw point 3 are the load Wa acting on the entire penetration rod 1. And Ta are used to express the following equation.
Wa = Wf + W, Ta = Tf + T
Therefore, the load W and the rotational torque T acting on the screw point 3 are expressed by the following equations.
W = Wa-Wf, T = Ta-Tf
In the following description, it is assumed that the rotational torque T of the penetrating rod 1 takes into account the circumferential friction of the rod 2.

また、上記貫入試験は、貫入ロッド1の一回転あたりの回転トルクTについて、最大値Tmax、最小値Tmin及び平均値T(−)も測定している。 In the penetration test, the maximum value T max , the minimum value T min, and the average value T (−) are also measured for the rotational torque T per rotation of the penetration rod 1.

(土の一軸圧縮強さの推定方法)
本発明に係る土の一軸圧縮強さの推定方法は、スクリューポイント3の寸法に基づいてスクリューポイント3の表面に作用する水平せん断応力τと回転トルクTとの関係に基づくものである。図4に示すスクリューポイント3は、JIS規格に基づいて寸法が設定されたものであり、円錐部5と円柱部6から成る。土への回転貫入おいては、これら各部5,6には水平方向へ一定のせん断応力τが作用するため、各部5,6で発生するトルクT1,T2は数式1及び数式2で表される。
(Method for estimating uniaxial compressive strength of soil)
Estimation method of uniaxial compressive strength of the soil according to the present invention is based on the relationship between the horizontal shear stress tau h a rotational torque T applied to the surface of the screw point 3 based on the dimensions of the screw point 3. A screw point 3 shown in FIG. 4 has dimensions set based on the JIS standard, and includes a conical portion 5 and a cylindrical portion 6. In rotation penetration into the soil, a constant shear stress τ h acts on each of these parts 5 and 6 in the horizontal direction, so torques T1 and T2 generated at each part 5 and 6 are expressed by Equations 1 and 2. The

なお、上記の数式1及び数式2において、
τ:スクリューポイント表面で水平方向に働くせん断応力
T1:円錐部5で発生するトルク
T2:円柱部6で発生するトルク
L1:円錐部5の長さ、
L2:円柱部6の長さ
D:スクリューポイントの直径
θ:スクリューポイントの先端角度
である。
In the above formulas 1 and 2,
τ h : Shear stress acting in the horizontal direction on the screw point surface T1: Torque generated at the conical portion 5 T2: Torque generated at the cylindrical portion 6 L1: Length of the conical portion 5
L2: Length of the cylindrical portion D: Diameter of screw point θ: Tip angle of screw point.

数式1及び数式2にJIS規格のスクリューポイントの寸法を代入すると次のようになる。
T1=0.088τ
T2=0.043τ
T=T1+T2=0.131τ・・・・(数式3)
Substituting the JIS standard screw point dimensions into Equation 1 and Equation 2 gives the following.
T1 = 0.088τ h
T2 = 0.043τ h
T = T1 + T2 = 0.131τ h ···· ( Equation 3)

Tは上記貫入試験によって測定される回転トルクTであり、数式3を水平せん断応力τについて解くと次式のようになる。
τ=7.6T・・・・(数式4)
T is the rotational torque T measured by the above penetration test, and when Equation 3 is solved for the horizontal shear stress τ h , the following equation is obtained.
τ h = 7.6T (Expression 4)

図5は、回転貫入時にスクリューポイント3に作用する応力の模式図を示すものである。スクリューポイント3に荷重Wを載荷した状態で回転トルクTをかけると、円錐部5の表面には上下方向にせん断応力τが発生する。したがって、式4に示すように、τとτを合成したものが円錐部5の表面に働く最大せん断応力τとなる。
FIG. 5 shows a schematic diagram of the stress acting on the screw point 3 during the rotation penetration. When the rotational torque T is applied in a state where the load W is loaded on the screw point 3, a shear stress τ v is generated in the vertical direction on the surface of the conical portion 5. Therefore, as shown in Equation 4, the sum of τ h and τ v is the maximum shear stress τ that acts on the surface of the cone portion 5.

数式5によれば荷重が0(ゼロ)のとき、τ=0となり、水平せん断応力τと最大せん断応力τは一致する。上記数式4は、次式のように置き換えることができる。
τ=7.6T・・・・数式6
なお、荷重が0のときの回転トルクTをゼロ荷重トルクTと称呼する。
According to Equation 5, when the load is 0 (zero), τ v = 0, and the horizontal shear stress τ h and the maximum shear stress τ coincide. The above equation 4 can be replaced by the following equation.
τ = 7.6T 0 ... Equation 6
The rotational torque T when the load is 0 is referred to as zero load torque T 0 .

ところで、上記貫入試験では、ゼロ荷重トルクTを測定することは困難である。なぜならば、スクリューポイント3は、ドリル状に成形されたものであるから、ゼロ荷重状態で回転させても前進し地中へ貫入する。これでは、スクリューポイント3の表面に上下方向のせん断応力τが発生してしまうので、上記の数式6が成立しなくなる。そこで、ゼロ荷重トルクTは、実測でなく推定する。推定方法としては、図6に示すように、上記貫入試験により取得した荷重W及び回転トルクTの変化の割合dT/dWから近似線を求め、その切片からゼロ荷重トルクTを推定することができる。 By the way, it is difficult to measure the zero load torque T 0 in the penetration test. This is because the screw point 3 is formed in a drill shape, and thus advances and penetrates into the ground even if it is rotated in a zero load state. In this case, since the vertical shearing stress τ v is generated on the surface of the screw point 3, the above formula 6 is not satisfied. Therefore, the zero load torque T 0 is estimated rather than actually measured. As an estimation method, as shown in FIG. 6, an approximate line is obtained from the change rate dT / dW of the load W and the rotational torque T obtained by the penetration test, and the zero load torque T 0 is estimated from the intercept. it can.

本発明に係る一軸圧縮強さの推定は、ゼロ荷重トルクTとモールの応力円の理論を用いる

The estimation of the uniaxial compressive strength according to the present invention uses the theory of zero load torque T 0 and Mole's stress circle .

また、粘性土の場合には、スクリューポイント3表面の土は、一軸圧縮試験と同様に、非排水状態でせん断されていると考えられるから、スクリューポイント3表面の最大せん断応力τと非排水せん断強さSとの間には、相関関係が成り立つと予測できるので、最大せん断応力τと非排水せん断強さSuが一致すると仮定する。
τ=S
In the case of viscous soil, the soil on the surface of the screw point 3 is considered to have been sheared in an undrained state as in the uniaxial compression test. between the strength S u, it is assumed that since it can be predicted that a correlation is established, the maximum shear stress τ and the undrained shear strength Su match.
τ = S u

さらに、上記貫入試験では1回転あたりの最大トルクTmaxを測定しており、ゼロ荷重トルクTの推定において当該最大トルクTmaxを用いることにより、最大せん断応力τはピーク値となり、つまり最大値が算出されていることになる。したがって、次式が成り立つ。
=2S=2τ=15.2T
Further, in the above penetration test, the maximum torque Tmax per rotation is measured, and the maximum shear stress τ becomes a peak value by using the maximum torque Tmax in the estimation of the zero load torque T 0 , that is, the maximum value is calculated. Will be. Therefore, the following equation holds.
q u = 2S u = 2τ = 15.2T 0

以上のように、一軸圧縮強さの推定方法によれば、貫入試験により測定した回転トルクTを試験パラメータとして用いるだけで、一軸圧縮強さqを算出することができる。このため、従来のように、試料をサンプリングし室内実験で算出する必要がなくなる。 As described above, according to the method for estimating the uniaxial compressive strength, the uniaxial compressive strength q u can be calculated only by using the rotational torque T measured by the penetration test as a test parameter. For this reason, it is not necessary to sample the sample and calculate it by a laboratory experiment as in the prior art.

本発明に係る一軸圧縮強さの推定方法に用いる試験パラメータを取得するための回転貫入試験の第1実施例を示す図である。It is a figure which shows 1st Example of the rotation penetration test for acquiring the test parameter used for the estimation method of the uniaxial compressive strength which concerns on this invention. 本発明に係る一軸圧縮強さの推定方法に用いる試験パラメータを取得するための回転貫入試験の第2実施例を示す例である。It is an example which shows 2nd Example of the rotation penetration test for acquiring the test parameter used for the estimation method of the uniaxial compressive strength which concerns on this invention. 本発明に係る一軸圧縮強さの推定方法に用いる試験パラメータを測定するための貫入試験の手順を示すフローチャートである。It is a flowchart which shows the procedure of the penetration test for measuring the test parameter used for the estimation method of the uniaxial compressive strength which concerns on this invention. スクリューポイントの構成を示す図である。It is a figure which shows the structure of a screw point. スクリューポイントに作用する応力を示す模式図である。It is a schematic diagram which shows the stress which acts on a screw point. 回転貫入試験により所得した荷重と回転トルクの関係を示すグラフである。It is a graph which shows the relationship between the load and rotational torque which were obtained by the rotation penetration test.

1 貫入ロッド
2 ロッド
3 スクリューポイント
4 錘
5 円錐部
6 円柱部
1 Intrusion rod 2 Rod 3 Screw point 4 Weight 5 Conical part 6 Cylindrical part

Claims (2)

先端にスクリューポイントを有する貫入ロッドを地中に回転貫入し、段階的に貫入ロッドに負荷する荷重Wを変化させながら、貫入ロッドの回転トルクTを測定する貫入試験において、
土の一軸圧縮強さqは、非排水せん断強さSuの二倍と定義し、
非排水せん断強さSuは、スクリューポイントの表面に作用するせん断応力τと一致すると仮定し、
スクリューポイントの表面に作用する水平せん断応力τは、回転トルクTおよびスクリューポイントの寸法から算出し、
貫入ロッドに負荷する荷重Wがゼロの状態では、せん断応力τは水平せん断応力τと一致することから、非排水せん断強さSuを求められることにより、土の一軸圧縮強さqを算出すること、
を特徴とする一軸圧縮強さの推定方法。
In the penetration test to measure the rotational torque T of the penetrating rod while rotating the penetrating rod having a screw point at the tip into the ground and changing the load W applied to the penetrating rod in stages.
The uniaxial compressive strength q u of soil is defined as twice the undrained shear strength Su,
Assuming that the undrained shear strength Su coincides with the shear stress τ acting on the surface of the screw point,
The horizontal shear stress τ h acting on the surface of the screw point is calculated from the rotational torque T and the dimension of the screw point,
When the load W applied to the penetrating rod is zero, the shear stress τ coincides with the horizontal shear stress τ h, and thus the undrained shear strength Su is obtained, thereby calculating the uniaxial compressive strength q u of the soil. To do,
A method for estimating uniaxial compressive strength characterized by:
前記ゼロ荷重状態の回転トルクTは、荷重Wの変化に対する回転トルクTの変化の割合に基づいて推定することを特徴とする請求項1に記載の一軸圧縮強さの推定方法。 The uniaxial compression strength estimation method according to claim 1, wherein the rotational torque T 0 in the zero load state is estimated based on a ratio of a change in the rotational torque T to a change in the load W.
JP2013003855A 2013-01-11 2013-01-11 Uniaxial compressive strength estimation method Active JP6270316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013003855A JP6270316B2 (en) 2013-01-11 2013-01-11 Uniaxial compressive strength estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013003855A JP6270316B2 (en) 2013-01-11 2013-01-11 Uniaxial compressive strength estimation method

Publications (2)

Publication Number Publication Date
JP2014134067A JP2014134067A (en) 2014-07-24
JP6270316B2 true JP6270316B2 (en) 2018-01-31

Family

ID=51412539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013003855A Active JP6270316B2 (en) 2013-01-11 2013-01-11 Uniaxial compressive strength estimation method

Country Status (1)

Country Link
JP (1) JP6270316B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103362A1 (en) * 2014-12-24 2016-06-30 日東精工株式会社 Penetration test method
CN104989388B (en) * 2015-06-10 2018-04-17 西安科技大学 A kind of high-dipping rock pillar instability monitoring method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2763873B2 (en) * 1996-05-24 1998-06-11 大和ハウス工業株式会社 Basic construction method selection device and selection method
JP2878255B1 (en) * 1998-01-14 1999-04-05 鹿島建設株式会社 Geological survey method
JP4705520B2 (en) * 2006-05-31 2011-06-22 株式会社日本住宅保証検査機構 Penetration test method
JP5320081B2 (en) * 2009-01-08 2013-10-23 日東精工株式会社 Penetration test method

Also Published As

Publication number Publication date
JP2014134067A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
US9777452B2 (en) Gravity type pore pressure dynamic penetration device for shallow layer seabed soil
JP6270316B2 (en) Uniaxial compressive strength estimation method
EP3112833A3 (en) Systems and methods for measuring torque on rotating shaft
CN102587426B (en) Analysis method for estimating bearing capacity of pile foundation on basis of penetration technology
EP3690184A3 (en) Method and system for well construction management
Warren et al. Penetration of common ordinary strength water saturated concrete targets by rigid ogive-nosed steel projectiles
JP6138729B2 (en) Resistance estimation method and estimation system for rotary press-fit piles
WO2015150429A3 (en) Passive micro-vessel and sensor
Kai-hang et al. Explicit analytical solutions for stress and displacement of surrounding rock in shallow tunnels
JP6159090B2 (en) Method for estimating fine grain content and N value
JP6548953B2 (en) Concrete workability judgment method
Zhen et al. Analytical solutions for finite cylindrical dynamic cavity expansion in compressible elastic-plastic materials
JP5320081B2 (en) Penetration test method
JP6238112B2 (en) Ground soundness evaluation method
JP6574341B2 (en) Tip resistance force estimation system, press-fitting construction system, and tip resistance force estimation method
DE102010028412A1 (en) Geothermal measuring probe for carrying out geothermal response test during geo-technical building ground in-situ-investigation for e.g. preparation of planned deep foundation on construction site, has open pipe arranged in hollow probe
JP6159089B2 (en) Soil judgment method
Wang et al. Effect of dislocation–GB interactions on crack blunting in nanocrystalline materials
CN107561097A (en) A kind of measuring method of crack depth of concrete
JP5610986B2 (en) Geological estimation system and geological estimation method
Slipchuk et al. Evaluation of the permissible moment in a roller cone drill bit providing the prescribed reliability of work
CN105606448A (en) Determination method for fracture toughness of actual cracked structure
JP6656724B2 (en) Liquefaction determination method
JP6353189B2 (en) Soil judgment method
CN205382944U (en) Intelligence stock

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R150 Certificate of patent or registration of utility model

Ref document number: 6270316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350