JP6269827B2 - LCD touch panel protective plate - Google Patents

LCD touch panel protective plate Download PDF

Info

Publication number
JP6269827B2
JP6269827B2 JP2016523079A JP2016523079A JP6269827B2 JP 6269827 B2 JP6269827 B2 JP 6269827B2 JP 2016523079 A JP2016523079 A JP 2016523079A JP 2016523079 A JP2016523079 A JP 2016523079A JP 6269827 B2 JP6269827 B2 JP 6269827B2
Authority
JP
Japan
Prior art keywords
sintered body
touch panel
spinel
protective plate
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016523079A
Other languages
Japanese (ja)
Other versions
JPWO2015181975A1 (en
Inventor
慶一郎 下司
慶一郎 下司
中山 茂
茂 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPWO2015181975A1 publication Critical patent/JPWO2015181975A1/en
Application granted granted Critical
Publication of JP6269827B2 publication Critical patent/JP6269827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は液晶タッチパネル保護板に関し、より特定的にはスピネル焼結体で形成される液晶タッチパネル保護板に関する。   The present invention relates to a liquid crystal touch panel protective plate, and more particularly to a liquid crystal touch panel protective plate formed of a spinel sintered body.

液晶タッチパネルは、表面を汚れや外気から保護する目的で、保護板を設置して使用される場合が多い。近年、各種の携帯デバイスが急速に普及しており、それに伴い、携帯デバイスの液晶タッチパネルの保護板には強度も要求されている。   The liquid crystal touch panel is often used with a protective plate installed for the purpose of protecting the surface from dirt and outside air. In recent years, various portable devices are rapidly spreading, and accordingly, the strength of the protective plate of the liquid crystal touch panel of the portable device is also required.

そこで強度を有する液晶タッチパネルの保護板として、強化ガラスや単結晶サファイヤの基板を用いる技術が提案されている。   Therefore, a technique using a tempered glass or single crystal sapphire substrate as a protective plate for a liquid crystal touch panel having strength has been proposed.

強化ガラスは製造コストが安価であるが、強度の面でさらなる向上が求められている。また、単結晶サファイヤは、強化ガラスに比べて硬度および強度が大きく、保護板としての性能は優れているが、製造コストが非常に高価であり、実用化の観点から問題がある。   Although tempered glass has a low manufacturing cost, further improvement is required in terms of strength. In addition, single crystal sapphire has higher hardness and strength than tempered glass and is superior in performance as a protective plate, but has a very high manufacturing cost and has a problem in terms of practical use.

そこで、本目的は、優れた強度を有しつつ、製造コストの抑制された液晶タッチパネル保護板を提供することを目的とする。   Therefore, an object of the present invention is to provide a liquid crystal touch panel protective plate having excellent strength and reduced manufacturing cost.

本発明の一態様に係る液晶タッチパネル保護板は、スピネル焼結体で形成される液晶タッチパネル保護板であって、前記スピネル焼結体は、平均粒径が10μm以上100μm以下である、液晶タッチパネル保護板である。   The liquid crystal touch panel protective plate according to one aspect of the present invention is a liquid crystal touch panel protective plate formed of a spinel sintered body, and the spinel sintered body has an average particle size of 10 μm or more and 100 μm or less. It is a board.

上記態様によれば、優れた強度を有しつつ、製造コストの抑制された液晶タッチパネル保護板を提供することが可能となる。   According to the above aspect, it is possible to provide a liquid crystal touch panel protective plate having excellent strength and reduced manufacturing cost.

[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.

(1)本発明の一態様に係る液晶タッチパネル保護板は、スピネル焼結体で形成される液晶タッチパネル保護板であって、前記スピネル焼結体は、平均粒径が10μm以上100μm以下である、液晶タッチパネル保護板である。   (1) The liquid crystal touch panel protective plate according to one aspect of the present invention is a liquid crystal touch panel protective plate formed of a spinel sintered body, and the spinel sintered body has an average particle size of 10 μm or more and 100 μm or less. It is a liquid crystal touch panel protective plate.

スピネル焼結体の粒径は、スピネル焼結体の強度に影響を与える。スピネル焼結体の平均粒径が10μm以上100μm以下であると、スピネル焼結体が優れた強度を有する。したがって、該スピネル焼結体で形成された液晶タッチパネル保護板も、優れた強度を有する。   The particle size of the spinel sintered body affects the strength of the spinel sintered body. When the average particle size of the spinel sintered body is 10 μm or more and 100 μm or less, the spinel sintered body has excellent strength. Therefore, the liquid crystal touch panel protective plate formed of the spinel sintered body also has excellent strength.

(2)前記液晶タッチパネル保護板は、表面粗さRaが10nm以下であることが好ましい。これによると、液晶タッチパネル保護板は高い光透過率を有し、優れた画像表示品質を有することができる。   (2) The liquid crystal touch panel protective plate preferably has a surface roughness Ra of 10 nm or less. According to this, the liquid crystal touch panel protective plate has high light transmittance and can have excellent image display quality.

(3)前記スピネル焼結体は気孔を含み、前記気孔の最大径は100μm以下であり、かつ径が10μm以上の気孔数が前記スピネル焼結体1cmあたり2.0個以下であることが好ましい。(3) The spinel sintered body includes pores, the maximum diameter of the pores is 100 μm or less, and the number of pores having a diameter of 10 μm or more is 2.0 or less per 1 cm 3 of the spinel sintered body. preferable.

これによると、スピネル焼結体は強度および耐摩耗性に優れるため、割れにくく、表面が傷つき難い。さらに、耐食性も良好となる。したがって、該スピネル焼結体で形成された液晶タッチパネル保護板も、優れた強度、耐摩耗性および耐食性を有する。   According to this, since the spinel sintered body is excellent in strength and wear resistance, it is difficult to break and the surface is hardly damaged. Furthermore, corrosion resistance is also good. Therefore, the liquid crystal touch panel protective plate formed of the spinel sintered body also has excellent strength, wear resistance, and corrosion resistance.

(4)前記スピネル焼結体は、組成がMgO・nAl(1.05≦n≦1.30)であることが好ましい。これによると、スピネル焼結体は強度と光透過性がバランスよく向上する。したがって、該スピネル焼結体で形成された液晶タッチパネル保護板も、強度と光透過性がバランスよく向上する。(4) The spinel sintered body preferably has a composition of MgO.nAl 2 O 3 (1.05 ≦ n ≦ 1.30). According to this, the strength and light transmittance of the spinel sintered body are improved in a well-balanced manner. Therefore, the liquid crystal touch panel protective plate formed of the spinel sintered body also has a good balance between strength and light transmittance.

(5)前記スピネル焼結体は不純物を含み、前記不純物の平均粒径は20μm以下であり、かつ含有量は10ppm以下であることが好ましい。これによると、スピネル焼結体は安定した高い光透過率を有する。したがって、該スピネル焼結体で形成された液晶タッチパネル保護板も、高い透過率を有する。   (5) It is preferable that the said spinel sintered compact contains an impurity, the average particle diameter of the said impurity is 20 micrometers or less, and content is 10 ppm or less. According to this, the spinel sintered body has a stable and high light transmittance. Therefore, the liquid crystal touch panel protective plate formed of the spinel sintered body also has a high transmittance.

[本発明の実施形態の詳細]
本発明の実施形態にかかる液晶タッチパネル保護板の具体例を、以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Specific examples of the liquid crystal touch panel protective plate according to the embodiment of the present invention will be described below. In addition, this invention is not limited to these illustrations, is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to a claim are included.

<液晶タッチパネル保護板>
本発明の一実施態様かかる液晶タッチパネル保護板は、スピネル焼結体で形成される液晶タッチパネル保護板である。
<LCD touch panel protection plate>
The liquid crystal touch panel protective plate according to an embodiment of the present invention is a liquid crystal touch panel protective plate formed of a spinel sintered body.

液晶タッチパネル保護板は、表面粗さRaが10nm以下であることが好ましく、5nm以下であることがさらに好ましい。これによると、液晶タッチパネル保護板は高い光透過率を有し、優れた画像表示品質を有することができる。なお、表面粗さRaはJIS規格の算術平均粗さである。算術平均粗さは、表面の粗さを表すパラメータの一種であり以下のように計算される。ある表面の粗さ曲線からその平均線の方向に位置0から位置lまで基準長さだけを抜き取り、この抜き取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取る。粗さ曲線をy=f(x)で表したときに、X軸方向の位置0から位置lまでの領域における算術平均粗さRaは以下の式により求められる。   The liquid crystal touch panel protective plate preferably has a surface roughness Ra of 10 nm or less, and more preferably 5 nm or less. According to this, the liquid crystal touch panel protective plate has high light transmittance and can have excellent image display quality. The surface roughness Ra is an arithmetic average roughness according to JIS standards. The arithmetic average roughness is a kind of parameter representing the surface roughness, and is calculated as follows. Only a reference length is extracted from the position 0 to the position 1 in the direction of the average line from the roughness curve of a certain surface, and the X axis is taken in the direction of the average line of this extracted portion and the Y axis is taken in the direction of the vertical magnification. When the roughness curve is represented by y = f (x), the arithmetic average roughness Ra in the region from the position 0 to the position 1 in the X-axis direction is obtained by the following equation.

Figure 0006269827
Figure 0006269827

液晶タッチパネル保護板の大きさは、液晶タッチパネルの表面を覆うことができれば特に限定されない。   The size of the liquid crystal touch panel protective plate is not particularly limited as long as the surface of the liquid crystal touch panel can be covered.

液晶タッチパネル保護板の厚みは、厚いほど強度が大きくなるが、液晶タッチパネルの応答特性や放熱性は低下してしまう。   As the thickness of the liquid crystal touch panel protective plate increases, the strength increases, but the response characteristics and heat dissipation of the liquid crystal touch panel decrease.

<スピネル焼結体>
本発明の一実施態様かかる液晶タッチパネル保護板は、スピネル焼結体で形成される。
<Spinel sintered body>
The liquid crystal touch panel protective plate according to an embodiment of the present invention is formed of a spinel sintered body.

スピネル焼結体とは、組成式がMgO・nAl(1≦n≦6)で表されるスピネルの焼結体である。スピネル焼結体は多結晶であり複屈折率が発生せず、優れた光透過性を有する。また、スピネル焼結体は機械的強度および耐摩耗性に優れているため、割れ難く、表面が傷つき難い。さらに、耐食性も良好である。したがって、スピネル焼結体で形成される液晶タッチパネル保護板も、優れた光透過性、機械的強度、耐摩耗性および耐食性を有する。The spinel sintered body is a spinel sintered body having a composition formula represented by MgO.nAl 2 O 3 (1 ≦ n ≦ 6). The spinel sintered body is polycrystalline, does not generate a birefringence, and has excellent light transmittance. In addition, since the spinel sintered body is excellent in mechanical strength and wear resistance, it is difficult to crack and the surface is hardly damaged. Furthermore, the corrosion resistance is also good. Therefore, the liquid crystal touch panel protective plate formed of the spinel sintered body also has excellent light transmittance, mechanical strength, wear resistance, and corrosion resistance.

また、スピネル焼結体は、原料が安価であることに加え、粉末冶金技術を用いて製造することができるため、低コストで製造することができる。また形状が限定されない。さらに、サファイヤに比べて加工が容易である。したがって、スピネル焼結体で形成された液晶タッチパネル保護板も、低コストで製造することができる。   Moreover, since a spinel sintered compact can be manufactured using a powder metallurgy technique in addition to an inexpensive raw material, it can be manufactured at low cost. The shape is not limited. Furthermore, it is easier to process than sapphire. Therefore, a liquid crystal touch panel protective plate formed of a spinel sintered body can also be manufactured at a low cost.

前記スピネル焼結体は、平均粒径が10μm以上100μm以下である。一般的に、スピネル焼結体を構成するスピネル粒子の粒径が小さいほど、スピネル焼結体の強度が大きくなるが、光透過率が低下してしまう。本発明者らは、スピネル焼結体を構成するスピネル粒子の粒径と、スピネル焼結体の強度および光透過性との関係を鋭意検討した結果、スピネル焼結体の平均粒径が10μm以上100μm以下であると、強度と光透過性のバランスの良いスピネル焼結体を得ることができることを発見した。   The spinel sintered body has an average particle size of 10 μm or more and 100 μm or less. Generally, the smaller the particle size of the spinel particles constituting the spinel sintered body, the higher the strength of the spinel sintered body, but the light transmittance decreases. As a result of intensive studies on the relationship between the particle size of the spinel particles constituting the spinel sintered body and the strength and light transmittance of the spinel sintered body, the average particle size of the spinel sintered body is 10 μm or more. It was discovered that a spinel sintered body having a good balance between strength and light transmittance can be obtained when the thickness is 100 μm or less.

スピネル焼結体の平均粒径は10μm以上100μm以下が好ましく、20μm以上60μm以下がさらに好ましい。スピネル焼結体の平均粒径が小さいほど、たとえば10μm未満であると、光の粒界散乱が増えるため、スピネル焼結体の光透過性が低下してしまう傾向がある。一方、スピネル焼結体の平均粒径が大きいほど、たとえば100μmを超えると、Hall−Petch則によりスピネル焼結体の強度が低下してしまう傾向がある。   The average particle size of the spinel sintered body is preferably 10 μm to 100 μm, and more preferably 20 μm to 60 μm. If the average particle size of the spinel sintered body is smaller, for example, if it is less than 10 μm, the light grain boundary scattering increases, so that the light transmittance of the spinel sintered body tends to decrease. On the other hand, when the average particle size of the spinel sintered body is larger, for example, when it exceeds 100 μm, the strength of the spinel sintered body tends to decrease due to the Hall-Petch rule.

なお、スピネル焼結体の平均粒径は、スピネル焼結体で形成される液晶タッチパネル保護板の表面を研磨機(ナノファクター社製NF−300)を用いて鏡面加工した後、一定範囲を光学顕微鏡にて観察し、前記範囲に含まれるすべてのスピネル焼結体の粒径を測定して、平均を算出した値である。   The average particle size of the spinel sintered body is optically controlled within a certain range after the surface of the liquid crystal touch panel protective plate formed of the spinel sintered body is mirror-finished using a polishing machine (NF-300 manufactured by Nano Factor). It is a value obtained by observing with a microscope, measuring the particle diameters of all the spinel sintered bodies included in the above range, and calculating the average.

スピネル焼結体は気孔を含み、前記気孔の最大径は100μm以下であり、かつ径が10μm以上の気孔数が前記スピネル焼結体1cmあたり2.0個以下であることが好ましい。これによると、スピネル焼結体を通過する光の散乱が抑制され、スピネル焼結体の光透過性がさらに向上する。さらに、該スピネル焼結体は機械的強度のばらつきの指標であるワイブル係数も向上し、安定した製品が得られる。この優れた機械的性質は、気孔数が少ないことによりもたらされたものと思われる。It is preferable that the spinel sintered body includes pores, the maximum diameter of the pores is 100 μm or less, and the number of pores having a diameter of 10 μm or more is 2.0 or less per 1 cm 3 of the spinel sintered body. According to this, scattering of light passing through the spinel sintered body is suppressed, and the light transmittance of the spinel sintered body is further improved. Furthermore, the spinel sintered body also improves the Weibull coefficient, which is an index of variation in mechanical strength, and a stable product can be obtained. This excellent mechanical property seems to have been brought about by the low number of pores.

スピネル焼結体は、最大径が100μmを超える気孔を含まないことが好ましい。ここで、「含まない」とは、実質的に含まないとの意味であり、光の散乱因子の増大をもたらさない範囲で、最大径が100μmを超える気孔が微量に含まれていてもよい。気孔の最大径が50μm以下の場合は、光の散乱因子がさらに低減されるため好ましい。   It is preferable that the spinel sintered body does not include pores having a maximum diameter exceeding 100 μm. Here, “does not contain” means that it does not substantially contain, and pores having a maximum diameter exceeding 100 μm may be contained in a trace amount within a range that does not cause an increase in light scattering factor. A maximum pore diameter of 50 μm or less is preferable because the light scattering factor is further reduced.

スピネル焼結体中に含有される気孔の最大径は、スピネル焼結体の一定の範囲を、透過光を用いて顕微鏡により観察して測定される。通常、スピネル焼結体を、一定の体積(好ましくは、厚さ10〜15mm、長さ20mm、幅20mm)に切りだして上下面を研磨し、得られたサンプルを顕微鏡写真により観察し、その中に含まれる気孔の径を測定することにより得ることができる。気孔が球形でない場合は、気孔中の各方向の径の大きさが異なるが、その中で最大の大きさのものを最大径とする。   The maximum diameter of the pores contained in the spinel sintered body is measured by observing a certain range of the spinel sintered body with a microscope using transmitted light. Usually, the spinel sintered body is cut into a certain volume (preferably, a thickness of 10 to 15 mm, a length of 20 mm, a width of 20 mm), the upper and lower surfaces are polished, and the obtained sample is observed with a micrograph. It can be obtained by measuring the diameter of pores contained therein. When the pores are not spherical, the diameters in the respective directions in the pores are different, but the largest one is taken as the maximum diameter.

具体的には、スピネル焼結体を厚さ15mm、長さ20mm、幅20mmに切りだし、上下面を研磨してサンプルを準備する。該サンプル10個について、気孔の径の測定を行う。8個以上のサンプルについて最大径が100μmを越える気孔が観察されない場合は、最大径が100μmを超える気孔を実質的に含まないとする。   Specifically, the spinel sintered body is cut into a thickness of 15 mm, a length of 20 mm, and a width of 20 mm, and the upper and lower surfaces are polished to prepare a sample. The pore diameter is measured for the 10 samples. When pores having a maximum diameter exceeding 100 μm are not observed for eight or more samples, it is assumed that the pores having a maximum diameter exceeding 100 μm are not substantially included.

スピネル焼結体中の径が10μm以上の気孔数が、前記スピネル焼結体1cmあたり2.0個以下である点は、スピネル焼結体の一定の体積を、透過光を用いて顕微鏡により観察して測定される。具体的には、スピネル焼結体を、厚さ10〜15mm、長さ20mm、幅20mmに(又は、合計の体積が前記と同じ大きさとなるように複数のスピネル焼結体を)切りだして上下面を研磨し、得られたサンプルを顕微鏡写真により観察して気孔の径および数を測定する。The number of pores having a diameter of 10 μm or more in the spinel sintered body is 2.0 or less per 1 cm 3 of the spinel sintered body because a certain volume of the spinel sintered body is measured with a microscope using transmitted light. Observe and measure. Specifically, the spinel sintered body is cut into a thickness of 10 to 15 mm, a length of 20 mm, and a width of 20 mm (or a plurality of spinel sintered bodies so that the total volume is the same as described above). The upper and lower surfaces are polished, and the obtained sample is observed with a micrograph to measure the diameter and number of pores.

本発明の一実施態様においては、スピネル焼結体は、組成がMgO・nAl(1.05≦n≦1.30)であることが好ましい。nの値は、1.07≦n≦1.125がさらに好ましく、1.08≦n≦1.09がよりさらに好ましい。これによると、スピネル焼結体は強度と光透過性がバランスよく向上する。したがって、該スピネル焼結体で形成された液晶タッチパネル保護板も、強度と光透過性がバランスよく向上する。In one embodiment of the present invention, the composition of the spinel sintered body is preferably MgO.nAl 2 O 3 (1.05 ≦ n ≦ 1.30). The value of n is more preferably 1.07 ≦ n ≦ 1.125, more preferably 1.08 ≦ n ≦ 1.09. According to this, the strength and light transmittance of the spinel sintered body are improved in a well-balanced manner. Therefore, the liquid crystal touch panel protective plate formed of the spinel sintered body also has a good balance between strength and light transmittance.

本発明の一実施態様においては、スピネル焼結体は不純物を含むが、前記不純物の平均粒径は20μm以下であり、かつ含有量は10ppm以下であることが好ましい。スピネル焼結体中に含まれる不純物は、気孔等の内部欠陥を形成して光の散乱因子を増大させ、スピネル焼結体の光透過性を低下させる。また、屈折率等にも影響を与える。したがって、不純物の平均粒径は小さいほど好ましく、含有量は少ないほど好ましい。   In one embodiment of the present invention, the spinel sintered body contains impurities, but the average particle diameter of the impurities is preferably 20 μm or less and the content is preferably 10 ppm or less. Impurities contained in the spinel sintered body form internal defects such as pores, increase the light scattering factor, and decrease the light transmittance of the spinel sintered body. It also affects the refractive index and the like. Therefore, the smaller the average particle size of impurities, the better, and the smaller the content, the better.

不純物は、原料粉末に含まれていたり、焼結体を作製する際に混入して、スピネル焼結体中に含まれる。したがって、原料粉末としては高純度、好ましくは、焼結により除去されない成分についての純度が99.9質量%以上のスピネルを用いることが好ましい。また、焼結工程においても不純物の混入がないように管理することが好ましい。   Impurities are contained in the raw material powder or mixed when producing the sintered body and are contained in the spinel sintered body. Therefore, it is preferable to use a spinel having a high purity, preferably 99.9% by mass or more as a raw material powder, with respect to a component that is not removed by sintering. Also, it is preferable to manage so that no impurities are mixed in the sintering process.

原料粉末に含まれやすい不純物および焼結体を作製する際に混入しやすい不純物としては、具体的には、タングステン(W)、コバルト(Co)、鉄(Fe)、炭素(C)、銅(Cu)、スズ(Sn)、亜鉛(Zn)、ニッケル(Ni)などを挙げることができる。焼結工程において、これらの不純物同士が合体あるいは析出して、光学的特性に悪影響を与える大きさの不純物粒子を形成し、光の散乱因子を増大させ、透過性に影響を与えるものと考えられる。スピネル焼結体中のこれらの不純物の合計含有量が10ppm以下、より好ましくは5ppm以下となるように、原料粉末の純度、焼結工程の管理を行うことが好ましい。   Specific examples of impurities that are likely to be contained in the raw material powder and impurities that are likely to be mixed when producing the sintered body include tungsten (W), cobalt (Co), iron (Fe), carbon (C), copper ( Cu), tin (Sn), zinc (Zn), nickel (Ni), and the like. In the sintering process, these impurities coalesce or precipitate to form impurity particles with a size that adversely affects the optical properties, increase the light scattering factor, and affect the transmission. . It is preferable to manage the purity of the raw material powder and the sintering process so that the total content of these impurities in the spinel sintered body is 10 ppm or less, more preferably 5 ppm or less.

<スピネル焼結体の製造方法>
スピネル焼結体は、たとえば以下の方法によって製造することができる。
<Method for producing spinel sintered body>
The spinel sintered body can be manufactured, for example, by the following method.

初めに、スピネル粒子を準備し、該スピネル粒子を分散媒に分散させてスラリーを作製する。スラリーの作製は、高純度のスピネル粒子、分散媒、分散剤等を適量配合し機械的に撹拌混合して行うことができる。機械的な撹拌混合の方法としては、ボールミルにより混合する方法、超音波槽を用いて外部より超音波を照射する方法、超音波ホモジナイザーにより超音波を照射する方法を挙げることができる。スピネル粒子は、分散媒中で容易に分散し、均一なスラリーとなりやすいこと、セラミックスボール等を使用する分散方法は、不純物となる酸化物あるいは塩類が混入しやすいと考えられることから、超音波を用いる方法が好ましい。撹拌混合時間は該スラリーの量や超音波の照射量により適宜調整するべきであるが、例えばスラリー量が10リットルで、照射能力が25キロヘルツ程度の超音波槽を用いる場合、30分以上行うことが望ましい。スピネル粒子を分散する分散媒としては、水や各種有機溶媒を用いることができる。撹拌混合後は、静置沈降、遠心分離、ロータリーエバポレーター等による減圧濃縮等を行い、スラリー中のスピネル濃度を高めることもできる。   First, spinel particles are prepared, and the slurry is prepared by dispersing the spinel particles in a dispersion medium. The slurry can be prepared by blending appropriate amounts of high-purity spinel particles, a dispersion medium, a dispersant and the like and mechanically stirring and mixing them. Examples of the mechanical stirring and mixing method include a method of mixing by a ball mill, a method of irradiating ultrasonic waves from the outside using an ultrasonic bath, and a method of irradiating ultrasonic waves by an ultrasonic homogenizer. Since spinel particles are easily dispersed in a dispersion medium and easily become a uniform slurry, and a dispersion method using a ceramic ball or the like is considered to be easily mixed with oxides or salts as impurities, ultrasonic waves are used. The method used is preferred. The stirring and mixing time should be adjusted as appropriate according to the amount of slurry and the amount of ultrasonic irradiation. For example, when using an ultrasonic tank with a slurry amount of 10 liters and an irradiation capacity of about 25 kilohertz, it should be performed for 30 minutes or longer. Is desirable. As a dispersion medium for dispersing the spinel particles, water or various organic solvents can be used. After stirring and mixing, the concentration of spinel in the slurry can be increased by performing static sedimentation, centrifugation, vacuum concentration using a rotary evaporator, or the like.

次にこのスラリーをスプレードライ等により顆粒状とした後、この顆粒を金型に充填し、所定の形状にプレスしてスピネル成形体を作製する。   Next, the slurry is granulated by spray drying or the like, and then the granule is filled in a mold and pressed into a predetermined shape to produce a spinel molded body.

均一な分散を可能にするためポリアクリル酸アンモニウム塩(分散媒が水の場合)やオレイン酸エチル、ソルビタンモノオレート、ソルビンタントリオレート、ポリカルボン酸系(分散媒が有機溶媒の場合)等の分散剤や、顆粒の形成を容易にするためポリビニルアルコール、ポリビニルアセタール、各種アクリル系ポリマー、メチルセルロース、ポリ酢酸ビニル、ポリビニルブチラール系、各種ワックス、各種多糖類等の有機バインダーをスラリーに添加してもよい。   Polyacrylic acid ammonium salt (when the dispersion medium is water), ethyl oleate, sorbitan monooleate, sorbitan trioleate, polycarboxylic acid (when the dispersion medium is an organic solvent), etc., to enable uniform dispersion To facilitate the formation of dispersants and granules, organic binders such as polyvinyl alcohol, polyvinyl acetal, various acrylic polymers, methylcellulose, polyvinyl acetate, polyvinyl butyral, various waxes, various polysaccharides may be added to the slurry. Good.

原料のスピネル粒子は高純度のものが望ましい。原料中に含まれる有機物、ハロゲンや水は1次焼結の工程で原料中より除去され、スピネル焼結体の特徴を損うものではないので、1次焼結前の段階でのこれらの不純物の混入は許容される。   The raw material spinel particles are preferably of high purity. Organic substances, halogens and water contained in the raw material are removed from the raw material in the primary sintering process and do not impair the characteristics of the spinel sintered body, so these impurities in the stage before the primary sintering. Is allowed to mix.

プレスの方法としては、冷間等方圧プレス(CIP)を挙げることができる。プレスの圧力は、好ましくは、1次焼結後のスピネル成形体の相対密度が95〜96%の範囲になる範囲から選択され、通常100〜300MPaである。   An example of the pressing method is cold isostatic pressing (CIP). The pressure of the press is preferably selected from the range in which the relative density of the spinel compact after primary sintering is in the range of 95 to 96%, and is usually 100 to 300 MPa.

次に、スピネル成形体は1次焼結される。1次焼結では、スピネル成形体を、所定の常圧または減圧(真空)雰囲気下、1500〜1900℃に加熱して焼結する。常圧または減圧(真空)雰囲気としては、水素等の還元雰囲気やAr等の不活性ガスの雰囲気が好ましい。雰囲気の圧力としては、減圧(真空)が好ましく、具体的には、1〜200Pa程度が好ましい。1次焼結の時間は、1〜5時間程度が好ましい。   Next, the spinel compact is primarily sintered. In the primary sintering, the spinel molded body is heated and sintered at 1500 to 1900 ° C. in a predetermined normal pressure or reduced pressure (vacuum) atmosphere. As the normal pressure or reduced pressure (vacuum) atmosphere, a reducing atmosphere such as hydrogen or an inert gas atmosphere such as Ar is preferable. The pressure of the atmosphere is preferably reduced pressure (vacuum), specifically, about 1 to 200 Pa is preferable. The primary sintering time is preferably about 1 to 5 hours.

1次焼結後のスピネル成形体(スピネル1次焼結体)の相対密度は95〜96%の範囲とすることが好ましい。ここで相対密度とは、スピネルの理論密度(25℃で3.60g/cm)に対する実際の密度の比(理論密度比。%で表示する)を表し、例えば、相対密度95%のスピネルの密度(25℃)は3.42g/cmである。The relative density of the spinel molded body after the primary sintering (spinel primary sintered body) is preferably in the range of 95 to 96%. Here, the relative density represents the ratio of the actual density to the theoretical density of spinel (3.60 g / cm 3 at 25 ° C.) (theoretical density ratio, expressed in%). The density (25 ° C.) is 3.42 g / cm 3 .

スピネル成形体(スピネル1次焼結体)の相対密度が95%未満の場合は、2次焼結工程における焼結が進みにくく透明なスピネル焼結体が得られにくい。一方、この相対密度が96%を超える場合は、2次焼結工程においてスピネル成形体内に既に存在している気孔の合体が進みやすく、最大径が100μを超える気孔が生成しやすい。また気孔数も増え、スピネル焼結体1cmあたりの最大径10μm以上の気孔数が2.0個以下のスピネル焼結体が得られにくくなる。When the relative density of the spinel molded body (spinel primary sintered body) is less than 95%, the sintering in the secondary sintering process is difficult to proceed and it is difficult to obtain a transparent spinel sintered body. On the other hand, when the relative density exceeds 96%, the coalescence of pores already existing in the spinel molded body is likely to proceed in the secondary sintering step, and pores having a maximum diameter exceeding 100 μ are likely to be generated. Further, the number of pores increases, and it becomes difficult to obtain a spinel sintered body having 2.0 or less pores having a maximum diameter of 10 μm or more per 1 cm 3 of the spinel sintered body.

1次焼結前の成形体の密度は、成形時のプレスの圧力により変動する。また、1次焼結工程後のスピネル成形体の相対密度は、1次焼結前の成形体の密度や1次焼結の温度や時間により変動する。従って、95〜96%の範囲の相対密度は、成形時のプレスの圧力や1次焼結の温度や時間を調整することにより得ることができる。   The density of the molded body before the primary sintering varies depending on the pressure of the press at the time of molding. Further, the relative density of the spinel molded body after the primary sintering step varies depending on the density of the molded body before the primary sintering, the temperature and time of the primary sintering. Therefore, a relative density in the range of 95 to 96% can be obtained by adjusting the pressure of the press during molding and the temperature and time of primary sintering.

1次焼結工程により得られたスピネル1次焼結体は、2次焼結される。2次焼結では、成形体を、加圧下、1500〜2000℃、好ましくは1600〜1900℃に加熱して焼結する。加圧の圧力としては、5〜300MPaの範囲であり、好ましくは50〜250MPa程度、より好ましくは100〜200MPa程度である。2次焼結の時間は、1〜5時間程度が好ましい。2次焼結の雰囲気としては、Ar等の不活性ガスの雰囲気が好ましく挙げられる。   The spinel primary sintered body obtained by the primary sintering step is secondarily sintered. In the secondary sintering, the compact is heated and sintered at 1500 to 2000 ° C., preferably 1600 to 1900 ° C. under pressure. The pressurizing pressure is in the range of 5 to 300 MPa, preferably about 50 to 250 MPa, and more preferably about 100 to 200 MPa. The secondary sintering time is preferably about 1 to 5 hours. As an atmosphere of secondary sintering, an atmosphere of an inert gas such as Ar is preferably exemplified.

2次焼結工程後のスピネル成形体(スピネル焼結体)の相対密度は99.9%以上であることが好ましい。スピネル成形体の2次焼結後の相対密度は、2次焼結工程における圧力や温度及び2次焼結の時間により変動する。従って、99.9%以上の相対密度は、2次焼結工程における圧力や温度及び2次焼結の時間を調整することにより得ることができる。   The relative density of the spinel molded body (spinel sintered body) after the secondary sintering step is preferably 99.9% or more. The relative density of the spinel compact after secondary sintering varies depending on the pressure and temperature in the secondary sintering step and the time of secondary sintering. Accordingly, a relative density of 99.9% or more can be obtained by adjusting the pressure and temperature in the secondary sintering step and the time of secondary sintering.

以上のようにして、2次焼結工程後のスピネル焼結体の相対密度が99.9%以上となるように調整することにより、焼結工程中のスピネルの粒成長が制御され、スピネルの粒成長に伴う微細な気孔の合体を抑制することができる。その結果、最大径が100μmを超えるような気孔の発生が抑制され、また気孔数が抑制されたスピネル焼結体を得ることができる。   As described above, by adjusting the relative density of the spinel sintered body after the secondary sintering process to be 99.9% or more, the grain growth of the spinel during the sintering process is controlled, and the spinel The coalescence of fine pores accompanying grain growth can be suppressed. As a result, it is possible to obtain a spinel sintered body in which the generation of pores having a maximum diameter exceeding 100 μm is suppressed and the number of pores is suppressed.

<液晶タッチパネル保護板の製造方法>
上記のスピネル焼結体の製造方法で得られたスピネル焼結体は、所定の形状への切断、研磨等の工程を経て、液晶タッチパネル保護板に加工される。液晶タッチパネル保護板を研磨する際は、表面粗さRaが10nm以下となるようにすることが好ましい。液晶タッチパネル保護板の大きさや厚さは、適用される液晶タッチパネルの大きさやデザイン等に応じて決定されればよく、特に限定されない。また、液晶タッチパネル保護板の表面に貫通部を形成したり、液晶タッチパネルの一部を拡大表示するためにレンズを形成してもよい。
<Method for manufacturing LCD touch panel protective plate>
The spinel sintered body obtained by the method for producing a spinel sintered body is processed into a liquid crystal touch panel protective plate through steps such as cutting into a predetermined shape and polishing. When polishing the liquid crystal touch panel protective plate, the surface roughness Ra is preferably 10 nm or less. The size and thickness of the liquid crystal touch panel protective plate may be determined according to the size and design of the applied liquid crystal touch panel, and are not particularly limited. Moreover, you may form a lens in order to form a penetration part in the surface of a liquid crystal touch panel protective plate, or to enlarge and display a part of liquid crystal touch panel.

また、必要に応じて反射防止コーティング層や光学的作用を行なう層を、液晶タッチパネル保護板の表面に形成することもできる。例えば液晶タッチパネル保護板の片面または両面に、反射防止コーティング層を形成することにより光透過機能をより向上させることができる。   Further, if necessary, an antireflection coating layer or an optically acting layer can be formed on the surface of the liquid crystal touch panel protective plate. For example, the light transmission function can be further improved by forming an antireflection coating layer on one side or both sides of the liquid crystal touch panel protective plate.

反射防止コーティング層は、例えば金属酸化物や金属弗化物の層であり、その形成方法としては、従来公知のPVD法(物理蒸着法)、具体的には、スパッタリング法、イオンプレーティング法、真空蒸着法等を用いることができる。   The antireflection coating layer is, for example, a metal oxide or metal fluoride layer, and the formation method thereof is a conventionally known PVD method (physical vapor deposition method), specifically, a sputtering method, an ion plating method, a vacuum. An evaporation method or the like can be used.

本発明を実施例によりさらに具体的に説明する。ただし、これらの実施例により本発明が限定されるものではない。   The present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

<液晶タッチパネル保護板の作製>
[製造例1]
組成がMgO・nAl(n=1.09)のスピネル粒子4750g(純度99.9%以上)、水(分散媒)3100g、ポリカルボン酸アンモニウム40質量%水溶液(分散剤、サンノプコ社製:商品名SN−D5468)125gを、容量40リットルの超音波槽に入れ、超音波を照射しながら、30分間撹拌混合を行った。その後有機バインダーとしてポリビニルアルコール(クラレ社製:商品名PVA−205C)の10質量%溶液を1000gと、可塑剤としてポリエチレングリコール#400(試薬特級)を10g添加し、60分間撹拌混合してスラリーを調製した。
<Production of LCD touch panel protective plate>
[Production Example 1]
4750 g (purity 99.9% or more) of spinel particles having a composition of MgO.nAl 2 O 3 (n = 1.09), 3100 g of water (dispersion medium), 40% by mass aqueous solution of ammonium polycarboxylate (dispersing agent, manufactured by San Nopco) : Product name SN-D5468) 125 g was placed in an ultrasonic tank with a capacity of 40 liters, and stirred and mixed for 30 minutes while irradiating ultrasonic waves. Thereafter, 1000 g of a 10% by mass solution of polyvinyl alcohol (trade name PVA-205C, manufactured by Kuraray Co., Ltd.) as an organic binder and 10 g of polyethylene glycol # 400 (reagent special grade) as a plasticizer are added, and the slurry is stirred and mixed for 60 minutes. Prepared.

次にスラリーをスプレードライにより顆粒状とし、さらに顆粒の含水率を0.5質量%に調湿した後、金型に充填し、プレスにて196MPaの圧力で1次成形し、さらに196MPaの圧力で冷間等方圧プレス(CIP)により2次成形し、スピネル成形体を得た。   Next, the slurry is granulated by spray drying, and the moisture content of the granule is adjusted to 0.5% by mass, then filled in a mold, and primary molded at a pressure of 196 MPa by a press, and further at a pressure of 196 MPa. Then, secondary forming was performed by cold isostatic pressing (CIP) to obtain a spinel molded body.

得られた成形体をグラファイト製の容器に入れ、真空中(5Pa以下)で1700℃で2時間で1次焼結した。得られた1次焼結体をアルキメデス法にて相対密度を測定したところ、98%であった。   The obtained molded body was put in a graphite container and subjected to primary sintering in vacuum (5 Pa or less) at 1700 ° C. for 2 hours. When the relative density of the obtained primary sintered body was measured by the Archimedes method, it was 98%.

1次焼結体を、Ar雰囲気下、雰囲気圧力196MPaの条件の下、温度1700℃にて2時間、熱間等方圧プレス(HIP)による加熱、加圧を行い、2次焼結体を得た。得られた2次焼結体をアルキメデス法にて相対密度を測定したところ、99.8%であった。   The primary sintered body was heated and pressurized by hot isostatic pressing (HIP) at a temperature of 1700 ° C. for 2 hours under the conditions of Ar atmosphere and atmospheric pressure of 196 MPa. Obtained. When the relative density of the obtained secondary sintered body was measured by the Archimedes method, it was 99.8%.

前記の方法で得られたスピネルの2次焼結体を、主表面が一辺100mmの正方形で、約1mmの厚さの板に切断した後、主面の両面を研磨機(ナノファクター社製NF−300)で研磨して、表面粗さRaが8nm、厚さ1mmの液晶タッチパネル保護板を得た(体積1.0cm)。The spinel secondary sintered body obtained by the above method was cut into a plate having a main surface of a square having a side of 100 mm and a thickness of about 1 mm, and then both surfaces of the main surface were polished by a polishing machine (NF manufactured by Nano Factor) -300) to obtain a liquid crystal touch panel protective plate having a surface roughness Ra of 8 nm and a thickness of 1 mm (volume: 1.0 cm 3 ).

[製造例2〜7]
製造例2〜7は、1次焼結条件および2次焼結条件を表1に示す条件としたほかは、製造例1と同様の原料および同様の方法で液晶タッチパネル保護板を作製した。
[Production Examples 2 to 7]
In Production Examples 2 to 7, a liquid crystal touch panel protective plate was produced using the same raw materials and the same method as in Production Example 1 except that the primary sintering conditions and the secondary sintering conditions were as shown in Table 1.

[製造例8,9]
製造例8,9は、液晶タッチパネル保護板の表面粗さRaを製造例8は5nm、製造例9は10nmとしたほかは、製造例1と同様の原料および同様の方法で液晶タッチパネル保護板を作製した。
[Production Examples 8 and 9]
In Production Examples 8 and 9, the surface roughness Ra of the LCD touch panel protective plate was set to 5 nm for Production Example 8 and 10 nm for Production Example 9, except that the LCD touch panel protective plate was formed using the same materials and the same method as in Production Example 1. Produced.

[製造例10〜13]
原料スピネル粒子として、製造例10は組成がMgO・nAl(n=1.08)のスピネル粒子、製造例11は組成がMgO・nAl(n=1.05)のスピネル粒子、製造例12は組成がMgO・nAl(n=1.10)のスピネル粒子、製造例13は組成がMgO・nAl(n=1.15)のスピネル粒子、としたほかは、製造例1と同様の方法で液晶タッチパネル保護板を作製した。
[Production Examples 10 to 13]
As raw material spinel particles, Production Example 10 is a spinel particle having a composition of MgO.nAl 2 O 3 (n = 1.08), and Production Example 11 is a spinel particle having a composition of MgO · nAl 2 O 3 (n = 1.05). Production Example 12 was spinel particles with a composition of MgO.nAl 2 O 3 (n = 1.10), and Production Example 13 was spinel particles with a composition of MgO · nAl 2 O 3 (n = 1.15). Produced a liquid crystal touch panel protective plate in the same manner as in Production Example 1.

[製造例14〜17]
製造例1のスピネル粒子に、製造例14はSiを10ppm、製造例15はSiを20ppm、製造例16はSiを25ppm、製造例16はSiを30ppm添加したほかは、製造例1と同様の原料および同様の方法で液晶タッチパネル保護板を作製した。
[Production Examples 14 to 17]
Production Example 14 is the same as Production Example 1 except that Production Example 14 is 10 ppm Si, Production Example 15 is 20 ppm Si, Production Example 16 is 25 ppm Si, Production Example 16 is 30 ppm Si. A liquid crystal touch panel protective plate was produced by the same method as the raw material.

[製造例18]
強化ガラスを用いて、一辺100mmの正方形で厚さ1mmの大きさの液晶タッチパネル保護板を得た(体積1.0cm)。
[Production Example 18]
Using tempered glass, a liquid crystal touch panel protective plate having a square of 100 mm on a side and a thickness of 1 mm was obtained (volume: 1.0 cm 3 ).

[製造例19]
サファイヤ基板を用いて、一辺100mmの正方形で厚さ1mmの大きさの液晶タッチパネル保護板を得た(体積1.0cm)。
[Production Example 19]
Using a sapphire substrate, a liquid crystal touch panel protective plate having a square of 100 mm on a side and a thickness of 1 mm was obtained (volume 1.0 cm 3 ).

<測定>
(モース硬度)
JISに規定された方法に基づき、モース硬度を測定した。結果を表1に示す。
<Measurement>
(Mohs hardness)
Mohs hardness was measured based on the method defined in JIS. The results are shown in Table 1.

(光透過性)
液晶タッチパネル保護板の波長400nm〜800nmにおける平均光透過率(%)を測定した。結果を表1に示す。
(Optical transparency)
The average light transmittance (%) at a wavelength of 400 nm to 800 nm of the liquid crystal touch panel protective plate was measured. The results are shown in Table 1.

(曲げ強度)
JISに規定された方法に基づき、3点曲げ強度を測定した。結果を表1に示す。
(Bending strength)
Based on the method defined in JIS, the three-point bending strength was measured. The results are shown in Table 1.

(気孔の観察)
液晶タッチパネル保護板の表面を光学顕微鏡(ニコン社製T−300)を使用して倍率50倍で観察し、気孔の最大径と、径が10μm以上の気孔数を測定した。結果を表1に示す。
(Observation of pores)
The surface of the liquid crystal touch panel protective plate was observed at a magnification of 50 using an optical microscope (Nikon T-300), and the maximum pore diameter and the number of pores having a diameter of 10 μm or more were measured. The results are shown in Table 1.

(不純物含有量)
液晶タッチパネル保護板の不純物含有量をICP発光分析にて測定した。結果を表1に示す。
(Impurity content)
The impurity content of the liquid crystal touch panel protective plate was measured by ICP emission analysis. The results are shown in Table 1.

(密度)
液晶タッチパネル保護板の相対密度をアルキメデス法にて測定した。結果を表1に示す。
(density)
The relative density of the liquid crystal touch panel protective plate was measured by the Archimedes method. The results are shown in Table 1.

Figure 0006269827
Figure 0006269827

<評価結果>
製造例1〜7を比較すると、液晶タッチパネルに含まれるスピネル焼結体の平均粒径が10μm以上100μm以下であると(製造例2〜6)、液晶タッチパネルが優れた光透過率および強度を有することが確認された。
<Evaluation results>
When the manufacture examples 1-7 are compared and the average particle diameter of the spinel sintered compact contained in a liquid crystal touch panel is 10 micrometers or more and 100 micrometers or less (manufacture examples 2-6), a liquid crystal touch panel has the outstanding light transmittance and intensity | strength. It was confirmed.

製造例1、8、9から、液晶タッチパネル保護板の表面粗さRaが10nm以下であると、液晶タッチパネルが優れた光透過率および強度を有することが確認された。   From Production Examples 1, 8, and 9, it was confirmed that the liquid crystal touch panel had excellent light transmittance and strength when the surface roughness Ra of the liquid crystal touch panel protective plate was 10 nm or less.

製造例1、10〜13から、原料スピネル粒子の組成MgO・nAlにおいて、nの値が1.05≦n≦1.30であると、液晶タッチパネルが優れた光透過率および強度を有することが確認された。From Production Examples 1 and 10 to 13, in the composition MgO · nAl 2 O 3 of the raw material spinel particles, when the value of n is 1.05 ≦ n ≦ 1.30, the liquid crystal touch panel has excellent light transmittance and strength. It was confirmed to have.

製造例1、14〜17から、不純物の平均粒径は20μm以下であり、かつ含有量は10ppm以下であると、液晶タッチパネルが優れた光透過率および強度を有することが確認された。   From Production Examples 1 and 14 to 17, it was confirmed that the liquid crystal touch panel had excellent light transmittance and strength when the average particle size of the impurities was 20 μm or less and the content was 10 ppm or less.

製造例1〜17と、製造例18、19とを比較すると、製造例1〜17は強化ガラスよりも強度が優れており、サファイヤ基板に近い優れた強度を有していることが確認された。   Comparison between Production Examples 1 to 17 and Production Examples 18 and 19 confirmed that Production Examples 1 to 17 were superior in strength to tempered glass and had excellent strength close to that of a sapphire substrate. .

本発明の液晶タッチパネル保護板は、優れた強度を有するため、携帯デバイスなどに用いると有益である。   Since the liquid crystal touch panel protective plate of the present invention has excellent strength, it is useful when used for a portable device or the like.

Claims (5)

スピネル焼結体で形成される液晶タッチパネル保護板であって、
前記スピネル焼結体は、平均粒径が10μm以上100μm以下のスピネル粒子で構成され、
前記スピネル焼結体は気孔を含み、
前記気孔の最大径は100μm以下であり、かつ径が10μm以上の気孔数が前記スピネル焼結体1cm あたり2.0個以下である、液晶タッチパネル保護板。
A liquid crystal touch panel protective plate formed of a spinel sintered body,
The spinel sintered body is composed of spinel particles having an average particle size of 10 μm or more and 100 μm or less ,
The spinel sintered body includes pores,
The liquid crystal touch panel protective plate, wherein the maximum diameter of the pores is 100 μm or less, and the number of pores having a diameter of 10 μm or more is 2.0 or less per 1 cm 3 of the spinel sintered body .
前記液晶タッチパネル保護板は、表面粗さRaが10nm以下である、請求項1に記載の液晶タッチパネル保護板。   The liquid crystal touch panel protective plate according to claim 1, wherein the liquid crystal touch panel protective plate has a surface roughness Ra of 10 nm or less. 前記スピネル焼結体は、組成がMgO・nAl(1.05≦n≦1.30)である、請求項1または請求項2に記載の液晶タッチパネル保護板。 The liquid crystal touch panel protective plate according to claim 1, wherein the spinel sintered body has a composition of MgO · nAl 2 O 3 (1.05 ≦ n ≦ 1.30). 前記スピネル焼結体は不純物を含み、
前記不純物の平均粒径は20μm以下であり、かつ合計含有量は10ppm以下である、請求項1〜請求項のいずれか1項に記載の液晶タッチパネル保護板。
The spinel sintered body contains impurities,
The liquid crystal touch panel protective plate according to any one of claims 1 to 3 , wherein an average particle diameter of the impurities is 20 µm or less, and a total content is 10 ppm or less.
前記液晶タッチパネル保護板は、相対密度が99.6%以上である、請求項1〜請求項4のいずれか1項に記載の液晶タッチパネル保護板。 The liquid crystal touch panel protective plate according to any one of claims 1 to 4, wherein the liquid crystal touch panel protective plate has a relative density of 99.6% or more .
JP2016523079A 2014-05-30 2014-05-30 LCD touch panel protective plate Active JP6269827B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064491 WO2015181975A1 (en) 2014-05-30 2014-05-30 Liquid crystal touch panel protective plate

Publications (2)

Publication Number Publication Date
JPWO2015181975A1 JPWO2015181975A1 (en) 2017-04-20
JP6269827B2 true JP6269827B2 (en) 2018-01-31

Family

ID=54698349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016523079A Active JP6269827B2 (en) 2014-05-30 2014-05-30 LCD touch panel protective plate

Country Status (4)

Country Link
JP (1) JP6269827B2 (en)
KR (1) KR20170015278A (en)
CN (1) CN106232552A (en)
WO (1) WO2015181975A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3674236B2 (en) * 1996-05-23 2005-07-20 三菱化学株式会社 Liquid crystal display element
JP2006273679A (en) * 2005-03-30 2006-10-12 Sumitomo Electric Ind Ltd Spinel sintered compact, light transmission window, and light transmission lens
JP4830911B2 (en) * 2007-03-02 2011-12-07 住友電気工業株式会社 Spinel sintered body, manufacturing method thereof, transparent substrate and liquid crystal projector
JP5168724B2 (en) * 2008-05-23 2013-03-27 住友電気工業株式会社 Transparent polycrystalline spinel substrate, manufacturing method thereof, and electro-optical device
US20140360345A1 (en) * 2011-11-07 2014-12-11 Ceramtec-Etec Gmbh Transparent ceramic material
CN103376933A (en) * 2012-04-20 2013-10-30 鑫晶钻科技股份有限公司 Touch panel
JP6003200B2 (en) * 2012-05-08 2016-10-05 日立化成株式会社 Adhesive sheet for image display device, method for manufacturing image display device, and image display device
WO2014021093A1 (en) * 2012-08-02 2014-02-06 シャープ株式会社 Display system

Also Published As

Publication number Publication date
WO2015181975A1 (en) 2015-12-03
JPWO2015181975A1 (en) 2017-04-20
KR20170015278A (en) 2017-02-08
CN106232552A (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6195838B2 (en) Transparent ceramic
JP5435397B2 (en) Spinel light-transmitting window material and manufacturing method
JP6264846B2 (en) Oxide sintered body, sputtering target and manufacturing method thereof
JP6269827B2 (en) LCD touch panel protective plate
US10633290B2 (en) High strength transparent ceramic using corundum powder and methods of manufacture
JP4374330B2 (en) Silicon monoxide-based vapor deposition material and method for producing the same
JP2014125422A (en) Oxide sintered body, oxide sintered body sputtering target and its manufacturing method
Mousavi et al. Development of a Transparent Scratch Resistant Coating through Direct Oxidation of Al‐Coated Glass
TWI621602B (en) LCD touch panel protection board
WO2016039164A1 (en) Liquid crystal protection plate and method for producing liquid crystal protection plate
JP2010243179A (en) Cover glass for timepiece, and method for manufacturing the cover glass
WO2012073879A1 (en) Sputtering target
JP6367122B2 (en) Alumina sintered body, abrasive grains, grindstone, polishing cloth, and method for producing alumina sintered body
TW201734226A (en) Powder, process of making the powder, and articles made therefrom
WO2018179556A1 (en) Sputtering target and production method therefor
JP7480439B2 (en) Oxide sintered body, its manufacturing method, and sputtering target material
JP2010255022A (en) Ito sputtering target, and method for producing the same
CN110937891A (en) Sintered body, sputtering target, and method for producing sintered body
TW201734238A (en) Sputtering target
JP2009191336A (en) Wc based fine grained cemented carbide member
Marconie MICROSTRUCTURE AND MECHANICAL PROPERTIES OF TEXTURED SILICON CARBIDE FORMED VIA DIRECT INK WRITING AND TEMPLATED GRAIN GROWTH
WO2015068535A1 (en) Sputtering target and method for producing same
TW202237871A (en) Slurry for plasma spray coating, manufacturing method for spray coating film, aluminum oxide spray coating film, and spray coating member
WO2018008207A1 (en) Oriented alumina sintered body and method for producing same
TW200918469A (en) A process for an optical mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6269827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250