JP6261217B2 - Bath water supply system - Google Patents

Bath water supply system Download PDF

Info

Publication number
JP6261217B2
JP6261217B2 JP2013147847A JP2013147847A JP6261217B2 JP 6261217 B2 JP6261217 B2 JP 6261217B2 JP 2013147847 A JP2013147847 A JP 2013147847A JP 2013147847 A JP2013147847 A JP 2013147847A JP 6261217 B2 JP6261217 B2 JP 6261217B2
Authority
JP
Japan
Prior art keywords
temperature
water
bathtub
hot water
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013147847A
Other languages
Japanese (ja)
Other versions
JP2015021631A (en
Inventor
青木 亮
亮 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Misawa Homes Co Ltd
Toyota Housing Corp
Original Assignee
Misawa Homes Co Ltd
Toyota Housing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misawa Homes Co Ltd, Toyota Housing Corp filed Critical Misawa Homes Co Ltd
Priority to JP2013147847A priority Critical patent/JP6261217B2/en
Publication of JP2015021631A publication Critical patent/JP2015021631A/en
Application granted granted Critical
Publication of JP6261217B2 publication Critical patent/JP6261217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control For Baths (AREA)

Description

本発明は、建物における浴槽給湯システムに関する。   The present invention relates to a bathtub hot water supply system in a building.

可燃性のガスを燃料とする給湯システムは、給湯するお湯の温度が同じでも、給水温及び外気温等の影響により燃料である可燃性ガスの消費量が異なってくる。   In a hot water supply system that uses flammable gas as fuel, even if the temperature of hot water to be supplied is the same, the amount of consumption of combustible gas, which is fuel, varies due to the influence of the temperature of the water supply and the outside temperature.

特許文献1には、水道管を流れる水道水の水温を測定し、給湯に要するガスの消費量を予測するガス需要予測システムの技術が開示されている。   Patent Document 1 discloses a technology of a gas demand prediction system that measures the temperature of tap water flowing through a water pipe and predicts the consumption of gas required for hot water supply.

特開2000−314664号公報JP 2000-314664 A

しかしながら、特許文献1に記載の技術では、水道水の水温に基づいて給湯に要するガスの量を予測することは可能なものの、給湯に要するガスの消費量を抑制することは考慮されていないという問題点があった。   However, in the technique described in Patent Document 1, although it is possible to predict the amount of gas required for hot water supply based on the water temperature of tap water, it is not considered to suppress the consumption of gas required for hot water supply. There was a problem.

本発明は、上記事実を考慮して成されたもので、給湯に要するエネルギー消費量を抑制できる浴槽給湯システムを提供することを目的とする。   The present invention has been made in consideration of the above-described facts, and an object of the present invention is to provide a bathtub hot-water supply system capable of suppressing energy consumption required for hot-water supply.

上記課題を解決するための請求項1の発明は、外部から供給された水を加熱して得た温水を浴槽に供給すると共に前記浴槽内の水を加熱する給湯手段と、気象情報を取得する情報取得手段と、前記情報取得手段が取得した気象情報が含む前記浴槽に給湯する当日の最高気温予測に基づいて前記当日の第1の所定の時刻に前記浴槽に所定の量の水を入れ前記当日の第2の所定の時刻に前記浴槽内の水の加熱を開始する第1の給湯方式及び前記当日の第3の所定の時刻に前記浴槽に所定の温度の温水を前記所定の量で供給を開始する第2の給湯方式からエネルギー消費量が少ない給湯方式を選択し、該選択した給湯方式で給湯するように前記給湯手段を制御する制御手段と、最高気温と前記第1の給湯方式における前記第2の所定の時刻の前記浴槽内の水温である第1給湯方式浴槽水温との相関関係である気温水温相関性、及び水温閾値を予め記憶した記憶手段と、を備えた浴槽給湯システムであって、前記制御手段は、前記気温水温相関性において前記当日の前記最高気温予測に対応する前記第1給湯方式浴槽水温が前記水温閾値以上の場合に前記第1の給湯方式を選択する浴槽給湯システムであるInvention of Claim 1 for solving the said subject acquires the hot-water supply means which heats the water in the said bathtub while supplying the hot water obtained by heating the water supplied from the outside to a bathtub, and meteorological information A predetermined amount of water is put into the bathtub at a first predetermined time on the day based on an information acquisition means and a maximum temperature prediction of the day for hot water supply to the bathtub included in the weather information acquired by the information acquisition means A first hot water supply system that starts heating the water in the bathtub at a second predetermined time of the day, and hot water of a predetermined temperature is supplied to the bathtub at a predetermined amount at a third predetermined time of the day In the first hot water supply method, a control means for controlling the hot water supply means to select a hot water supply method that consumes less energy from the second hot water supply method for starting the hot water, and to supply hot water in the selected hot water supply method, The bath at the second predetermined time A water temperature of the internal air temperature water temperature correlation is correlation between the first hot-water supply system bath temperature, and the previously stored memory means temperature threshold, a bathtub hot-water supply system wherein the control unit, the temperature It is a bathtub hot water supply system that selects the first hot water supply method when the first hot water supply method bathtub water temperature corresponding to the highest temperature prediction on the day in the water temperature correlation is equal to or higher than the water temperature threshold .

請求項1に記載の発明によれば、給湯する当日の最高気温予測に基づいて、第1又は第2の給湯方式のうち、エネルギー消費量が少ない給湯方式で給湯することができる。。   According to the first aspect of the present invention, hot water can be supplied by a hot water supply method with less energy consumption out of the first or second hot water supply method, based on the predicted maximum temperature on the day of hot water supply. .

また、請求項に記載の発明によれば、給湯する当日の最高気温予測を予め記憶した気温水温相関性に当てはめて推算した第1給湯方式浴槽水温が水温閾値以上か否かによってエネルギー消費量が少ない給湯方式を選択できる。 Further, according to the invention described in claim 1, energy consumption first hot water system bath water temperature was estimated by fitting the temperature temperature correlation stored in advance the maximum temperature prediction of the day of hot water supply according to whether or temperature threshold A hot water supply system with less can be selected.

請求項の発明は、請求項に記載の浴槽給湯システムにおいて、前記外部から供給された水の水温である供給水温を検知する供給水温検知手段と、前記浴槽内の水温である浴槽水温を検知する浴槽水温検知手段と、前記浴室内の気温である浴室内気温を検知する気温検知手段と、をさらに備え、前記情報取得手段は、前記当日の最高気温の実測値を取得し、前記記憶手段は、前記供給水温検知手段が検知した前記供給水温、前記浴槽水温検知手段が検知した浴槽水温及び前記気温検知手段が検知した浴室内気温を各々記憶し、前記制御手段は、前記選択した給湯方式で前記当日に前記浴槽に給湯した後に、前記情報取得手段が取得した前記当日の最高気温の実測値、前記記憶手段に記憶された前記当日の前記第1の所定の時刻から前記当日の前記第2の所定の時刻までの前記供給水温、前記当日に前記第1の給湯方式によって給湯した場合に前記記憶手段に記憶された前記当日の前記第2の所定の時刻での前記浴槽水温及び前記記憶手段に記憶された前記当日の前記第1の所定の時刻から前記当日の前記第2の所定の時刻までの前記浴室内気温に基づいて前記気温水温相関性を修正する。 Invention of Claim 2 is the bathtub hot-water supply system of Claim 1 , The supply water temperature detection means which detects the supply water temperature which is the water temperature of the water supplied from the outside, The bathtub water temperature which is the water temperature in the said bathtub A bath water temperature detecting means for detecting; and an air temperature detecting means for detecting an air temperature in the bathroom which is an air temperature in the bathroom, wherein the information acquiring means acquires an actual measurement value of the highest temperature on the day, and stores the memory. The means stores the supply water temperature detected by the supply water temperature detection means, the bath water temperature detected by the bathtub water temperature detection means, and the bathroom air temperature detected by the temperature detection means, and the control means stores the selected hot water supply. After the hot water supply to the bathtub on the same day by the method, the actual value of the highest temperature of the day acquired by the information acquisition means, the first predetermined time of the day stored in the storage means, and the current day The supply water temperature up to the second predetermined time, the bath water temperature at the second predetermined time of the day stored in the storage means when hot water is supplied by the first hot water supply method on the day, and The temperature / water temperature correlation is corrected based on the temperature in the bathroom from the first predetermined time of the day stored in the storage means to the second predetermined time of the day.

請求項3に記載の発明によれば、予想値に基づいて給湯を行った後に、実測値によって気温水温相関性を修正し、修正した気温水温相関性を次回の給湯の制御に使用できる。   According to the third aspect of the present invention, the hot water supply is performed based on the expected value, and then the temperature / water temperature correlation is corrected by the actually measured value, and the corrected temperature / water temperature correlation can be used for the next hot water supply control.

以上説明したように、請求項1に記載の発明は、給湯する当日の最高気温予測に基づいて、第1又は第2の給湯方式のうち、エネルギー消費量が少ない給湯方式で給湯する。これにより、給湯に要するエネルギー消費量を抑制できるという効果を有する。   As described above, according to the first aspect of the present invention, hot water is supplied by a hot water supply method that consumes less energy among the first and second hot water supply methods, based on the prediction of the highest temperature on the day of hot water supply. Thereby, it has the effect that the energy consumption required for hot water supply can be suppressed.

また、請求項に記載の発明によれば、給湯する当日の最高気温予測を予め記憶した気温水温相関性に当てはめて推算した第1給湯方式浴槽水温が水温閾値以上か否かによってエネルギー消費量が少ない給湯方式を選択する。かかる選択により、給湯に要するエネルギー消費量を抑制できるという効果を有する。 Further, according to the invention described in claim 1, energy consumption first hot water system bath water temperature was estimated by fitting the temperature temperature correlation stored in advance the maximum temperature prediction of the day of hot water supply according to whether or temperature threshold Select a hot water supply system with less. Such selection has an effect of suppressing the energy consumption required for hot water supply.

請求項に記載の発明によれば、予想値に基づいて給湯を行った後に、実測値によって気温水温相関性を修正し、修正した気温水温相関性を次回の給湯の制御に使用する。これにより、給湯に要するエネルギー消費量をより的確に抑制できるという効果を有する。 According to the second aspect of the present invention, after hot water is supplied based on the expected value, the temperature / water temperature correlation is corrected by the actually measured value, and the corrected temperature / water temperature correlation is used for the next control of hot water supply. Thereby, it has the effect that the energy consumption required for hot water supply can be suppressed more exactly.

本発明の実施の形態に係る浴槽給湯システムの一例を示す概略図である。It is the schematic which shows an example of the bathtub hot-water supply system which concerns on embodiment of this invention. 本発明の実施の形態に係る浴槽給湯システムにおける制御装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the control apparatus in the bathtub hot-water supply system which concerns on embodiment of this invention. 本発明の実施の形態に係る浴槽給湯システムの給湯方式の判定の原理を示した図である。It is the figure which showed the principle of the determination of the hot-water supply system of the bathtub hot-water supply system which concerns on embodiment of this invention. 本発明の実施の形態に係る浴槽給湯システムにおける給湯方式の判定の処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process of the hot water supply system determination in the bathtub hot water supply system which concerns on embodiment of this invention. 本発明の実施の形態に係る浴槽給湯システムにおける予想面積Sの算出に用いるグラフの一例である。It is an example of the graph used for calculation of the estimated area S in the bathtub hot-water supply system which concerns on embodiment of this invention. 本発明の実施の形態に係る浴槽給湯システムにおける予想浴槽水温Tの算出に用いるグラフの一例である。It is an example of a graph used for calculating the expected tub temperature T B in a bathtub hot-water supply system according to an embodiment of the present invention. 本発明の実施の形態に係る浴槽給湯システムにおける当日予想最高気温、面積、浴槽水温、給水温の各データの集積の一例を示す図である。It is a figure which shows an example of accumulation | aggregation of each data of the predicted maximum temperature on the day, area, bathtub water temperature, and water supply temperature in the bathtub hot-water supply system which concerns on embodiment of this invention.

以下、図面を参照して本発明の実施の形態の一例を詳細に説明する。図1は、本実施の形態に係る浴槽給湯システム10の一例を示す概略図である。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing an example of a bathtub hot water supply system 10 according to the present embodiment.

図1に示したように、本実施の形態では、住宅等の建物12の屋外に給湯器14が設けられ、給湯器14には都市ガス又はLPG(液化石油ガス)等の可燃性の気体が燃料として供給され、水道水を供給された燃料で加熱して、浴槽16に供給する。また、給湯器14は、浴槽16に予め張られている水を加熱する、いわゆる追い炊きが可能である。   As shown in FIG. 1, in the present embodiment, a water heater 14 is provided outside a building 12 such as a house, and city gas or flammable gas such as LPG (liquefied petroleum gas) is supplied to the water heater 14. It is supplied as fuel, and tap water is heated with the supplied fuel and supplied to the bathtub 16. The hot water heater 14 is capable of so-called additional cooking, in which water stretched in advance in the bathtub 16 is heated.

燃料として供給されたガスの量、及び供給された水道水の量は、各々ガスメータ18及び水道メータ20によって検知され、検知結果は、給湯器14を制御する制御装置30に送信される。また、水道メータ20には水温センサが設けられており、供給される水道水の温度を給水温として検知し、検知した給水温を制御装置30に送信する。   The amount of gas supplied as fuel and the amount of supplied tap water are detected by the gas meter 18 and the water meter 20, respectively, and the detection result is transmitted to the control device 30 that controls the water heater 14. The water meter 20 is provided with a water temperature sensor, detects the temperature of the supplied tap water as the feed water temperature, and transmits the detected feed water temperature to the control device 30.

浴室22内には、給湯器14を操作するための給湯器リモコン24が設けられている。 給湯器リモコン24は、タッチパネル等である操作部と液晶等で構成された表示部とを備えた入出力装置の一種で操作部から給湯器14の操作が可能であり、給湯器14の動作状況等の情報が表示部に表示される。また、給湯器リモコンは、浴室22内の気温を検知する気温センサを備え、気温センサが検知した浴室22内の気温は、制御装置30に送信される。   A water heater remote controller 24 for operating the water heater 14 is provided in the bathroom 22. The water heater remote control 24 is a kind of input / output device including an operation unit such as a touch panel and a display unit configured with a liquid crystal or the like, and the operation of the water heater 14 can be performed from the operation unit. Are displayed on the display unit. Further, the water heater remote control includes a temperature sensor that detects the temperature in the bathroom 22, and the temperature in the bathroom 22 detected by the temperature sensor is transmitted to the control device 30.

また、浴槽16には浴槽内の水温を検知する浴槽水温センサ26が設けられている。浴槽水温センサ26が検知した浴槽水温は、制御装置30に送信される。   The bathtub 16 is provided with a bathtub water temperature sensor 26 that detects the water temperature in the bathtub. The bath water temperature detected by the bath water temperature sensor 26 is transmitted to the control device 30.

浴室22とは別個の居室32には、制御装置30とネットワーク40とを接続するゲートウェイである終端装置34が設けられている。制御装置30は、終端装置34及びネットワーク40を介して、気象情報サーバ50から、給湯する当日の予想最高気温等の気象情報を取得する。   In a living room 32 separate from the bathroom 22, a termination device 34, which is a gateway for connecting the control device 30 and the network 40, is provided. The control device 30 acquires weather information such as the predicted maximum temperature on the day of hot water supply from the weather information server 50 via the terminal device 34 and the network 40.

図2は、本実施の形態に係る浴槽給湯システム10における制御装置30の概略構成を示すブロック図である。図1においては、制御装置30と操作部及び表示部を有する給湯器リモコン24は分離して描かれていたが、図2では操作部及び表示部は後述するバス74で接続された状態で示されている。   FIG. 2 is a block diagram showing a schematic configuration of the control device 30 in the bathtub hot water supply system 10 according to the present embodiment. In FIG. 1, the controller 30 and the water heater remote control 24 having the operation unit and the display unit are depicted separately, but in FIG. 2, the operation unit and the display unit are illustrated as being connected by a bus 74 described later. Has been.

図2に示した浴槽給湯システム10の制御装置は、CPU(Central Processing Unit)62と、HDD(Hard Disk Drive)64と、RAM(Random Access Memory)66と、ネットワークI/F部68と、ROM(Read Only Memory)70と、表示部72と、操作部76と、バス74とを含む。   2 includes a CPU (Central Processing Unit) 62, an HDD (Hard Disk Drive) 64, a RAM (Random Access Memory) 66, a network I / F unit 68, and a ROM. (Read Only Memory) 70, a display unit 72, an operation unit 76, and a bus 74 are included.

CPU62は、給湯器14の全体の動作を司るものであり、後述する給湯方式の判定のフローチャートの処理は、CPU62により実行される。HDD64は、給湯方式の判定のプログラム、OS(Operating System)及び閾値等が記憶される不揮発性の記憶装置である。また、HDD64は、後述する最高気温と気温及び給水温の差の積分値との相関性、当該積分値と浴槽水温との相関性を各々予め記憶する。さらにHDD64は、給湯器リモコンが検知した浴室22内の気温、水道メータ20が検知した給水温及び浴室水温センサ26が検知した浴槽16内の水温を各々記憶する。RAM66は、OSやプログラムやデータが展開される揮発性の記憶装置である。ネットワークI/F部68は、ネットワークに接続するためのものであり、NIC(Network Interface Card)やそのドライバで構成される。ROM70は、浴槽給湯システム10の起動時に動作するブートプログラム等が記憶されている不揮発性の記憶装置である。表示部72は、浴槽給湯システム10に関する情報を操作者に表示するものである。操作部76は、操作者が浴槽給湯システム10の操作や情報を入力する際に用いられるものであり、一例としてタッチパネル等の入力装置が含まれる。バス74は、情報のやりとりが行われる際に使用される。   The CPU 62 governs the overall operation of the water heater 14, and the processing of the flowchart for determining the hot water supply method described later is executed by the CPU 62. The HDD 64 is a non-volatile storage device that stores a hot water supply system determination program, an OS (Operating System), a threshold value, and the like. Further, the HDD 64 stores in advance a correlation between a maximum temperature, which will be described later, and an integrated value of a difference between the temperature and the water supply temperature, and a correlation between the integrated value and the bath water temperature. Further, the HDD 64 stores the temperature in the bathroom 22 detected by the water heater remote controller, the water supply temperature detected by the water meter 20, and the water temperature in the bathtub 16 detected by the bathroom water temperature sensor 26. The RAM 66 is a volatile storage device in which the OS, programs, and data are expanded. The network I / F unit 68 is for connecting to a network, and includes a NIC (Network Interface Card) and its driver. The ROM 70 is a non-volatile storage device that stores a boot program that operates when the bathtub hot-water supply system 10 is started. The display part 72 displays the information regarding the bathtub hot-water supply system 10 to an operator. The operation unit 76 is used when an operator inputs an operation or information on the bathtub hot water supply system 10, and includes an input device such as a touch panel as an example. The bus 74 is used when information is exchanged.

図3は、本実施の形態に係る浴槽給湯システム10の給湯方式の判定の原理を示した図である。図3は、浴室22内の気温と、給水温84との略1日での変化を示している。なお、給水温84は、水道メータ20の水温センサによって計測される水温である。   FIG. 3 is a diagram illustrating the principle of determination of the hot water supply method of the bathtub hot water supply system 10 according to the present embodiment. FIG. 3 shows changes in the temperature in the bathroom 22 and the water supply temperature 84 in about one day. The water supply temperature 84 is a water temperature measured by a water temperature sensor of the water meter 20.

図3において、気温82は、日中に上昇し、夕方には下降する。給水温84も日中に上昇し、夕方に下降する傾向は気温82と同様だが、地中に埋設された水道管を通るので、太陽光の影響を気温82ほどは受けず、温度変化は緩慢である。   In FIG. 3, the temperature 82 rises during the day and falls in the evening. The water supply temperature 84 also rises during the day and declines in the evening in the same way as the air temperature 82. However, since it passes through a water pipe buried underground, it is not affected by sunlight as much as the air temperature 82, and the temperature change is slow. It is.

図3では、浴槽16に水を入れる水張り開始時86から浴槽16の湯を沸かす湯沸し開始時88までの気温82と給水温84との差の積分値がハッチングで示されている。気温82が給水温84を上回っている場合は、気温82と給水温84の差の積分値は正になり、気温82が給水温84を下回っている場合は、気温82と給水温84の差の積分値は負になる。図3で「+」が記してある領域は気温82が給水温84を上回っている場合であり、「−」が記してある領域は気温82が給水温84を下回っている場合である。また、気温82と給水温84との差の積分値は、日中の最高気温が高ければ大きくなる。   In FIG. 3, the integrated value of the difference between the temperature 82 and the water supply temperature 84 from the start of filling water 86 to the bath 16 to the start of boiling water 88 of the bathtub 16 is shown by hatching. When the air temperature 82 is higher than the water supply temperature 84, the integral value of the difference between the air temperature 82 and the water supply temperature 84 becomes positive, and when the air temperature 82 is lower than the water supply temperature 84, the difference between the air temperature 82 and the water supply temperature 84 is obtained. The integral value of becomes negative. In FIG. 3, a region where “+” is written is a case where the temperature 82 is higher than the water supply temperature 84, and a region where “−” is written is a case where the temperature 82 is lower than the water supply temperature 84. Further, the integrated value of the difference between the air temperature 82 and the water supply temperature 84 increases as the daytime maximum temperature increases.

本実施の形態では、気温82と給水温84との差の積分値が所定の閾値以上の場合に、図3の水張り開始時86に浴槽16に水を入れ、湯沸し開始時88に湯を沸かす。理想的には、給湯する当日の朝方に当日の気温の変化の予測を行い、図3に示したような気温と給水温の変化の予測から、積分値を算出する。しかしながら、かかる予測に基づく算出は困難である。本実施の形態では、積分値と1日の最高気温との相関関係、さらには積分値と湯沸し開始時88における浴槽の水温である浴槽水温との相関関係を実験値から予め把握し、予想される最高気温をかかる相関関係に当てはめて上述の積分値さらには浴槽水温を推算する。   In the present embodiment, when the integrated value of the difference between the air temperature 82 and the water supply temperature 84 is equal to or greater than a predetermined threshold value, water is poured into the bathtub 16 at the start of water filling 86 in FIG. . Ideally, a change in the temperature of the day is predicted in the morning of the day of hot water supply, and an integrated value is calculated from the prediction of the change in the temperature and the water supply temperature as shown in FIG. However, calculation based on such prediction is difficult. In the present embodiment, the correlation between the integral value and the daily maximum temperature, and further the correlation between the integral value and the bath water temperature, which is the bath water temperature at the start of boiling water 88, are obtained in advance from the experimental values and are expected. The above-mentioned integral value and the bath water temperature are estimated by applying the maximum temperature to the correlation.

図4は、本実施の形態に係る浴槽給湯システム10における給湯方式の判定の処理の一例を示すフローチャートである。ステップ400では、給湯する当日の予想最高気温を含む気象情報を入手する。本実施の形態では、制御装置30は、気象庁等に備えられている気象情報サーバ50からネットワーク40を介して当日の予想最高気温の情報を取得可能である。しかしながら、入力装置である給湯器リモコン24からユーザが入力してもよい。また、制御装置30のHDD64に例えば過去10年間の最高気温のデータを記憶しておき、当該記憶した同月同日に係る最高気温のデータの平均値を算出して、当日の予想最高気温としてもよい。   FIG. 4 is a flowchart illustrating an example of a hot water supply system determination process in the bathtub hot water supply system 10 according to the present embodiment. In step 400, weather information including the predicted maximum temperature on the day of hot water supply is obtained. In the present embodiment, the control device 30 can acquire information on the predicted maximum temperature of the day via the network 40 from a weather information server 50 provided in the Japan Meteorological Agency or the like. However, the user may input from the water heater remote control 24 that is an input device. Alternatively, the maximum temperature data for the past 10 years, for example, may be stored in the HDD 64 of the control device 30, and the average value of the stored maximum temperature data for the same day of the same month may be calculated as the predicted maximum temperature of the day. .

ステップ402では、図3においてハッチングで示した気温82と給水温84との差の積分値の領域を、予想面積Sとして算出する。予想面積Sは、図5を用いて近似的に算出される。図5は、本実施の形態に係る浴槽給湯システム10における予想面積Sの算出に用いるグラフの一例である。図5は、過去の最高気温に対応する過去の気温と給水温との差の積分値を複数プロットし、プロットしたデータを最小二乗法等の既知の手法を用いて線形回帰を行い、検量線90を算出している。ステップ402では、図5の検量線90にステップ400で取得した当日予想最高気温Tmaxを当てはめて、予想面積Sを算出する。 In step 402, the region of the integrated value of the difference between the air temperature 82 and the water supply temperature 84 indicated by hatching in FIG. The expected area S is approximately calculated using FIG. FIG. 5 is an example of a graph used for calculating the expected area S in the bathtub hot water supply system 10 according to the present embodiment. FIG. 5 plots a plurality of integral values of the difference between the past temperature and the feed water temperature corresponding to the past maximum temperature, and performs a linear regression on the plotted data using a known method such as the least square method, and a calibration curve. 90 is calculated. In step 402, the expected area S is calculated by fitting the expected maximum temperature Tmax acquired in step 400 to the calibration curve 90 of FIG.

ステップ404では、浴槽16に汲み置きされた水の湯沸し開始時88における予想温度である予想浴槽水温Tを算出する。予想浴槽水温Tは、図6を用いて近似的に算出される。図6は、本実施の形態に係る浴槽給湯システム10における予想浴槽水温Tの算出に用いるグラフの一例である。図6は、過去の予想面積Sに対応する過去の予想浴槽水温Tを複数プロットし、プロットしたデータを最小二乗法等の既知の手法を用いて線形回帰を行い、検量線92を算出している。ステップ404では、図6の検量線92にステップ404で算出した予想面積Sを当てはめて、予想浴槽水温Tを算出する。 In step 404, it calculates a predicted bath temperature T B is the expected temperature at the boiler start 88 of the water placed pumped into bath 16. Expected tub temperature T B is approximately calculated with reference to FIG. Figure 6 is an example of a graph used for calculating the expected tub temperature T B in a bathtub hot-water supply system 10 according to this embodiment. 6, past predicted bath temperature T B corresponding to past predicted area S and plural plots, performs linear regression plot data by using a known method such as the least squares method to calculate a calibration curve 92 ing. In step 404, by applying the expected area S calculated in step 404 the calibration curve 92 in FIG. 6, to calculate the predicted bath temperature T B.

ステップ406では、予想浴槽水温Tが閾値水温T以上か否かを判定する。ステップ406で肯定判定の場合には、ステップ408で、水張り開始時86に浴槽に予め水を所定の量で満たした後に湯沸し開始時88に浴槽16で湯を沸かす。浴槽16に汲み置きされた水の温度が十分に高ければ、加熱に必要となる燃料の消費が少なくなるからである。ステップ406で否定判定の場合には、ステップ416で、浴槽16に水を汲み置きせず、所定の時間に所定温度の温水を所定の量で浴槽16に供給する。 In step 406, it is determined whether expected tub temperature T B is the threshold temperature T S above. If the determination in step 406 is affirmative, in step 408, hot water is boiled in the bathtub 16 at the start of water heating 88 after filling the bathtub with a predetermined amount of water at the start of water filling 86 in advance. This is because if the temperature of the water pumped in the bathtub 16 is sufficiently high, the consumption of fuel necessary for heating is reduced. In the case of negative determination in step 406, in step 416, hot water of a predetermined temperature is supplied to the bathtub 16 in a predetermined amount at a predetermined time without drawing water into the bathtub 16.

なお、閾値水温Tは、以下のように算出する。原理としては、浴槽16に水を張った後に浴槽16の水を沸かす場合と、浴槽16に直接給湯する場合とで燃料であるガスの消費量が同じとなる条件から下記の式(1)を設定する。
{(Tset−T)×V}/η={(Tset−T)×V}/η ・・・(1)
The threshold temperature T S is calculated as below. As a principle, the following equation (1) is obtained from the condition that the consumption of gas as fuel is the same in the case where the water in the bathtub 16 is boiled after filling the bathtub 16 and in the case where the hot water is directly supplied to the bathtub 16. Set.
{(T set −T P ) × V} / η P = {(T set −T S ) × V} / η B (1)

式(1)において、Tsetは入浴設定温度(℃)であり、Tは湯沸しを開始する時間である設定湯沸し時間の予想給水温度(℃)である。Tは、一例として、前日の湯沸し開始時88の水温を援用する。Vは、浴槽の容量(m)である。 In the formula (1), T set is the bathing set temperature (℃), T P is the predicted water temperature set Tea time is a time to start kettle (° C.). T P, as an example, which is incorporated by reference in the water temperature of the day before the kettle at the start of 88. V is the capacity (m 3 ) of the bathtub.

ηは、給湯効率(%)であり、給湯器の機種に固有の値である。ηは、湯沸し効率(%)であり、給湯器の機種に固有の値である。 η P is the hot water supply efficiency (%), and is a value specific to the type of water heater. η B is the water heating efficiency (%) and is a value specific to the type of water heater.

は、上記の式(1)から誘導された下記の式(2)から算出される。
=Tset−(η/η)・( Tset−T) ・・・(2)
T S is calculated from the following derived from the above equation (1) Equation (2).
T S = T set − (η B / η P ) · (T set −T P ) (2)

一例として、上記の式(2)に、Tset=40℃、T=20℃、η=95%、η=80%を代入すると、Tは、下記のように算出される。
=40−(0.80/0.95)・(40−20)=23.16(℃)
As an example, when T set = 40 ° C., T P = 20 ° C., η P = 95%, and η B = 80% are substituted into the above equation (2), T S is calculated as follows.
T S = 40− (0.80 / 0.95) · (40−20) = 23.16 (° C.)

ステップ408で、浴槽16に予め水を満たした後に浴槽16で湯を沸かした後は、ステップ410で、給湯した当日の浴室22内の気温82及び給水温84の変化から図3に示したハッチング部分の面積Sのデータを入手し、入手したデータで図5に示したデータを更新する。具体的には、HDD64に記憶した気温82及び給水温84から図3における水張り開始時86から湯沸し開始時88までの気温82と給水温84との差の積分値を算出。算出した積分値を面積Sとし、面積Sと当日の最高気温とを図5にプロットする。新たなデータをプロットした後は、最小二乗法等によって検量線90を再算出し、再算出した検量線90をその後の判定に使用する。当日の最高気温のデータは、気象情報サーバ50から入手してもよいが、建物12に気温センサを備えた場合は、当該気温センサが検知した最高気温を使用する。または、ユーザが給湯器リモコン24から最高気温のデータを入力してもよい。   In step 408, after filling the bathtub 16 with water in advance and boiling the hot water in the bathtub 16, in step 410, the hatching shown in FIG. 3 is performed based on changes in the temperature 82 and the supply water temperature 84 in the bathroom 22 on the day of hot water supply. Data on the area S of the portion is obtained, and the data shown in FIG. 5 is updated with the obtained data. Specifically, the integrated value of the difference between the air temperature 82 and the water supply temperature 84 from the water filling start time 86 to the water boiling start time 88 in FIG. 3 is calculated from the air temperature 82 and the water supply temperature 84 stored in the HDD 64. The calculated integrated value is defined as area S, and area S and the highest temperature on the day are plotted in FIG. After plotting new data, the calibration curve 90 is recalculated by the least square method or the like, and the recalculated calibration curve 90 is used for subsequent determination. The maximum temperature data of the day may be obtained from the weather information server 50, but when the building 12 is provided with a temperature sensor, the maximum temperature detected by the temperature sensor is used. Alternatively, the user may input maximum temperature data from the water heater remote control 24.

なお、プロットできるデータの総数に上限がある場合には、新たなデータをプロットした時に、最も古いデータを消去する。   If there is an upper limit on the total number of data that can be plotted, the oldest data is deleted when new data is plotted.

ステップ412では、HDD64に記憶した実際の浴槽水温のデータに基づき、図6で示したデータを更新する。浴槽水温のデータは、予め水を張っておいた浴槽の湯沸し開始時88における水温である。本実施の形態では、浴槽16に設けられた浴槽水温センサ26が湯沸し開始時88に検知した水温を実際の浴槽水温Tとし、対応する面積Sと共に図6にプロットする。新たなデータをプロットした後は、最小二乗法等によって検量線92を再算出し、再算出した検量線92をその後の判定に使用する。 In step 412, the data shown in FIG. 6 is updated based on the actual bath water temperature data stored in the HDD 64. The bath water temperature data is the water temperature at the time of starting boiling of a bathtub in which water has been pre-filled. In this embodiment, the actual bath temperature T B the temperature of the water bath water temperature sensor 26 provided in tub 16 has detected the kettle at the start 88, plotted in Figure 6 along with the corresponding area S. After plotting new data, the calibration curve 92 is recalculated by the least square method or the like, and the recalculated calibration curve 92 is used for subsequent determination.

なお、プロットできるデータの総数に上限がある場合には、新たなデータをプロットした時に、最も古いデータを消去する。   If there is an upper limit on the total number of data that can be plotted, the oldest data is deleted when new data is plotted.

ステップ414では、水道メータ20の検知した給水温をHDD64から入手し、翌日の給湯の際に使用する予想給水温度TとしてHDD64に記憶して処理を終了する。本実施の形態では、湯沸し開始時88における給水温84を予想給水温度Tとする。 In step 414, to obtain the sensed feed water temperature of the water meter 20 from the HDD 64, and ends the processing stored in the HDD 64 as the predicted water temperature T P to be used when the next day hot water. In this embodiment, the predicted water temperature T P feedwater temperature 84 in kettle start 88.

また、ステップ416で、浴槽に水を汲み置きせず、所定の時間に浴槽に給湯した場合には、ステップ418で実際の面積Sのデータの入手及び更新をステップ410と同様に行い、ステップ420で、実際の給水温のデータの入手及び更新をステップ414と同様に行って処理を終了する。   In step 416, if water is not drawn into the bathtub and hot water is supplied to the bathtub at a predetermined time, the actual area S data is obtained and updated in step 418 in the same manner as in step 410. Thus, the actual water supply temperature data is obtained and updated in the same manner as in step 414, and the process is terminated.

また、本実施の形態では、水を浴槽16に予め張っておいて湯を沸かす場合と浴槽16に直接給湯する場合とでのCOの排出量を算出でき、よりCOの排出量が少ない給湯方式を選択した場合のCOの削減効果を算出できる。 Further, in the present embodiment, it is possible to calculate the amount of CO 2 emitted when water is put in the bathtub 16 in advance to boil the hot water and when the hot water is directly supplied to the bathtub 16, and the amount of CO 2 emitted is smaller. The CO 2 reduction effect when the hot water supply method is selected can be calculated.

以下、水を浴槽16に予め張っておいて湯を沸かす場合のCOの排出量をX、浴槽16に直接給湯する場合のCOの排出量をXとすると、X及びXは各々下記の式(3)、(4)で算出できる。
=[{(Tset-T)×V×10×4.19}/η]×Z×10-9×(44/12)×10
・・・(3)
=[{(Tset-T)×V×10×4.19}/η]×Z×10-9×(44/12)×10
・・・(4)
Hereinafter, water emissions X B of CO 2 in the case of boiling water keep stretched advance the tub 16, the emissions of CO 2 in the case of direct hot water in a bath 16 and X P, X B and X P Can be calculated by the following equations (3) and (4), respectively.
X B = [{(T set −T B ) × V × 10 6 × 4.19} / η B ] × Z × 10 −9 × (44/12) × 10 3
... (3)
X P = [{(T set −T P ) × V × 10 6 × 4.19} / η P ] × Z × 10 −9 × (44/12) × 10 3
... (4)

上記の式(3)、(4)共に、[]で括った部分は、浴槽16内の水を沸かすのに必要な熱量(J)を算出する項であり、4.19は、単位をcalからJに変換する係数である。Zは燃料の使用に関する炭素の排出係数で、GJ単位の熱量あたりの炭素のトン単位の排出量を規定したものである。一例として、メタンを主成分とする都市ガスを燃料にした場合、Z=0.0136(t/GJ)である。   In both the above formulas (3) and (4), the part enclosed in [] is a term for calculating the amount of heat (J) required to boil the water in the bathtub 16, and 4.19 is the unit cal. Is a coefficient for conversion from J to J. Z is a carbon emission coefficient related to the use of fuel, and defines the emission amount in tons of carbon per calorific value in GJ units. As an example, when city gas containing methane as a main component is used as fuel, Z = 0.136 (t / GJ).

10−9は、[]で括った部分をGJ単位に変換するための係数である。44/12は、炭素の排出量をCOの排出量に変換する係数である。炭素の排出量を1モルの炭素の質量で除算して得られた商に1モルのCOの質量を乗算することで、炭素の排出量をCOの排出量に変換する。また、最後の10は、トン単位の排出量をkg単位に変換するための係数である。 10 −9 is a coefficient for converting the part enclosed in [] into GJ units. 44/12 is a coefficient for converting carbon emissions into CO 2 emissions. By multiplying the quotient obtained by dividing the carbon emission by the mass of 1 mol of carbon by the mass of 1 mol of CO 2 , the carbon emission is converted into CO 2 emission. Also, the last 10 3 is a coefficient for converting emissions ton in kg unit.

一例として、Tset=40℃、T=20℃、T=26℃、V=0.18m、η=90%、η=80%の場合、X及びXの算出は下記の通りである。
=[{(40−26)×0.18×10×4.19}/0.80]
×0.0136×10-9×(44/12)×10
≒0.61(kg)
=[{(40−20)×0.18×10×4.19}/0.90]
×0.0136×10-9×(44/12)×10
≒0.84(kg)
As an example, T set = 40 ℃, T P = 20 ℃, T B = 26 ℃, V = 0.18m 3, η P = 90%, when the η B = 80%, the calculation of X B and X P is It is as follows.
X B = [{(40−26) × 0.18 × 10 6 × 4.19} /0.80]
× 0.0136 × 10 −9 × (44/12) × 10 3
≒ 0.61 (kg)
X P = [{(40−20) × 0.18 × 10 6 × 4.19} /0.90]
× 0.0136 × 10 −9 × (44/12) × 10 3
≒ 0.84 (kg)

とXとの差分がCOの削減効果となる。X−X-=0.23(kg)なので、水を浴槽16に予め張っておいて湯を沸かすのであれば、浴槽16に直接給湯する場合よりもCOの排出量を0.23kg削減できる。 The difference between the X P and X B is the reduction of CO 2. X P -X B - = 0.23 Since (kg), if the boiling water in advance filled with water in bath 16, the emissions of CO 2 than when directly hot water in the bathtub 16 0.23 kg Can be reduced.

本実施の形態では、X、X、XとXとの差分であるCOの削減効果を各々給湯器リモコンに24表示することで、ユーザに省エネルギーを意識させ、燃料であるガスの消費量を抑制できる。 In this embodiment, X P, X B, by 24 display the effect of reducing CO 2 which is a difference between X P and X B each water heater remote control, is aware of energy saving to the user, as the fuel gas Can be reduced.

以上のように、本実施の形態によれば、給水温と浴室22の気温とに基づいて、水を浴槽16に予め張っておいて湯を沸かす場合と浴槽16に直接給湯する場合とでどちらが省エネルギーであるかを判定できる。これにより、給水に係る水道の水温及び気温に基づいて給湯に要する燃料の消費量を抑制できる。   As described above, according to the present embodiment, based on the temperature of the water supply and the temperature of the bathroom 22, which is either the case where water is preliminarily placed in the bathtub 16 to boil the hot water or the case where the hot water is directly supplied to the bathtub 16. It can be judged whether it is energy saving. Thereby, the consumption of the fuel required for hot water supply can be suppressed based on the water temperature and temperature of the water supply concerning water supply.

本実施の形態の図3で示した水張り開始時86は、ユーザが設定する湯沸し完了時間(図示せず)に湯沸しが完了するように給湯器の湯沸し能力から決定すればよい。また、水張り開始時は、湯沸し開始時より前に浴槽に必要な水量をためられる時間であればよい。しかしながら、当日予想最高気温、面積、浴槽水温、給水温を予めデータを集積しておくことで、浴槽水温が高くなり湯沸しに必要な燃料の消費量を抑えられるように決定することもできる。さらに、図4のステップ416で浴槽に水を汲み置きせず、所定の時間に浴槽に給湯を開始する場合の所定の時間は、ユーザが設定する湯沸し完了時刻に給湯が完了するように給湯器の給湯能力から決定すればよく、湯沸し開始時88と別であっても同じであってもよい。   The water filling start time 86 shown in FIG. 3 of the present embodiment may be determined from the water heating capability of the water heater so that the water heating is completed during the water heating completion time (not shown) set by the user. Moreover, what is necessary is just the time which can store the amount of water required for a bathtub before the time of water filling at the time of the start of water filling. However, by collecting data on the predicted maximum temperature, area, bath water temperature, and water supply temperature on the day in advance, it is possible to determine that the bath water temperature becomes higher and the consumption of fuel necessary for boiling water can be suppressed. Furthermore, in step 416 of FIG. 4, the water heater is set so that the hot water supply is completed at the time of completion of the water heating set by the user for a predetermined time when water is not drawn into the bathtub in the step 416 and the hot water is started to be supplied to the bathtub at a predetermined time. It may be determined from the hot water supply capacity of the hot water, and may be different from or the same as that at the time of starting the hot water 88.

図7は、本実施の形態に係る浴槽給湯システム10における当日予想最高気温、面積、浴槽水温、給水温の各データの集積の一例を示す図である。図7のように例えば30分ごとの時間別に各データを集積することで、本実施の形態に係る浴槽給湯システムの燃料であるガスの消費量を抑制する制御の精度を向上させることができる。   FIG. 7 is a diagram illustrating an example of accumulation of each data of the predicted maximum temperature, area, bathtub water temperature, and water supply temperature on the day in the bathtub hot water supply system 10 according to the present embodiment. As shown in FIG. 7, for example, by accumulating each data every 30 minutes, it is possible to improve the accuracy of the control for suppressing the consumption of the gas that is the fuel of the bathtub hot water supply system according to the present embodiment.

本実施の形態では、給湯器14が燃料に可燃性の気体を使用するタイプを記載したが、給湯器14が電力によって温水を得る電気温水器であってもよい。かかる場合であっても、気象情報に含まれる最高気温の予測値及び図5、6に示した相関性に基づいて、事前に浴槽に水を張ってから浴槽の水を加熱する給湯方式と、浴槽に直接給湯する給湯方式とでよりエネルギー消費量が少ない給湯方式を選択することができる。   In the present embodiment, the type in which the water heater 14 uses a combustible gas as fuel is described, but the water heater 14 may be an electric water heater that obtains hot water by electric power. Even in such a case, based on the predicted value of the maximum temperature included in the weather information and the correlation shown in FIGS. 5 and 6, a hot water supply method for heating the water in the bathtub after filling the bathtub in advance, It is possible to select a hot water supply method that consumes less energy than a hot water supply method that supplies water directly to the bathtub.

10 浴槽給湯システム
12 建物
14 給湯器
16 浴槽
22 浴室
24 給湯器リモコン
26 浴槽水温センサ
30 制御装置
34 終端装置
40 ネットワーク
50 気象情報サーバ
62 CPU
64 HDD
66 RAM
68 ネットワークI/F部
72 表示部
74 バス
76 操作部
82 気温
84 給水温
86 水張り開始時
88 湯沸し開始時
90、92 検量線
S 予想面積
予想浴槽水温
max 当日予想最高気温
予想給水温度
閾値水温
DESCRIPTION OF SYMBOLS 10 Bath water supply system 12 Building 14 Water heater 16 Bath 22 Bathroom 24 Water heater remote control 26 Bath water temperature sensor 30 Control apparatus 34 Termination apparatus 40 Network 50 Weather information server 62 CPU
64 HDD
66 RAM
68 network I / F unit 72 display unit 74 bus 76 operation unit 82 temperature 84 Water temperature 86 water filling start 88 kettle start 90,92 calibration curve S expected area T B predicted tub temperature T max day expected maximum temperature T P expected water temperature T S threshold water temperature

Claims (2)

外部から供給された水を加熱して得た温水を浴槽に供給すると共に前記浴槽内の水を加熱する給湯手段と、
気象情報を取得する情報取得手段と、
前記情報取得手段が取得した気象情報が含む前記浴槽に給湯する当日の最高気温予測に基づいて前記当日の第1の所定の時刻に前記浴槽に所定の量の水を入れ前記当日の第2の所定の時刻に前記浴槽内の水の加熱を開始する第1の給湯方式及び前記当日の第3の所定の時刻に前記浴槽に所定の温度の温水を前記所定の量で供給を開始する第2の給湯方式からエネルギー消費量が少ない給湯方式を選択し、該選択した給湯方式で給湯するように前記給湯手段を制御する制御手段と、
最高気温と前記第1の給湯方式における前記第2の所定の時刻の前記浴槽内の水温である第1給湯方式浴槽水温との相関関係である気温水温相関性、及び水温閾値を予め記憶した記憶手段と、
を備えた浴槽給湯システムであって、
前記制御手段は、前記気温水温相関性において前記当日の前記最高気温予測に対応する前記第1給湯方式浴槽水温が前記水温閾値以上の場合に前記第1の給湯方式を選択する浴槽給湯システム。
Hot water supply means for heating hot water obtained by heating water supplied from the outside to the bathtub and heating the water in the bathtub;
Information acquisition means for acquiring weather information;
A predetermined amount of water is put into the bathtub at the first predetermined time of the day based on the highest temperature prediction of the day for supplying hot water to the bathtub included in the weather information acquired by the information acquisition means. A first hot water supply system that starts heating the water in the bathtub at a predetermined time, and a second that starts supplying hot water at a predetermined temperature to the bathtub at a predetermined amount at a third predetermined time on the day. Selecting a hot water supply method that consumes less energy from the hot water supply method, and controlling the hot water supply means to supply hot water in the selected hot water supply method;
A memory storing in advance a temperature / water temperature correlation, which is a correlation between the maximum temperature and the first hot water bath water temperature in the bathtub at the second predetermined time in the first hot water supply method, and the water temperature threshold value. Means,
A hot water supply system with a bathtub ,
The said control means is a bathtub hot-water supply system which selects the said 1st hot-water supply system when the said 1st hot-water supply type bathtub water temperature corresponding to the said highest temperature prediction of the said day in the said temperature / water temperature correlation is more than the said water temperature threshold value.
前記外部から供給された水の水温である供給水温を検知する供給水温検知手段と、
前記浴槽内の水温である浴槽水温を検知する浴槽水温検知手段と、
浴室内の気温である浴室内気温を検知する気温検知手段と、をさらに備え、
前記情報取得手段は、前記当日の最高気温の実測値を取得し、
前記記憶手段は、前記供給水温検知手段が検知した前記供給水温、前記浴槽水温検知手段が検知した浴槽水温及び前記気温検知手段が検知した浴室内気温を各々記憶し、
前記制御手段は、前記選択した給湯方式で前記当日に前記浴槽に給湯した後に、前記情報取得手段が取得した前記当日の最高気温の実測値、前記記憶手段に記憶された前記当日の前記第1の所定の時刻から前記当日の前記第2の所定の時刻までの前記供給水温、前記当日に前記第1の給湯方式によって給湯した場合に前記記憶手段に記憶された前記当日の前記第2の所定の時刻での前記浴槽水温及び前記記憶手段に記憶された前記当日の前記第1の所定の時刻から前記当日の前記第2の所定の時刻までの前記浴室内気温に基づいて前記気温水温相関性を修正する請求項に記載の浴槽給湯システム。
Supply water temperature detection means for detecting a supply water temperature that is the temperature of the water supplied from the outside,
A bath water temperature detecting means for detecting a bath water temperature that is the water temperature in the bathtub;
Further comprising a temperature detecting means for detecting the bathroom air temperature is the temperature in the bathroom, a,
The information acquisition means acquires an actual measurement value of the highest temperature on the day,
The storage means stores the supply water temperature detected by the supply water temperature detection means, the bath water temperature detected by the bathtub water temperature detection means, and the bathroom air temperature detected by the air temperature detection means, respectively.
After the hot water is supplied to the bathtub on the day by the selected hot water supply method, the control means is the actual value of the highest temperature of the day acquired by the information acquisition means, and the first day of the day stored in the storage means. The supply water temperature from the predetermined time to the second predetermined time of the day, the second predetermined value of the day stored in the storage means when the hot water is supplied by the first hot water supply method on the day The temperature / water temperature correlation based on the bath water temperature at the time and the temperature in the bathroom from the first predetermined time of the day stored in the storage means to the second predetermined time of the day bathtub hot-water supply system according to claim 1 to modify.
JP2013147847A 2013-07-16 2013-07-16 Bath water supply system Active JP6261217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013147847A JP6261217B2 (en) 2013-07-16 2013-07-16 Bath water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013147847A JP6261217B2 (en) 2013-07-16 2013-07-16 Bath water supply system

Publications (2)

Publication Number Publication Date
JP2015021631A JP2015021631A (en) 2015-02-02
JP6261217B2 true JP6261217B2 (en) 2018-01-17

Family

ID=52486248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013147847A Active JP6261217B2 (en) 2013-07-16 2013-07-16 Bath water supply system

Country Status (1)

Country Link
JP (1) JP6261217B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3978295B2 (en) * 1999-04-30 2007-09-19 大阪瓦斯株式会社 Gas demand forecasting method and gas demand forecasting system
JP2006090240A (en) * 2004-09-24 2006-04-06 Toho Gas Co Ltd Operation control device for household cogeneration system
JP5148640B2 (en) * 2010-01-08 2013-02-20 株式会社パロマ Water heater
JP5632775B2 (en) * 2011-03-02 2014-11-26 大阪瓦斯株式会社 Gas water heater

Also Published As

Publication number Publication date
JP2015021631A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
JP5121882B2 (en) Boiling control system, boiling control method and program
CN104422137B (en) Water heater appointment heating control method and system
US20180128502A1 (en) Water Heater Controller or System
DK3214420T3 (en) REGULATOR FOR BUFFERING THERMAL ENERGY
JP5957690B2 (en) Water heater
WO2019242284A1 (en) Multi-heat-source hot water unit, and method and apparatus for controlling multi-heat-source hot water unit
JP5861568B2 (en) Hot water system
CN104930714A (en) Heat pump type water heater and heating control method thereof
KR101621168B1 (en) Hot water supply system
JPWO2017145369A1 (en) Hot water supply system and method for controlling hot water heater
JP6086014B2 (en) Heat pump water heater
JP2014126300A (en) Hot water storage type hot water supply device
JP2016044849A (en) Photovoltaic power generation device cooperation heat pump hot water storage type hot water supply system
JP5314813B1 (en) Cogeneration system
JP6261217B2 (en) Bath water supply system
JP5904933B2 (en) Hot water storage water heater
CN103900265B (en) Solar water heater and solar energy-saving metering method
JP2013130322A (en) Hot water supply system
JP2013053805A (en) Hybrid system
JP2012072993A (en) Remote controller of water heater
JP2012013371A (en) Hot water storage type water heater
CN105333492A (en) Heat source control method of multi-heat-source heat supply system
JP6594554B2 (en) Hot water supply system, control device, control method and program
JP2008241145A (en) Cogeneration system
JP5163059B2 (en) Hot water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171212

R150 Certificate of patent or registration of utility model

Ref document number: 6261217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250