JP6260266B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP6260266B2
JP6260266B2 JP2013268317A JP2013268317A JP6260266B2 JP 6260266 B2 JP6260266 B2 JP 6260266B2 JP 2013268317 A JP2013268317 A JP 2013268317A JP 2013268317 A JP2013268317 A JP 2013268317A JP 6260266 B2 JP6260266 B2 JP 6260266B2
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
negative electrode
collector foil
binding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013268317A
Other languages
Japanese (ja)
Other versions
JP2015125840A (en
Inventor
香織 永田
香織 永田
晃一 谷山
晃一 谷山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2013268317A priority Critical patent/JP6260266B2/en
Publication of JP2015125840A publication Critical patent/JP2015125840A/en
Application granted granted Critical
Publication of JP6260266B2 publication Critical patent/JP6260266B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、正極板及び負極板を積層した構造を持つ二次電池に関する。   The present invention relates to a secondary battery having a structure in which a positive electrode plate and a negative electrode plate are laminated.

従来、リチウムイオン電池や金属リチウム電池,ニッケル水素電池といった各種の二次電池が自動車,コンピュータ,携帯型電子機器類のバッテリーとして利用されている。特にエネルギー密度の高いリチウムイオン電池は、バッテリー容量に比して小型軽量化が図りやすく、大電力が要求される電気自動車やプラグインハイブリッド車両の走行用バッテリーとしての需要の増大が見込まれている。   Conventionally, various secondary batteries such as lithium ion batteries, metal lithium batteries, and nickel metal hydride batteries have been used as batteries for automobiles, computers, and portable electronic devices. In particular, lithium-ion batteries with high energy density are easier to reduce in size and weight than battery capacity, and demand is expected to increase as batteries for running electric vehicles and plug-in hybrid vehicles that require high power. .

これらの二次電池の内部には、一対の電極板(正極板,負極板)が重ね合わされた状態で収容される。それぞれの電極板は、集電箔の表面に活物質を層状に結着して形成され、セパレータを介して互いの活物質層が対向するように積層される。また、それぞれの電極板の集電箔は、集電体まで延長されて溶接固定され、この集電体が電池ケースの外部に露出して設けられた電極に接続される(特許文献1参照)。   A pair of electrode plates (a positive electrode plate and a negative electrode plate) are accommodated inside these secondary batteries. Each electrode plate is formed by laminating an active material on the surface of the current collector foil in layers, and is laminated so that the active material layers face each other with a separator interposed therebetween. In addition, the current collector foil of each electrode plate is extended to the current collector and fixed by welding, and this current collector is connected to an electrode provided to be exposed to the outside of the battery case (see Patent Document 1). .

ここで、二次電池に内蔵される一対の電極板及びセパレータの積層体のことを、エレメントと呼ぶ。エレメントの形状は、例えばラミネート状(発電要素を重畳してシート状にしたもの),円柱状(発電要素を巻物状に巻回したもの),長円柱状(発電要素を楕円渦状,長円渦状となるように扁平に巻回したもの)等に形成される(特許文献1〜3参照)。このようなエレメントの構造により、単位体積当たりの電極板同士の対向面積を増大させることができ、電池容量を十分に確保することができる。   Here, a laminated body of a pair of electrode plates and separators built in the secondary battery is referred to as an element. The shape of the element is, for example, a laminate (a sheet of power generation elements superimposed), a cylinder (a power generation element wound in a roll), a long column (a power generation element having an elliptical vortex shape, an elliptical vortex shape) (Refer to Patent Documents 1 to 3). With such an element structure, the facing area between the electrode plates per unit volume can be increased, and a sufficient battery capacity can be secured.

特開2011-154971号公報JP 2011-154971 A 特開2013-062222号公報JP 2013-062222 特開2013-012382号公報JP 2013-012382 JP

上記のような二次電池では、エレメント内で正極板と負極板とがセパレータを挟んで積層される。したがって、セパレータが十分な厚み,強度を備えたものであれば、エレメント内における積層体の厚み方向についての内部短絡が生じることはない。一方、セパレータが全く破損していない状態であっても、外力によって電極板とセパレータとが面内方向(スライド方向)に相対移動した場合には、一方の電極板の端辺が他方の電極板の集電箔と接触し、短絡が生じる可能性がある。特に、車体振動が発生する車両に搭載される二次電池や、可搬性の高い電子機器に搭載される二次電池では、電極板のスライド方向への移動による内部短絡の発生が懸念される。   In the secondary battery as described above, the positive electrode plate and the negative electrode plate are stacked in the element with the separator interposed therebetween. Therefore, if the separator has sufficient thickness and strength, an internal short circuit in the thickness direction of the laminate in the element does not occur. On the other hand, even when the separator is not damaged at all, when the electrode plate and the separator are relatively moved in the in-plane direction (sliding direction) by an external force, the end of one electrode plate is the other electrode plate. Contact with the current collector foil may cause a short circuit. In particular, in a secondary battery mounted on a vehicle in which vehicle body vibration occurs or a secondary battery mounted in a highly portable electronic device, there is a concern about the occurrence of an internal short circuit due to movement of the electrode plate in the sliding direction.

このような課題に対し、電極板と集電体との間を接続する部位を絶縁体で被覆することで内部短絡の発生を防止することが考えられる。例えば、集電体まで延長された集電箔の表面を絶縁体で覆い、一方の電極板がスライド方向に移動したとしても、その端辺が絶縁体に接触するような構造とする。これにより、電極板のスライド方向への移動による内部短絡が抑制されうる。   In order to solve such a problem, it is conceivable to prevent the occurrence of an internal short circuit by covering the portion connecting the electrode plate and the current collector with an insulator. For example, the surface of the current collector foil extended to the current collector is covered with an insulator, and even if one of the electrode plates moves in the sliding direction, the end side is in contact with the insulator. Thereby, the internal short circuit by the movement to the sliding direction of an electrode plate can be suppressed.

しかしながら、外力の作用時には一方の電極板だけでなく、絶縁体で被覆された集電箔もスライド方向に移動しうる。そのため、集電箔の屈曲変形によって絶縁体が破損,剥離し、その破損,剥離箇所を介して、電極板の端辺が集電箔に接触する可能性がある。また、内部短絡の抑制効果を高めるには、このような集電箔の変形を防止し、かつ、仮に集電箔が変形した場合であっても、電極板の端辺が集電箔に接触する可能性が生じないように、集電箔の変形状態をコントロールすることが望まれる。   However, when an external force is applied, not only one electrode plate but also a current collector foil covered with an insulator can move in the sliding direction. Therefore, there is a possibility that the insulator is damaged and peeled off due to the bending deformation of the current collector foil, and the edge of the electrode plate comes into contact with the current collector foil through the damaged or peeled portion. Moreover, in order to enhance the effect of suppressing internal short circuit, the deformation of the current collector foil is prevented, and even if the current collector foil is deformed, the edge of the electrode plate contacts the current collector foil. It is desirable to control the deformation state of the current collector foil so that there is no possibility of failure.

本件の目的の一つは、上記のような課題に鑑み創案されたもので、外力に対する集電箔の変形状態を制御して、内部短絡の抑制効果を昂進できるようにした二次電池を提供することである。なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的として位置づけることができる。   One of the purposes of the present invention was devised in view of the above-described problems, and provides a secondary battery that can control the deformation state of the current collector foil against an external force and promote the effect of suppressing an internal short circuit. It is to be. The present invention is not limited to this purpose, and is a function and effect derived from each configuration shown in the embodiments for carrying out the invention described later, and other effects of the present invention are to obtain a function and effect that cannot be obtained by conventional techniques. Can be positioned.

(1)ここで開示する二次電池は、正極集電箔の表面に正極活物質が結着された正極結着面と正極活物質が結着されていない正極非結着面とを有する正極電極板と、負極集電箔の表面に負極活物質が結着された負極結着面と負極活物質が結着されていない負極非結着面とを有する負極電極板と、正極結着面及び負極結着面よりも大きく形成され正極電極板と負極電極板との間に配置されたセパレータと、を積層してケースに収容した二次電池において、正極非結着面又は負極非結着面に設けられ、セパレータよりケースの外側に延在する絶縁部を備える。   (1) A secondary battery disclosed herein has a positive electrode having a positive electrode binding surface with a positive electrode active material bound to the surface of a positive electrode current collector foil and a positive electrode non-binding surface with no positive electrode active material bound A negative electrode plate having an electrode plate, a negative electrode binding surface having a negative electrode active material bound to the surface of the negative electrode current collector foil, and a negative electrode non-binding surface having no negative electrode active material bound thereto; and a positive electrode binding surface And a positive electrode non-binding surface or negative electrode non-binding in a secondary battery in which a positive electrode plate and a separator formed between the positive electrode plate and the negative electrode plate are stacked and accommodated in a case. An insulating part is provided on the surface and extends from the separator to the outside of the case.

例えば、絶縁部の端辺がセパレータの端辺に沿うように、絶縁部の位置を設定することが考えられる。言い換えれば、セパレータの端辺の近くに絶縁部の端辺を位置させることが考えられる。これにより、外力の作用時における正極非結着面又は負極非結着面の屈曲位置が制御され、絶縁部の端辺近傍で屈曲しやすくなる。   For example, it is conceivable to set the position of the insulating portion so that the end side of the insulating portion is along the end side of the separator. In other words, it can be considered that the end side of the insulating portion is positioned near the end side of the separator. Thereby, the bending position of the positive electrode non-binding surface or the negative electrode non-binding surface when an external force is applied is controlled, and the bending portion is easily bent in the vicinity of the end of the insulating portion.

また、絶縁部が、結着面と非結着面との境界線の延在方向に沿って帯状に形成されるとともに、境界線の延在方向に垂直な方向に所定の間隔を空けて複数列設されるなお、絶縁部の列設数は複数(任意)である。複数の絶縁部は、直線状に配置されてもよいし、曲線状に配置されてもよい。 The insulating portion is spaced is formed in a strip shape along the extending direction of the border line with the binder surface and the non-binding surface, the predetermined distance in a direction perpendicular to the extending direction of the boundary line more Lined up . Note that there are a plurality (arbitrary) number of insulating portions arranged in a row. The plurality of insulating portions may be arranged linearly or may be arranged in a curved shape.

)複数の絶縁部の間に設けられ、絶縁部に被覆された部位よりも曲げ剛性が低い曲げガイド部を備えることが好ましい。すなわち、所定の間隔を空けて複数列設された絶縁部の間に曲げガイド部を設けることが好ましい。
)曲げガイド部が、集電箔を屈曲して形成されることが好ましい。例えば、集電箔を予め僅かに折り曲げておいてもよいし、あるいは折り曲げ,折り戻しを数度繰り返して折り癖を付けておいてもよい。
( 2 ) It is preferable to include a bending guide portion that is provided between the plurality of insulating portions and has lower bending rigidity than a portion covered with the insulating portions. That is, it is preferable to provide the bending guide portion between the insulating portions arranged in a plurality of rows at a predetermined interval.
( 3 ) It is preferable that the bending guide part is formed by bending the current collector foil. For example, the current collector foil may be slightly folded in advance, or the folding and folding may be repeated several times to add a crease.

)曲げガイド部が、集電箔の厚み方向の寸法を削減して形成されることが好ましい。例えば、集電箔の表面を切削することや、集電箔の表面を引掻いて傷をつけることなどが考えられる。
)絶縁部が、絶縁体を含む粘着テープを集電箔の表面に貼着してなることが好ましい。
)二次電池がリチウムイオン二次電池であって、絶縁部が正極集電箔の表面に形成されることが好ましい。さらに、曲げガイド部も正極集電箔の表面に形成されることが好ましい。
( 4 ) It is preferable that the bending guide part is formed by reducing the dimension in the thickness direction of the current collector foil. For example, it is conceivable to cut the surface of the current collector foil or scratch the surface of the current collector foil.
( 5 ) It is preferable that an insulating part sticks the adhesive tape containing an insulator on the surface of current collection foil.
( 6 ) Preferably, the secondary battery is a lithium ion secondary battery, and the insulating portion is formed on the surface of the positive electrode current collector foil. Furthermore, it is preferable that the bending guide portion is also formed on the surface of the positive electrode current collector foil.

開示の二次電池によれば、正極非結着面,負極非結着面の少なくとも何れか一方において、セパレータよりもケースの外側に延在する絶縁部を設けることで、電極板を絶縁部に沿って屈曲しやすくすることができる。これにより、一方の電極板が屈曲変形した際に絶縁部を他方の電極板に当接させることができ、二次電池の短絡防止効果を高めることができる。また、絶縁部を結着面と非結着面との境界線の延在方向に沿って帯状に形成するとともに、絶縁部を境界線の延在方向に垂直な方向に所定の間隔を空けて複数列設することで、短絡防止効果を高めることができる。 According to the disclosed secondary battery, at least one of the positive electrode non-binding surface and the negative electrode non-binding surface is provided with an insulating portion that extends to the outside of the case with respect to the separator, whereby the electrode plate is used as the insulating portion. It can be easily bent along. Thereby, when one electrode plate is bent and deformed, the insulating portion can be brought into contact with the other electrode plate, and the effect of preventing a short circuit of the secondary battery can be enhanced. In addition, the insulating portion is formed in a strip shape along the extending direction of the boundary line between the binding surface and the non-binding surface, and the insulating portion is spaced apart in a direction perpendicular to the extending direction of the boundary line. By providing a plurality of rows, the short-circuit prevention effect can be enhanced.

(A)は一実施形態に係る二次電池の斜視図、(B)は分解斜視図である。(A) is a perspective view of a secondary battery according to an embodiment, and (B) is an exploded perspective view. 図1の二次電池に内蔵されるエレメントの分解斜視図である。It is a disassembled perspective view of the element incorporated in the secondary battery of FIG. 図2の正極板の模式的な斜視図である。It is a typical perspective view of the positive electrode plate of FIG. 図1のエレメントの模式的な断面図である。It is typical sectional drawing of the element of FIG. 外力によるエレメントの変形状態を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the deformation | transformation state of the element by external force. (A)はエレメントの模式的な断面図、(B)は外力によるエレメントの変形状態を示す断面図である。(A) is typical sectional drawing of an element, (B) is sectional drawing which shows the deformation | transformation state of the element by external force. (A)〜(D)は、変形例に係る正極板の模式的な断面図である。(A)-(D) are typical sectional drawings of the positive electrode plate which concerns on a modification. (A)〜(C)は、変形例に係るエレメントの模式的な断面図である。(A)-(C) are typical sectional drawings of the element concerning a modification.

以下、図面を参照して、一実施形態に係る二次電池について説明する。以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。   Hereinafter, a secondary battery according to an embodiment will be described with reference to the drawings. The embodiment described below is merely an example, and there is no intention of excluding various modifications and technical applications that are not explicitly described in the following embodiment. Each configuration of the present embodiment can be implemented with various modifications without departing from the spirit of the present embodiment, and can be selected or combined as necessary.

[1.電池セル]
図1(A),(B)に、電気自動車やハイブリッド自動車等の駆動用電力源として使用される二次電池のセル10の構造を例示する。このセル10は、エレメント1が収容されたケース11を蓋12で閉塞した密閉型の単位電池である。電池の種類は任意であり、例えばリチウムイオン二次電池やリチウムイオンポリマー電池,ニッケル水素二次電池等であるが、以下の説明ではリチウムイオン二次電池であるものとする。
[1. Battery cell]
1A and 1B illustrate a structure of a cell 10 of a secondary battery used as a driving power source for an electric vehicle, a hybrid vehicle, or the like. The cell 10 is a sealed unit battery in which a case 11 in which the element 1 is accommodated is closed with a lid 12. The type of the battery is arbitrary, for example, a lithium ion secondary battery, a lithium ion polymer battery, a nickel hydride secondary battery, or the like. In the following description, it is assumed to be a lithium ion secondary battery.

ケース11は、容器状に形成された外装缶である。ケース11の形状は、エレメント1を封入しうる形状であって、例えば頂面に相当する上側部分が開放された直方体状(角形)とされる。頂面側からケース11の内部にエレメント1が挿入された後、頂面に蓋12が溶接固定される。ケース11の素材としては、例えばステンレス鋼やメッキ処理された鋼材,強化プラスティック等が用いられる。セル10のケース11は、気密,水密構造とされ、必要に応じて図示しないベント機構が設けられる。ベント機構は、セル10の内部圧力をケース11の外部に逃がす安全弁として機能する。また、ケース11の頂面には、一対の電極端子13(端子)が蓋12を貫通して設けられる。   The case 11 is an outer can formed in a container shape. The shape of the case 11 is a shape that can enclose the element 1 and is, for example, a rectangular parallelepiped shape (square shape) in which an upper portion corresponding to the top surface is opened. After the element 1 is inserted into the case 11 from the top surface side, the lid 12 is fixed to the top surface by welding. As the material of the case 11, for example, stainless steel, plated steel, reinforced plastic, or the like is used. The case 11 of the cell 10 has an airtight and watertight structure, and a vent mechanism (not shown) is provided as necessary. The vent mechanism functions as a safety valve that releases the internal pressure of the cell 10 to the outside of the case 11. In addition, a pair of electrode terminals 13 (terminals) are provided through the lid 12 on the top surface of the case 11.

エレメント1は、シート状の電極板等を積層した発電要素であり、充放電反応に係る電解質が溶解した有機溶媒系の電解液をその内部に含有する。エレメント1の形状は、例えばラミネート状(シート状),円柱状(巻物状),長円柱状(発電要素を楕円渦状,長円渦状となるように扁平に巻回したもの)等に形成される。図1(A),(B)中に示すエレメント1は長円柱状であり、発電要素の巻回軸方向についての一端側(図中左側)の外表面には正極が露出して設けられ、他端側(図中右側)の外表面には負極が露出して設けられる。以下、巻回軸の延在方向をエレメント1及び電極板等の「幅方向」とする。   The element 1 is a power generation element in which sheet-like electrode plates or the like are stacked, and contains therein an organic solvent-based electrolytic solution in which an electrolyte related to charge / discharge reaction is dissolved. The shape of the element 1 is formed in, for example, a laminated shape (sheet shape), a cylindrical shape (rolled shape), a long cylindrical shape (a power generation element wound in a flat shape so as to be an elliptical vortex shape or an elliptical vortex shape). . The element 1 shown in FIGS. 1 (A) and 1 (B) is in the shape of a long cylinder, and the positive electrode is exposed on the outer surface of one end side (left side in the figure) in the winding axis direction of the power generation element. A negative electrode is exposed on the outer surface of the other end side (right side in the figure). Hereinafter, the extending direction of the winding shaft is referred to as the “width direction” of the element 1 and the electrode plate.

ケース11の内部には、エレメント1内の正極及び負極と電極端子13とを接続する一対の集電体8が収納される。図1(B)に示すように、それぞれの集電体8は、エレメント1の一端部,他端部を挟み込んだ状態でエレメント1に固定される。エレメント1は、その左右両端部を集電体8によって堅固に挟持された状態で、ケース11内に収容される。また、それぞれの集電体8の上端部には、電極端子13が固定される。電極端子13の外周には絶縁部が形成され、蓋12に対して絶縁される。なお、集電体8及び電極端子13は、図1(A),(B)に示すように、ケース11の上面において、幅方向の左右両端部に配置される。   In the case 11, a pair of current collectors 8 that connect the positive electrode and the negative electrode in the element 1 and the electrode terminal 13 are accommodated. As shown in FIG. 1B, each current collector 8 is fixed to the element 1 with one end and the other end of the element 1 being sandwiched. The element 1 is housed in the case 11 with its left and right ends firmly sandwiched between the current collectors 8. Further, the electrode terminal 13 is fixed to the upper end portion of each current collector 8. An insulating portion is formed on the outer periphery of the electrode terminal 13 and is insulated from the lid 12. In addition, the collector 8 and the electrode terminal 13 are arrange | positioned in the left-right both ends of the width direction in the upper surface of the case 11, as shown to FIG. 1 (A), (B).

[2.エレメント]
エレメント1は、図2に示すように、正極板2と負極板3との間にセパレータ9を挟んで積層し、これを扁平に巻回した構造とされる。セパレータ9はシート状に形成された微多孔膜であり、正極板2と負極板3とを電気的に絶縁しつつ、リチウムイオンの通過を許容するものである。セパレータ9の膜厚は、例えば数μm〜数十μmに形成される。セパレータ9の素材としては、例えばポリオレフィン系材料(ポリエチレン,ポリプロピレン),ポリフッ化ビニリデン樹脂,不織布,セルロース繊維等が挙げられる。セパレータ9の膜構造は単層,複層のどちらでもよく、表面に耐熱コートや耐アルカリコート,補強コート等が施されたものであってもよい。
[2. element]
As shown in FIG. 2, the element 1 has a structure in which a separator 9 is sandwiched between a positive electrode plate 2 and a negative electrode plate 3 and is wound flat. The separator 9 is a microporous film formed in a sheet shape, and allows the passage of lithium ions while electrically insulating the positive electrode plate 2 and the negative electrode plate 3. The film thickness of the separator 9 is, for example, several μm to several tens μm. Examples of the material for the separator 9 include polyolefin-based materials (polyethylene, polypropylene), polyvinylidene fluoride resin, nonwoven fabric, and cellulose fiber. The film structure of the separator 9 may be either a single layer or multiple layers, and may have a surface provided with a heat-resistant coat, an alkali-resistant coat, a reinforcing coat, or the like.

[2−1.正極板]
正極板2(正極電極板)は、図3に示すように、正極集電箔2aの表面に正極活物質層2bが形成されたものである。正極集電箔2aは、板状又は箔状に形成された導電体(例えば、アルミニウム,アルミ合金等)であり、例えば数μm〜数十μmのほぼ均一な厚みを持つ。正極活物質層2bは、正極集電箔2aの表面に正極活物質(リチウム複合酸化物)やバインダー物質,導電材等が結着されてなる部位であり、例えば数十μm〜数百μmの厚みとされる。また、正極活物質層2bは、正極集電箔2aを挟んでその両面に形成される。これにより、正極板2と負極板3とが交互に積層されたエレメント1の内部では、正極板2の両側面でリチウムイオンの授受がなされる。なお、正極活物質の具体例としては、コバルト酸リチウム(LiCoO2)やマンガンスピネル(LiMn2O4)等が挙げられる。
[2-1. Positive electrode plate]
As shown in FIG. 3, the positive electrode plate 2 (positive electrode plate) is obtained by forming a positive electrode active material layer 2b on the surface of a positive electrode current collector foil 2a. The positive electrode current collector foil 2a is a conductor (eg, aluminum, aluminum alloy, etc.) formed in a plate shape or a foil shape, and has a substantially uniform thickness of, for example, several μm to several tens of μm. The positive electrode active material layer 2b is a portion formed by binding a positive electrode active material (lithium composite oxide), a binder material, a conductive material, etc. to the surface of the positive electrode current collector foil 2a. Thickness. The positive electrode active material layer 2b is formed on both surfaces of the positive electrode current collector foil 2a. Thereby, in the element 1 in which the positive electrode plates 2 and the negative electrode plates 3 are alternately stacked, lithium ions are exchanged on both side surfaces of the positive electrode plate 2. Specific examples of the positive electrode active material include lithium cobaltate (LiCoO 2 ) and manganese spinel (LiMn 2 O 4 ).

正極活物質層2bは、正極集電箔2aの長手方向に伸びる二辺のうち、片側の一辺に沿って形成される。反対に、正極集電箔2aの他辺の側には、正極活物質層2bが形成されない部分が残存する。ここで、図3に示すように、正極集電箔2aの表面のうち、正極活物質層2bが形成された面のことを結着面2c(正極結着面)と呼び、正極活物質層2bが形成されていない面のことを非結着面2d(正極非結着面)と呼ぶ。   The positive electrode active material layer 2b is formed along one side of two sides extending in the longitudinal direction of the positive electrode current collector foil 2a. Conversely, a portion where the positive electrode active material layer 2b is not formed remains on the other side of the positive electrode current collector foil 2a. Here, as shown in FIG. 3, the surface of the positive electrode current collector foil 2 a on which the positive electrode active material layer 2 b is formed is called a binding surface 2 c (positive electrode binding surface), and the positive electrode active material layer The surface on which 2b is not formed is called a non-binding surface 2d (positive electrode non-binding surface).

結着面2cは、セル10の充電時にリチウムイオンを負極板3側に供給し、放電時にリチウムイオンを受け取る部位となる。また、非結着面2dは、集電体8によってその端部が束ねられた状態で挟持される部位であり、セル10の電極端子13(プラス端子)に接続される。正極板2の結着面2cと非結着面2dとの境界線7は、正極板2の長手方向に伸びる二辺に沿って直線状に配置される。   The binding surface 2c is a part that supplies lithium ions to the negative electrode plate 3 side when the cell 10 is charged and receives lithium ions during discharge. Further, the non-binding surface 2d is a portion that is sandwiched by the current collector 8 in a state where the end portions thereof are bundled, and is connected to the electrode terminal 13 (plus terminal) of the cell 10. A boundary line 7 between the binding surface 2 c and the non-binding surface 2 d of the positive electrode plate 2 is arranged linearly along two sides extending in the longitudinal direction of the positive electrode plate 2.

図3に示すように、正極集電箔2aの非結着面2dには、絶縁部4が設けられる。絶縁部4は、正極板2と負極板3とを電気的に絶縁する材料で層状に形成された部位であり、例えば正極集電箔2aの表面に絶縁テープを貼着することで形成される。この絶縁テープとしては、絶縁性,耐熱性,難燃性の高い絶縁体を含む粘着テープを使用することができる。例えば、ポリイミドやポリフェニレンサルファイド等を基材とした粘着テープを使用してもよい。あるいは、このような絶縁テープの代わりに、絶縁性を有する樹脂材料やセラミック材料を貼着,塗布,焼成することで絶縁部4を形成してもよい。本実施形態の絶縁部4の厚みは、例えば数十μm〜数百μmの厚みとされる。   As shown in FIG. 3, the insulating part 4 is provided in the non-binding surface 2d of the positive electrode current collector foil 2a. The insulating part 4 is a part formed in a layer shape with a material that electrically insulates the positive electrode plate 2 and the negative electrode plate 3, and is formed, for example, by sticking an insulating tape on the surface of the positive electrode current collector foil 2 a. . As this insulating tape, an adhesive tape containing an insulator having high insulating properties, heat resistance, and flame retardancy can be used. For example, an adhesive tape based on polyimide, polyphenylene sulfide or the like may be used. Or you may form the insulating part 4 by sticking, apply | coating, and baking the resin material and ceramic material which have insulation instead of such an insulating tape. The insulating part 4 of the present embodiment has a thickness of, for example, several tens of μm to several hundreds of μm.

絶縁部4は、結着面2cと非結着面2dとの境界線7の延在方向(正極板2の長手方向)に沿って帯状に形成される。本実施形態の絶縁部4は、その端辺が境界線7に平行となるように配置される。この絶縁部4は、積層した際にセパレータ9よりもケース外側(図面の幅方向のケース側)に延在するように設けられる。つまり、絶縁部4の配設位置は、非結着面2dのうちセパレータ9と対向しない位置とされる。したがって、正極板2及びセパレータ9の積層状態では、非結着面2dのうちセパレータ9よりも飛び出した部分に絶縁部4が配置される。   The insulating part 4 is formed in a strip shape along the extending direction of the boundary line 7 between the binding surface 2c and the non-binding surface 2d (longitudinal direction of the positive electrode plate 2). The insulating part 4 of the present embodiment is arranged so that its end side is parallel to the boundary line 7. The insulating portion 4 is provided so as to extend to the case outer side (case side in the width direction in the drawing) than the separator 9 when stacked. That is, the arrangement position of the insulating portion 4 is a position that does not face the separator 9 in the non-binding surface 2d. Therefore, in the stacked state of the positive electrode plate 2 and the separator 9, the insulating portion 4 is arranged in a portion protruding from the separator 9 in the non-binding surface 2 d.

絶縁部4の本数は、正極集電箔2aの片面につき二本とされ、正極集電箔2aを挟んでその両面に合計四本の絶縁部4が形成される。つまり、正極板2の非結着面2dには、片面につき二本の絶縁部4がほぼ平行となるように、所定の間隔を空けて列設される。絶縁部4の幅(幅方向の寸法)は、少なくともエレメント1に積層された状態で、隣接する二つの負極集電箔3a間の寸法(積層方向の寸法)よりも大きい幅とされ、例えば数mm〜数十mmの範囲内で設定される。   The number of the insulating parts 4 is two per one side of the positive electrode current collector foil 2a, and a total of four insulating parts 4 are formed on both surfaces of the positive electrode current collector foil 2a. That is, the non-binding surface 2d of the positive electrode plate 2 is arranged in rows with a predetermined interval so that the two insulating portions 4 are substantially parallel to one surface. The width (dimension in the width direction) of the insulating portion 4 is a width larger than the dimension (dimension in the lamination direction) between two adjacent negative electrode current collector foils 3a in a state of being laminated at least on the element 1, for example, several It is set within the range of mm to several tens of mm.

図3に示すように、正極集電箔2aの非結着面2dは、二本の絶縁部4によって三つの領域に区画される。ここで、正極活物質層2bに近い側の絶縁部4を第一絶縁部4aと呼び、正極活物質層2bから遠い側の絶縁部4を第二絶縁部4bと呼ぶ。また、第一絶縁部4aと第二絶縁部4bとで挟まれた領域のことを、第一曲げガイド部5と呼び、第一絶縁部4aと正極活物質層2b(境界線7)とで挟まれた領域のことを、第二曲げガイド部6と呼ぶ。   As shown in FIG. 3, the non-binding surface 2 d of the positive electrode current collector foil 2 a is partitioned into three regions by two insulating portions 4. Here, the insulating part 4 on the side close to the positive electrode active material layer 2b is called a first insulating part 4a, and the insulating part 4 on the side far from the positive electrode active material layer 2b is called a second insulating part 4b. In addition, a region sandwiched between the first insulating portion 4a and the second insulating portion 4b is called a first bending guide portion 5, and the first insulating portion 4a and the positive electrode active material layer 2b (boundary line 7). The sandwiched area is called a second bending guide portion 6.

第一曲げガイド部5は、第一絶縁部4aの端辺のうち、結着面2cとは反対側の端辺に隣接して設けられた部位である。第一曲げガイド部5の幅寸法は、正極集電箔2aが屈曲したときに二つの絶縁部4同士が干渉しない程度の寸法とされ、例えば数百μm〜数mmの範囲内で設定される。また、第二曲げガイド部6は、第一絶縁部4aの端辺のうち、結着面2cに近い端辺に隣接して設けられた部位である。   The 1st bending guide part 5 is a site | part provided adjacent to the edge side on the opposite side to the binding surface 2c among the edge sides of the 1st insulating part 4a. The width dimension of the first bending guide portion 5 is set to such a size that the two insulating portions 4 do not interfere with each other when the positive electrode current collector foil 2a is bent, and is set within a range of several hundred μm to several mm, for example. . Moreover, the 2nd bending guide part 6 is a site | part provided adjacent to the edge side close | similar to the binding surface 2c among the edge sides of the 1st insulating part 4a.

正極集電箔2aにおいて、第一絶縁部4a,第二絶縁部4bに被覆された部位は、絶縁部4の厚みに対応する分だけ断面積が板厚方向外側に増大する。これにより、板厚方向に垂直な中心線(正極板2の短手方向に延在する中心線)を基準とした断面二次モーメントは、絶縁部4に被覆されている部分よりも絶縁部4に被覆されていない部分の方が小さくなる。したがって、第一曲げガイド部5,第二曲げガイド部6は、絶縁部4に被覆された部位よりも曲げ剛性が低く、座屈しやすい部分となる。   In the positive electrode current collector foil 2 a, the cross-sectional area of the portion covered with the first insulating portion 4 a and the second insulating portion 4 b increases to the outside in the plate thickness direction by the amount corresponding to the thickness of the insulating portion 4. Thereby, the secondary moment of the cross section with respect to the center line perpendicular to the plate thickness direction (center line extending in the short direction of the positive electrode plate 2) is higher than the portion covered with the insulating portion 4 than the insulating portion 4. The portion not covered with is smaller. Therefore, the first bending guide part 5 and the second bending guide part 6 have lower bending rigidity than the part covered with the insulating part 4 and are easily buckled.

また、座屈によって正極集電箔2aが折れ曲がりやすい位置は、曲げ剛性が急変する位置である。したがって、エレメント1に幅方向の外力が作用したときには、第一絶縁部4a,第二絶縁部4bのそれぞれにおける両端辺近傍が、折れ曲がりやすくなる。このように、本実施形態では、正極板2の長手方向に絶縁部4を帯状に設けることによって、正極集電箔2aが絶縁部4の両端辺に沿って折れ曲がりやすい構造を形成している。   Moreover, the position where the positive electrode current collector foil 2a is easily bent due to buckling is a position where the bending rigidity changes suddenly. Therefore, when an external force in the width direction is applied to the element 1, the vicinity of both ends of each of the first insulating portion 4a and the second insulating portion 4b is easily bent. Thus, in this embodiment, by providing the insulating portion 4 in a strip shape in the longitudinal direction of the positive electrode plate 2, a structure in which the positive electrode current collector foil 2 a is easily bent along both end sides of the insulating portion 4 is formed.

本実施形態の第一曲げガイド部5は、外力作用時に正極集電箔2aが山折りされる位置(エレメント1の外側から見たときの山折り線)に対応し、第二曲げガイド部6は、外力作用時に正極集電箔2aが谷折りされる位置(エレメント1の外側から見たときの谷折り線)に対応する。このように、正極集電箔2aに第一曲げガイド部5,第二曲げガイド部6を設けることで、外力作用時における正極集電箔2aの屈曲位置が制御される。   The first bending guide portion 5 of the present embodiment corresponds to the position at which the positive electrode current collector foil 2a is mountain-folded when an external force is applied (the mountain fold line when viewed from the outside of the element 1), and the second bending guide portion 6 Corresponds to the position where the positive electrode current collector foil 2a is valley-folded when an external force is applied (the valley fold line when viewed from the outside of the element 1). Thus, by providing the positive electrode current collector foil 2a with the first bending guide portion 5 and the second bending guide portion 6, the bending position of the positive electrode current collector foil 2a when an external force is applied is controlled.

[2−2.負極板]
負極板3(負極電極板)は、負極集電箔3aの表面に負極活物質層3bが形成されたものである。負極集電箔3aは、板状又は箔状に形成された導電体(例えば、銅,ニッケル等)であり、例えば数μm〜数十μmのほぼ均一な厚みを持つ。負極活物質層3bは、負極集電箔3aの表面に負極活物質やバインダー物質,導電材等が結着されてなる部位であり、例えば数十μm〜数百μmの厚みとされる。また、負極活物質層3bは、正極活物質層2bと同様に、負極集電箔3aを挟んでその両面に形成される。なお、負極活物質の具体例としては、グラファイトをはじめとするカーボン材料やケイ素系合金材料等が挙げられる。
[2-2. Negative electrode plate]
The negative electrode plate 3 (negative electrode plate) has a negative electrode active material layer 3b formed on the surface of a negative electrode current collector foil 3a. The negative electrode current collector foil 3a is a conductor (for example, copper, nickel, etc.) formed in a plate shape or a foil shape, and has a substantially uniform thickness of, for example, several μm to several tens of μm. The negative electrode active material layer 3b is a part formed by binding a negative electrode active material, a binder material, a conductive material, and the like to the surface of the negative electrode current collector foil 3a, and has a thickness of, for example, several tens of μm to several hundreds of μm. Similarly to the positive electrode active material layer 2b, the negative electrode active material layer 3b is formed on both surfaces of the negative electrode current collector foil 3a. Specific examples of the negative electrode active material include carbon materials including graphite and silicon-based alloy materials.

負極活物質層3bも、負極集電箔3aの長手方向に伸びる二辺のうち、片側の一辺に沿って形成される。したがって、負極集電箔3aの他辺の側には、負極活物質層3bが形成されない部分が残存する。ここで、負極集電箔3aの表面のうち、負極活物質層3bが形成された面のことを結着面3c(負極結着面)と呼び、負極活物質層3bが形成されていない面のことを非結着面3d(負極非結着面)と呼ぶ。   The negative electrode active material layer 3b is also formed along one side of the two sides extending in the longitudinal direction of the negative electrode current collector foil 3a. Therefore, a portion where the negative electrode active material layer 3b is not formed remains on the other side of the negative electrode current collector foil 3a. Here, of the surface of the negative electrode current collector foil 3a, the surface on which the negative electrode active material layer 3b is formed is called a binding surface 3c (negative electrode binding surface), and the surface on which the negative electrode active material layer 3b is not formed. This is called non-binding surface 3d (negative electrode non-binding surface).

結着面3cは、二次電池の充放電に係るリチウムイオンの授受が行われる部位となる。非結着面3dは、集電体8によってその端部が束ねられた状態で挟持される部位であり、セル10の電極端子13(マイナス端子)に接続される。図2に示すように、正極板2の非結着面2dがセル10の幅方向における一側(図中の左側)に配置されるのに対し、負極板3の非結着面3dはセル10の幅方向における他側(図中の右側)に配置される。なお、負極板3の結着面3cと非結着面3dとの境界線は、負極板3の長手方向に伸びる二辺に沿って直線状に配置される。   The binding surface 3c is a portion where lithium ions are exchanged for charging and discharging the secondary battery. The non-binding surface 3d is a portion that is sandwiched by the current collector 8 in a state where its end portions are bundled, and is connected to the electrode terminal 13 (minus terminal) of the cell 10. As shown in FIG. 2, the non-binding surface 2d of the positive electrode plate 2 is arranged on one side (left side in the figure) in the width direction of the cell 10, whereas the non-binding surface 3d of the negative electrode plate 3 is a cell. 10 on the other side in the width direction (right side in the figure). The boundary line between the binding surface 3 c and the non-binding surface 3 d of the negative electrode plate 3 is linearly arranged along two sides extending in the longitudinal direction of the negative electrode plate 3.

[2−3.積層状態]
図4は、正極板2,負極板3,セパレータ9の積層状態を説明するための模式的な断面図である。図4では、紙面の縦方向(厚み方向)の寸法を大きくデフォルメし、正極板2,負極板3,セパレータ9のそれぞれの隙間を便宜的に大きく表示している。また、図4中では、正極板2,負極板3が平行に配置されているが、エレメント1の左右両端部は集電体8よって厚み方向に挟み込まれて束ねられる。そのため、実際には図6に示すように、エレメント1の左右両端部において、隣接する正極板2,負極板3が互いに接近するように湾曲した配置となる。
[2-3. Laminated state]
FIG. 4 is a schematic cross-sectional view for explaining the laminated state of the positive electrode plate 2, the negative electrode plate 3, and the separator 9. In FIG. 4, the dimension in the vertical direction (thickness direction) of the paper surface is greatly deformed, and the gaps between the positive electrode plate 2, the negative electrode plate 3, and the separator 9 are displayed large for convenience. In FIG. 4, the positive electrode plate 2 and the negative electrode plate 3 are arranged in parallel, but the left and right end portions of the element 1 are sandwiched in the thickness direction by the current collector 8 and bundled. Therefore, in practice, as shown in FIG. 6, at the left and right ends of the element 1, the adjacent positive electrode plate 2 and negative electrode plate 3 are curved so as to approach each other.

図4に示すように、負極板3の結着面3cは、正極板2の結着面2cよりも面積が大きく形成される。また、正極板2と負極板3とが積層された状態で、少なくとも正極板2の結着面2cの全体に対して負極板3の結着面3cが対向するように、結着面3cの位置が設定される。つまり、エレメント1をその側面から積層方向に透視したときに、正極板2の結着面2cが負極板3の結着面3cの内側に包含されるように、正極板2及び負極板3が積層される。   As shown in FIG. 4, the binding surface 3 c of the negative electrode plate 3 is formed to have a larger area than the binding surface 2 c of the positive electrode plate 2. Further, in a state in which the positive electrode plate 2 and the negative electrode plate 3 are laminated, the binding surface 3c of the negative electrode plate 3 is opposed to at least the entire binding surface 2c of the positive electrode plate 2. The position is set. That is, the positive electrode plate 2 and the negative electrode plate 3 are arranged so that the binding surface 2c of the positive electrode plate 2 is included inside the binding surface 3c of the negative electrode plate 3 when the element 1 is seen through from the side surface in the stacking direction. Laminated.

図4中のXは、正極活物質層2bと負極活物質層3bとが対向する部位の範囲(対向領域X)を示す。負極活物質層3bは、対向領域Xよりも幅方向外側にはみ出して配置される。図4中のYは、対向領域Xから負極活物質層3bがはみ出している部位の範囲(超過領域Y)を示す。これにより、負極活物質層3bにおけるリチウムイオンの捕捉性が向上し、負極板3の表面にリチウム金属が析出しにくくなる。   X in FIG. 4 indicates a range of a region where the positive electrode active material layer 2b and the negative electrode active material layer 3b face each other (opposing region X). The negative electrode active material layer 3 b is disposed so as to protrude outward in the width direction from the facing region X. Y in FIG. 4 indicates a range (excess region Y) where the negative electrode active material layer 3b protrudes from the facing region X. As a result, the lithium ion capturing property of the negative electrode active material layer 3 b is improved, and lithium metal is less likely to be deposited on the surface of the negative electrode plate 3.

図4中のZは、正極集電箔2aが負極活物質層3bと対向していない部分の範囲(非対向領域Z)を示す。正極集電箔2a上に形成された絶縁部4は、負極板3の負極活物質層3bと対向しない非対向領域Zに配置される。つまり、エレメント1をその側面から積層方向に透視したときに、負極活物質層3bと重合しないように絶縁部4の位置が設定される。絶縁部4が形成されうる位置は、図4中の非対向領域Zの内側とされる。   Z in FIG. 4 indicates a range (non-opposing region Z) where the positive electrode current collector foil 2a does not face the negative electrode active material layer 3b. The insulating portion 4 formed on the positive electrode current collector foil 2 a is disposed in a non-facing region Z that does not face the negative electrode active material layer 3 b of the negative electrode plate 3. That is, the position of the insulating portion 4 is set so as not to overlap with the negative electrode active material layer 3b when the element 1 is seen through from the side surface in the stacking direction. The position where the insulating portion 4 can be formed is set to the inside of the non-facing region Z in FIG.

また、セパレータ9は、結着面2c及び結着面3cよりも面積が大きく形成される。つまり、エレメント1の積層状態において、少なくともセパレータ9の全体に対して結着面2c及び結着面3cが対向するように、セパレータ9のサイズ及び幅方向の位置が設定される。したがって、エレメント1をその側面から積層方向に透視したときに、セパレータ9は負極活物質層3bよりもさらに外側にはみ出して配置される。   In addition, the separator 9 has a larger area than the binding surface 2c and the binding surface 3c. That is, in the stacked state of the elements 1, the size of the separator 9 and the position in the width direction are set so that the binding surface 2 c and the binding surface 3 c face at least the entire separator 9. Therefore, when the element 1 is seen through from the side surface in the stacking direction, the separator 9 is disposed so as to protrude further outward than the negative electrode active material layer 3b.

図4中のWは、正極集電箔2aがセパレータ9と対向していない部分の範囲(突出領域W)を示す。本実施形態の絶縁部4は、セパレータ9よりも幅方向外側に配置される。つまり、エレメント1をその側面から積層方向に透視したときに、負極活物質層3bだけでなくセパレータ9にも重合しないように、絶縁部4の位置が突出領域W内に設定される。また、絶縁部4の端辺は、突出領域Wの端辺にほぼ一致するように配置される。これにより、エレメント1に幅方向の外力が作用したときには、突出領域Wの端辺近傍で正極集電箔2aが折れ曲がりやすくなる。なお、セパレータ9のサイズは、少なくとも対向領域X及び超過領域Yをカバーして、非対向領域Zに若干はみ出す大きさに設定される。   4 indicates a range (protrusion region W) where the positive electrode current collector foil 2a does not face the separator 9. Insulating part 4 of this embodiment is arranged in the width direction outside rather than separator 9. That is, the position of the insulating portion 4 is set in the protruding region W so that the element 1 is not polymerized not only in the negative electrode active material layer 3b but also in the separator 9 when the element 1 is seen through from the side surface in the stacking direction. Further, the end side of the insulating portion 4 is arranged so as to substantially coincide with the end side of the protruding region W. Thereby, when the external force of the width direction acts on the element 1, the positive electrode current collection foil 2a becomes easy to bend in the vicinity of the edge side of the protrusion area | region W. FIG. The size of the separator 9 is set to a size that covers at least the facing area X and the excess area Y and slightly protrudes from the non-facing area Z.

[3.作用]
例えばセル10の外部からの衝撃により、エレメント1に幅方向の外力が作用すると、エレメント1が左右何れかの集電体8に向かって移動し、エレメント1の左右両端部が変形する。このとき、正極側の集電体8の近くでエレメント1が変形すると、負極板3の端辺と正極板2の正極集電箔2aとが近接し、内部短絡が発生しやすくなる。特に、リチウムイオン二次電池の負極板3は正極板2よりも大きく、図4に示すように、負極活物質層3bが正極活物質層2bよりも幅方向にはみ出して設けられる。そのため、エレメント1が変形した場合には、負極側の集電体8よりも正極側の集電体8で内部短絡が発生する可能性が高い。
[3. Action]
For example, when an external force in the width direction acts on the element 1 due to an impact from the outside of the cell 10, the element 1 moves toward the left or right current collector 8, and the left and right ends of the element 1 are deformed. At this time, if the element 1 is deformed near the current collector 8 on the positive electrode side, the end side of the negative electrode plate 3 and the positive electrode current collector foil 2a of the positive electrode plate 2 are close to each other, and an internal short circuit is likely to occur. In particular, the negative electrode plate 3 of the lithium ion secondary battery is larger than the positive electrode plate 2, and as shown in FIG. 4, the negative electrode active material layer 3b is provided so as to protrude beyond the positive electrode active material layer 2b. For this reason, when the element 1 is deformed, an internal short circuit is more likely to occur in the positive current collector 8 than in the negative current collector 8.

一方、本実施形態の正極集電箔2aの非結着面2dには、絶縁部4が帯状に形成されている。これにより、図5に示すように、第一絶縁部4a,第二絶縁部4bのそれぞれにおける両端辺で正極集電箔2aが屈曲し、負極板3の端辺は絶縁部4の表面に当接する。つまり、正極集電箔2a上の絶縁部4が、負極板3の幅方向への移動を阻止する向きとなり、エレメント1の変形が抑制されると同時に、負極板3の端辺が絶縁部4によって絶縁され、内部短絡の発生が回避される。   On the other hand, the insulating portion 4 is formed in a strip shape on the non-binding surface 2d of the positive electrode current collector foil 2a of the present embodiment. As a result, as shown in FIG. 5, the positive electrode current collector foil 2a is bent at both ends of each of the first insulating portion 4a and the second insulating portion 4b, and the end side of the negative electrode plate 3 contacts the surface of the insulating portion 4. Touch. That is, the insulating part 4 on the positive electrode current collector foil 2a is in a direction to prevent the movement of the negative electrode plate 3 in the width direction, and the deformation of the element 1 is suppressed. Insulation by means of this prevents the occurrence of internal short circuits.

また、図6(A)に示すように、本実施形態のエレメント1は、対向領域Xから左右に飛び出している正極集電箔2a及び負極集電箔3aのそれぞれが、集電体8によって厚み方向に束ねられている。したがって、エレメント1に幅方向の外力が作用したときには、図6(B)に示すように、それぞれの正極集電箔2aの第一曲げガイド部5が厚み方向外側に突出するように、くの字型に変形する。これにより、それぞれの負極板3の端辺が第一絶縁部4aに確実に当接し、内部短絡が阻止される。また、それぞれの負極板3の端辺が第一絶縁部4aによって移動を拘束されるため、正極板2に対する負極板3のスライド移動が抑制される。   In addition, as shown in FIG. 6A, in the element 1 of this embodiment, each of the positive electrode current collector foil 2a and the negative electrode current collector foil 3a protruding from the opposing region X to the left and right is thickened by the current collector 8. It is bundled in the direction. Therefore, when an external force in the width direction is applied to the element 1, as shown in FIG. 6B, the first bending guide portion 5 of each positive electrode current collector foil 2 a is protruded outward in the thickness direction. Transform into a letter shape. As a result, the end sides of the respective negative electrode plates 3 are surely brought into contact with the first insulating portion 4a, and an internal short circuit is prevented. Further, since the movement of the end sides of each negative electrode plate 3 is restricted by the first insulating portion 4a, the sliding movement of the negative electrode plate 3 with respect to the positive electrode plate 2 is suppressed.

[4.効果]
(1)上記の二次電池のセル10では、図2,図4に示すように、正極集電箔2aの非結着面2dに形成される絶縁部4が、セパレータ9よりもケース11の外側方向(幅方向)に延在して設けられる。この絶縁部4は、第一曲げガイド部5,第二曲げガイド部6よりも曲げ剛性が高い部位であり、絶縁部4の両端辺が外力の作用時に折れ曲がりやすい部位となる。このような折れ曲がりやすい部位を突出領域Wの端辺近傍に設けることで、正極集電箔2aが屈曲変形した際に、絶縁部4を負極板3の端辺に当接させることができる。したがって、セル10の内部短絡が発生する可能性を低下させることができ、短絡防止効果を高めることができる。
[4. effect]
(1) In the cell 10 of the above secondary battery, as shown in FIGS. 2 and 4, the insulating portion 4 formed on the non-binding surface 2 d of the positive electrode current collector foil 2 a is more in the case 11 than the separator 9. It is provided extending in the outer direction (width direction). The insulating portion 4 is a portion having higher bending rigidity than the first bending guide portion 5 and the second bending guide portion 6, and both ends of the insulating portion 4 are easily bent when an external force is applied. By providing such a portion that is easily bent in the vicinity of the edge of the protruding region W, the insulating portion 4 can be brought into contact with the edge of the negative electrode plate 3 when the positive electrode current collector foil 2a is bent and deformed. Therefore, the possibility that an internal short circuit occurs in the cell 10 can be reduced, and the short circuit prevention effect can be enhanced.

また、絶縁部4が突出領域Wの内部に配置されることから、エレメント1の厚み方向の寸法を増大させることなく、絶縁性を高めることができる。例えば、絶縁部4の厚みを正極活物質層2bの厚みよりも大きくすることが容易である。つまり、絶縁性の高い絶縁部4を形成することが容易であり、セル10の短絡防止効果を高めることができる。また、絶縁部4が超過領域Yには形成されないため、超過領域Yに絶縁部4を形成した場合と比較して、セル10の重量及びコストを削減することができる。なお、図4に示すように、正極集電箔2aの超過領域Yは、その上下に挟装されるセパレータ9によって絶縁することができる。   Further, since the insulating portion 4 is disposed inside the protruding region W, the insulating property can be improved without increasing the dimension in the thickness direction of the element 1. For example, it is easy to make the thickness of the insulating part 4 larger than the thickness of the positive electrode active material layer 2b. That is, it is easy to form the insulating part 4 with high insulation, and the effect of preventing the short circuit of the cell 10 can be enhanced. Further, since the insulating portion 4 is not formed in the excess region Y, the weight and cost of the cell 10 can be reduced as compared with the case where the insulating portion 4 is formed in the excess region Y. In addition, as shown in FIG. 4, the excess area | region Y of the positive electrode current collector foil 2a can be insulated by the separator 9 pinched by the upper and lower sides.

(2)上記のセル10では、図3に示すように、絶縁部4が結着面2cと非結着面2dとの境界線7の延在方向に沿って帯状に形成される。これにより、積層された負極板3の端辺をその長手方向の全長にわたって、絶縁部4に当接させることができ、短絡防止効果を高めることができる。また、例えば絶縁テープを用いて絶縁部4を形成することが容易であり、製造に係る手間やコストを削減することができる。   (2) In the cell 10, as shown in FIG. 3, the insulating portion 4 is formed in a strip shape along the extending direction of the boundary line 7 between the binding surface 2 c and the non-binding surface 2 d. Thereby, the edge of the laminated negative electrode plate 3 can be contact | abutted to the insulation part 4 over the full length of the longitudinal direction, and the short circuit prevention effect can be heightened. Moreover, it is easy to form the insulating part 4 using an insulating tape, for example, and the labor and cost concerning manufacture can be reduced.

(3)上記のセル10では、図3,図4に示すように、絶縁部4が幅方向に所定の間隔を空けて列設される。このように、帯状の絶縁部4を列設することで、曲げ剛性の低い部分を二つの絶縁部4の間に(ライン状に)形成することができ、正極集電箔2aが折れ曲がる位置を確実に設定することができ、短絡防止効果を高めることができる。   (3) In the cell 10, as shown in FIGS. 3 and 4, the insulating portions 4 are arranged at predetermined intervals in the width direction. Thus, by arranging the strip-shaped insulating portions 4 in a row, a portion having low bending rigidity can be formed between the two insulating portions 4 (in a line shape), and the position where the positive electrode current collector foil 2a is bent can be formed. It can set reliably and can improve the short circuit prevention effect.

(4)上記のセル10の第一絶縁部4a及び第二絶縁部4bに挟まれた第一曲げガイド部5は、絶縁部4に被覆された部位よりも曲げ剛性が低く、座屈しやすい部分となる。また、第一絶縁部4aよりも正極活物質層2b側に位置する第二曲げガイド部6も、絶縁部4に被覆された部位よりも曲げ剛性が低く、座屈しやすい部分となる。このような折れ曲がりやすい部位を第一絶縁部4aの両端辺に沿って設けることで、正極集電箔2aの変形状態を適切にコントロールすることができ、絶縁部4を負極板3の端辺に当接させることができる。したがって、セル10の内部短絡が発生する可能性を低下させることができ、短絡防止効果を高めることができる。また、絶縁部4の面内で正極集電箔2aが折れ曲がりにくくなるため、絶縁部4を破断しにくくすることができ、短絡防止効果を高めることができる。   (4) The first bending guide portion 5 sandwiched between the first insulating portion 4a and the second insulating portion 4b of the cell 10 has a lower bending rigidity than a portion covered with the insulating portion 4, and is easily buckled. It becomes. Further, the second bending guide portion 6 positioned on the positive electrode active material layer 2b side with respect to the first insulating portion 4a also has a lower bending rigidity than a portion covered with the insulating portion 4, and is a portion that is easily buckled. By providing such a portion that is easy to bend along both ends of the first insulating portion 4 a, the deformation state of the positive electrode current collector foil 2 a can be appropriately controlled, and the insulating portion 4 is provided at the end of the negative electrode plate 3. It can be made to contact. Therefore, the possibility that an internal short circuit occurs in the cell 10 can be reduced, and the short circuit prevention effect can be enhanced. Moreover, since the positive electrode current collector foil 2a is unlikely to be bent in the plane of the insulating portion 4, the insulating portion 4 can be made difficult to break, and the short-circuit preventing effect can be enhanced.

(5)上記の絶縁部4は、正極集電箔2aの両面に絶縁テープを貼着することで形成されるため、簡素な構成で絶縁部4を設けることができ、製造に係る手間やコストを削減することができる。
(6)リチウムイオン二次電池では一般に、正極活物質層2bよりも負極活物質層3bの方が広くなるようにエレメント1が形成される。このようなエレメント1において、正極集電箔2aの表面に絶縁部4を設けることで、正極板2と負極板3との間の短絡を確実に防止することができ、短絡防止効果を高めることができる。
(5) Since the insulating part 4 is formed by sticking an insulating tape on both surfaces of the positive electrode current collector foil 2a, the insulating part 4 can be provided with a simple configuration, and labor and cost involved in manufacturing. Can be reduced.
(6) In a lithium ion secondary battery, the element 1 is generally formed so that the negative electrode active material layer 3b is wider than the positive electrode active material layer 2b. In such an element 1, by providing the insulating part 4 on the surface of the positive electrode current collector foil 2a, a short circuit between the positive electrode plate 2 and the negative electrode plate 3 can be surely prevented, and the short circuit prevention effect is enhanced. Can do.

[5.変形例]
上述した実施形態に関わらず、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。本実施形態の各構成は、必要に応じて取捨選択することができ、あるいは適宜組み合わせてもよい。図7(A)〜(D)は、変形例としての二次電池のセル10を説明するための断面図である。以下、上述の実施形態と同一の要素については、同一の符号を用いて説明する。
[5. Modified example]
Regardless of the embodiment described above, various modifications can be made without departing from the spirit of the invention. Each structure of this embodiment can be selected as needed, or may be combined appropriately. 7A to 7D are cross-sectional views for explaining a cell 10 of a secondary battery as a modification. Hereinafter, the same elements as those of the above-described embodiment will be described using the same reference numerals.

図7(A)は、第一曲げガイド部5に曲げ癖をつけたもの(予め僅かに屈曲させたもの)である。この曲げ癖は、正極板2の生産時に形成しておくことが好ましい。このような正極集電箔2aの屈曲形状により、外力に対して正極集電箔2aを弾性的に変形させることができ、幅方向に作用する衝撃を吸収,緩和することができる。また、正極集電箔2aがその衝撃に屈して折り曲げられた際には、上述の実施形態と同様に、負極板3の端辺を第一絶縁部4aに当接させることができ、短絡防止効果を高めることができる。   FIG. 7A shows the first bending guide portion 5 with a bending ridge (bent slightly in advance). It is preferable to form the bending folds at the time of production of the positive electrode plate 2. With such a bent shape of the positive electrode current collector foil 2a, the positive electrode current collector foil 2a can be elastically deformed against an external force, and an impact acting in the width direction can be absorbed and reduced. Further, when the positive electrode current collector foil 2a is bent and bent due to the impact, the end side of the negative electrode plate 3 can be brought into contact with the first insulating portion 4a in the same manner as in the above-described embodiment, thereby preventing a short circuit. The effect can be enhanced.

図7(B)は、第一曲げガイド部5に曲げ癖をつけてから元の形状に戻したもの(あるいは、折り曲げ,折り戻しを数度繰り返して折り癖を付けたもの)である。折り曲げの方向は、上述の実施形態と同様に、正極集電箔2aが厚み方向外側に突出する方向とすることが好ましい。このような曲げ癖を形成した場合であっても、衝撃吸収効果と短絡防止効果とを両立させることができる。   FIG. 7B shows the first bending guide portion 5 that has been bent and then returned to its original shape (or that has been folded and folded several times to add a crease). The bending direction is preferably the direction in which the positive electrode current collector foil 2a protrudes outward in the thickness direction, as in the above-described embodiment. Even when such a bending ridge is formed, both the impact absorption effect and the short-circuit prevention effect can be achieved.

図7(C)は、第一曲げガイド部5に溝を切削形成したもの、あるいは、正極集電箔2aの表面を引掻いて溝状の傷をつけたものである。これらの溝は、正極集電箔2aの厚み方向の寸法を削減して形成される。また、図7(D)は、第一曲げガイド部5における厚み方向の寸法を他の部位の厚み寸法よりも小さく(薄く)形成したものである。これらのように、板厚方向の断面積が小さい部位を第一曲げガイド部5に設けておくことで、絶縁部4に被覆された部位よりも第一曲げガイド部5の曲げ剛性を低くすることができ、その位置で折れ曲がりやすくすることができる。したがって、上述の実施形態と同様に、正極集電箔2aの変形状態を適切にコントロールすることができ、絶縁部4を負極板3の端辺に当接させることができる。   FIG. 7C shows a groove formed by cutting a groove in the first bending guide portion 5, or a surface of the positive electrode current collector foil 2a is scratched to give a groove-like scratch. These grooves are formed by reducing the dimension in the thickness direction of the positive electrode current collector foil 2a. FIG. 7D shows the first bending guide portion 5 having a thickness direction dimension smaller (thinner) than that of other portions. As described above, by providing the first bending guide portion 5 with a portion having a small cross-sectional area in the plate thickness direction, the bending rigidity of the first bending guide portion 5 is made lower than the portion covered with the insulating portion 4. Can be easily bent at that position. Therefore, similarly to the above-described embodiment, the deformation state of the positive electrode current collector foil 2 a can be appropriately controlled, and the insulating portion 4 can be brought into contact with the end side of the negative electrode plate 3.

上述の実施形態,変形例では、正極集電箔2aの片面につき二本の絶縁部4が形成されたものを示したが、絶縁部4の箇所数はこれに限定されない。少なくとも、正極集電箔2aの片面に第一絶縁部4aを形成することで、正極集電箔2aの変形状態をコントロールしつつ第一絶縁部4aと負極板3の端辺とを当接させることができ、セル10の短絡防止効果を高めることができる。   In the above-described embodiment and modification, the two insulating portions 4 are formed on one surface of the positive electrode current collector foil 2a. However, the number of the insulating portions 4 is not limited thereto. By forming the first insulating portion 4a on at least one surface of the positive electrode current collector foil 2a, the first insulating portion 4a and the edge of the negative electrode plate 3 are brought into contact with each other while controlling the deformation state of the positive electrode current collector foil 2a. And the effect of preventing short circuit of the cell 10 can be enhanced.

上述の実施形態では、絶縁部4が突出領域W内に設定されたものを例示したが、絶縁部4の配設位置はこれに限定されない。例えば、図8(A)に示すように、突出領域W内だけでなく、突出領域Wに隣接する超過領域Y内にも絶縁部4を配置してもよい。絶縁部4によって被覆される面積が増大するほど、負極板3の端辺が正極集電箔2aに対して直接的に接触しにくくなり、内部短絡が発生しにくくなる。   In the above-described embodiment, the insulating portion 4 is set in the protruding region W, but the arrangement position of the insulating portion 4 is not limited to this. For example, as shown in FIG. 8A, the insulating portion 4 may be arranged not only in the protruding region W but also in the excess region Y adjacent to the protruding region W. As the area covered by the insulating portion 4 increases, the end of the negative electrode plate 3 is less likely to be in direct contact with the positive electrode current collector foil 2a, and an internal short circuit is less likely to occur.

一方、正極集電箔2aの全体を絶縁部4で被覆した場合、正極集電箔2a自体の変形による絶縁部4の破断,剥離が発生する位置を制御することが難しくなる。そこで、図8(A)に示すように、突出領域Wの端辺近傍に第二曲げガイド部6として機能する隙間を形成してもよい。このように、正極集電箔2aの屈曲位置を積極的にガイドすることで、短絡防止効果を高めることができる。   On the other hand, when the whole positive electrode current collector foil 2a is covered with the insulating part 4, it becomes difficult to control the position where the insulating part 4 is broken or peeled off due to the deformation of the positive electrode current collector foil 2a itself. Therefore, as illustrated in FIG. 8A, a gap that functions as the second bending guide portion 6 may be formed in the vicinity of the end side of the protruding region W. In this way, by actively guiding the bending position of the positive electrode current collector foil 2a, the short-circuit prevention effect can be enhanced.

また、上述の実施形態では、絶縁部4の端辺が突出領域Wの端辺にほぼ一致するように配置されたものを例示したが、絶縁部4の配設位置はこれに限定されない。例えば、図8(B)に示すように、絶縁部4の端辺を突出領域Wよりも僅かに境界線7側に突出させてもよい。あるいは、図8(C)に示すように、絶縁部4の端辺を突出領域Wよりも僅かに幅方向外側に位置させてもよい。絶縁部4の端辺の位置は、例えば図5に示すように、負極板3の端辺が絶縁部4の表面に当接するように正極集電箔2aを変形させる位置であればよい。   Further, in the above-described embodiment, an example in which the end portion of the insulating portion 4 is arranged so as to substantially coincide with the end side of the protruding region W is illustrated, but the arrangement position of the insulating portion 4 is not limited to this. For example, as shown in FIG. 8B, the end side of the insulating portion 4 may be slightly protruded toward the boundary line 7 from the protruding region W. Alternatively, as illustrated in FIG. 8C, the end side of the insulating portion 4 may be positioned slightly outside the protruding region W in the width direction. The position of the end side of the insulating part 4 may be a position where the positive electrode current collector foil 2a is deformed so that the end side of the negative electrode plate 3 contacts the surface of the insulating part 4 as shown in FIG.

上述の実施形態では、正極板2の非結着面2dに絶縁部4を形成したものを示したが、これと同様の絶縁部を負極板3の非結着面3dに形成してもよい。この場合、正極板2の端辺と負極集電箔3aとの間の内部短絡を防止することができ、上述の実施形態と同様の効果を奏するものとなる。
なお、上述の実施形態では、電気自動車やハイブリッド自動車等の駆動用電力源として使用される二次電池のセル10の構造を説明したが、上記のセル10の用途はこれに限定されない。例えば、上記のセル10を携帯電話機やスマートフォン,携帯情報端末の二次電池として使用することができる。
In the above-described embodiment, the insulating portion 4 is formed on the non-binding surface 2d of the positive electrode plate 2. However, an insulating portion similar to this may be formed on the non-binding surface 3d of the negative electrode plate 3. . In this case, an internal short circuit between the edge of the positive electrode plate 2 and the negative electrode current collector foil 3a can be prevented, and the same effect as in the above-described embodiment can be obtained.
In the above-described embodiment, the structure of the cell 10 of the secondary battery used as a driving power source for an electric vehicle or a hybrid vehicle has been described. However, the use of the cell 10 is not limited to this. For example, the cell 10 can be used as a secondary battery for a mobile phone, a smartphone, or a portable information terminal.

1 エレメント
2 正極板(正極電極板)
2a 正極集電箔
2b 正極活物質層
2c 結着面(正極結着面)
2d 非結着面(正極非結着面)
3 負極板(負極電極板)
3a 負極集電箔
3b 負極活物質層
3c 結着面(負極結着面)
3d 非結着面(負極非結着面)
4 絶縁部
5 第一曲げガイド部
6 第二曲げガイド部
7 境界線
8 集電体
9 セパレータ
10 セル
W 突出領域
X 対向領域
Y 超過領域
Z 非対向領域
1 Element 2 Positive electrode plate (positive electrode plate)
2a Positive electrode current collector foil 2b Positive electrode active material layer 2c Binding surface (positive electrode binding surface)
2d Non-binding surface (Positive electrode non-binding surface)
3 Negative electrode plate (negative electrode plate)
3a Negative electrode current collector foil 3b Negative electrode active material layer 3c Binding surface (negative electrode binding surface)
3d Non-binding surface (negative electrode non-binding surface)
4 Insulating Part 5 First Bending Guide Part 6 Second Bending Guide Part 7 Boundary Line 8 Current Collector 9 Separator 10 Cell W Protruding Area X Opposing Area Y Excess Area Z Non-opposing Area

Claims (6)

正極集電箔の表面に正極活物質が結着された正極結着面と前記正極活物質が結着されていない正極非結着面とを有する正極電極板と、負極集電箔の表面に負極活物質が結着された負極結着面と前記負極活物質が結着されていない負極非結着面とを有する負極電極板と、前記正極結着面及び前記負極結着面よりも大きく形成され前記正極電極板と前記負極電極板との間に配置されたセパレータと、を積層してケースに収容した二次電池において、
前記正極非結着面又は前記負極非結着面に設けられ、前記セパレータより前記ケースの外側に延在する絶縁部を備え
前記絶縁部が、前記結着面と前記非結着面との境界線の延在方向に沿って帯状に形成されるとともに、前記境界線の延在方向に垂直な方向に所定の間隔を空けて複数列設される
ことを特徴とする、二次電池。
A positive electrode plate having a positive electrode binding surface with a positive electrode active material bound to the surface of the positive electrode current collector foil and a positive electrode non-binding surface with no positive electrode active material bound thereto, and a surface of the negative electrode current collector foil A negative electrode plate having a negative electrode binding surface to which a negative electrode active material is bound and a negative electrode non-binding surface to which the negative electrode active material is not bound; and larger than the positive electrode binding surface and the negative electrode binding surface In a secondary battery that is formed and stacked and accommodated in a case, the separator disposed between the positive electrode plate and the negative electrode plate,
An insulating portion provided on the positive electrode non-binding surface or the negative electrode non-binding surface and extending outside the case from the separator ;
The insulating portion is formed in a band shape along the extending direction of the boundary line between the binding surface and the non-binding surface, and has a predetermined interval in a direction perpendicular to the extending direction of the boundary line. A plurality of rows of secondary batteries.
複数の前記絶縁部の間に設けられ、前記絶縁部に被覆された部位よりも曲げ剛性が低い曲げガイド部を備えた
ことを特徴とする、請求項記載の二次電池。
Provided between a plurality of said insulating portion, the bend than the site coated with the insulating portion stiffness, comprising the low bending guide portion, the secondary battery according to claim 1, wherein.
前記曲げガイド部が、前記集電箔を屈曲して形成される
ことを特徴とする、請求項記載の二次電池。
The secondary battery according to claim 2 , wherein the bending guide portion is formed by bending the current collector foil.
前記曲げガイド部が、前記集電箔の厚み方向の寸法を削減して形成される
ことを特徴とする、請求項2又は3記載の二次電池。
The secondary battery according to claim 2 , wherein the bending guide portion is formed by reducing a thickness direction dimension of the current collector foil.
前記絶縁部が、絶縁体を含む粘着テープを前記集電箔の表面に貼着してなる
ことを特徴とする、請求項1〜の何れか1項に記載の二次電池。
It said insulating portion, the adhesive tape comprising an insulator, characterized by comprising adhered to the surface of the collector foil, the secondary battery according to any one of claims 1-4.
前記二次電池がリチウムイオン二次電池であって、
前記絶縁部が、前記正極集電箔の表面に形成される
ことを特徴とする、請求項1〜の何れか1項に記載の二次電池。
The secondary battery is a lithium ion secondary battery,
Said insulating section, said to be formed on the surface of the positive electrode current collector foil and said secondary battery according to any one of claims 1-5.
JP2013268317A 2013-12-26 2013-12-26 Secondary battery Expired - Fee Related JP6260266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013268317A JP6260266B2 (en) 2013-12-26 2013-12-26 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013268317A JP6260266B2 (en) 2013-12-26 2013-12-26 Secondary battery

Publications (2)

Publication Number Publication Date
JP2015125840A JP2015125840A (en) 2015-07-06
JP6260266B2 true JP6260266B2 (en) 2018-01-17

Family

ID=53536433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013268317A Expired - Fee Related JP6260266B2 (en) 2013-12-26 2013-12-26 Secondary battery

Country Status (1)

Country Link
JP (1) JP6260266B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102529941B1 (en) * 2015-11-27 2023-05-10 한국전기연구원 Liquid Electrolytes For Na Secondary Batteries And Na Secondary Batteries Comprising The Same
JP6958004B2 (en) * 2017-06-13 2021-11-02 三洋電機株式会社 Rechargeable battery
DE112018004488T5 (en) * 2017-10-11 2020-07-30 Kabushiki Kaisha Toyota Jidoshokki POWER MEMORY MODULE
CN112490402A (en) * 2019-09-12 2021-03-12 比亚迪股份有限公司 Battery, battery module, battery pack and automobile
CN113708020B (en) * 2021-08-24 2023-05-05 湖北亿纬动力有限公司 Vibration reduction method for tab welding and clamping tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032112A (en) * 2004-07-15 2006-02-02 Matsushita Electric Ind Co Ltd Electrochemical element
JP5417241B2 (en) * 2010-04-01 2014-02-12 日立ビークルエナジー株式会社 Rectangular lithium ion secondary battery and method for manufacturing prismatic lithium ion secondary battery
JP6010302B2 (en) * 2012-01-20 2016-10-19 オートモーティブエナジーサプライ株式会社 Method for producing non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2015125840A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP5336024B1 (en) Secondary battery
JP5779828B2 (en) Electrode assembly having step, battery cell, battery pack and device including the same
JP6245142B2 (en) Secondary battery manufacturing method and secondary battery
JP6306431B2 (en) Battery module
JP5841571B2 (en) Secondary battery
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP6863710B2 (en) Secondary battery
JP5392368B2 (en) Power storage device
JP6260266B2 (en) Secondary battery
JP6270613B2 (en) Prismatic secondary battery
JP2019061779A (en) Power storage device and power storage method
US9263761B2 (en) Electrode assembly and rechargeable battery having the same
KR20200143979A (en) Electrode assembly and secondary battery having the same
JP2013093216A (en) Battery
CN111261951A (en) Secondary battery and comb-shaped electrode
US10991985B2 (en) Secondary battery
JP5925142B2 (en) Secondary battery
CN107978801B (en) Method for manufacturing laminated electrode body
US20200251783A1 (en) Secondary battery
CN113711406A (en) Secondary battery
JP6718985B2 (en) Prismatic secondary battery
JP5458841B2 (en) Solid battery module manufacturing method and solid battery module obtained by the manufacturing method
CN108808113B (en) Secondary battery and current collecting terminal
JP5664068B2 (en) Multilayer battery and method of manufacturing multilayer battery
JP2007048668A (en) Battery and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R151 Written notification of patent or utility model registration

Ref document number: 6260266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees