JP6256457B2 - Hydrous zinc molybdate for printed wiring boards, prepregs, laminates, printed wiring boards, and slurries for printed wiring boards - Google Patents

Hydrous zinc molybdate for printed wiring boards, prepregs, laminates, printed wiring boards, and slurries for printed wiring boards Download PDF

Info

Publication number
JP6256457B2
JP6256457B2 JP2015253411A JP2015253411A JP6256457B2 JP 6256457 B2 JP6256457 B2 JP 6256457B2 JP 2015253411 A JP2015253411 A JP 2015253411A JP 2015253411 A JP2015253411 A JP 2015253411A JP 6256457 B2 JP6256457 B2 JP 6256457B2
Authority
JP
Japan
Prior art keywords
printed wiring
resin composition
resin
wiring boards
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015253411A
Other languages
Japanese (ja)
Other versions
JP2016056094A (en
Inventor
佳弘 高橋
佳弘 高橋
上方 康雄
康雄 上方
真裕 青嶌
真裕 青嶌
村井 曜
曜 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015253411A priority Critical patent/JP6256457B2/en
Publication of JP2016056094A publication Critical patent/JP2016056094A/en
Application granted granted Critical
Publication of JP6256457B2 publication Critical patent/JP6256457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、半導体パッケージ用として好適な積層板用樹脂組成物、プリプレグ及び積層板に関するものである。   The present invention relates to a laminate resin composition, prepreg, and laminate suitable for use in semiconductor packages.

半導体パッケージ用プリント配線板(以降インターポーザと称する)では、配線の層間接続用等として多数のドリル穴加工が行われるのが一般的である。従って、インターポーザ用積層板には高いドリル加工性が求められる。
一方、近年の半導体パッケージの薄型化の進展により、パッケージそりによる実装不良が多発するようになり、インターポーザ用積層板の熱膨張率をシリコンチップに近付ける、すなわち低熱膨張化することによるそり低減が強く求められるようになっている。
In a printed wiring board for a semiconductor package (hereinafter referred to as an interposer), a large number of drill holes are generally formed for wiring interlayer connection or the like. Therefore, high drillability is required for the interposer laminate.
On the other hand, due to the progress of thinning of semiconductor packages in recent years, mounting defects due to package warpage frequently occur, and the thermal expansion coefficient of the laminated board for interposer is brought close to that of a silicon chip, that is, the warpage reduction by reducing the thermal expansion is strong. It has come to be required.

積層板の低熱膨張化のためには、積層板に用いられる樹脂組成物中の無機充填材のうち、シリカのような熱膨張率の小さい充填材の含有量を増やすことが有効である。しかし、シリカのような硬い充填材の含有量を増やすと、積層板のドリル加工性が低下するという問題があった。
そこで、無機充填材としてシリカより軟らかい焼成タルク等の板状粒子を加えたり、無機充填材の含有量を減らしたりしてドリル加工性の低下を防ぐ試みが行われている(例えば特許文献1)が、ドリル加工性の低下防止効果が不十分であったり、積層板が高熱膨張化して半導体パッケージのそり抑制効果が不十分になる等の不都合があった。
In order to reduce the thermal expansion of the laminate, it is effective to increase the content of a filler having a low thermal expansion coefficient, such as silica, among the inorganic fillers in the resin composition used for the laminate. However, when the content of a hard filler such as silica is increased, there is a problem that the drillability of the laminated plate is lowered.
Thus, attempts have been made to prevent drill workability deterioration by adding plate-like particles such as calcined talc, which is softer than silica, as inorganic fillers, or by reducing the content of inorganic fillers (for example, Patent Document 1). However, there have been inconveniences such as an insufficient effect of preventing the drill workability from being lowered, and a laminated board having a high thermal expansion, resulting in an insufficient effect of suppressing the warpage of the semiconductor package.

また、ドリル加工性を向上させるために、無機固形潤滑剤粒子として二硫化モリブデンのような金属ジカルコゲナイドを添加する試みが行われている(例えば特許文献2)が、二硫化モリブデンを添加すると積層板の電気絶縁性が著しく低下するという問題があり、満足できる結果が得られるまでには至っていない。
さらに、インターポーザ用積層板は、電子材料として十分な耐熱性を有することが望ましい。
In order to improve drill workability, attempts have been made to add metal dichalcogenide such as molybdenum disulfide as inorganic solid lubricant particles (for example, Patent Document 2). There is a problem that the electrical insulation of the plate is remarkably lowered, and satisfactory results have not been obtained.
Further, it is desirable that the interposer laminate has sufficient heat resistance as an electronic material.

特開2005−162787号公報JP 2005-162787 A 特表2002−527538号公報JP-T-2002-527538

本発明の目的は、こうした現状に鑑み、特にドリル加工性、低熱膨張性、耐熱性、及び電気絶縁性に優れ、半導体パッケージ用に好適な積層板用樹脂組成物、プリプレグ及び積層板を提供することである。   In view of the current situation, an object of the present invention is to provide a laminate resin composition, a prepreg, and a laminate that are particularly excellent in drill workability, low thermal expansion, heat resistance, and electrical insulation and that are suitable for semiconductor packages. That is.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、熱硬化性樹脂、シリカ及び特定の含水モリブデン酸亜鉛を含有する樹脂組成物、それを用いたプリプレグ及び積層板が上記目的に適うものであることを見出し、本発明を完成するに到った。   As a result of intensive studies to achieve the above object, the present inventors have found that a thermosetting resin, a resin composition containing silica and a specific hydrous zinc molybdate, a prepreg and a laminate using the resin composition are described above. The present invention has been found out to meet the purpose, and the present invention has been completed.

すなわち本発明は、以下の積層板用樹脂組成物、プリプレグ及び積層板に関するものである。
[1]熱硬化性樹脂と、シリカと、亜鉛及びモリブデンの原子比率が3:2である含水モリブデン酸亜鉛(ZnMo(OH))とを含有する樹脂組成物であって、前記シリカの含有量が前記樹脂組成物全体の40体積%以上60体積%以下であり、前記含水モリブデン酸亜鉛(ZnMo(OH))の含有量が樹脂組成物全体の0.5体積%以上10体積%以下である樹脂組成物。
[2]前記シリカが平均粒子径0.1μm以上1μm以下の球状シリカである[1]に記載の樹脂組成物。
[3]前記ZnMo(OH)の平均粒子径が0.5μm以上2μm以下である[1]又は[2]に記載の樹脂組成物。
[4][1]〜[3]のいずれか1項に記載の樹脂組成物を、ガラスクロスに塗工した後、半硬化させてなるプリプレグ。
[5][4]に記載のプリプレグを積層成形することにより得られる積層板。
That is, the present invention relates to the following laminate resin composition, prepreg and laminate.
[1] A resin composition comprising a thermosetting resin, silica, and hydrous zinc molybdate (Zn 3 Mo 2 O 8 (OH) 2 ) having an atomic ratio of zinc and molybdenum of 3: 2. The content of the silica is 40% by volume or more and 60% by volume or less of the entire resin composition, and the content of the hydrous zinc molybdate (Zn 3 Mo 2 O 8 (OH) 2 ) is The resin composition which is 0.5 volume% or more and 10 volume% or less.
[2] The resin composition according to [1], wherein the silica is spherical silica having an average particle diameter of 0.1 μm or more and 1 μm or less.
[3] The resin composition according to [1] or [2], wherein an average particle diameter of the Zn 3 Mo 2 O 8 (OH) 2 is 0.5 μm or more and 2 μm or less.
[4] A prepreg obtained by applying the resin composition according to any one of [1] to [3] to a glass cloth and then semi-curing the resin composition.
[5] A laminate obtained by laminate-molding the prepreg according to [4].

本発明の樹脂組成物をガラスクロスに塗工した後、半硬化させてプリプレグを作製し、このプリプレグを積層成形することにより得られる積層板は、熱膨張率が低く、耐熱性及び電気絶縁性に優れ、かつドリル加工の際のドリル切刃磨耗量が少なく穴位置精度に優れる。従って、本発明の積層板を用いてインターポーザを製造すれば、低コストでそりの少ない半導体パッケージを得ることができる。   After the resin composition of the present invention is applied to a glass cloth, it is semi-cured to prepare a prepreg, and the laminate obtained by laminating this prepreg has a low coefficient of thermal expansion, heat resistance and electrical insulation. In addition, the amount of drill cutting edge wear during drilling is small, and the hole position accuracy is excellent. Therefore, if an interposer is manufactured using the laminate of the present invention, a semiconductor package with low warpage and low warpage can be obtained.

以下、本発明について詳細に説明する。
[樹脂組成物]
本発明の樹脂組成物は、熱硬化性樹脂と、シリカと、亜鉛及びモリブデンの原子比率が3:2である含水モリブデン酸亜鉛(ZnMo(OH))とを含有する樹脂組成物であって、前記シリカの含有量が前記樹脂組成物全体の40体積%以上60体積%以下であり、前記含水モリブデン酸亜鉛(ZnMo(OH))の含有量が樹脂組成物全体の0.5体積%以上10体積%以下であるものである。
Hereinafter, the present invention will be described in detail.
[Resin composition]
The resin composition of the present invention is a resin containing a thermosetting resin, silica, and hydrous zinc molybdate (Zn 3 Mo 2 O 8 (OH) 2 ) in which the atomic ratio of zinc and molybdenum is 3: 2. a composition is the content of the silica is less 60 vol% 40 vol% or more of the entire resin composition, the content of the hydrous zinc molybdate (Zn 3 Mo 2 O 8 ( OH) 2) is It is 0.5 volume% or more and 10 volume% or less of the whole resin composition.

<熱硬化性樹脂>
熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられ、これらの1種又は2種以上を混合して使用できる。
これらの中で、成形性や電気絶縁性の点からエポキシ樹脂を単独又は混合して用いることが好ましい。用いるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、多官能フェノール類及びアントラセン等の多環芳香族類のジグリシジルエーテル化合物等が挙げられ、これらの1種又は2種以上を混合して使用できる。
<Thermosetting resin>
Examples of thermosetting resins include epoxy resins, phenol resins, unsaturated imide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, dicyclopentadiene resins, silicones. Resins, triazine resins, melamine resins and the like can be mentioned, and one or more of these can be mixed and used.
In these, it is preferable to use an epoxy resin individually or in mixture from the point of a moldability or an electrical insulation. Examples of the epoxy resin used include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy. Resin, biphenyl type epoxy resin, xylylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, alicyclic epoxy resin, polyfunctional aromatic compounds such as polyfunctional phenols and anthracene A diglycidyl ether compound etc. are mentioned, These 1 type (s) or 2 or more types can be mixed and used.

熱硬化性樹脂としてエポキシ樹脂を用いる場合、必要に応じて該エポキシ樹脂の硬化剤や硬化促進剤を使用することができる。硬化剤の例としては、例えば、フェノールノボラック、クレゾールノボラック等の多官能フェノール化合物、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン等のアミン化合物、無水フタル酸、無水ピロメリット酸、無水マレイン酸、無水マレイン酸共重合体等の酸無水物等が挙げられ、これらの1種又は2種以上を混合して使用できる。
また、硬化促進剤の例としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、及び第四級アンモニウム塩等が挙げられ、これらの1種又は2種以上を混合して使用できる。
When an epoxy resin is used as the thermosetting resin, a curing agent or curing accelerator for the epoxy resin can be used as necessary. Examples of curing agents include, for example, polyfunctional phenol compounds such as phenol novolak and cresol novolak, amine compounds such as dicyandiamide, diaminodiphenylmethane, and diaminodiphenyl sulfone, phthalic anhydride, pyromellitic anhydride, maleic anhydride, maleic anhydride Examples thereof include acid anhydrides such as copolymers, and one or two or more of these may be used in combination.
Examples of curing accelerators include, for example, imidazoles and derivatives thereof, organophosphorus compounds, secondary amines, tertiary amines, and quaternary ammonium salts. Or 2 or more types can be mixed and used.

<シリカ>
シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられ、乾式法シリカとしてはさらに、製造法の違いにより溶融シリカ、気相合成シリカ等が挙げられる。これらの中で、低熱膨張性及び樹脂に配合した際の高流動性から、乾式法で製造された球状シリカが好ましい。
<Silica>
Examples of the silica include a precipitated silica produced by a wet method and having a high water content, and a dry method silica produced by a dry method and containing almost no bound water. The dry method silica further includes differences in production methods. Examples thereof include fused silica and vapor-phase synthetic silica. Among these, spherical silica produced by a dry method is preferable because of low thermal expansion and high fluidity when blended with a resin.

シリカとして球状シリカを用いる場合、その平均粒子径は0.1μm以上1μm以下であることが好ましい。球状シリカの平均粒子径を0.1μm以上にすることで樹脂に配合した際の流動性を良好に保つことができ、1μm以下にすることでドリル加工の際のドリル切刃磨耗を抑えることができる。この観点から、球状シリカの平均粒子径は、0.4μm以上1μm以下であることがより好ましい。
ここで平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、ちょうど体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
シリカの含有量は、樹脂組成物全体の40体積%以上60体積%以下である必要がある。シリカの含有量が樹脂組成物全体の40体積%未満であると積層板を低熱膨張化することができず、60体積%を超えると成形性とドリル加工性を良好に保つことができない。この観点から、シリカの含有量は樹脂組成物全体の45体積%以上60体積%以下であることが好ましく、50体積%以上60体積%以下であることがより好ましい。
When spherical silica is used as the silica, the average particle size is preferably 0.1 μm or more and 1 μm or less. By making the average particle diameter of the spherical silica 0.1 μm or more, the fluidity when blended in the resin can be kept good, and by making it 1 μm or less, wear of the drill cutting edge during drilling can be suppressed. it can. From this viewpoint, the average particle diameter of the spherical silica is more preferably 0.4 μm or more and 1 μm or less.
Here, the average particle diameter is the particle diameter at a point corresponding to a volume of 50% when the cumulative frequency distribution curve by the particle diameter is obtained with the total volume of the particles being 100%, and the laser diffraction scattering method is used. It can be measured with a particle size distribution measuring device.
The content of silica needs to be 40% by volume or more and 60% by volume or less of the entire resin composition. If the silica content is less than 40% by volume of the entire resin composition, the laminate cannot be thermally expanded, and if it exceeds 60% by volume, the moldability and drillability cannot be maintained well. From this viewpoint, the content of silica is preferably 45% by volume or more and 60% by volume or less, and more preferably 50% by volume or more and 60% by volume or less of the entire resin composition.

<含水モリブデン酸亜鉛(ZnMo(OH))>
含水モリブデン酸亜鉛としては、亜鉛とモリブデンとの原子比率が3:2である含水モリブデン酸亜鉛(ZnMo(OH))を用いる必要がある。
含水モリブデン酸亜鉛は、シリカと共に積層板に用いた際に、焼成タルク等よりドリル加工性の低下防止効果が大きく、かつ二硫化モリブデンのように電気絶縁性を著しく低下させることもない。含水モリブデン酸亜鉛化合物としては、亜鉛とモリブデンの原子比が1:1の化合物(ZnMoO・0.8HO)、3:2の化合物(ZnMo(OH))、5:2の化合物(ZnMo11・5HO)等が知られているが、これらの中でZnMo(OH)は脱水温度が360℃付近と耐熱性が高く、水溶性も小さく、電気絶縁性も高いため、電子材料として十分な特性を持つ。一方、ZnMoO・0.8HOとZnMo11・5HOは脱水温度が250℃付近と耐熱性が低く、電子材料としては不十分で、また、ZnMoO・0.8HOには水溶性が大きいという問題もある。
<Water-containing zinc molybdate (Zn 3 Mo 2 O 8 (OH) 2 )>
As the hydrous zinc molybdate, it is necessary to use hydrous zinc molybdate (Zn 3 Mo 2 O 8 (OH) 2 ) in which the atomic ratio of zinc to molybdenum is 3: 2.
When the hydrous zinc molybdate is used in a laminated plate together with silica, it has a greater effect of preventing the drillability from being lowered than fired talc and the like, and does not significantly reduce the electrical insulating properties like molybdenum disulfide. As the hydrous zinc molybdate compound, a compound having an atomic ratio of zinc and molybdenum of 1: 1 (ZnMoO 4 .0.8H 2 O), a compound of 3: 2 (Zn 3 Mo 2 O 8 (OH) 2 ), 5 : 2 compounds but (Zn 5 Mo 2 O 11 · 5H 2 O) and the like are known, Zn 3 Mo 2 O 8 ( OH) 2 has a high 360 ° C. and around heat dehydration temperature among these Because of its low water solubility and high electrical insulation, it has sufficient characteristics as an electronic material. On the other hand, ZnMoO 4 · 0.8H 2 O and Zn 5 Mo 2 O 11 · 5H 2 O dehydration temperature lower 250 ° C. and around heat resistance, insufficient as electronic materials, also, ZnMoO 4 · 0.8H 2 O also has a problem of high water solubility.

ZnMo(OH)の合成方法としては特に限定されるものではないが、水溶液中で合成されたものが好ましい。例えば、酸化亜鉛の水分散液に亜鉛とモリブデンが原子比で3:2になるように三酸化モリブデンを加え、攪拌することにより合成される。合成温度は50℃以上100℃以下が好ましい。温度を50℃以上とすることでZnMo(OH)が合成されやすくなり、100℃以下とすることで圧力容器を使用しなくても合成が可能となり、実用的な面から好ましい。合成時間は1時間以上5時間以下が好ましい。時間を1時間以上とすることで反応を十分進行させることができ、また、5時間を超えて合成を行っても反応はそれ以上ほとんど進行しなくなる。 There is no particular limitation on the method of synthesizing Zn 3 Mo 2 O 8 (OH ) 2 , but is preferably one synthesized in an aqueous solution. For example, it is synthesized by adding molybdenum trioxide to an aqueous dispersion of zinc oxide so that the atomic ratio of zinc and molybdenum is 3: 2, and stirring. The synthesis temperature is preferably 50 ° C. or higher and 100 ° C. or lower. By making the temperature 50 ° C. or higher, Zn 3 Mo 2 O 8 (OH) 2 can be easily synthesized, and by setting it to 100 ° C. or lower, synthesis is possible without using a pressure vessel. preferable. The synthesis time is preferably 1 hour or more and 5 hours or less. The reaction can be sufficiently advanced by setting the time to 1 hour or more, and the reaction hardly proceeds any further even if the synthesis is carried out for more than 5 hours.

合成後、ろ過、乾燥してZnMo(OH)の粉体を得る。乾燥温度は構造水が分解脱水しない範囲であれば良いが、100℃以上300℃以下であることが好ましい。温度を100℃以上とすることで十分乾燥することができ、300℃以下とすることで構造水が脱水して無水物となるのを防ぐことができる。 After the synthesis, filtration and drying are performed to obtain a Zn 3 Mo 2 O 8 (OH) 2 powder. The drying temperature may be in a range where the structural water is not decomposed and dehydrated, but is preferably 100 ° C. or higher and 300 ° C. or lower. By setting the temperature to 100 ° C. or higher, it can be sufficiently dried, and by setting the temperature to 300 ° C. or lower, the structural water can be prevented from being dehydrated to become an anhydride.

ここで、上記ZnMo(OH)の平均粒子径は0.5μm以上2μm以下であることが好ましく、0.7μm以上1.5μm以下であることがより好ましい。平均粒子径を0.5μm以上とすることで粒子の解砕が容易になり、分散性の良好な樹脂組成物を作製できる。一方、2μm以下とすることで樹脂組成物ワニス中での粒子の沈降を抑制でき、成分偏りのない、均質な樹脂組成物を作製できる。 Here, the average particle diameter of the Zn 3 Mo 2 O 8 (OH) 2 is preferably 0.5 μm or more and 2 μm or less, and more preferably 0.7 μm or more and 1.5 μm or less. By making the average particle diameter 0.5 μm or more, the particles can be easily crushed, and a resin composition with good dispersibility can be produced. On the other hand, when the thickness is 2 μm or less, sedimentation of particles in the resin composition varnish can be suppressed, and a homogeneous resin composition free from component bias can be produced.

含水モリブデン酸亜鉛(ZnMo(OH))の含有量は、樹脂組成物全体の0.5体積%以上10体積%以下であることが必要である。含水モリブデン酸亜鉛(ZnMo(OH))の含有量が樹脂組成物全体の0.5体積%未満であると積層板のドリル加工性を良好に保つことができず、10体積%を超えると成形性の低下を良好に防ぐことができない。この観点から、含水モリブデン酸亜鉛(ZnMo(OH))の含有量は、好ましくは1体積%以上8体積%以下であり、更に好ましくは1体積%以上5体積%以下である。 The content of hydrous zinc molybdate (Zn 3 Mo 2 O 8 (OH) 2 ) needs to be 0.5% by volume or more and 10% by volume or less of the entire resin composition. If the content of the hydrous zinc molybdate (Zn 3 Mo 2 O 8 (OH) 2 ) is less than 0.5% by volume of the entire resin composition, the drilling property of the laminate cannot be kept good, 10 When the volume percentage is exceeded, the moldability cannot be satisfactorily prevented. From this viewpoint, the content of hydrous zinc molybdate (Zn 3 Mo 2 O 8 (OH) 2 ) is preferably 1% by volume or more and 8% by volume or less, more preferably 1% by volume or more and 5% by volume or less. is there.

<その他の成分>
本発明の樹脂組成物には、上記以外にも、任意に公知の熱可塑性樹脂、エラストマー、無機充填材、有機充填材、難燃剤、紫外線吸収剤、酸化防止剤及び接着性向上剤等を用いることができる。
このような熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、キシレン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、シリコーン樹脂、テトラフルオロエチレン樹脂等が挙げられる。
<Other ingredients>
In addition to the above, a known thermoplastic resin, elastomer, inorganic filler, organic filler, flame retardant, ultraviolet absorber, antioxidant, adhesion improver and the like are arbitrarily used for the resin composition of the present invention. be able to.
Examples of such thermoplastic resins include polyethylene, polypropylene, polystyrene, polyphenylene ether resin, phenoxy resin, polycarbonate resin, polyester resin, polyamide resin, polyamideimide resin, polyimide resin, xylene resin, polyphenylene sulfide resin, and polyetherimide. Examples thereof include resins, polyether ether ketone resins, polyether imide resins, silicone resins, and tetrafluoroethylene resins.

エラストマーとしては、例えば、ポリブタジエン、アクリロニトリル、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性アクリロニトリル等が挙げられる。   Examples of the elastomer include polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, and carboxy-modified acrylonitrile.

無機充填材としては、例えば、アルミナ、タルク、マイカ、カオリン、水酸化アルミニウム、ベーマイト、水酸化マグネシウム、ホウ酸亜鉛、スズ酸亜鉛、酸化亜鉛、酸化チタン、窒化ホウ素、炭酸カルシウム、硫酸バリウム、ホウ酸アルミニウム、チタン酸カリウム、EガラスやSガラス、Dガラス等のガラス粉や中空ガラスビーズ等が挙げられる。   Examples of inorganic fillers include alumina, talc, mica, kaolin, aluminum hydroxide, boehmite, magnesium hydroxide, zinc borate, zinc stannate, zinc oxide, titanium oxide, boron nitride, calcium carbonate, barium sulfate, and boron. Examples thereof include glass powders such as aluminum oxide, potassium titanate, E glass, S glass, and D glass, and hollow glass beads.

有機充填材としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、シリコーン樹脂、テトラフルオロエチレン樹脂等よりなる均一構造の樹脂粒子、アクリル酸エステル系樹脂、メタクリル酸エステル系樹脂、共役ジエン系樹脂等よりなるゴム状態のコア層と、アクリル酸エステル系樹脂、メタクリル酸エステル系樹脂、芳香族ビニル系樹脂、シアン化ビニル系樹脂等よりなるガラス状態のシェル層を持つコアシェル構造の樹脂粒子等が挙げられる。
難燃剤としては、例えば、臭素や塩素を含有する含ハロゲン系難燃剤、トリフェニルホスフェート、トリクレジルホスフェート、トリスジクロロプロピルホスフェート、赤リン等のリン系難燃剤、スルファミン酸グアニジン、硫酸メラミン、ポリリン酸メラミン、メラミンシアヌレート等の窒素系難燃剤、シクロホスファゼン、ポリホスファゼン等のホスファゼン系難燃剤、三酸化アンチモン等の無機系難燃剤等が挙げられる。
Examples of organic fillers include resin particles having a uniform structure made of polyethylene, polypropylene, polystyrene, polyphenylene ether resin, silicone resin, tetrafluoroethylene resin, acrylate ester resin, methacrylate ester resin, and conjugated diene resin. And a core-shell resin particle having a glassy shell layer made of an acrylic ester resin, a methacrylic ester resin, an aromatic vinyl resin, a vinyl cyanide resin, etc. Can be mentioned.
Examples of the flame retardant include halogen-containing flame retardants containing bromine and chlorine, triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, phosphorous flame retardants such as red phosphorus, guanidine sulfamate, melamine sulfate, polyphosphorus Examples thereof include nitrogen flame retardants such as melamine acid and melamine cyanurate, phosphazene flame retardants such as cyclophosphazene and polyphosphazene, and inorganic flame retardants such as antimony trioxide.

紫外線吸収剤の例としてはベンゾトリアゾール系紫外線吸収剤、酸化防止剤の例としてはヒンダードフェノール系やヒンダードアミン系酸化防止剤、接着性向上剤の例としてはシラン系、チタネート系、アルミネート系のカップリング剤等が挙げられる。
本発明のプリプレグは、上記成分を用いた樹脂組成物をガラスクロスに塗工し、半硬化させて得ることができる。また、本発明の積層板は、上記プリプレグを積層成形することにより得ることができる。
Examples of UV absorbers include benzotriazole UV absorbers, examples of antioxidants include hindered phenols and hindered amines, and examples of adhesion improvers include silanes, titanates, and aluminates. A coupling agent etc. are mentioned.
The prepreg of the present invention can be obtained by applying a resin composition using the above components to a glass cloth and semi-curing it. Moreover, the laminated board of this invention can be obtained by carrying out the lamination molding of the said prepreg.

[プリプレグ]
本発明の樹脂組成物をガラスクロスに塗工する際には、樹脂組成物を有機溶媒に溶かしてワニス化してから用いることが好ましい。樹脂組成物をワニス化してから塗工することにより、均一で欠陥の少ないプリプレグを得ることができる。
[Prepreg]
When the resin composition of the present invention is applied to a glass cloth, it is preferably used after dissolving the resin composition in an organic solvent to form a varnish. By applying the resin composition after varnishing it, a uniform prepreg with few defects can be obtained.

樹脂組成物をワニス化する際用いる有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン、メシチレン等の芳香族系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の窒素原子含有溶媒、ジメチルスルホキシド等の硫黄原子含有溶媒等が挙げられ、これらの1種又は2種以上を混合して使用できる。   Examples of the organic solvent used when varnishing the resin composition include alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and the like. Ketone solvents, ester solvents such as butyl acetate and propylene glycol monomethyl ether acetate, ether solvents such as tetrahydrofuran, aromatic solvents such as toluene, xylene and mesitylene, nitrogen such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone Examples thereof include an atom-containing solvent and a sulfur atom-containing solvent such as dimethyl sulfoxide, and these can be used alone or in combination.

これらの中で、樹脂の溶解性の点からメチルセロソルブ、プロピレングリコールモノメチルエーテル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが好ましく、低毒性である点からプロピレングリコールモノメチルエーテル、メチルイソブチルケトン、シクロヘキサノンがより好ましい。
ワニス中の樹脂組成物の割合は、ワニス全体の50質量%以上80質量%以下にすることが好ましい。ワニス中の樹脂組成物の割合を50質量%以上80質量%以下にすることで、ガラスクロスに対する塗工性を良好に保つことができる。
Among these, methyl cellosolve, propylene glycol monomethyl ether, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone are preferable from the viewpoint of the solubility of the resin, and propylene glycol monomethyl ether, methyl isobutyl ketone and cyclohexanone are more preferable from the viewpoint of low toxicity.
The ratio of the resin composition in the varnish is preferably 50% by mass or more and 80% by mass or less of the entire varnish. By making the ratio of the resin composition in the varnish 50 mass% or more and 80 mass% or less, the coating property with respect to a glass cloth can be kept favorable.

塗工の際用いるガラスクロスとしては、例えば、Eガラス、Sガラス、Dガラス及びQガラス等のガラス繊維を、平織り、綾織り等にしたクロス(織布)が挙げられる。これらの中で、Eガラスの平織りクロスを用いることが好ましい。Eガラスの平織りクロスを用いることで、積層板の低熱膨張化と高ドリル加工性化を両立させることができる。
これらのガラスクロスは、0.01mmから0.2mmの厚さで、機械的に開繊処理を施したり、カップリング剤等で表面処理したりしたものを用いることが好ましい。
ガラスクロスに樹脂組成物ワニスを塗工、半硬化させてプリプレグを得るには、例えば、ガラスクロスを樹脂組成物ワニス中に潜らせてワニスを含浸させた後、カットバー、スクイズロール等を用いてプリプレグ中の樹脂組成物の割合が20質量%から90質量%となるようにワニスの付着量を調整し、続いて100℃から200℃の乾燥炉中を1分から30分かけて通して半硬化させる、等の方法によることができる。
Examples of the glass cloth used in the coating include cloth (woven cloth) in which glass fibers such as E glass, S glass, D glass, and Q glass are made into a plain weave, a twill weave, or the like. Among these, it is preferable to use a plain weave cloth of E glass. By using a plain weave cloth of E glass, it is possible to achieve both low thermal expansion and high drill workability of the laminate.
These glass cloths preferably have a thickness of 0.01 mm to 0.2 mm and are subjected to mechanical fiber opening treatment or surface treatment with a coupling agent or the like.
To obtain a prepreg by applying the resin composition varnish to the glass cloth and semi-curing it, for example, the glass cloth is immersed in the resin composition varnish and impregnated with the varnish, and then a cut bar, a squeeze roll or the like is used. The amount of the varnish attached is adjusted so that the ratio of the resin composition in the prepreg is 20% by mass to 90% by mass, followed by passing through a drying furnace at 100 ° C. to 200 ° C. for 1 to 30 minutes and half It can be performed by a method such as curing.

[積層板]
こうして得られたプリプレグを積層成形して積層板を得るには、例えば、プリプレグを必要な厚さになるように複数枚(例えば、2枚から20枚)重ね、片面又は両面に銅、アルミニウム等の金属箔を配置し、多段プレス、多段真空プレス、連続成形機、オートクレーブ成形機等を用いて、温度は100℃以上260℃以下、圧力は0.2MPa以上10MPa以下の条件で0.1時間から5時間かけて加熱加圧成形する、等の方法によることができる。また、プリプレグを必要な厚さになるように、例えば1枚から20枚重ね、片面又は両面に銅、アルミニウム等の金属箔を配置し、多段プレス、多段真空プレス、連続成形機、オートクレーブ成形機等を用いて、温度は100℃以上260℃以下、圧力は0.2MPa以上10MPa以下の条件で0.1時間から5時間かけて加熱加圧成形する、等の方法によることができる。
[Laminated board]
In order to obtain a laminate by laminating the prepreg thus obtained, for example, a plurality of (for example, 2 to 20) prepregs are stacked to have a required thickness, and copper, aluminum, or the like is laminated on one or both sides. The metal foil is placed and the temperature is 100 ° C. or higher and 260 ° C. or lower and the pressure is 0.2 MPa or higher and 10 MPa or lower for 0.1 hour using a multi-stage press, multi-stage vacuum press, continuous molding machine, autoclave molding machine, etc. The method can be performed by heating and pressing for 5 hours. Also, for example, 1 to 20 prepregs are stacked so that the required thickness is obtained, and metal foils such as copper and aluminum are arranged on one or both sides, and multistage press, multistage vacuum press, continuous molding machine, autoclave molding machine Or the like, and a method of heating and pressing under conditions of a temperature of 100 ° C. or higher and 260 ° C. or lower and a pressure of 0.2 MPa or higher and 10 MPa or lower for 0.1 to 5 hours can be employed.

次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明を制限するものではない。
〔ZnMo(OH)の作製(C−1)〕
純水1000gに酸化亜鉛24.4g(0.3mol)と三酸化モリブデン28.8g(0.2mol)を添加し、80℃で4時間加熱攪拌し、亜鉛とモリブデンの原子比が3:2の含水モリブデン酸亜鉛化合物ZnMo(OH)を合成した。合成後、ろ過しケーキ状となったZnMo(OH)を120℃で水分量0.5質量%以下になるまで乾燥した。乾燥後、乳鉢を用いて粉砕し、ZnMo(OH)粉を得た。こうして得られたZnMo(OH)粉の平均粒子径をレーザ回折散乱式粒度分布測定装置を用いて測定したところ、1.2μmであった。
Next, the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention.
[Preparation of Zn 3 Mo 2 O 8 (OH) 2 (C-1)]
24.4 g (0.3 mol) of zinc oxide and 28.8 g (0.2 mol) of molybdenum trioxide are added to 1000 g of pure water, heated and stirred at 80 ° C. for 4 hours, and the atomic ratio of zinc to molybdenum is 3: 2. A hydrous zinc molybdate compound Zn 3 Mo 2 O 8 (OH) 2 was synthesized. After the synthesis, the filtered Zn 3 Mo 2 O 8 (OH) 2 was dried at 120 ° C. until the water content became 0.5% by mass or less. After drying, it was pulverized using a mortar to obtain Zn 3 Mo 2 O 8 (OH) 2 powder. The average particle size of the Zn 3 Mo 2 O 8 (OH) 2 powder obtained in this way was measured using a laser diffraction / scattering particle size distribution analyzer, and found to be 1.2 μm.

〔ZnMoO・0.8HOの作製(C−2)〕
純水1000gに酸化亜鉛24.4g(0.3mol)と三酸化モリブデン43.2g(0.3mol)を添加し、50℃で5時間加熱攪拌し、亜鉛とモリブデンの原子比が1:1の含水モリブデン酸亜鉛化合物ZnMoO・0.8HOを合成した。合成後、ろ過しケーキ状となったZnMoO・0.8HOを100℃で水分量0.5質量%以下になるまで乾燥した。乾燥後、乳鉢を用いて粉砕し、ZnMoO・0.8HO粉を得た。こうして得られたZnMoO・0.8HO粉の平均粒子径をレーザ回折散乱式粒度分布測定装置を用いて測定したところ、0.8μmであった。
[Preparation of ZnMoO 4 .0.8H 2 O (C-2)]
Add 24.4 g (0.3 mol) of zinc oxide and 43.2 g (0.3 mol) of molybdenum trioxide to 1000 g of pure water, and heat and stir at 50 ° C. for 5 hours. The atomic ratio of zinc to molybdenum is 1: 1. A hydrous zinc molybdate compound ZnMoO 4 .0.8H 2 O was synthesized. After the synthesis, the filtered ZnMoO 4 .0.8H 2 O was dried at 100 ° C. until the water content became 0.5% by mass or less. After drying, it was pulverized using a mortar to obtain ZnMoO 4 .0.8H 2 O powder. When the average particle diameter of ZnMoO 4 · 0.8H 2 O powder thus obtained was measured using a laser diffraction scattering particle size distribution measuring apparatus and was 0.8 [mu] m.

〔ZnMo11・5HOの作製(C−3)〕
純水1000gに酸化亜鉛24.4g(0.3mol)と三酸化モリブデン17.3g(0.12mol)を添加し、50℃で5時間加熱攪拌し、亜鉛とモリブデンの原子比が5:2の含水モリブデン酸亜鉛化合物ZnMo11・5HOを合成した。合成後、ろ過しケーキ状となったZnMo11・5HOを100℃で水分量0.5質量%以下になるまで乾燥した。乾燥後、乳鉢を用いて粉砕し、ZnMo11・5HO粉を得た。こうして得られたZnMo11・5HO粉の平均粒子径をレーザ回折散乱式粒度分布測定装置を用いて測定したところ、3.2μmであった。
[Zn 5 Mo 2 O 11 · 5H 2 O Preparation of (C-3)]
24.4 g (0.3 mol) of zinc oxide and 17.3 g (0.12 mol) of molybdenum trioxide are added to 1000 g of pure water, and the mixture is heated and stirred at 50 ° C. for 5 hours. The atomic ratio of zinc and molybdenum is 5: 2. the hydrated zinc molybdate compound Zn 5 Mo 2 O 11 · 5H 2 O was synthesized. After synthesis, the Zn 5 Mo 2 O 11 · 5H 2 O became filtered cake was dried to a less water content of 0.5 wt% at 100 ° C.. After drying, it was pulverized with a mortar to obtain a Zn 5 Mo 2 O 11 · 5H 2 O powder. When the average particle diameter of the thus obtained Zn 5 Mo 2 O 11 · 5H 2 O powder was measured using a laser diffraction scattering particle size distribution measuring apparatus and was 3.2 .mu.m.

〔ZnMo(OH)の作製(C−4)〕
以下の点以外は上記のZnMo(OH)の作製(C−1)と同様にして、ZnMo(OH)(C−4)を作製した。すなわち、乾燥後、メタノール80gを加えて乳鉢を用いて粉砕した後、メタノールをろ別除去し、真空乾燥機で80℃、1時間乾燥して得られたZnMo(OH)粉の平均粒子径を、レーザ回折散乱式粒度分布測定装置を用いて測定したところ、0.1μmであった。
[Preparation of Zn 3 Mo 2 O 8 (OH) 2 (C-4)]
Except for the following points, Zn 3 Mo 2 O 8 (OH) 2 (C-4) was produced in the same manner as in the production of Zn 3 Mo 2 O 8 (OH) 2 (C-1). That is, after drying, 80 g of methanol was added and pulverized using a mortar, and then methanol was removed by filtration and Zn 3 Mo 2 O 8 (OH) 2 obtained by drying at 80 ° C. for 1 hour in a vacuum dryer. It was 0.1 micrometer when the average particle diameter of the powder was measured using the laser diffraction scattering type particle size distribution measuring apparatus.

〔ZnMo(OH)の作製(C−5)〕
以下の点以外は上記のZnMo(OH)の作製(C−1)と同様にして、ZnMo(OH)(C−5)を作製した。すなわち、乳鉢を用いて粉砕して得られたZnMo(OH)粉の平均粒子径を、レーザ回折散乱式粒度分布測定装置を用いて測定したところ、3.0μmであった。
[Preparation of Zn 3 Mo 2 O 8 (OH) 2 (C-5)]
Except for the following points, Zn 3 Mo 2 O 8 (OH) 2 (C-5) was produced in the same manner as in the production of Zn 3 Mo 2 O 8 (OH) 2 (C-1). That is, when the average particle diameter of the Zn 3 Mo 2 O 8 (OH) 2 powder obtained by pulverization using a mortar was measured using a laser diffraction / scattering particle size distribution measuring device, it was 3.0 μm. .

実施例1〜3、及び比較例1〜7
表1−1及び表1−2に示した配合のうち、まず、熱硬化性樹脂と硬化剤を有機溶媒に完全に溶解させ、次にシリカスラリーを加えて両者が十分に混合するまで攪拌した。この後、含水モリブデン酸亜鉛及び/又は無機充填材を少しずつ加えて凝集塊がなくなるまで攪拌を続け、最後に硬化促進剤を加えて全体が均一になるよう1時間攪拌し、樹脂組成物ワニス(ワニス中の樹脂組成物の割合:70質量%)を得た。
Examples 1 to 3 and Comparative Examples 1 to 7
Among the formulations shown in Table 1-1 and Table 1-2, first, the thermosetting resin and the curing agent were completely dissolved in an organic solvent, and then the silica slurry was added and stirred until both were sufficiently mixed. . Thereafter, water-containing zinc molybdate and / or an inorganic filler are added little by little, and stirring is continued until there are no aggregates. Finally, a hardening accelerator is added and stirred for 1 hour so that the whole becomes uniform. (The ratio of the resin composition in a varnish: 70 mass%) was obtained.

こうして得られた樹脂組成物ワニスを、厚さ0.1mmのEガラスクロス〔日東紡績株式会社製、WEA116E〕に含浸塗工し、160℃で5分間加熱乾燥して半硬化させ、樹脂組成物の割合が48質量%のプリプレグを得た。
このプリプレグを各評価測定において必要な厚さになるように重ね、厚さ12μmの電解銅箔〔古河電気工業株式会社製、GTS−12〕を両面に配置し、真空プレスを用いて温度:185℃、圧力:4MPaで90分間加熱加圧成形を行って銅張積層板を得た。
The resin composition varnish thus obtained was impregnated with 0.1 mm thick E glass cloth (WEA116E, manufactured by Nitto Boseki Co., Ltd.), heat-dried at 160 ° C. for 5 minutes, and semi-cured. A prepreg having a ratio of 48% by mass was obtained.
This prepreg is stacked so as to have a necessary thickness in each evaluation measurement, and an electrolytic copper foil having a thickness of 12 μm (manufactured by Furukawa Electric Co., Ltd., GTS-12) is arranged on both sides, and temperature is 185 using a vacuum press. A copper-clad laminate was obtained by heating and pressing at 90 ° C. for 90 minutes at 4 MPa.

Figure 0006256457
Figure 0006256457

Figure 0006256457
Figure 0006256457

表1−1及び表1−2中、各成分の配合量は、(A)の熱硬化性樹脂の合計配合量を100とした場合の質量部で示した。
ただし、(B)のシリカスラリーについては、表中の上段に、(A)の熱硬化性樹脂の合計配合量を100とした場合のシリカスラリー全体の質量部を示すと共に、表中の下段の括弧内に、樹脂組成物全体に対するシリカスラリー中のシリカの体積%の値も示した。また、(C)の含水モリブデン酸亜鉛については、括弧内に樹脂組成物全体に対する体積%の値を示した。
また、表1−1及び表1−2中、(C)の含水モリブデン酸亜鉛としては上述のものを用い、その他の各成分は、それぞれ次のものを用いた。
In Table 1-1 and Table 1-2, the compounding amount of each component is shown in parts by mass when the total compounding amount of the thermosetting resin (A) is 100.
However, for the silica slurry of (B), the upper part of the table shows the mass part of the entire silica slurry when the total blending amount of the thermosetting resin of (A) is 100, and the lower part of the table The value in volume% of silica in the silica slurry relative to the whole resin composition is also shown in parentheses. Moreover, about the hydrous zinc molybdate of (C), the value of the volume% with respect to the whole resin composition was shown in the parenthesis.
Moreover, in Table 1-1 and Table 1-2, the above-mentioned thing was used as the hydrous zinc molybdate of (C), and the following each was used for each other component.

(A)熱硬化性樹脂
A−1:フェノールノボラック型エポキシ樹脂〔DIC株式会社製、エピクロンN−770〕
A−2:ビスフェノールAノボラック型エポキシ樹脂〔DIC株式会社製、エピクロンN−865〕
A−3:ビフェニルアラルキル型エポキシ樹脂〔日本化薬株式会社製、NC−3000〕
硬化剤:クレゾールノボラック型フェノール樹脂〔DIC株式会社製、フェノライトKA−1165〕
硬化促進剤:2−エチル−4−メチルイミダゾール〔四国化成株式会社製、キュアゾール2E4MZ〕
(A) Thermosetting resin A-1: Phenol novolac type epoxy resin [DIC Corporation, Epicron N-770]
A-2: Bisphenol A novolac type epoxy resin [DIC Corporation, Epicron N-865]
A-3: Biphenyl aralkyl type epoxy resin [Nippon Kayaku Co., Ltd., NC-3000]
Curing agent: Cresol novolac type phenol resin [manufactured by DIC Corporation, Phenolite KA-1165]
Curing accelerator: 2-ethyl-4-methylimidazole [manufactured by Shikoku Kasei Co., Ltd., Curesol 2E4MZ]

(B)シリカ
B−1:球状シリカスラリー〔株式会社アドマテックス製、SC2050−KC、平均粒子径0.5μm、固形分70質量%〕
B−2:球状シリカスラリー〔株式会社アドマテックス製、SC4050−KNA、平均粒子径1.0μm、固形分70質量%〕
B−3:球状シリカスラリー〔株式会社アドマテックス製、SX009−LJH、平均粒子径0.05μm、固形分45質量%〕
B−4:球状シリカスラリー〔株式会社アドマテックス製、SC5050−KOI、平均粒子径1.5μm、固形分75質量%〕
(B) Silica B-1: Spherical silica slurry [manufactured by Admatechs, SC2050-KC, average particle size 0.5 μm, solid content 70% by mass]
B-2: Spherical silica slurry [manufactured by Admatechs, SC4050-KNA, average particle size 1.0 μm, solid content 70% by mass]
B-3: Spherical silica slurry [manufactured by Admatechs Co., Ltd., SX009-LJH, average particle size 0.05 μm, solid content 45 mass%]
B-4: Spherical silica slurry [manufactured by Admatechs, SC5050-KOI, average particle size 1.5 μm, solid content 75% by mass]

無機充填材1:焼成タルク〔日本タルク株式会社製、BST〕
無機充填材2:二硫化モリブデン〔株式会社ダイゾーニチモリ事業部製、Aパウダー〕
無機充填材3:水酸化アルミニウム〔住友化学工業株式会社製、C−303〕
有機溶媒:シクロヘキサノン〔株式会社ゴードー製〕
Inorganic filler 1: calcined talc [Nippon Talc Co., Ltd., BST]
Inorganic filler 2: Molybdenum disulfide [Daizonichimo Division A powder]
Inorganic filler 3: Aluminum hydroxide (Sumitomo Chemical Co., Ltd., C-303)
Organic solvent: cyclohexanone [manufactured by Gordo Co., Ltd.]

以上の実施例及び比較例で得られた積層板は、以下の方法で特性を測定・評価した。測定・評価結果を表2−1及び表2−2に示す。   The laminates obtained in the above examples and comparative examples were measured and evaluated for characteristics by the following methods. The measurement and evaluation results are shown in Table 2-1 and Table 2-2.

(1)ドリル加工性の評価
厚さ0.4mmの銅張積層板を2枚重ねたものの上に厚さ0.4mmの紙フェノール板、下に厚さ1.5mmの紙フェノール板を配置し、直径0.2mmのドリルによりドリル穴あけ機〔日立ビアメカニクス株式会社製、ND−1V212〕を用いて回転数160krpm、送り速度1.8m/min、チップロード11.25μm/revの条件で6000穴の穴あけを行い、以下の方法でドリルの切刃磨耗量および穴位置精度を測定することによりドリル加工性を評価した。
(1) Evaluation of drill workability A 0.4 mm thick paper phenol plate is placed on top of two 0.4 mm thick copper clad laminates, and a 1.5 mm thick paper phenol plate is placed underneath. Using a drill with a diameter of 0.2 mm, a drilling machine (manufactured by Hitachi Via Mechanics Co., Ltd., ND-1V212) with a rotation speed of 160 krpm, a feed rate of 1.8 m / min, and a tip load of 11.25 μm / rev is 6000 holes. Drilling workability was evaluated by measuring the amount of wear of the cutting edge of the drill and the hole position accuracy by the following method.

a)ドリル切刃磨耗量
新品と穴あけ後のドリル切刃部分を、ドリル中心軸上から走査型電子顕微鏡〔株式会社日立製作所製、S−4700〕を用いて観察し、切刃先端の磨耗後退量(μm)を測定してドリル切刃磨耗量とした。
b)穴位置精度
2枚重ねの銅張積層板のうち、2枚目下側(ドリル出口側)の穴の位置ずれ量を穴位置精度測定機〔日立ビアメカニクス株式会社製、HT−1AM〕を用いて測定し、4001〜6000ヒット目の穴の位置ずれ量の平均+3σ(μm)(σ:標準偏差)を計算して穴位置精度とした。
a) Amount of drill cutting edge wear The new cutting edge and the drill cutting edge portion after drilling are observed from above the center axis of the drill using a scanning electron microscope (manufactured by Hitachi, Ltd., S-4700). The amount (μm) was measured to determine the wear amount of the drill cutting edge.
b) Hole position accuracy Of the two-layered copper clad laminate, the hole position accuracy measurement machine (HT-1AM, manufactured by Hitachi Via Mechanics Co., Ltd.) The hole position accuracy was calculated by calculating the average of the positional deviation amounts of the holes at 4001 to 6000th hit + 3σ (μm) (σ: standard deviation).

(2)熱膨張率の測定
厚さ0.8mmの銅張積層板の銅箔をエッチング液により取除いた後、5mm角の大きさに切断して試験片を作製した。この試験片の、50℃から120℃における縦方向(ガラスクロスの長手方向)の平均線熱膨張率(10−6/℃)を、TMA試験装置〔ティー・エー・インスツルメント株式会社製、TMA2940〕を用いて昇温速度10℃/minで測定した。
(2) Measurement of coefficient of thermal expansion After removing the copper foil of the copper clad laminate having a thickness of 0.8 mm with an etching solution, it was cut into a size of 5 mm square to prepare a test piece. The average linear thermal expansion coefficient (10 −6 / ° C.) in the longitudinal direction (longitudinal direction of the glass cloth) at 50 ° C. to 120 ° C. of this test piece was measured using a TMA test apparatus [manufactured by TA Instruments Inc., TMA2940] and the temperature increase rate was 10 ° C./min.

(3)電気絶縁性の測定
厚さ0.1mmの銅張積層板の片面の銅箔を直径20mmの円形部分を残してエッチング液により取除いた後、円形部分が中央に来るように50mm角の大きさに切断して試験片を作製した。この試験片をフロリナート〔住友スリーエム株式会社製〕中に浸漬し、耐電圧計〔東亜電波工業株式会社製、PT−1011〕を用いて昇圧速度5kV/10秒の条件で絶縁破壊試験を行い、絶縁破壊電圧(kV)を測定した。
(3) Measurement of electrical insulation After removing the copper foil on one side of a 0.1 mm thick copper clad laminate with an etching solution leaving a circular part with a diameter of 20 mm, a 50 mm square so that the circular part comes to the center. A test piece was prepared by cutting to a size of. This test piece is immersed in Fluorinert (manufactured by Sumitomo 3M Co., Ltd.), and a dielectric breakdown test is performed using a withstand voltage meter (manufactured by Toa Denpa Kogyo Co., Ltd., PT-1011) under the condition of a boosting speed of 5 kV / 10 seconds The dielectric breakdown voltage (kV) was measured.

(4)耐熱性の評価
厚さ0.4mmの銅張積層板を25mm角の大きさに切断して端部のバリを取除き、105℃で1時間乾燥させて試験片を作製した。この試験片を288℃に保ったはんだ槽のはんだ上に浮かべ、銅箔に膨れが生じるまでの時間(分)を測定して耐熱性を評価した。
(4) Evaluation of heat resistance A copper clad laminate having a thickness of 0.4 mm was cut to a size of 25 mm square to remove burrs at the end, and dried at 105 ° C. for 1 hour to prepare a test piece. The test piece was floated on the solder in a solder bath maintained at 288 ° C., and the heat resistance was evaluated by measuring the time (minutes) until the copper foil was swollen.

(5)成形性の評価
厚さ0.4mmの銅張積層板を5mm角の大きさに切断して注型樹脂で注型し、切断面を研磨して断面観察用試験片を作製した。この試験片の研磨断面をフラットミリング装置〔株式会社日立製作所製、E−3200〕でミリングした後、走査型電子顕微鏡〔株式会社日立製作所製、S−4700〕を用いて観察し、ボイドの有無を調べて成形性を評価した。
(5) Evaluation of formability A copper-clad laminate having a thickness of 0.4 mm was cut into a 5 mm square, cast with a casting resin, and the cut surface was polished to prepare a cross-section observation test piece. The polished cross section of the test piece was milled with a flat milling device [E-3200, manufactured by Hitachi, Ltd.], and then observed using a scanning electron microscope (S-4700, manufactured by Hitachi, Ltd.). Were examined for moldability.

Figure 0006256457
Figure 0006256457

Figure 0006256457
Figure 0006256457

表2−1から明らかなように、本発明の実施例はいずれもドリル加工性、低熱膨張性に優れ、また電気絶縁性、耐熱性、成形性にも問題がない。
一方、表2−1から明らかなように、比較例1は本発明の含水モリブデン酸亜鉛を含まず、焼成タルクを含んでいるため、ドリル加工性が著しく劣っている。比較例2は本発明の含水モリブデン酸亜鉛を含まず、二硫化モリブデンを含んでいるため、電気絶縁性が著しく劣っている。また、表2−2から明らかなように、比較例3はシリカの含有量が樹脂組成物全体の60体積%を超えているため、成形性が著しく劣っており、ドリル加工性、電気絶縁性、耐熱性も低下している。比較例4はシリカの含有量が樹脂組成物全体の40体積%を下回り、また含水モリブデン酸亜鉛の含有量も樹脂組成物全体の0.5体積%を下回っているため、熱膨張率が大きく耐熱性にも劣る。比較例5は含水モリブデン酸亜鉛の含有量が樹脂組成物全体の10体積%を超えているため、成形性が著しく劣っており、電気絶縁性、耐熱性も低下している。比較例6及び7は、本発明の含水モリブデン酸亜鉛を含まず、それぞれZnMo11・5HO及びZnMoO・0.8HOを含んでいるため、いずれも耐熱性が劣っている。
As is clear from Table 2-1, all the examples of the present invention are excellent in drill workability and low thermal expansion, and there are no problems in electrical insulation, heat resistance, and moldability.
On the other hand, as is clear from Table 2-1, Comparative Example 1 does not contain the hydrous zinc molybdate of the present invention and contains fired talc, so that the drill workability is remarkably inferior. Since the comparative example 2 does not contain the hydrous zinc molybdate of the present invention and contains molybdenum disulfide, the electrical insulation is remarkably inferior. Further, as apparent from Table 2-2, in Comparative Example 3, the silica content exceeds 60% by volume of the entire resin composition, so that the moldability is remarkably inferior, and the drillability and electrical insulation are The heat resistance is also reduced. Comparative Example 4 has a large coefficient of thermal expansion because the silica content is less than 40% by volume of the entire resin composition, and the hydrous zinc molybdate content is also less than 0.5% by volume of the entire resin composition. Also inferior in heat resistance. In Comparative Example 5, since the content of the hydrous zinc molybdate exceeds 10% by volume of the entire resin composition, the moldability is remarkably inferior, and the electrical insulation and heat resistance are also lowered. Comparative Examples 6 and 7 do not contain hydrated zinc molybdate of the present invention, because it contains Zn 5 Mo 2 O 11 · 5H 2 O and ZnMoO 4 · 0.8H 2 O, respectively, both poor heat resistance ing.

Claims (5)

亜鉛及びモリブデンの原子比率が3:2であり、平均粒子径が0.5〜2μmであるプリント配線板用含水モリブデン酸亜鉛(ZnMo(OH))を樹脂組成物全体の0.5体積%以上10体積%以下含有する樹脂組成物の半硬化物を含む、プリプレグ。 An aqueous zinc molybdate (Zn 3 Mo 2 O 8 (OH) 2 ) for a printed wiring board having an atomic ratio of zinc and molybdenum of 3: 2 and an average particle diameter of 0.5 to 2 μm is added to the entire resin composition. A prepreg containing a semi-cured product of a resin composition containing 0.5% by volume or more and 10% by volume or less. 請求項に記載のプリプレグを用いて得られる積層板。 A laminate obtained using the prepreg according to claim 1 . 請求項に記載のプリプレグと金属箔とを積層成形してなる請求項に記載の積層板。 The laminated board of Claim 2 formed by carrying out lamination molding of the prepreg of Claim 1 , and metal foil. 請求項又はに記載の積層板の少なくとも一方の面に回路加工して得られるプリント配線板。 Printed wiring board obtained by circuit processing on at least one surface of the laminated plate according to claim 2 or 3. 亜鉛及びモリブデンの原子比率が3:2であり、平均粒子径が0.5〜2μmである含水モリブデン酸亜鉛(ZnMo(OH))を含むプリント配線板用スラリー。 A slurry for printed wiring board containing hydrous zinc molybdate (Zn 3 Mo 2 O 8 (OH) 2 ) having an atomic ratio of zinc and molybdenum of 3: 2 and an average particle diameter of 0.5 to 2 μm.
JP2015253411A 2015-12-25 2015-12-25 Hydrous zinc molybdate for printed wiring boards, prepregs, laminates, printed wiring boards, and slurries for printed wiring boards Active JP6256457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015253411A JP6256457B2 (en) 2015-12-25 2015-12-25 Hydrous zinc molybdate for printed wiring boards, prepregs, laminates, printed wiring boards, and slurries for printed wiring boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015253411A JP6256457B2 (en) 2015-12-25 2015-12-25 Hydrous zinc molybdate for printed wiring boards, prepregs, laminates, printed wiring boards, and slurries for printed wiring boards

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011144357A Division JP5862070B2 (en) 2011-06-29 2011-06-29 Laminate resin composition, prepreg and laminate

Publications (2)

Publication Number Publication Date
JP2016056094A JP2016056094A (en) 2016-04-21
JP6256457B2 true JP6256457B2 (en) 2018-01-10

Family

ID=55757400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015253411A Active JP6256457B2 (en) 2015-12-25 2015-12-25 Hydrous zinc molybdate for printed wiring boards, prepregs, laminates, printed wiring boards, and slurries for printed wiring boards

Country Status (1)

Country Link
JP (1) JP6256457B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022251063A1 (en) * 2021-05-25 2022-12-01 J.M. Huber Corporation Supported zinc dimolybdate hydroxide / silica complexes and uses thereof in polymer formulations

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6937111B2 (en) * 2016-05-16 2021-09-22 ハリマ化成株式会社 Tire fillers, tire rubber compositions, tires, and methods for manufacturing tire fillers.
JP7453771B2 (en) * 2019-10-25 2024-03-21 株式会社アドマテックス Filler materials and slurry compositions, and methods for producing them, and methods for producing resin compositions
KR20220157933A (en) * 2020-03-25 2022-11-29 미츠비시 가스 가가쿠 가부시키가이샤 Resin compositions, prepregs, resin sheets, laminates, metal foil-clad laminates, and printed wiring boards

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353979A (en) * 1964-06-29 1967-11-21 Sherwin Williams Co Molybdated zinc oxide pigments and method for the preparation thereof
JPS5033892B2 (en) * 1972-03-23 1975-11-04
JP5040102B2 (en) * 2005-11-21 2012-10-03 三菱瓦斯化学株式会社 Prepreg and laminate
JP5149917B2 (en) * 2009-03-27 2013-02-20 日立化成工業株式会社 Thermosetting resin composition, and prepreg, laminate and multilayer printed wiring board using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022251063A1 (en) * 2021-05-25 2022-12-01 J.M. Huber Corporation Supported zinc dimolybdate hydroxide / silica complexes and uses thereof in polymer formulations

Also Published As

Publication number Publication date
JP2016056094A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
KR102143743B1 (en) Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
EP2612885B1 (en) Prepreg and laminate
JP6294478B2 (en) Non-halogen resin composition and use thereof
JP5614048B2 (en) Thermosetting insulating resin composition, and prepreg, laminate and multilayer printed wiring board using the same
KR20150032663A (en) Resin composition, prepreg, metal foil-clad laminate and printed wiring board
JP6256457B2 (en) Hydrous zinc molybdate for printed wiring boards, prepregs, laminates, printed wiring boards, and slurries for printed wiring boards
JP5682110B2 (en) Thermosetting resin composition, prepreg and laminate using the same
JP5862070B2 (en) Laminate resin composition, prepreg and laminate
JP5862069B2 (en) Resin composition for printed wiring board, prepreg, laminated board, and printed wiring board
JP2022017316A (en) Metal-clad laminate, printed wiring board, and semiconductor package
JP5593915B2 (en) Method for producing resin composition varnish, prepreg, laminate
JP6988818B2 (en) Printed wiring board and semiconductor package
JP6070812B2 (en) Resin composition for printed wiring board, prepreg, laminated board, and printed wiring board
JP2010260955A (en) Resin composition, production method of resin composition, and prepreg and laminate each using the same
JP5556466B2 (en) Laminate board for wiring boards
JP5779962B2 (en) Resin composition for package substrate and prepreg and laminate using the same
JP2014160875A (en) Laminate plate for wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170920

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R151 Written notification of patent or utility model registration

Ref document number: 6256457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350