JP6252334B2 - 非接触給電システム - Google Patents

非接触給電システム Download PDF

Info

Publication number
JP6252334B2
JP6252334B2 JP2014087847A JP2014087847A JP6252334B2 JP 6252334 B2 JP6252334 B2 JP 6252334B2 JP 2014087847 A JP2014087847 A JP 2014087847A JP 2014087847 A JP2014087847 A JP 2014087847A JP 6252334 B2 JP6252334 B2 JP 6252334B2
Authority
JP
Japan
Prior art keywords
power
power transmission
resonance circuit
side resonance
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014087847A
Other languages
English (en)
Other versions
JP2015208136A (ja
Inventor
広佑 神谷
広佑 神谷
宜久 山口
宜久 山口
旭 神谷
旭 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014087847A priority Critical patent/JP6252334B2/ja
Publication of JP2015208136A publication Critical patent/JP2015208136A/ja
Application granted granted Critical
Publication of JP6252334B2 publication Critical patent/JP6252334B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、送電側共振回路から受電側共振回路へ非接触で送電する非接触給電システムに関する。
従来、送電側コイルと受電側コイルとを対にして用い、送電側コイルから受電側コイルに非接触で送電する非接触給電システムとして、例えば特許文献1に開示されている非接触給電システムがある。この非接触給電システムは、給電対象としての車両に車両外部から非接触で給電を行い、それにより車載バッテリを充電するシステムである。非接触給電システムは、送電側コイル及び送電側コンデンサから構成される送電側共振回路と、受電側コイル及び受電側コンデンサから構成される受電側共振回路を備えている。
送電側コイルは、駐車スペースの地表面の所定位置に設置され、交流が供給されることで交番磁束を発生する。受電側コイルは、車両の底部に設置され、駐車スペースに車両を駐車したときに、上下方向に間隔をあけて送電側コイルと対向して配置され、送電側コイルが発生した交番磁束と鎖交することで電磁誘導によって交流を発生させる。
特開2012−105503号公報
上記非接触給電システムにおいて、誤動作や、送電側制御部と受電側制御部との間での通信遅延が生じると、受電側共振回路が電力を受電するのに適していない状況下で送電側共振回路から受電側共振回路に電力が送電されることが考えられる。また、送電側共振回路から過剰な電力が受電側共振回路に送電されることが考えられる。このように、不適な状態で送電側共振回路から受電側共振回路に電力が送電されると、受電側共振回路に、過電圧や過電流が加わるおそれが生じる。
本発明は上記の課題を鑑みてなされたものであり、受電側共振回路について適正な保護を図ることができる非接触給電システムを提供することを目的とする。
本発明は、送電側コイル(37)及び送電側コンデンサ(36)を備え、交流電力が供給されることで前記送電側コイルにおいて磁束を発生させる送電側共振回路(17)と、受電側コイル(38)及び受電側コンデンサ(39)を備え、前記送電側コイルにおいて発生した磁束が鎖交することで交流電力を受電する受電側共振回路(19)と、を備える非接触給電システム(10)において、前記受電側共振回路の出力側に設けられ、リアクトル(40,41)を備える受電側フィルタ回路(22)と、前記受電側共振回路と前記リアクトルとが含まれる閉回路を構成する開閉手段(90,91)と、前記開閉手段を一時的に閉状態とする旨を指令し、その状態で前記送電側共振回路から前記受電側共振回路へのテスト送電を実施するテスト送電実施手段(80)と、前記テスト送電実施手段によるテスト送電が実施されている状態で前記受電側共振回路から出力される電力に基づいて、前記開閉手段の異常の有無を判定する異常判定手段(80)と、を備えることを特徴とする。
上記構成によれば、不適な状態で送電側共振回路から受電側共振回路へ送電される場合に、開閉手段を閉状態にすることで、受電側共振回路の共振周波数を送電側共振回路の共振周波数からずらし、送電側共振回路から受電側共振回路へ供給される電力を抑制する。またこのとき、送電側共振回路から受電側共振回路へ供給される電力がリアクトルにおいて消費される。
ここで、開閉手段に常時開異常が生じていた場合、受電側共振回路とリアクトルとで閉回路を構成することができず、受電側共振回路から過大な電力が出力されることを抑制できないという不都合が生じる。そこで、開閉手段を一時的に閉状態とする旨を指令し、その状態で送電側共振回路から受電側共振回路へのテスト送電を実施する。開閉手段が正常に動作する状態で開閉手段を閉状態とする旨を指令すると、受電側共振回路の共振周波数が送電側共振回路の共振周波数からずれ、受電側共振回路から電力が出力されなくなる。また、開閉手段に異常が生じている状態で開閉手段を閉状態とする旨を指令すると、開閉手段が閉状態にならない。このため、受電側共振回路の共振周波数と送電側共振回路の共振周波数とが等しい状態のままとなり、送電側共振回路から受電側共振回路への送電が実施される結果、受電側共振回路から電力が出力される。
つまり、開閉手段の異常の有無に応じて、受電側共振回路の出力が異なることになるため、受電側共振回路から出力される電力に基づいて、開閉手段の異常を好適に判定することができる。そのため、開閉手段に異常が生じたまま送電が実施されることを防止でき、その結果、受電側共振回路及び受電側共振回路の出力側に過電圧や過電流が加わることを抑制できる。
第1実施形態における非接触給電システムを表す電気的構成図。 第1実施形態における送電テスト処理を表すフローチャート。 第2実施形態における非接触給電システムを表す電気的構成図。 第2実施形態における送電テスト処理を表すフローチャート。 変形例における非接触給電システムを表す電気的構成図。 変形例における非接触給電システムを表す電気的構成図。
(第1実施形態)
本実施形態における非接触給電システムは、商用電源から電力を供給され受電装置に対して非接触で電力を送電する送電装置、及び、送電装置から非接触で電力を受電する受電装置を備える。受電装置は、電気自動車やハイブリッド自動車などの車両に搭載され、車載バッテリに対して電力を出力することで、車載バッテリを充電するものである。また、送電装置は、車両が駐車される駐車スペースに設けられている。
図1に本実施形態における非接触給電システム10を示す。非接触給電システム10は、直流電源11から供給される電力を送電装置12から車両に搭載された受電装置13に対して非接触で送電する。そして、受電装置13は、送電された電力を車載バッテリ14に対して出力し、充電を行う。
送電装置12は、直流電源11から供給される電力を降圧する降圧回路15、降圧回路15から出力される直流電力を所定の周波数の交流電力に変換するインバータ回路16、及び、交流電力を受電装置13に対して出力する送電側共振回路17を備える。また、インバータ回路16から入力される交流電力から所定の周波数域の交流電力以外を除去し、送電側共振回路17に出力する送電側フィルタ回路18を備える。
受電装置13は、送電側共振回路17から電力を供給される受電側共振回路19、受電側共振回路19から供給される交流電力を全波整流する整流回路20、及び、整流回路20から供給される電力を所定の電圧に昇圧する昇圧回路21を備える。また、受電側共振回路19から入力される交流電力から所定の周波数域の交流電力以外を除去し、整流回路20に出力する受電側フィルタ回路22を備える。
降圧回路15は、周知の降圧チョッパ回路であり、直流電源11に接続されている。降圧回路15は、直流電源11から供給される電力を平滑化するコンデンサ23、電力を蓄積するリアクトル24、出力電圧を平滑化するコンデンサ25、出力電圧を調整するスイッチ26、及び、スイッチ26がオフ状態にされている場合にリアクトル24に対して電流を流すためのダイオード27を備える。なお、スイッチ26は、絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)であり、コレクタとエミッタとの間に逆並列に接続されているダイオード成分を備えている。
インバータ回路16は、周知のフルブリッジ型のインバータ回路であり、降圧回路15の出力側に設けられている。インバータ回路16は、スイッチ28〜31を備え、スイッチ28〜31が交互にオンオフされることで、降圧回路15から供給される直流電力を所定の周波数の交流電力に変換する。なお、スイッチ28〜31は、IGBTである。
送電側共振回路17は、送電側コンデンサ36及び送電側コイル37が並列接続されて構成されている。また、受電側共振回路19は、受電側コイル38及び受電側コンデンサ39が並列接続されて構成されている。
送電側コイル37及び受電側コイル38はそれぞれ平板状の樹脂に封止されており、送電側コイル37及び送電側コイル37を封止する樹脂で送電パッドを構成し、受電側コイル38及び受電側コイル38を封止する樹脂で受電パッドを構成している。送電パッドは駐車スペースの地表面の所定の位置に設けられており、また、受電パッドは車両の底部に設けられている。駐車スペースに車両が駐車されたときに、送電パッドと受電パットとが上下方向に所定間隔で対向して配置される。そして、その対向状態で送電側コイル37に交流電力を流し、その交流電力によって発生した交番磁束が受電側コイル38と鎖交することで、電磁誘導によって受電側コイル38に交流電力を発生させる。
送電側コイル37及び受電側コイル38の誘導成分の大きさ、並びに、送電側コンデンサ36及び受電側コンデンサ39の容量成分の大きさは、送電パッドと受電パッドとが所定の対向状態とされたときに、インバータ回路16の力率が1又は1に近い値となるように設定されている。
整流回路20は、4つのダイオード44〜47を備えるフルブリッジ型の全波整流回路であり、受電側共振回路19から供給される交流電力を直流に変換する。
昇圧回路21は、周知の昇圧チョッパ回路であり、整流回路20の出力側に接続され、整流回路20から出力される電力を昇圧して車載バッテリ14に出力する。昇圧回路21は、整流回路20から供給される電力を平滑化するコンデンサ48、電力を蓄積するリアクトル49、出力電圧を平滑化するコンデンサ50、出力電圧を調整するスイッチ51、及び、スイッチ51がオフ状態とされている場合に電流が流れるダイオード52を備える。なお、スイッチ51は、IGBTである。
昇圧回路21の2つの出力端子と車載バッテリ14との間には、メインリレー53,54がそれぞれ設けられている。メインリレー53,54は、オフ状態とされることで、受電装置13と車載バッテリ14との接続を遮断状態にする。車載バッテリ14の充電時において、メインリレー53,54は原則的にオン状態とされている。
送電側フィルタ回路18は、リアクトル32,33及びコンデンサ34,35を備えるバンドパスフィルタであり、インバータ回路16及び送電側共振回路17の間に設けられている。送電側フィルタ回路18において、リアクトル32及びコンデンサ34、リアクトル33及びコンデンサ35はそれぞれ直列接続されている。そして、インバータ回路16の出力端子の一方にコンデンサ34が接続され、他方にコンデンサ35が接続されている。つまり、リアクトル32及びコンデンサ34から構成されるバンドパスフィルタと、リアクトル33及びコンデンサ35から構成されるバンドパスフィルタとが並列接続されることで、送電側フィルタ回路18を構成している。
受電側フィルタ回路22は、リアクトル40,41及びコンデンサ42,43を備えるバンドパスフィルタであり、受電側共振回路19及び整流回路20の間に設けられている。受電側フィルタ回路22において、リアクトル40及びコンデンサ42、リアクトル41及びコンデンサ43はそれぞれ直列接続されている。そして、受電側共振回路19の出力端子の一方にリアクトル40が接続され、他方にリアクトル41が接続されている。つまり、リアクトル40及びコンデンサ42から構成されるバンドパスフィルタと、リアクトル41及びコンデンサ43から構成されるバンドパスフィルタとが並列接続されることで、受電側フィルタ回路22を構成している。
上記並列接続されているバンドパスフィルタのそれぞれの共振周波数(通過帯域)が、インバータ回路16から出力される交流電力の周波数になるように、リアクトル32,33,40,41の誘導成分の大きさ、及び、コンデンサ34,35,42,43の容量成分の大きさが決定されている。また、送電側フィルタ回路18及び受電側フィルタ回路22において、それぞれ2つのバンドパスフィルタを並列接続することで、バンドパスフィルタにおける発熱を分散させることができる。
また、送電装置12には、送電装置12の制御を行う送電側制御部60が設けられており、受電装置13には、受電装置13の制御を行う受電側制御部70が設けられている。送電側制御部60は、降圧回路15及びインバータ回路16の制御を行う。受電側制御部70は、昇圧回路21の制御を行う。
また、車両には、ECU80(Electronic Control Unit)及び充電開始ボタン(図示略)が設けられている。車両の停車中において、充電開始ボタンがユーザにより押されると、ECU80は送電装置12から受電装置13に対する送電を開始する。具体的には、ECU80は、制御部60,70に対して指令を行い、また、メインリレー53,54のオンオフの制御を行う。なお、制御部60,70及びECU80は、演算装置であるCPU、主記憶装置であるRAMなどを備えるマイクロコンピュータである。また、送電側制御部60とECU80との通信は無線、受電側制御部70とECU80との通信は有線により行われる。
ここで、送電装置12から受電装置13に対する送電の際に、車載バッテリ14に異常が生じると、ECU80は、車載バッテリ14に対する充電を停止させる。具体的には、ECU80は、メインリレー53,54をオフ状態にし、送電側制御部60及び受電側制御部70に対して、電力出力を停止するように指令を行う。この場合、ECU80から送電側制御部60に対する指令信号の遅延に伴い、メインリレー53,54がオフ状態にされた後に送電装置12から受電装置13に対する送電が継続されることが生じ得る。その結果、整流回路20や昇圧回路21に過電圧が印加され、受電装置13の素子に損傷が生じるおそれがある。
また、送電装置12から受電装置13に対する送電の際に、送電装置12に異常が生じ、送電装置12から受電装置13に対して過剰な電力が送電されることが懸念される。この場合、整流回路20、昇圧回路21及び車載バッテリ14に対して過電圧が印加されてしまう。
上記の問題を鑑み、受電側フィルタ回路22に対して、開閉手段としての保護スイッチ90が設けられている。保護スイッチ90は、受電側フィルタ回路22のリアクトル40の整流回路20側の端子及びリアクトル41の受電側共振回路19側の端子に接続されている。言い換えると、受電側共振回路19とリアクトル40とを接続し閉回路を形成する経路上に保護スイッチ90が設けられている。保護スイッチ90は、常閉式のスイッチであり、受電側制御部70によって制御されている。車載バッテリ14に対する充電時において、保護スイッチ90はオフ状態とされる。
送電に不適な状態で送電装置12から受電装置13に対する送電が実施されると、保護スイッチ90がオン状態とされ、受電側共振回路19とリアクトル40とで閉回路が構成される。閉回路が形成されると受電側共振回路19の共振周波数がずれ、送電側共振回路17と受電側共振回路19との結合係数が低下し、受電側共振回路19に供給される電力が低下する。また、保護スイッチ90がオン状態にされると、受電側共振回路19に供給される電力がリアクトル40に流れ、その電力がリアクトル40において消費される。このように保護スイッチ90をオン状態にすることでフェールセーフ処理を行い、受電装置13や車載バッテリ14に過電圧及び過電流が生じることを抑制することができる。
さらに、本実施形態におけるECU80は、送電装置12から受電装置13に対する送電が開始される前に保護スイッチ90が正常に動作するか否かを判定する。このように保護スイッチ90の異常判定を行うことで、保護スイッチ90によるフェールセーフ処理を確実に行うことが可能になる。
保護スイッチ90の異常判定として、保護スイッチ90がオン状態になるように制御しながら、車載バッテリ14に対する充電時より小さいテスト電力を送電装置12から送電させる。そして、昇圧回路21の入力側電圧(コンデンサ48の端子間電圧)を検出し、その検出値が所定値以下だった場合に、保護スイッチ90が正常に動作していると判定する。また、昇圧回路21の入力側電圧の検出値が所定値より大きい場合に、保護スイッチ90に常時開異常が生じていると判定する。
図2に、送電テスト処理を表すフローチャートを示す。本処理はECU80によって、車両の停車中に所定周期で行われる。
ステップS11において、テスト実施期間であるか否かを判定する。テスト実施期間であるか否かは、充電開始ボタンがユーザによって押下されたか否かに基づき判定する。テスト実施期間でないと判定されると(S11:NO)、処理を終了する。テスト実施期間であると判定されると(S11:YES)、ステップS12において、送電側制御部60とECU80との通信経路の確立が完了しているか否かを判定する。ここで、通信経路の確立とは、送電側制御部60とECU80とが互いに情報を通信可能な状態にすることをいう。通信経路の確立が完了していない場合(S12:NO)、処理を終了する。
送電側制御部60とECU80との通信経路が確立している場合(S12:YES)、ステップS13において、受電側制御部70に対してテスト指令を送信済みか否かを判定する。ここで、テスト指令とは、受電装置13が保護スイッチ90の異常判定を開始するのに好適な状態となるように受電側制御部70に対して送信される指令のことである。テスト指令が未送信の場合(S13:YES)、ステップS14において、受電側制御部70に対してテスト指令を送信する。受電側制御部70は、テスト指令を受信すると、保護スイッチ90をオン状態にするとともに、受電装置13が保護スイッチ90の異常判定に好適な状態に移行したことを表す信号をECU80に対して送信する。
テスト指令が送信済みであると判定されると(S13:NO)、ステップS15において、受電装置13がテスト状態に移行したことを確認済みか否かを判定する。受電装置13がテスト状態に移行したことを確認していない場合(S15:NO)、ステップS16において、受電側制御部70からテスト状態に移行したことを表す信号を受信しているか否かを判定する。
受電側制御部70からテスト状態に移行したことを表す信号を受信している場合(S16:YES)、ステップS17において、送電側制御部60に対して、テスト電力の送電指令を送信する。指令を受けた送電側制御部60は、降圧回路15及びインバータ回路16を制御して、送電側共振回路17からテスト電力の送電を実施する。ここで、テスト電力は、車載バッテリ14を充電する場合に送電装置12から送電される電力(例えば、3kW)に比べて低い値(例えば、50W)に設定されている。テスト電力の送電は一時的なものであり、例えば、1秒間実施される。受電側制御部70からテスト状態に移行したことを表す信号を受信していない場合(S16:NO)、ステップS18において、保護スイッチ90に異常が生じていると判定し、処理を終了する。
受電装置13がテスト状態に移行したことを確認している場合(S15:NO)、ステップS19において、受電側共振回路19の出力電圧である昇圧回路21の入力電圧が所定値以下か否かを判定する。昇圧回路21の入力電圧が所定値以下の場合(S19:YES)、ステップS20において、保護スイッチ90が正常であると判定し、受電側制御部70に対し通常状態に移行するように指令を行い、処理を終了する。受電側制御部70は、通常状態への移行指令を受信すると、保護スイッチ90をオフ状態にする。受電側制御部70が通常状態に移行した後に、車載バッテリ14に対する充電を行うための送電が開始される。また、昇圧回路21の入力電圧が所定値より大きい場合(S19:NO)、ステップS21において、保護スイッチ90が有効に機能しておらず、保護スイッチ90に異常が生じていると判定し、処理を終了する。
以下、本実施形態における効果を述べる。
保護スイッチ90が正常に動作する状態で保護スイッチ90をオン状態とする旨を指令すると、受電側共振回路19の共振周波数が送電側共振回路17の共振周波数からずれ、受電側共振回路19から電力が出力されなくなる。また、保護スイッチ90に異常が生じている状態で保護スイッチ90をオン状態とする旨を指令すると、保護スイッチ90がオン状態にならない。このため、受電側共振回路19の共振周波数と送電側共振回路17の共振周波数とが等しい状態のままとなり、送電側共振回路17から受電側共振回路19への送電が実施される結果、受電側共振回路19から電力が出力される。つまり、保護スイッチ90の異常の有無に応じて、受電側共振回路19の出力が異なることになるため、受電側共振回路19から出力される電力に基づいて、保護スイッチ90の異常を好適に判定することができる。
車載バッテリ14への充電のために電力を送電する前に保護スイッチ90の異常判定処理を実施することで、保護スイッチ90に異常が生じたまま電力が継続的に送電されることを抑制することができる。これにより、好適に受電側共振回路19から過大な電力が出力されることを抑制することができる。
保護スイッチ90の異常判定処理における送電電力を、車載バッテリ14の充電時における送電電力に比べて小さく設定する。これにより、仮に保護スイッチ90に異常が生じていた場合に、その保護スイッチ90の異常判定時に受電側共振回路19から過大な電力が出力されることを抑制することができる。
(第2実施形態)
第2実施形態の非接触給電システム10Aを図3に示す。第2実施形態の非接触給電システム10Aは、第1実施形態の非接触給電システム10に対し、開閉手段を構成するスイッチとして、常閉式の第1保護スイッチ90に常開式の第2保護スイッチ91を追加したものである。第2保護スイッチ91は、第1保護スイッチ90に並列に設けられ、受電側制御部70によりオンオフを制御される。受電側制御部70は、第1保護スイッチ90及び第2保護スイッチ91のオンオフ状態を個別に切り替えるべく、各スイッチ90,91に対しそれぞれ指令を行う。第1保護スイッチ90及び第2保護スイッチ91のいずれか一方がオン状態とされることで、整流回路20及び昇圧回路21に対して過電圧が印加されることを抑制できる。
第1保護スイッチ90は、リレースイッチであり、第2保護スイッチ91は、半導体スイッチである。第1保護スイッチ90は、第2保護スイッチ91に比べ、長時間大電流が流れることを許容する。第2保護スイッチ91は、第1保護スイッチ90に比べ、オンオフ状態の切り替わりの応答性が高い。そこで、異常が生じた場合に、受電側制御部70は、第1保護スイッチ90と第2保護スイッチ91が共にオン状態になるように指令する。このように指令を行うと、切り替わりの応答性が高い第2保護スイッチ91が速やかにオン状態とされ、整流回路20及び昇圧回路21に対して過電圧が印加されることを抑制できる。その後、第1保護スイッチ90がオン状態にされることで、第2保護スイッチ91に大電流が流れることに伴って第2保護スイッチ91に異常が生じることを抑制することができる。
本実施形態における受電側制御部70は、ECU80からテスト状態移行指令を受信すると、第1実施形態と異なり、第1保護スイッチ90をオン状態とし、第2保護スイッチ91をオフ状態とする(第1状態)。ECU80は、第1状態において、送電装置12から受電装置13に対してテスト電力の送電を行うように指令を行い、第1保護スイッチ90の異常判定を行う。その後、ECU80は受電側制御部70に対して、第2状態移行指令を送信する。受電側制御部70は、ECU80から第2状態移行指令を受信すると、第1保護スイッチ90をオフ状態とし、第2保護スイッチ91をオン状態とする(第2状態)。ECU80は、第2状態において、第2保護スイッチ91の異常判定を行う。第1状態及び第2状態においてテスト電力の送電は継続される。なお、第1保護スイッチ90の異常判定を行った後にテスト電力の送電を停止し、保護スイッチ90,91を第2状態に変更した後にテスト電力の送電を再開する構成としてもよい。
図4に、本実施形態における送電テスト処理を表すフローチャートを示す。本処理はECU80によって、車両の停車中に所定周期で行われる。図4に示す送電テスト処理では、図2のステップS19〜S21に代えて、ステップS31〜S39の処理が実施される。
受電側制御部70が異常判定状態に移行したことを確認した場合(S15:NO)、ステップS31において、第1保護スイッチ90の異常判定を実施済みか否かを判定する。第1保護スイッチ90の異常判定を未実施の場合(S31:YES)、ステップS32において、昇圧回路21の入力電圧が所定値以下か否かを判定する。
昇圧回路21の入力電圧が所定値以下の場合(S32:YES)、ステップS33において、第1保護スイッチ90が正常であると判定する。次に、ステップS34において、受電側制御部70に対して、第2状態移行指令を送信する。また、昇圧回路21の入力電圧が所定値より大きい場合(S32:NO)、ステップS35において、第1保護スイッチ90に異常が生じていると判定し、処理を終了する。
第1保護スイッチ90の異常判定が終了している場合(S31:NO)、ステップS36において、昇圧回路21の入力電圧が所定値以下か否かを判定する。昇圧回路21の入力電圧が所定値以下の場合(S36:YES)、ステップS37において、第2保護スイッチ91が正常であると判定する。次に、ステップS38において、送電側制御部60及び受電側制御部70に対し通常状態に移行するように指令を行い、処理を終了する。また、昇圧回路21の入力電圧が所定値より大きい場合(S36:NO)、ステップS39において、第2保護スイッチ91に異常が生じていると判定し、処理を終了する。
第2実施形態における異常判定処理を行うことで、開閉手段として複数の保護スイッチ90,91を備えている構成において、その保護スイッチ90,91の開異常を個々に判定することができる。
(その他の実施形態)
・開閉手段の異常判定において、昇圧回路21の入力側電圧に基づいて判定する構成としたが、これを変更してもよい。例えば、昇圧回路21の出力側電圧の検出値に基づいて開閉手段の異常を判定する構成としてもよい。この場合、メインリレー53,54をそれぞれオフ状態にした上で異常判定処理を行う構成とするとよい。また、メインリレー53,54に流れる電流の検出値に基づいて開閉手段の異常を判定する構成としてもよい。
・開閉手段として、保護スイッチを3個以上並列に設ける構成としてもよい。この場合、1個を常閉式のリレースイッチ、残りを常開式の半導体スイッチとするとよい。常開式の半導体スイッチに異常が生じた場合であっても、異常が生じていないスイッチをオフ状態とすることで車載バッテリ14への充電が可能となり、また、異常が生じていないスイッチをオン状態とすることでフェールセーフ処理が可能となる。
・図5に示す非接触給電システム10Bのように、保護スイッチ90を受電側フィルタ回路22と整流回路20との間に設ける構成としてもよい。つまり、受電側共振回路19と受電側フィルタ回路22とで閉回路を構成するように経路を設け、その経路上に保護スイッチ90を設ける構成としてもよい。この構成においても、保護スイッチ90をオン状態にすることで、受電側共振回路19の共振周波数を送電側共振回路17の共振周波数からずらし、送電側共振回路17から受電側共振回路19へ供給される電力を抑制することができる。
・上記実施形態では、送電側共振回路17及び受電側共振回路19として、コイル37,38とコンデンサ36,39とをそれぞれ並列接続する並列接続型の共振回路を用いる構成とした。これを変更し、図6に示す非接触給電システム10Cのように、送電側共振回路17a及び受電側共振回路19aとして、直列接続型の共振回路を用いてもよい。具体的には、送電側コイル37の両端子に送電側コンデンサ36a,36bがそれぞれ直列接続されることで送電側共振回路17aを構成し、また、受電側コイル38の両端子にそれぞれ受電側コンデンサ39a,39bがそれぞれ直列接続されることで受電側共振回路19aを構成している。このような直列接続型の共振回路を用いた場合であっても、保護スイッチ90をオン状態にすることで、受電側共振回路19aの共振周波数を送電側共振回路17aの共振周波数からずらし、送電側共振回路17aから受電側共振回路19aへ供給される電力を抑制することができる。
・上記実施形態では、車載バッテリ14に対する充電の前に開閉手段の異常判定を行う構成としたが、これを変更し、車載バッテリ14への充電の実施と独立して開閉手段の異常判定を行う構成であってもよい。
・整流回路20としてダイオード44〜47を用いたダイオードフルブリッジ回路に代えて、半導体スイッチを用いたフルブリッジ回路を備える構成としてもよい。この場合、整流回路がインバータ回路としての機能を有することになる。さらに、降圧回路15及び昇圧回路21をそれぞれ双方向DC/DCコンバータに変更するとよい。この構成では、受電装置13から送電装置12に対する送電が可能となる。例えば、車載バッテリ14から家庭用の電気機器に対して電力供給を行うような場合に、受電装置13から送電装置12に対する送電を実施することが考えられる。
そして、送電側フィルタ回路18のリアクトル32と送電側共振回路17とで閉回路を形成する経路を設け、その経路上に保護スイッチを新たに設ける構成とするとよい。この場合、受電装置13から送電装置12の送電中に、送電装置12に設けた保護スイッチをオン状態とすることで、受電装置13から送電装置12への送電を停止させることができる。さらに、受電装置13から送電装置12への送電前に、送電装置12の保護スイッチの異常判定を行う構成とするとよい。
・受電側フィルタ回路22として、2組の直列接続されたリアクトル及びコンデンサを用いる構成としたが、これを変更してもよい。例えば、1つのリアクトルのみを備える構成とし、受電側共振回路19とそのリアクトルとを接続し閉回路を形成する経路上に開閉手段を設ける構成としてもよい。
17…送電側共振回路、19…受電側共振回路、22…受電側フィルタ回路、36…送電側コンデンサ、37…送電側コイル、38…受電側コイル、39…受電側コンデンサ、40,41…リアクトル、80…ECU、90…保護スイッチ。

Claims (7)

  1. 送電側コイル(37)及び送電側コンデンサ(36)を備え、交流電力が供給されることで前記送電側コイルにおいて磁束を発生させる送電側共振回路(17)と、
    受電側コイル(38)及び受電側コンデンサ(39)を備え、前記送電側コイルにおいて発生した磁束が鎖交することで交流電力を受電する受電側共振回路(19)と、
    を備える非接触給電システム(10)において、
    前記受電側共振回路の出力側に設けられ、リアクトル(40,41)を備える受電側フィルタ回路(22)と、
    前記受電側共振回路と前記リアクトルとが含まれる閉回路を構成する開閉手段(90,91)と、
    前記開閉手段を一時的に閉状態とする旨を指令し、その状態で前記送電側共振回路から前記受電側共振回路へのテスト送電を実施するテスト送電実施手段(80)と、
    前記テスト送電実施手段によるテスト送電が実施されている状態で前記受電側共振回路から出力される電力に基づいて、前記開閉手段の異常の有無を判定する異常判定手段(80)と、
    を備え
    前記開閉手段として、並列接続された複数のスイッチ(90,91)を備え、
    前記テスト送電実施手段は、前記複数のスイッチの各々について、1のスイッチを閉状態とするとともに他のスイッチを開状態とする旨を指令し、その状態で前記送電側共振回路によるテスト送電を実施し、
    前記異常判定手段は、前記スイッチごとに前記テスト送電が実施されている状態で前記受電側共振回路から出力される電力に基づいて、前記開閉手段の異常の有無を判定することを特徴とする非接触給電システム。
  2. 送電側コイル(37)及び送電側コンデンサ(36)を備え、交流電力が供給されることで前記送電側コイルにおいて磁束を発生させる送電側共振回路(17)と、
    受電側コイル(38)及び受電側コンデンサ(39)を備え、前記送電側コイルにおいて発生した磁束が鎖交することで交流電力を受電する受電側共振回路(19)と、
    を備える非接触給電システム(10)において、
    前記受電側共振回路の出力側に設けられ、リアクトル(40,41)を備える受電側フィルタ回路(22)と、
    前記受電側共振回路と前記リアクトルとが含まれる閉回路を構成する開閉手段(90,91)と、
    前記開閉手段を一時的に閉状態とする旨を指令し、その状態で前記送電側共振回路から前記受電側共振回路へのテスト送電を実施するテスト送電実施手段(80)と、
    前記テスト送電実施手段によるテスト送電が実施されている状態で前記受電側共振回路から出力される電力に基づいて、前記開閉手段の異常の有無を判定する異常判定手段(80)と、
    を備え、
    前記受電側フィルタ回路は、前記受電側共振回路の一対の出力端子の一方及び他方にそれぞれ接続され、リアクトル(40,41)及びコンデンサ(42,43)を備える2組のLCフィルタ回路であり、
    前記開閉手段は、前記受電側共振回路と一方の前記リアクトルとで閉回路を構成することを特徴とする非接触給電システム。
  3. 前記受電側フィルタ回路は、前記受電側共振回路の一対の出力端子の一方及び他方にそれぞれ接続され、リアクトル(40,41)及びコンデンサ(42,43)を備える2組のLCフィルタ回路であり、
    前記開閉手段は、前記受電側共振回路と一方の前記リアクトルとで閉回路を構成することを特徴とする請求項に記載の非接触給電システム。
  4. 給電要求に伴う前記送電側共振回路から前記受電側共振回路への通常送電の実施前に、前記テスト送電実施手段によるテスト送電を実施するとともに、前記異常判定手段による前記開閉手段の異常の有無の判定を実施し、
    前記異常判定手段により前記開閉手段に異常が生じていないと判定された場合に、前記開閉手段を開状態とした状態で前記送電側共振回路から通常送電を実施する通常送電実施手段(80)を備えることを特徴とする請求項1乃至3のいずれか一項に記載の非接触給電システム。
  5. 前記受電側共振回路は、二次電池(14)に接続され、
    前記通常送電実施手段は、前記送電側共振回路から前記受電側共振回路へ所定の電力を送電することで、前記二次電池の充電を行うものであって、
    前記テスト送電実施手段による送電電力は、前記通常送電実施手段による送電電力と比べて小さいことを特徴とする請求項に記載の非接触給電システム。
  6. 前記開閉手段として、常閉式のスイッチ(90)を備えることを特徴とする請求項1乃至5のいずれか1項に記載の非接触給電システム。
  7. 前記開閉手段として、常開式のスイッチ(91)を備えることを特徴とする請求項1乃至6のいずれか1項に記載の非接触給電システム。
JP2014087847A 2014-04-22 2014-04-22 非接触給電システム Active JP6252334B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014087847A JP6252334B2 (ja) 2014-04-22 2014-04-22 非接触給電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014087847A JP6252334B2 (ja) 2014-04-22 2014-04-22 非接触給電システム

Publications (2)

Publication Number Publication Date
JP2015208136A JP2015208136A (ja) 2015-11-19
JP6252334B2 true JP6252334B2 (ja) 2017-12-27

Family

ID=54604561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014087847A Active JP6252334B2 (ja) 2014-04-22 2014-04-22 非接触給電システム

Country Status (1)

Country Link
JP (1) JP6252334B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571665A (zh) * 2016-04-06 2017-04-19 中兴新能源汽车有限责任公司 无线充电接收装置、电动汽车和无线充电***
US20220158500A1 (en) * 2019-04-26 2022-05-19 Mitsubishi Electric Corporation Elevator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8374545B2 (en) * 2009-09-02 2013-02-12 Qualcomm Incorporated De-tuning in wireless power reception
JP5474463B2 (ja) * 2009-09-16 2014-04-16 トヨタ自動車株式会社 非接触受電装置およびそれを備える電動車両
JP5692163B2 (ja) * 2012-05-21 2015-04-01 トヨタ自動車株式会社 車両、および送電装置
JP5874617B2 (ja) * 2012-11-30 2016-03-02 株式会社デンソー 非接触給電装置

Also Published As

Publication number Publication date
JP2015208136A (ja) 2015-11-19

Similar Documents

Publication Publication Date Title
JP5223932B2 (ja) 直流電力供給装置
CN106253656B (zh) 非接触送电装置和电力传送***
CN109478840B (zh) 具有单相和多相操作模式的变换器装置
WO2015182335A1 (ja) 非接触給電システム、受電装置及び送電装置
JP6394356B2 (ja) 非接触給電システムの受電装置
TWI625021B (zh) 電力轉換系統
US20160204707A1 (en) Power conversion device
US20180166903A1 (en) Power Supply Apparatus
KR101509910B1 (ko) 플러그-인 하이브리드 자동차 및 전기자동차의 충전 제어 방법
CN104917388A (zh) 电力转换装置及其起动方法
JP2014517664A (ja) 電荷移動管理方法および電荷移動装置
CN106340939B (zh) 非接触送电装置以及电力传输***
KR20100085869A (ko) 전지 충전기 및 그 작동 방법
JP6187384B2 (ja) 送電装置
JP5680050B2 (ja) 充電装置
JP2017221093A (ja) オンボード充電器(以下obc)及びインバータの統合モジュール並びにその制御方法
JP5737786B2 (ja) 設置型充電システム
CN107026514B (zh) 电力发送装置和电力传输***
JP2016134969A (ja) 電源制御装置
JP6025885B2 (ja) 電力変換装置
JP5874617B2 (ja) 非接触給電装置
KR102334658B1 (ko) 차량 배터리 충전 장치
JP6252334B2 (ja) 非接触給電システム
JP5828774B2 (ja) 2次電池の充放電装置およびそれを用いた充放電検査装置
Nutwong et al. Output voltage control of the SP topology IPT system using a primary side controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R151 Written notification of patent or utility model registration

Ref document number: 6252334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250