JP6251766B2 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP6251766B2
JP6251766B2 JP2016060098A JP2016060098A JP6251766B2 JP 6251766 B2 JP6251766 B2 JP 6251766B2 JP 2016060098 A JP2016060098 A JP 2016060098A JP 2016060098 A JP2016060098 A JP 2016060098A JP 6251766 B2 JP6251766 B2 JP 6251766B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
temperature
calculation unit
learning reference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016060098A
Other languages
Japanese (ja)
Other versions
JP2017172481A (en
Inventor
哲志 市橋
哲志 市橋
智巳 米丸
智巳 米丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2016060098A priority Critical patent/JP6251766B2/en
Publication of JP2017172481A publication Critical patent/JP2017172481A/en
Application granted granted Critical
Publication of JP6251766B2 publication Critical patent/JP6251766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関制御装置に関し、特に二輪自動車等の車両の内燃機関に適用される内燃機関制御装置に関する。   The present invention relates to an internal combustion engine control device, and more particularly to an internal combustion engine control device applied to an internal combustion engine of a vehicle such as a two-wheeled vehicle.

近年、二輪自動車等の車両の内燃機関に対しては、コントローラを用いて、内燃機関に対する燃料の供給、空気の供給並びに燃料及び空気から成る混合気への点火を協働させながら内燃機関の運転状態を電子制御する電子制御式の内燃機関制御装置が採用されている。   In recent years, for an internal combustion engine of a vehicle such as a two-wheeled motor vehicle, the operation of the internal combustion engine is performed using a controller in cooperation with the fuel supply to the internal combustion engine, the supply of air, and the ignition of the mixture comprising fuel and air. An electronically controlled internal combustion engine controller that electronically controls the state is employed.

具体的には、かかる内燃機関制御装置は、冷却水やシリンダヘッドの温度を内燃機関の温度として測定する温度センサを備え、温度センサによって測定された内燃機関の温度に応じて内燃機関の運転状態を電子制御する。ここで、かかる温度センサとしては、温度に応じて電気抵抗値が変化するサーミスタが用いられることが一般的であるが、このような一般的な温度センサによる温度検出には、基本的に、温度センサ単体の特性ばらつき、温度センサの出力信号の電圧降下量のばらつき、及び温度センサの出力信号の変換誤差等の検出誤差要因が存在する。   Specifically, the internal combustion engine control device includes a temperature sensor that measures the temperature of the cooling water or the cylinder head as the temperature of the internal combustion engine, and the operation state of the internal combustion engine according to the temperature of the internal combustion engine measured by the temperature sensor. The electronic control. Here, as such a temperature sensor, a thermistor whose electric resistance value changes according to temperature is generally used. For temperature detection by such a general temperature sensor, basically, a temperature is used. There are detection error factors such as variations in characteristics of individual sensors, variations in the amount of voltage drop in the output signal of the temperature sensor, and conversion errors in the output signal of the temperature sensor.

かかる状況下で、特許文献1は、内燃機関の制御装置に関し、内燃機関の運転状態パラメータより内燃機関が所定の運転状態時か否かを検出し、内燃機関が所定の運転状態時であると判定したときに、その時点での水温センサの温度検出値を記憶しておき、内燃機関が所定の運転状態でなくなり、水温値に基づいて何らかの内燃機関の制御が必要となった場合には、その時点の水温センサの温度検出値と記憶されていた通常時の温度検出値との差を求め、この差に基づいて内燃機関の制御量を補正する構成を有する。   Under such circumstances, Patent Document 1 relates to a control device for an internal combustion engine, and detects whether or not the internal combustion engine is in a predetermined operation state from an operation state parameter of the internal combustion engine, and that the internal combustion engine is in a predetermined operation state. When the determination is made, the temperature detection value of the water temperature sensor at that time is stored, and when the internal combustion engine is not in a predetermined operating state and some control of the internal combustion engine is required based on the water temperature value, A difference between the temperature detection value of the water temperature sensor at that time and the stored temperature detection value at normal time is obtained, and the control amount of the internal combustion engine is corrected based on this difference.

特開平2−61350号公報JP-A-2-61350

しかしながら、本発明者の検討によれば、特許文献1の構成では、温度センサによる温度検出の検出誤差要因として、内燃機関が発生する発生トルクに対する内燃機関の温度の依存性が考慮されていないので、内燃機関の温度として燃焼室の表面温度を精度よく検出することに関しては改善の余地があるものと考えられる。   However, according to the study of the present inventor, the configuration of Patent Document 1 does not consider the dependency of the temperature of the internal combustion engine on the generated torque generated by the internal combustion engine as a detection error factor of temperature detection by the temperature sensor. It is considered that there is room for improvement in accurately detecting the surface temperature of the combustion chamber as the temperature of the internal combustion engine.

詳しくは、本発明者の検討によれば、内燃機関の温度は、シリンダ内で発生する発生熱量とシリンダを冷却する冷却熱量とのバランスによって決まるが、特許文献1の構成では、シリンダ内で発生する熱量によらずに温度センサによる温度検出の補正を行っているために、温度センサによる温度検出にはかかる発生熱量の影響分の検出誤差が含まれることになり、この点で改善の余地があるものと考えられる。   Specifically, according to the study of the present inventor, the temperature of the internal combustion engine is determined by the balance between the amount of heat generated in the cylinder and the amount of cooling heat for cooling the cylinder, but in the configuration of Patent Document 1, it is generated in the cylinder. Since the temperature detection is corrected by the temperature sensor regardless of the amount of heat to be generated, the temperature detection by the temperature sensor includes a detection error due to the amount of generated heat, and there is room for improvement in this respect. It is thought that there is.

また、本発明者の検討によれば、特許文献1の構成では、内燃機関が熱的に安定した状態にないと温度センサによる温度検出の補正の実行ができないので、過渡運転が多い二輪自動車等の車両向けの内燃機関では補正を実行できない可能性があって、この点でも改善の余地があるものと考えられる。   Further, according to the study of the present inventor, in the configuration of Patent Document 1, since the temperature sensor cannot perform correction of temperature detection unless the internal combustion engine is in a thermally stable state, a two-wheeled motor vehicle having many transient operations, etc. This correction may not be possible with an internal combustion engine for a vehicle, and there is room for improvement in this respect.

本発明は、以上の検討を経てなされたものであり、簡便な構成で、内燃機関のシリンダ内で発生する発生熱量及び内燃機関のシリンダを冷却する冷却熱量を考慮して内燃機関の温度を精度よく検出し、かかる内燃機関の温度に応じて内燃機関の運転状態を制御可能な内燃機関制御装置を提供することを目的とする。   The present invention has been made through the above studies, and with a simple configuration, the temperature of the internal combustion engine is accurately determined in consideration of the amount of heat generated in the cylinder of the internal combustion engine and the amount of cooling heat that cools the cylinder of the internal combustion engine. An object of the present invention is to provide an internal combustion engine control device that can detect well and control the operating state of the internal combustion engine in accordance with the temperature of the internal combustion engine.

以上の目的を達成するべく、本発明は、内燃機関の運転状態を制御する内燃機関制御装置において、前記内燃機関の代表温度を検出する温度センサから入力された電気信号に基づいて前記内燃機関の前記代表温度を算出する内燃機関温度算出部と、前記内燃機関の運転状態がアイドル状態にある第1の場合、前記内燃機関のスロットル開度が全閉でありかつ前記内燃機関が減速中であって、前記内燃機関が燃料カット中である第2の場合、又は前記スロットル開度が前記全閉でありかつ前記内燃機関が前記減速中であって、前記内燃機関が前記燃料カット中でない第3の場合において、前記内燃機関のアイドル回転時の発生トルク以下の発生トルクを規定する発生トルク領域に対応して、前記内燃機関の前記代表温度に基づき前記内燃機関のシリンダ内で発生する発生熱量及び前記シリンダを冷却する冷却熱量に応じた温度である学習基準温度を算出する学習基準温度算出部と、前記内燃機関の燃焼室を画成する壁部の温度を検出する温度センサから入力された電気信号に基づいて記壁部の温度を算出する壁部温度算出部と、前記発生熱量及び前記冷却熱量に応じるように前記学習基準温度と前記壁部の前記温度との偏差に基づき、前記壁部の前記温度を補正して補正温度を算出する補正温度算出部と、前記補正温度に基づき、前記運転状態を制御する運転状態制御部と、を備えることを第1の局面とする。 In order to achieve the above object, the present invention provides an internal combustion engine controller for controlling an operating state of an internal combustion engine , based on an electric signal inputted from a temperature sensor for detecting a representative temperature of the internal combustion engine. In the first case where the internal combustion engine temperature calculation unit for calculating the representative temperature and the operation state of the internal combustion engine are in an idle state, the throttle opening of the internal combustion engine is fully closed and the internal combustion engine is decelerating. In the second case where the internal combustion engine is in the fuel cut, or the throttle opening is in the fully closed state, the internal combustion engine is in the deceleration, and the internal combustion engine is not in the fuel cut. in the case of, in response to the generated torque region defining a torque following generation torque at idle speed of the internal combustion engine, said internal combustion engine based on said representative temperature of the internal combustion engine A learning reference temperature calculation section for calculating a learning reference temperature is a temperature corresponding to the cooling heat to cool the generated heat and the cylinder generated in the cylinder, the temperature of the wall defining the combustion chamber of the internal combustion engine detected and the wall temperature calculation unit for calculating a temperature of Kikabe portion before on the basis of the electrical signal input from the temperature sensor, the amount of generated heat and the temperature of the said learning reference temperature to respond to the cooling heat and the wall portion based on the deviation between the corrected temperature calculation unit for calculating a correction temperature to correct the temperature of the wall, based on the correction temperature, that and a driving state control section for controlling the operating state first Let it be one aspect.

本発明は、第の局面に加えて、前記学習基準温度算出部は、前記内燃機関の前記減速中における複数の時点の前記代表温度に基づき、前記学習基準温度を算出することを第の局面とする。 The present invention, in addition to the first aspect, the learning reference temperature calculation section, the basis of the representative temperature of the plurality of time points in the during deceleration of the internal combustion engine, wherein calculating a learning reference temperature of the second Let it be a situation.

以上の本発明の第1の局面にかかる内燃機関制御装置によれば、内燃機関の代表温度を検出する温度センサから入力された電気信号に基づいて内燃機関の代表温度を算出する内燃機関温度算出部と、内燃機関の運転状態がアイドル状態にある第1の場合、内燃機関のスロットル開度が全閉でありかつ内燃機関が減速中であって、内燃機関が燃料カット中である第2の場合、又はスロットル開度が全閉でありかつ内燃機関が減速中であって、内燃機関が燃料カット中でない第3の場合において、内燃機関のアイドル回転時の発生トルク以下の発生トルクを規定する発生トルク領域に対応して、内燃機関の代表温度に基づき内燃機関のシリンダ内で発生する発生熱量及びシリンダを冷却する冷却熱量に応じた温度である学習基準温度を算出する学習基準温度算出部と、内燃機関の燃焼室を画成する壁部の温度を検出する温度センサから入力された電気信号に基づいて壁部の温度を算出する壁部温度算出部と、発生熱量及び冷却熱量に応じるように学習基準温度と壁部の温度との偏差に基づき、壁部の温度を補正して補正温度を算出する補正温度算出部と、補正温度に基づき、運転状態を制御する運転状態制御部と、を備えるものであるので、簡便な構成で、内燃機関のシリンダ内で発生する発生熱量及び内燃機関のシリンダを冷却する冷却熱量を考慮して内燃機関の温度を精度よく検出し、かかる内燃機関の温度に応じて内燃機関の運転状態を制御することができる。特に、内燃機関のアイドル回転時の発生トルク以下の発生トルクを規定する発生トルク領域は、実用上、運転状態にある内燃機関の発生トルクが最も低い状態における発生トルクを検出するために用いる所定の領域であり、運転状態にある内燃機関の発生トルクが最も低い状態は、内燃機関がアイドル回転時にある状態のみならず、内燃機関の減速時にスロットルバルブが全閉状態にあって、内燃機関のシリンダ内圧が実質発生していない状態に対応させることができる。内燃機関がアイドル回転時にある状態では、内燃機関のアイドル回転時の発生トルク、つまりその際に内燃機関のシリンダ内で発生する熱量に応じた学習基準温度を得ることができ、また、内燃機関の減速時にスロットルバルブが全閉状態にあって、内燃機関のシリンダ内圧が実質発生していない状態では、その減速状況による降温特性、つまり燃料カットの有無に応じた降温特性に応じて内燃機関のシリンダ内で発生する熱量に応じた学習基準温度を得ることができるものであるため、各々の場合に対応して学習基準温度を多点のものとして得ることができる。かかる多点の学習基準温度を用いれば、結果的に、温度センサの温度及び電圧間の特性、特にサーミスタの温度及び抵抗間の特性における傾きを適切に較正することができる。ここで、燃料カットの実行時には、燃焼室の表面の受熱量が少なくなるため、安定した値の学習基準温度を得ることができる。また、かかる学習基準温度を用いて、内燃機関のシリンダ内で発生する熱量により直接的に応じた内燃機関の燃焼室を画成する壁部の温度を補正するものであるため、内燃機関の燃焼状態を適切に反映した温度を得ることができる。 According to the internal combustion engine control apparatus according to the first aspect of the present invention described above, the internal combustion engine temperature calculation that calculates the representative temperature of the internal combustion engine based on the electrical signal input from the temperature sensor that detects the representative temperature of the internal combustion engine. And a first case where the operating state of the internal combustion engine is in an idle state, a second state in which the throttle opening of the internal combustion engine is fully closed and the internal combustion engine is decelerating and the internal combustion engine is in a fuel cut Or in the third case where the throttle opening is fully closed and the internal combustion engine is decelerating and the internal combustion engine is not cutting fuel , the generated torque equal to or lower than the generated torque during idle rotation of the internal combustion engine is defined. corresponding to the generated torque region, Manabu for calculating a learning reference temperature is a temperature corresponding to the cooling heat to cool the heat generation amount and the cylinder occurs in a cylinder of an internal combustion engine on the basis of the representative temperature of the internal combustion engine A reference temperature calculation section, and the wall portion temperature calculation section for calculating the temperature of the wall based on the electric signal input from a temperature sensor for detecting the temperature of the wall defining the combustion chamber of an internal combustion engine, the heat generation amount and Based on the deviation between the learning reference temperature and the wall temperature so as to correspond to the amount of cooling heat, the correction temperature calculation unit that calculates the correction temperature by correcting the temperature of the wall, and the operation that controls the operation state based on the correction temperature A state control unit, and with a simple configuration, accurately detects the temperature of the internal combustion engine in consideration of the amount of heat generated in the cylinder of the internal combustion engine and the amount of cooling heat that cools the cylinder of the internal combustion engine. The operating state of the internal combustion engine can be controlled according to the temperature of the internal combustion engine. In particular, the generated torque region that defines a generated torque that is equal to or lower than the generated torque during idling of the internal combustion engine is, in practice, a predetermined torque used to detect the generated torque when the generated torque of the internal combustion engine in the operating state is the lowest. The state where the generated torque of the internal combustion engine in the operating state is the lowest is not only the state in which the internal combustion engine is in idle rotation, but also the throttle valve is in the fully closed state when the internal combustion engine is decelerated, and the cylinder of the internal combustion engine It is possible to correspond to a state where the internal pressure is not substantially generated. In a state where the internal combustion engine is in idle rotation, a learning reference temperature can be obtained in accordance with the torque generated during the idle rotation of the internal combustion engine, that is, the amount of heat generated in the cylinder of the internal combustion engine at that time. When the throttle valve is fully closed at the time of deceleration and the cylinder internal pressure of the internal combustion engine is not substantially generated, the cylinder of the internal combustion engine depends on the temperature drop characteristic according to the deceleration state, that is, the temperature drop characteristic according to the presence or absence of fuel cut. The learning reference temperature can be obtained according to the amount of heat generated therein, so that the learning reference temperature can be obtained at multiple points corresponding to each case. If such a multipoint learning reference temperature is used, as a result, the slope between the temperature and voltage characteristics of the temperature sensor, particularly the temperature and resistance characteristics of the thermistor, can be appropriately calibrated. Here, when the fuel cut is performed, the amount of heat received on the surface of the combustion chamber is reduced, so that a stable learning reference temperature can be obtained. Further, since the learning reference temperature is used to correct the temperature of the wall portion defining the combustion chamber of the internal combustion engine that directly corresponds to the amount of heat generated in the cylinder of the internal combustion engine, the combustion of the internal combustion engine A temperature appropriately reflecting the state can be obtained.

本発明の第2の局面にかかる内燃機関制御装置によれば、学習基準温度算出部が、内燃機関の減速中における複数の時点の代表温度に基づき、学習基準温度を算出するものであるため、内燃機関の減速中の燃料カットが実行される期間及び内燃機関の減速中の燃料カットが実行されない期間の異なった複数の時点で内燃機関の温度に基づき、多点の学習基準温度を得ることができ、温度センサの温度及び電圧間の特性における傾きを適切に較正しながら、内燃機関のシリンダ内で発生する発生熱量及び内燃機関のシリンダを冷却する冷却熱量を考慮して内燃機関の温度を精度よく検出し、かかる内燃機関の温度に応じて内燃機関の運転状態を制御することができる。 According to the internal combustion engine controller according to the second aspect of the present invention, the learning reference temperature calculation unit calculates the learning reference temperature based on the representative temperatures at a plurality of points in time during deceleration of the internal combustion engine. It is possible to obtain a plurality of learning reference temperatures based on the temperature of the internal combustion engine at a plurality of different points in time during which the fuel cut during deceleration of the internal combustion engine is executed and during which the fuel cut during deceleration of the internal combustion engine is not executed The temperature of the internal combustion engine can be accurately adjusted in consideration of the amount of heat generated in the cylinder of the internal combustion engine and the amount of cooling heat that cools the cylinder of the internal combustion engine, while properly calibrating the slope of the temperature sensor voltage and voltage It is possible to detect well and control the operating state of the internal combustion engine according to the temperature of the internal combustion engine.

図1は、本発明の実施形態における内燃機関制御装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an internal combustion engine control apparatus according to an embodiment of the present invention. 図2は、本実施形態における内燃機関制御装置が実行する運転状態制御処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing a flow of an operation state control process executed by the internal combustion engine control apparatus according to the present embodiment.

以下、図面を適宜参照して、本発明の実施形態における内燃機関制御装置につき、詳細に説明する。   Hereinafter, an internal combustion engine control apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.

[構成]
まず、図1を参照して、本実施形態における内燃機関制御装置の構成について説明する。
[Constitution]
First, the configuration of the internal combustion engine control device in the present embodiment will be described with reference to FIG.

図1は、本実施形態における内燃機関制御装置の構成を示すブロック図である。   FIG. 1 is a block diagram showing the configuration of the internal combustion engine control device in the present embodiment.

図1に示すように、本実施形態における内燃機関制御装置1は、二輪自動車等の車両に搭載され、車両の内燃機関の運転状態を制御する。本実施形態における内燃機関制御装置1は、スロットル開度センサ20、クランク角センサ30、壁部温度センサ40、及び冷却水温センサ50に電気的に接続されたECU(Electronic Control Unit)60を備えている。なお、説明の便宜上、車両や内燃機関の構成についての具体的な図示は、省略している。また、内燃機関に適用される燃料としては、原理的には、現在入手可能なものが適用でき、例えば、ガソリン、エタノール及びメタノール等の種別を問わず、ガソリンのオクタン価の種別も問わないものである。   As shown in FIG. 1, an internal combustion engine control device 1 according to the present embodiment is mounted on a vehicle such as a two-wheeled vehicle and controls the operating state of the internal combustion engine of the vehicle. The internal combustion engine control apparatus 1 in this embodiment includes an ECU (Electronic Control Unit) 60 electrically connected to a throttle opening sensor 20, a crank angle sensor 30, a wall temperature sensor 40, and a coolant temperature sensor 50. Yes. For convenience of explanation, specific illustrations of the configuration of the vehicle and the internal combustion engine are omitted. Further, as a fuel applied to an internal combustion engine, in principle, those that are currently available can be applied, for example, regardless of the type of gasoline, ethanol, methanol, etc., and the type of gasoline octane number is not limited. is there.

スロットル開度センサ20は、内燃機関のスロットル装置の本体部に装着され、スロットルバルブの開度をスロットル開度として検出し、このように検出したスロットル開度を示す電気信号をECU60に入力する。   The throttle opening sensor 20 is mounted on the main body of the throttle device of the internal combustion engine, detects the opening of the throttle valve as the throttle opening, and inputs an electric signal indicating the detected throttle opening to the ECU 60.

クランク角センサ30は、内燃機関において、リラクタの外周面に形成されている歯部に対向した態様でシリンダブロックの下部に組み付けられたロアケース等に装着され、クランクシャフトの回転に伴って回転する歯部を検出することによって、クランクシャフトの回転速度を内燃機関の回転速度として検出する。クランク角センサ30は、このように検出した内燃機関の回転速度を示す電気信号をECU60に入力する。   In the internal combustion engine, the crank angle sensor 30 is attached to a lower case or the like assembled to the lower part of the cylinder block in a manner facing the tooth portion formed on the outer peripheral surface of the reluctator, and rotates with the rotation of the crankshaft. By detecting the part, the rotational speed of the crankshaft is detected as the rotational speed of the internal combustion engine. The crank angle sensor 30 inputs an electric signal indicating the detected rotational speed of the internal combustion engine to the ECU 60.

壁部温度センサ40は、内燃機関の燃焼室を画成する部材、つまりシリンダブロック又はシリンダヘッドの壁部に装着されてその壁部の温度を検出し、このように検出した壁部の温度を示す電気信号をECU60に入力する。   The wall temperature sensor 40 is mounted on a member defining a combustion chamber of the internal combustion engine, that is, a wall of a cylinder block or a cylinder head, detects the temperature of the wall, and detects the detected temperature of the wall. The electric signal shown is input to the ECU 60.

冷却水温センサ50は、内燃機関の冷却水通路に侵入した態様でシリンダブロックに装着され、冷却水通路内を流通する冷却水の温度を検出し、このように検出した冷却水の温度を示す電気信号をECU60に入力する。   The cooling water temperature sensor 50 is attached to the cylinder block in a state of entering the cooling water passage of the internal combustion engine, detects the temperature of the cooling water flowing through the cooling water passage, and indicates the temperature of the cooling water thus detected. A signal is input to the ECU 60.

ECU60は、車両が備えるバッテリからの電力を利用して動作する。ECU60は、A/D(Analog to Digital)変換回路601a、601b及び601c、波形成形回路602、スロットル開度算出部603、機関回転数算出部604、壁部温度算出部605、冷却水温算出部606、学習基準温度算出部607、学習基準温度記録部608、補正温度算出部609、運転状態制御部610、並びに駆動回路611a、611b及び611cを備えている。なお、スロットル開度算出部603、機関回転数算出部604、壁部温度算出部605、冷却水温算出部606、学習基準温度算出部607、補正温度算出部609、及び運転状態制御部610は、ECU60の演算処理装置が図示を省略するメモリから必要な制御プログラムや制御データを読み出すと共に学習基準温度記録部608から残余の制御データを読み出して運転状態制御処理を実行する際の機能ブロックとして示している。   The ECU 60 operates using electric power from a battery provided in the vehicle. The ECU 60 includes A / D (Analog to Digital) conversion circuits 601a, 601b, and 601c, a waveform shaping circuit 602, a throttle opening calculation unit 603, an engine speed calculation unit 604, a wall temperature calculation unit 605, and a cooling water temperature calculation unit 606. , A learning reference temperature calculation unit 607, a learning reference temperature recording unit 608, a correction temperature calculation unit 609, an operation state control unit 610, and drive circuits 611a, 611b and 611c. The throttle opening calculation unit 603, the engine speed calculation unit 604, the wall temperature calculation unit 605, the cooling water temperature calculation unit 606, the learning reference temperature calculation unit 607, the correction temperature calculation unit 609, and the operation state control unit 610 include: The arithmetic processing unit of the ECU 60 reads out necessary control programs and control data from a memory (not shown) and also shows the functional blocks when the remaining control data is read from the learning reference temperature recording unit 608 and the operation state control process is executed. Yes.

A/D変換回路601aは、スロットル開度センサ20から入力されたアナログ形態の電気信号をデジタル形態に変換してスロットル開度算出部603に入力する。   The A / D conversion circuit 601 a converts the analog electrical signal input from the throttle opening sensor 20 into a digital form and inputs the digital signal to the throttle opening calculation unit 603.

A/D変換回路601bは、壁部温度センサ40から入力されたアナログ形態の電気信号をデジタル形態に変換して壁部温度算出部605に入力する。   The A / D conversion circuit 601b converts the analog electrical signal input from the wall temperature sensor 40 into a digital format and inputs the digital signal to the wall temperature calculation unit 605.

A/D変換回路601cは、冷却水温センサ50から入力されたアナログ形態の電気信号をデジタル形態に変換して冷却水温算出部606に入力する。   The A / D conversion circuit 601c converts the analog electrical signal input from the coolant temperature sensor 50 into a digital format and inputs the digital signal to the coolant temperature calculation unit 606.

波形成形回路602は、クランク角センサ30から入力された電気信号に対してスムージング処理等の成形処理を施した後に電気信号を機関回転数算出部604に入力する。   The waveform shaping circuit 602 performs shaping processing such as smoothing processing on the electric signal input from the crank angle sensor 30 and then inputs the electric signal to the engine speed calculation unit 604.

スロットル開度算出部603は、A/D変換回路601aから入力された電気信号を用いてスロットル開度を算出し、このようにスロットル開度算出部603が算出したスロットル開度は、運転状態制御部610で用いられる。   The throttle opening calculation unit 603 calculates the throttle opening by using the electric signal input from the A / D conversion circuit 601a, and the throttle opening calculated by the throttle opening calculation unit 603 is the operating state control. Part 610 is used.

機関回転数算出部604は、波形成形回路602から入力された電気信号を用いて内燃機関の回転数(エンジン回転数)を算出し、このように機関回転数算出部604が算出したエンジン回転数は、運転状態制御部610で用いられる。   The engine speed calculator 604 calculates the engine speed (engine speed) of the internal combustion engine using the electric signal input from the waveform shaping circuit 602, and the engine speed calculated by the engine speed calculator 604 in this way. Is used in the operation state control unit 610.

壁部温度算出部605は、A/D変換回路601bから入力された電気信号を用いて内燃機関の燃焼室を画成する壁部の温度を算出し、このように壁部温度算出部605が算出した壁部の温度は、補正温度算出部609で用いられる。かかる壁部の温度は、内燃機関の燃焼状態を直接的に反映する内燃機関の温度であって、内燃機関のシリンダ内で発生する発生熱量を直接的に反映した温度であると評価され得るものである。   The wall temperature calculator 605 calculates the temperature of the wall that defines the combustion chamber of the internal combustion engine using the electrical signal input from the A / D conversion circuit 601b, and thus the wall temperature calculator 605 The calculated wall temperature is used by the correction temperature calculation unit 609. The temperature of the wall portion is a temperature of the internal combustion engine that directly reflects the combustion state of the internal combustion engine, and can be evaluated as a temperature that directly reflects the amount of heat generated in the cylinder of the internal combustion engine. It is.

冷却水温算出部606は、A/D変換回路601cから入力された電気信号を用いて冷却水の温度を算出し、このように冷却水温算出部606が算出した冷却水の温度は、学習基準温度算出部607及び運転状態制御部610で用いられる。かかる冷却水の温度は、内燃機関の温度を代表的に示す内燃機関の代表温度であって、内燃機関のシリンダを冷却する冷却熱量を反映した温度であると評価され得るものである。なお、かかる内燃機関の代表温度としては、冷却水の温度の他に、内燃機関の潤滑油の温度等を用いてもよい。   The cooling water temperature calculation unit 606 calculates the temperature of the cooling water using the electrical signal input from the A / D conversion circuit 601c, and the cooling water temperature calculated by the cooling water temperature calculation unit 606 in this way is the learning reference temperature. Used by the calculation unit 607 and the operation state control unit 610. The temperature of the cooling water is a representative temperature of the internal combustion engine representatively showing the temperature of the internal combustion engine, and can be evaluated as a temperature reflecting the amount of cooling heat for cooling the cylinder of the internal combustion engine. As the representative temperature of the internal combustion engine, the temperature of the lubricating oil of the internal combustion engine may be used in addition to the temperature of the cooling water.

学習基準温度算出部607は、内燃機関のアイドル回転時の発生トルク以下の発生トルクを規定する発生トルク領域に対応して、冷却水温算出部606が算出した冷却水の温度に基づき内燃機関の学習基準温度を算出し、このように学習基準温度算出部607が算出した内燃機関の学習基準温度は、学習基準温度記録部608で用いられる。   The learning reference temperature calculation unit 607 learns the internal combustion engine based on the temperature of the cooling water calculated by the cooling water temperature calculation unit 606 corresponding to a generated torque region that defines a generated torque equal to or lower than the generated torque during idling of the internal combustion engine. The reference temperature is calculated, and the learning reference temperature of the internal combustion engine calculated by the learning reference temperature calculation unit 607 is used by the learning reference temperature recording unit 608.

ここで、内燃機関のアイドル回転時の発生トルク以下の発生トルクを規定する発生トルク領域は、運転状態にある内燃機関の発生トルクが最も低い状態における発生トルクを検出するために用いられる所定の領域である。また、運転状態にある内燃機関の発生トルクが最も低い状態は、内燃機関がアイドル回転時にある状態のみならず、内燃機関の減速時にスロットルバルブが全閉状態にあって、内燃機関のシリンダ内圧が実質発生していない状態に対応し得るものである。よって、内燃機関がアイドル回転時にある状態では、内燃機関のアイドル回転時の発生トルク、つまりその際に内燃機関のシリンダ内で発生する熱量に応じた学習基準温度を得ることが可能であり、また、内燃機関の減速時にスロットルバルブが全閉状態にあって、内燃機関のシリンダ内圧が実質発生していない状態では、その減速状況による降温特性、つまり燃料カットの有無に応じた降温特性に応じて内燃機関のシリンダ内で発生する熱量に応じた学習基準温度を得ることが可能であるため、各々の場合に対応して学習基準温度を多点のものとして得ることが可能となる。ここで、多点の学習基準温度を用いれば、結果的に、冷却水温センサ50の温度及び電圧間の特性、特に冷却水温センサ50にサーミスタを用いている場合に、それらの温度及び抵抗間の特性における傾きを適切に較正することが可能となる。また、燃料カットの実行時には、燃焼室の表面の受熱量が少なくなるため、安定した値の学習基準温度を得ることが可能となる。   Here, the generated torque region defining the generated torque equal to or lower than the generated torque during idling of the internal combustion engine is a predetermined region used for detecting the generated torque when the generated torque of the internal combustion engine in the operating state is the lowest. It is. In addition, the state where the generated torque of the internal combustion engine in the operating state is the lowest is not only the state in which the internal combustion engine is in idle rotation, but also the throttle valve is in the fully closed state during deceleration of the internal combustion engine, It is possible to cope with a state where no substantial occurrence has occurred. Therefore, in a state where the internal combustion engine is in idle rotation, it is possible to obtain a learning reference temperature according to the torque generated during the idle rotation of the internal combustion engine, that is, the amount of heat generated in the cylinder of the internal combustion engine at that time. When the throttle valve is fully closed during deceleration of the internal combustion engine and the cylinder internal pressure of the internal combustion engine is not substantially generated, the temperature drop characteristic according to the deceleration state, that is, the temperature drop characteristic according to the presence or absence of fuel cut Since it is possible to obtain the learning reference temperature corresponding to the amount of heat generated in the cylinder of the internal combustion engine, it is possible to obtain the learning reference temperature as multiple points corresponding to each case. Here, if multiple learning reference temperatures are used, as a result, characteristics between the temperature and voltage of the cooling water temperature sensor 50, particularly when a thermistor is used for the cooling water temperature sensor 50, between these temperatures and resistances are used. It is possible to appropriately calibrate the slope in the characteristics. In addition, when the fuel cut is executed, the amount of heat received on the surface of the combustion chamber is reduced, so that a stable learning reference temperature can be obtained.

学習基準温度記録部608は、書き換え可能な不揮発性メモリ、典型的にはEEPROM(Electrically Erasable Programmable Read−Only Memory)によって構成され、学習基準温度算出部607から入力された内燃機関の学習基準温度を記録する。   The learning reference temperature recording unit 608 is configured by a rewritable nonvolatile memory, typically EEPROM (Electrically Erasable Programmable Read-Only Memory), and the learning reference temperature of the internal combustion engine input from the learning reference temperature calculation unit 607 is used. Record.

補正温度算出部609は、学習基準温度記録部608に記録されている内燃機関の学習基準温度に基づいて、壁部温度算出部605が算出した壁部の温度を補正して補正温度を算出し、このように補正温度算出部609が算出した補正温度は、運転状態制御部610で用いられる。かかる学習基準温度を用いて、内燃機関のシリンダ内で発生する熱量により直接的に応じた内燃機関の燃焼室を画成する壁部の温度を補正するものであるため、内燃機関の燃焼状態を適切に反映した温度を得ることが可能となる。   The correction temperature calculation unit 609 calculates the correction temperature by correcting the wall temperature calculated by the wall temperature calculation unit 605 based on the learning reference temperature of the internal combustion engine recorded in the learning reference temperature recording unit 608. The correction temperature calculated by the correction temperature calculation unit 609 is used by the operation state control unit 610. The learning reference temperature is used to correct the temperature of the wall portion defining the combustion chamber of the internal combustion engine that directly corresponds to the amount of heat generated in the cylinder of the internal combustion engine. It is possible to obtain a temperature appropriately reflected.

運転状態制御部610は、内燃機関制御装置1全体の動作を制御する。具体的には、運転状態制御部610は、スロットル開度算出部603が算出したスロットル開度、機関回転数算出部604が算出したエンジン回転数、冷却水温算出部606が算出した冷却水の温度、及び補正温度算出部609が算出した補正温度等に基づいて、点火時期及び燃料噴射量の指示値等を算出する。そして、運転状態制御部610は、このように算出した点火時期及び燃料噴射量の指示値等を内燃機関に適用することにより、その運転状態を制御する。   The operating state control unit 610 controls the operation of the entire internal combustion engine control device 1. Specifically, the operating state control unit 610 includes the throttle opening calculated by the throttle opening calculation unit 603, the engine speed calculated by the engine speed calculation unit 604, and the cooling water temperature calculated by the cooling water temperature calculation unit 606. Based on the correction temperature calculated by the correction temperature calculation unit 609 and the like, the ignition timing and the fuel injection amount instruction values are calculated. Then, the operating state control unit 610 controls the operating state by applying the ignition timing and the fuel injection amount instruction values calculated in this way to the internal combustion engine.

駆動回路611aは、運転状態制御部610から入力された制御信号に従ってスロットルモータ70を駆動することによってスロットル開度を制御する。   The drive circuit 611a controls the throttle opening by driving the throttle motor 70 in accordance with a control signal input from the operation state control unit 610.

駆動回路611bは、運転状態制御部610から入力された制御信号に従って点火栓80を駆動することによって内燃機関の点火時期を制御する。   The drive circuit 611b controls the ignition timing of the internal combustion engine by driving the spark plug 80 according to the control signal input from the operation state control unit 610.

駆動回路611cは、運転状態制御部610から入力された制御信号に従って燃料噴射弁90を駆動することによって内燃機関の燃料噴射量を制御する。   The drive circuit 611c controls the fuel injection amount of the internal combustion engine by driving the fuel injection valve 90 according to the control signal input from the operation state control unit 610.

以上のような構成を有する内燃機関制御装置1は、以下に示す運転状態制御処理を実行することによって、内燃機関のシリンダ内で発生する発生熱量及び内燃機関のシリンダを冷却する冷却熱量を考慮して内燃機関の温度を精度よく検出し、かかる内燃機関の温度に応じて内燃機関の運転状態を制御する。以下、図2を参照して、この運転状態制御処理を実行する際の内燃機関制御装置1の動作について説明する。   The internal combustion engine control device 1 having the above-described configuration takes into consideration the amount of heat generated in the cylinder of the internal combustion engine and the amount of cooling heat that cools the cylinder of the internal combustion engine by executing the following operating state control process. Thus, the temperature of the internal combustion engine is accurately detected, and the operating state of the internal combustion engine is controlled according to the temperature of the internal combustion engine. Hereinafter, with reference to FIG. 2, the operation of the internal combustion engine control apparatus 1 when executing this operation state control process will be described.

〔運転状態制御処理〕
図2は、本実施形態における内燃機関制御装置1が実行する運転状態制御処理の流れを示すフローチャートである。
[Operation status control processing]
FIG. 2 is a flowchart showing a flow of an operation state control process executed by the internal combustion engine control apparatus 1 in the present embodiment.

図2に示すフローチャートは、車両のイグニッションスイッチがオフ状態からオン状態に切り替えられてECU60が稼働したタイミングで開始となり、運転状態制御処理はステップS1の処理に進む。かかる運転状態制御処理は、ECU60が稼働状態である間、メモリから必要な制御プログラムや制御データを読み出すと共に学習基準温度記録部608から残余の制御データを読み出して所定の制御周期毎に繰り返し実行される。   The flowchart shown in FIG. 2 starts when the ECU 60 is operated after the ignition switch of the vehicle is switched from the off state to the on state, and the driving state control process proceeds to the process of step S1. The operation state control process is repeatedly executed at predetermined control intervals by reading out necessary control programs and control data from the memory and reading out the remaining control data from the learning reference temperature recording unit 608 while the ECU 60 is in an operating state. The

ステップS1の処理では、運転状態制御部610が、スロットル開度算出部603、機関回転数算出部604、及び冷却水温算出部606がそれぞれ算出したスロットル開度TH、エンジン回転数NE、及び冷却水温TWのデータを読み込む。また、併せて、壁部温度算出部605が、壁部の温度TCCを算出し、このように壁部温度算出部605が算出した壁部の温度TCCのデータは補正温度算出部609が読み込む。これにより、ステップS1の処理は完了し、運転状態制御処理はステップS2の処理に進む。   In the process of step S1, the operating state control unit 610 calculates the throttle opening TH, the engine speed NE, and the cooling water temperature calculated by the throttle opening calculation unit 603, the engine speed calculation unit 604, and the cooling water temperature calculation unit 606, respectively. Read TW data. In addition, the wall temperature calculation unit 605 calculates the wall temperature TCC, and the correction temperature calculation unit 609 reads the wall temperature TCC data calculated by the wall temperature calculation unit 605 as described above. Thereby, the process of step S1 is completed and the operation state control process proceeds to the process of step S2.

ステップS2の処理では、運転状態制御部610が、ステップS1の処理において読み込まれた冷却水温TWが基準温度範囲(TW1<TW<TW2)内にあるか否かを判別する。判別の結果、冷却水温TWが基準温度範囲内にある場合、運転状態制御部610は、運転状態制御処理をステップS3の処理に進める。一方、冷却水温TWが基準温度範囲内にない場合には、運転状態制御部610は、今回の一連の運転状態制御処理を終了する。   In the process of step S2, the operation state control unit 610 determines whether or not the coolant temperature TW read in the process of step S1 is within the reference temperature range (TW1 <TW <TW2). As a result of the determination, when the cooling water temperature TW is within the reference temperature range, the operation state control unit 610 advances the operation state control process to the process of step S3. On the other hand, when the cooling water temperature TW is not within the reference temperature range, the operation state control unit 610 ends the current series of operation state control processes.

ステップS3の処理では、運転状態制御部610が、ステップS1の処理において読み込まれたスロットル開度TH及びエンジン回転数NEに基づいて、内燃機関の運転状態がアイドル状態にあるか否かを判別する。判別の結果、内燃機関の運転状態がアイドル状態にある場合、運転状態制御部610は、内燃機関が発生する発生トルクが最も低い状態であると判断し、運転状態制御処理をステップS8の処理に進める。一方、内燃機関の運転状態がアイドル状態にない場合には、運転状態制御部610は、運転状態制御処理をステップS4の処理に進める。   In the process of step S3, the operating state control unit 610 determines whether or not the operating state of the internal combustion engine is in an idle state based on the throttle opening TH and the engine speed NE read in the process of step S1. . As a result of the determination, when the operation state of the internal combustion engine is in the idle state, the operation state control unit 610 determines that the generated torque generated by the internal combustion engine is the lowest state, and the operation state control process is changed to the process of step S8. Proceed. On the other hand, when the operation state of the internal combustion engine is not in the idle state, the operation state control unit 610 advances the operation state control process to the process of step S4.

ステップS4の処理では、運転状態制御部610が、ステップS1の処理において読み込まれたスロットル開度THがゼロ(全閉)であり、かつ、今回及び今回以前の運転状態制御処理におけるステップS1の処理において各々読み込まれたエンジン回転数NEからエンジン回転数NEが減少中(内燃機関が減速中)であるか否かを判別する。判別の結果、スロットル開度THがゼロであり、かつ、エンジン回転数NEが減少中である場合、運転状態制御部610は、燃焼によるシリンダ内圧が発生しない状態であると判断し、運転状態制御処理をステップS5の処理に進める。一方、スロットル開度THがゼロでない、又は、エンジン回転数NEが減少中でない場合には、運転状態制御部610は、今回の一連の運転状態制御処理を終了する。   In the process of step S4, the operation state control unit 610 has the throttle opening TH read in the process of step S1 is zero (fully closed), and the process of step S1 in the current and previous operation state control processes. It is determined whether or not the engine speed NE is decreasing (the internal combustion engine is decelerating) from the engine speed NE read in each of the above. As a result of the determination, when the throttle opening TH is zero and the engine speed NE is decreasing, the operating state control unit 610 determines that the cylinder internal pressure due to combustion is not generated, and the operating state control The process proceeds to step S5. On the other hand, if the throttle opening TH is not zero or the engine speed NE is not decreasing, the operating state control unit 610 ends the current series of operating state control processes.

ステップS5の処理では、運転状態制御部610が、燃料噴射を停止中(燃料カット中)であるか否かを判別する。判別の結果、燃料カット中である場合、運転状態制御部610は、運転状態制御処理をステップS6の処理に進める。一方、燃料カット中でない場合には、運転状態制御部610は、運転状態制御処理をステップS7の処理に進める。   In the process of step S5, the operation state control unit 610 determines whether or not fuel injection is stopped (fuel cut is in progress). If it is determined that the fuel is being cut, the operating state control unit 610 advances the operating state control process to the process of step S6. On the other hand, when the fuel is not being cut, the operation state control unit 610 advances the operation state control process to the process of step S7.

ステップS6の処理では、学習基準温度算出部607が、内燃機関の減速中であってかつ燃料カット中における燃焼室の壁部の温度低下を加味した学習基準温度TB2を学習基準温度TBとして算出し、このように算出した学習基準温度TBを学習基準温度記録部608に記録する。これにより、ステップS6の処理は完了し、運転状態制御処理はステップS9の処理に進む。   In the process of step S6, the learning reference temperature calculation unit 607 calculates, as the learning reference temperature TB, the learning reference temperature TB2 that takes into account the temperature drop of the wall of the combustion chamber during deceleration of the internal combustion engine and fuel cut. The learning reference temperature TB calculated in this way is recorded in the learning reference temperature recording unit 608. Thereby, the process of step S6 is completed and the driving state control process proceeds to the process of step S9.

ステップS7の処理では、学習基準温度算出部607が、内燃機関の減速中における燃焼室の壁部の温度低下を加味した学習基準温度TB3を学習基準温度TBとして算出し、このように算出した学習基準温度TBを学習基準温度記録部608に記録する。これにより、ステップS7の処理は完了し、運転状態制御処理はステップS9の処理に進む。   In the process of step S7, the learning reference temperature calculation unit 607 calculates the learning reference temperature TB3 taking into account the temperature drop of the wall of the combustion chamber during deceleration of the internal combustion engine as the learning reference temperature TB, and the learning thus calculated The reference temperature TB is recorded in the learning reference temperature recording unit 608. Thereby, the process of step S7 is completed and the operation state control process proceeds to the process of step S9.

ステップS8の処理では、学習基準温度算出部607が、冷却水温TWにアイドル回転時の発生トルクによる発生熱量に相当する温度を上乗せした学習基準温度TB1を学習基準温度TBとして算出し、このように算出した学習基準温度TBを学習基準温度記録部608に記録する。これにより、ステップS8の処理は完了し、運転状態制御処理はステップS9の処理に進む。   In the process of step S8, the learning reference temperature calculation unit 607 calculates, as the learning reference temperature TB, the learning reference temperature TB1 obtained by adding the temperature corresponding to the amount of heat generated by the torque generated during idle rotation to the cooling water temperature TW. The calculated learning reference temperature TB is recorded in the learning reference temperature recording unit 608. Thereby, the process of step S8 is completed and the driving state control process proceeds to the process of step S9.

ステップS9の処理では、補正温度算出部609が、学習基準温度記録部608に記録されている学習基準温度TBと壁部温度算出部605によって算出された壁部の温度TCCとの偏差Dを算出する。これにより、ステップS9の処理は完了し、運転状態制御処理はステップS10の処理に進む。   In the process of step S9, the correction temperature calculation unit 609 calculates a deviation D between the learning reference temperature TB recorded in the learning reference temperature recording unit 608 and the wall temperature TCC calculated by the wall temperature calculation unit 605. To do. Thereby, the process of step S9 is completed and the driving state control process proceeds to the process of step S10.

ステップS10の処理では、補正温度算出部609が、ステップS9の処理において算出された偏差Dに基づいて壁部の温度TCCを補正して補正温度TMを算出し、このように算出した補正温度TMを運転状態制御部610に入力する。そして、運転状態制御部610は、補正温度算出部609が算出した補正温度TMを用いて点火時期及び燃料噴射量を算出すると共に、アクセル開度等を用いて目標スロットル開度を算出し、それらに応じて駆動回路611b、611c及び611aを介して点火栓80、燃料噴射弁90及びスロットルモータ70を駆動することによって、内燃機関の運転状態を制御する。これにより、ステップS10の処理は完了し、今回の一連の運転状態制御処理は終了する。   In the process of step S10, the correction temperature calculation unit 609 calculates the correction temperature TM by correcting the wall temperature TCC based on the deviation D calculated in the process of step S9, and the correction temperature TM calculated in this way. Is input to the operation state control unit 610. Then, the operating state control unit 610 calculates the ignition timing and the fuel injection amount using the correction temperature TM calculated by the correction temperature calculation unit 609, calculates the target throttle opening using the accelerator opening, and the like. Accordingly, the operation state of the internal combustion engine is controlled by driving the spark plug 80, the fuel injection valve 90, and the throttle motor 70 via the drive circuits 611b, 611c, and 611a. Thereby, the process of step S10 is completed and a series of this driving | running state control process is complete | finished.

以上の説明から明らかなように、本実施形態における内燃機関制御装置1は、内燃機関の温度を算出する冷却水温算出部606と、内燃機関のアイドル回転時の発生トルク以下の発生トルクを規定する発生トルク領域に対応して、内燃機関の温度に基づき内燃機関の学習基準温度を算出する学習基準温度算出部607と、内燃機関の燃焼室を画成する壁部の温度を算出する壁部温度算出部605と、学習基準温度に基づき、壁部の温度を補正して補正温度を算出する補正温度算出部609と、補正温度に基づき、運転状態を制御する運転状態制御部610と、を備える。これにより、簡便な構成で、内燃機関のシリンダ内で発生する発生熱量及び内燃機関のシリンダを冷却する冷却熱量を考慮して内燃機関の温度を精度よく検出し、かかる内燃機関の温度に応じて内燃機関の運転状態を制御することができる。   As is apparent from the above description, the internal combustion engine control apparatus 1 in the present embodiment defines a cooling water temperature calculation unit 606 that calculates the temperature of the internal combustion engine, and a generated torque that is equal to or less than the generated torque during idle rotation of the internal combustion engine. Corresponding to the generated torque region, a learning reference temperature calculation unit 607 that calculates the learning reference temperature of the internal combustion engine based on the temperature of the internal combustion engine, and a wall temperature that calculates the temperature of the wall that defines the combustion chamber of the internal combustion engine A calculation unit 605, a correction temperature calculation unit 609 that calculates the correction temperature by correcting the temperature of the wall based on the learning reference temperature, and an operation state control unit 610 that controls the operation state based on the correction temperature. . Thus, with a simple configuration, the temperature of the internal combustion engine is accurately detected in consideration of the amount of heat generated in the cylinder of the internal combustion engine and the amount of cooling heat that cools the cylinder of the internal combustion engine, and according to the temperature of the internal combustion engine. The operating state of the internal combustion engine can be controlled.

また、本実施形態における内燃機関制御装置1では、補正温度算出部609が、学習基準温度と壁部の温度との偏差に応じて壁部の温度を補正して、補正温度を算出するものであるので、簡便な構成で確実に、内燃機関のシリンダ内で発生する発生熱量及び内燃機関のシリンダを冷却する冷却熱量を考慮して内燃機関の温度を精度よく検出し、かかる内燃機関の温度に応じて内燃機関の運転状態を制御することができる。   In the internal combustion engine control apparatus 1 according to the present embodiment, the correction temperature calculation unit 609 calculates the correction temperature by correcting the wall temperature according to the deviation between the learning reference temperature and the wall temperature. Therefore, the temperature of the internal combustion engine is accurately detected in consideration of the amount of heat generated in the cylinder of the internal combustion engine and the amount of cooling heat for cooling the cylinder of the internal combustion engine with a simple configuration, and the temperature of the internal combustion engine is determined. Accordingly, the operating state of the internal combustion engine can be controlled.

また、本実施形態における内燃機関制御装置1では、学習基準温度算出部607が、内燃機関の減速中における複数の時点の温度に基づき、学習基準温度を算出するものであるため、内燃機関の減速中の燃料カットが実行される期間及び内燃機関の減速中の燃料カットが実行されない期間の異なった複数の時点で内燃機関の温度に基づき、多点の学習基準温度を得ることができ、温度センサの温度及び電圧間の特性における傾きを適切に較正しながら、内燃機関のシリンダ内で発生する発生熱量及び内燃機関のシリンダを冷却する冷却熱量を考慮して内燃機関の温度を精度よく検出し、かかる内燃機関の温度に応じて内燃機関の運転状態を制御することができる。   In the internal combustion engine control apparatus 1 according to the present embodiment, the learning reference temperature calculation unit 607 calculates the learning reference temperature based on the temperatures at a plurality of times during deceleration of the internal combustion engine. A temperature sensor that can obtain multiple learning reference temperatures based on the temperature of the internal combustion engine at a plurality of different points in time during which the fuel cut is performed and during which the fuel cut during deceleration of the internal combustion engine is not performed. The temperature of the internal combustion engine is accurately detected in consideration of the amount of heat generated in the cylinder of the internal combustion engine and the amount of cooling heat that cools the cylinder of the internal combustion engine, while appropriately calibrating the slope in the characteristic between the temperature and voltage of The operating state of the internal combustion engine can be controlled according to the temperature of the internal combustion engine.

なお、本発明は、部材の種類、形状、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。   In the present invention, the type, shape, arrangement, number, and the like of the members are not limited to the above-described embodiment, and the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects. Of course, it can be changed as appropriate without departing from the scope.

以上のように、本発明は、内燃機関のシリンダ内で発生する発生熱量及び内燃機関のシリンダを冷却する冷却熱量を考慮して内燃機関の温度を精度よく検出し、かかる内燃機関の温度に応じて内燃機関の運転状態を制御可能な内燃機関制御装置を提供することができるものであり、その汎用普遍的な性格から自動二輪車等の車両の内燃機関に広く適用され得るものと期待される。   As described above, the present invention accurately detects the temperature of the internal combustion engine in consideration of the amount of heat generated in the cylinder of the internal combustion engine and the amount of cooling heat that cools the cylinder of the internal combustion engine, and according to the temperature of the internal combustion engine. Thus, an internal combustion engine control apparatus capable of controlling the operating state of the internal combustion engine can be provided, and it is expected that it can be widely applied to an internal combustion engine of a vehicle such as a motorcycle because of its general-purpose universal character.

1…内燃機関制御装置
20…スロットル開度センサ
30…クランク角センサ
40…壁部温度センサ
50…冷却水温センサ
60…ECU
70…スロットルモータ
80…点火栓
90…燃料噴射弁
601a、601b及び601c…A/D変換回路
602…波形成形回路
603…スロットル開度算出部
604…機関回転数算出部
605…壁部温度算出部
606…冷却水温算出部
607…学習基準温度算出部
608…学習基準温度記録部
609…補正温度算出部
610…運転状態制御部
611a、611b及び611c…駆動回路
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine control apparatus 20 ... Throttle opening sensor 30 ... Crank angle sensor 40 ... Wall temperature sensor 50 ... Cooling water temperature sensor 60 ... ECU
DESCRIPTION OF SYMBOLS 70 ... Throttle motor 80 ... Spark plug 90 ... Fuel injection valve 601a, 601b and 601c ... A / D conversion circuit 602 ... Waveform shaping circuit 603 ... Throttle opening calculation part 604 ... Engine speed calculation part 605 ... Wall part temperature calculation part 606 ... Cooling water temperature calculation unit 607 ... Learning reference temperature calculation unit 608 ... Learning reference temperature recording unit 609 ... Correction temperature calculation unit 610 ... Operating state control units 611a, 611b and 611c ... Drive circuit

Claims (2)

内燃機関の運転状態を制御する内燃機関制御装置において、
前記内燃機関の代表温度を検出する温度センサから入力された電気信号に基づいて前記内燃機関の前記代表温度を算出する内燃機関温度算出部と、
前記内燃機関の運転状態がアイドル状態にある第1の場合、前記内燃機関のスロットル開度が全閉でありかつ前記内燃機関が減速中であって、前記内燃機関が燃料カット中である第2の場合、又は前記スロットル開度が前記全閉でありかつ前記内燃機関が前記減速中であって、前記内燃機関が前記燃料カット中でない第3の場合において、前記内燃機関のアイドル回転時の発生トルク以下の発生トルクを規定する発生トルク領域に対応して、前記内燃機関の前記代表温度に基づき前記内燃機関のシリンダ内で発生する発生熱量及び前記シリンダを冷却する冷却熱量に応じた温度である学習基準温度を算出する学習基準温度算出部と、
前記内燃機関の燃焼室を画成する壁部の温度を検出する温度センサから入力された電気信号に基づいて記壁部の温度を算出する壁部温度算出部と、
前記発生熱量及び前記冷却熱量に応じるように前記学習基準温度と前記壁部の前記温度との偏差に基づき、前記壁部の前記温度を補正して補正温度を算出する補正温度算出部と、
前記補正温度に基づき、前記運転状態を制御する運転状態制御部と、
を備えることを特徴とする内燃機関制御装置。
In an internal combustion engine control device for controlling the operating state of the internal combustion engine,
An internal combustion engine temperature calculation unit that calculates the representative temperature of the internal combustion engine based on an electric signal input from a temperature sensor that detects a representative temperature of the internal combustion engine;
In the first case where the operating state of the internal combustion engine is in an idle state, the throttle opening of the internal combustion engine is fully closed, the internal combustion engine is decelerating, and the internal combustion engine is in a fuel cut second Or in the third case where the throttle opening is in the fully closed state and the internal combustion engine is decelerating and the internal combustion engine is not in the fuel cut. Corresponding to a generated torque region that defines a generated torque equal to or lower than the torque, the temperature is a temperature corresponding to a generated heat amount generated in a cylinder of the internal combustion engine and a cooling heat amount for cooling the cylinder based on the representative temperature of the internal combustion engine A learning reference temperature calculation unit for calculating a learning reference temperature;
And the wall temperature calculation unit for calculating a temperature of the front Kikabe unit based on the electric signal input from a temperature sensor for detecting the temperature of the wall defining the combustion chamber of the internal combustion engine,
Based on the deviation of the heat generation amount and the learning reference temperature to respond to the cooling heat and the temperature of the wall portion, and correcting the temperature calculating unit for calculating a correction temperature by correcting the temperature of the wall,
An operating state control unit for controlling the operating state based on the corrected temperature;
An internal combustion engine control device comprising:
前記学習基準温度算出部は、前記内燃機関の前記減速中における複数の時点の前記代表温度に基づき、前記学習基準温度を算出することを特徴とする請求項に記載の内燃機関制御装置。 The learning reference temperature calculation section, based on the representative temperature of the plurality of time points in the during deceleration of the internal combustion engine, an internal combustion engine control apparatus according to claim 1, characterized in that to calculate the learning reference temperature.
JP2016060098A 2016-03-24 2016-03-24 Internal combustion engine control device Active JP6251766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016060098A JP6251766B2 (en) 2016-03-24 2016-03-24 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060098A JP6251766B2 (en) 2016-03-24 2016-03-24 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2017172481A JP2017172481A (en) 2017-09-28
JP6251766B2 true JP6251766B2 (en) 2017-12-20

Family

ID=59971883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016060098A Active JP6251766B2 (en) 2016-03-24 2016-03-24 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP6251766B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666366B2 (en) * 1987-11-21 1997-10-22 トヨタ自動車株式会社 Control device for internal combustion engine
JP2004011483A (en) * 2002-06-05 2004-01-15 Mikuni Corp Engine control device
JP2006342680A (en) * 2005-06-07 2006-12-21 Toyota Motor Corp Cooling system of internal combustion engine
JP2014156849A (en) * 2013-02-18 2014-08-28 Toyota Motor Corp Control device of internal combustion engine
JP2015090129A (en) * 2013-11-07 2015-05-11 トヨタ自動車株式会社 Control device of internal combustion engine

Also Published As

Publication number Publication date
JP2017172481A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
EP0816960B1 (en) A diagnostic system for a cooling water temperature sensor
US9062596B2 (en) Wastegate valve control device for internal combustion engine and wastegate valve control method for internal combustion engine
JP4479465B2 (en) Water temperature sensor abnormality diagnosis device
JP4873378B2 (en) Abnormality diagnosis device for intake air volume sensor
JP4577211B2 (en) Method and apparatus for determining Wiebe function parameters
JP2009257198A (en) Diagnosis apparatus for internal combustion engine
JP2007211725A (en) Engine torque estimating device
US9856802B2 (en) Controller for supercharger-equipped internal combustion engine
JP2015059458A (en) Control device for cooling system
EP1854980A1 (en) In-cylinder pressure detection device and method for internal combustion engine
JP6251766B2 (en) Internal combustion engine control device
JP4304468B2 (en) Oil temperature estimation device for internal combustion engine
JP2008501087A (en) Operation method and control apparatus for internal combustion engine
JP4605049B2 (en) Control device for internal combustion engine
JP2004251186A (en) Device for diagnosing failure of cooling water temperature sensor for internal combustion engine
JP6553537B2 (en) Internal combustion engine control system
WO2018016486A1 (en) Internal combustion engine control device and control method
JP5702993B2 (en) Throttle valve fully closed reference value setting device and engine control device
JP2005337186A (en) Controller for internal combustion engine
JP6689723B2 (en) Internal combustion engine controller
JP2009197711A (en) Air volume estimation device of internal combustion engine
JP2006266094A (en) Air-fuel ratio control device
JP5265903B2 (en) Engine air-fuel ratio control method and air-fuel ratio control apparatus therefor
JP6605376B2 (en) Internal combustion engine control device
CN112912606B (en) Method for controlling an air-cooled internal combustion engine

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R150 Certificate of patent or registration of utility model

Ref document number: 6251766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250