JP6250680B2 - バッテリ管理のための仮想セル法 - Google Patents

バッテリ管理のための仮想セル法 Download PDF

Info

Publication number
JP6250680B2
JP6250680B2 JP2015531917A JP2015531917A JP6250680B2 JP 6250680 B2 JP6250680 B2 JP 6250680B2 JP 2015531917 A JP2015531917 A JP 2015531917A JP 2015531917 A JP2015531917 A JP 2015531917A JP 6250680 B2 JP6250680 B2 JP 6250680B2
Authority
JP
Japan
Prior art keywords
battery
voltage
current
controller
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015531917A
Other languages
English (en)
Other versions
JP2015534434A (ja
Inventor
リジュン ガオ,
リジュン ガオ,
ションイー リウ,
ションイー リウ,
ジョージ ロー,
ジョージ ロー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2015534434A publication Critical patent/JP2015534434A/ja
Application granted granted Critical
Publication of JP6250680B2 publication Critical patent/JP6250680B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本開示は、バッテリ管理に関する。特に、本開示は、バッテリ管理のための仮想セル法に関する。
現在、典型的な従来のバッテリパックは、並列又は直列に一緒に接続された一群のバッテリセルを備える。理想的には、これらのバッテリセルは、同じ内的(すなわち、電極及びセパレーターの様々な過電圧)及び外的(すなわち、電圧及び放電の容量)特性を有している。しかしながら、製造、貯蔵、輸送、及び作動のプロセスからもたらされるバッテリセルに対する種々のレベルの劣化と同様に、バッテリセルの欠陥の多様性のために、これは実際には正しくない。欠陥がある又は劣化したバッテリセルは、そのバッテリセルが並列に接続される他のバッテリセルと比較して、より高い過電圧(すなわち、外的にはより高い内部抵抗として示される)を有する。欠陥がある又は劣化したバッテリセルは、より多くの熱を発生する傾向があり、それによって、それ自身に対して、かつそれの近傍のバッテリセルに対して過熱をもたらす。この過熱は、バッテリの劣化の加速をもたらす。
本開示は、バッテリ管理の仮想セル法のための方法、システム、及び装置に関する。少なくとも1つの実施形態において、バッテリ管理のための方法が開示される。方法は、バッテリセルの処理能力(例えば、電流(アンペア))及び/又は容量(アンペア時間)に基づいて、バッテリパックの中のバッテリセルに対して、少なくとも1つの仮想セルによって、シンキング及び/又はソーシング電流を介して電流平衡させることを含む。1以上の実施形態において、少なくとも1つの仮想セルは、少なくとも1つの劣化したバッテリセル又は少なくとも1つのあがったバッテリに対して、電流をシンク及び/又はソースすることができる。
1以上の実施形態において、本開示は、バッテリセルの能力に基づいてバッテリセルを電流平衡させるためのバッテリ管理の方法を教示する。開示される方法は、仮想セル管理コントローラによって、少なくとも1つのバッテリ層の電圧及び電流を受信することを含む。1以上の実施形態において、少なくとも1つのバッテリ層は、少なくとも1つのバッテリセルを備える。方法はさらに、仮想セル管理コントローラによって、バッテリパックの電圧及び電流を受信することを含む。少なくとも1つの実施形態において、バッテリパックは、バッテリセルの全てを備える。それに加えて、方法は、仮想セル管理コントローラによって、バッテリパックの電流を解析することによって、バッテリパックが充電しているのか、放電しているのか、又はアイドル状態にあるのかを判定することを含む。また、方法は、仮想セル管理コントローラによって、仮想セル管理コントローラが、バッテリパックが充電している又は放電しているうちのいずれかであると判定する場合に、基準電圧を決定することを含む。それに加えて、方法は、少なくとも1つの電圧コントローラによって、バッテリパックに対してバッテリパック電圧を提供することを含む。さらに、方法は、少なくとも1つの電圧コントローラによって、その関連するバッテリ層に対して、それぞれのバッテリ層電圧を提供することを含む。少なくとも1つの実施形態において、それぞれのバッテリ層電圧は、基準電圧及び少なくとも1つのバッテリ層の電圧に依存する。
1以上の実施形態において、仮想セル管理コントローラは、少なくとも1つの電圧コントローラの範囲内に統合される。いくつかの実施形態において、少なくとも1つのバッテリ層の範囲内に1より多い数のバッテリセルが存在する場合、バッテリセルはバッテリ層の範囲内において並列に一緒に接続される。少なくとも1つの実施形態において、1より多い数のバッテリ層が存在する場合、バッテリ層は直列に一緒に接続される。1以上の実施形態において、方法はさらに、システムコントローラによって、基準電圧、バッテリパックの電圧、バッテリパックの電流、少なくとも1つのバッテリ層の電圧、及び/又は少なくとも1つのバッテリ層の電流をロギング(logging)することを含む。
少なくとも1つの実施形態において、少なくとも1つの電圧コントローラは、比例‐積分‐微分(PID)のコントローラ、パルス幅変調(PWM)コントローラ、ゲートドライブ、及び/又は電力ステージを備える。1以上の実施形態において、電力ステージは、直流電流/直流電流(DC/DC)コンバータである。いくつかの実施形態において、DC/DCコンバータは、孤立した双方向フルブリッジのコンバータ、又は孤立した双方向ハーフブリッジのコンバータである。1以上の実施形態において、バッテリセルのうちの少なくとも1つはヒューズに接続される。
1以上の実施形態において、仮想セル管理コントローラは、バッテリ層の最大電圧及びバッテリ層の最小電圧を使用することによって、基準電圧を決定する。いくつかの実施形態において、バッテリパックが放電している場合、仮想セル管理コントローラは、バッテリ層の最小電流をさらに使用することによって、基準電圧を決定する。少なくとも1つの実施形態において、バッテリパックが充電している場合、仮想セル管理コントローラは、バッテリ層の最大電流をさらに使用することによって、基準電圧を決定する。
少なくとも1つの実施形態において、バッテリセルの能力に基づいてバッテリセルを電流平衡させるためのバッテリ管理のシステムが、開示される。開示されるシステムは、少なくとも1つのバッテリ層を備える。1以上の実施形態において、少なくとも1つのバッテリ層は、少なくとも1つのバッテリセルを備える。システムはさらに、バッテリパックを備える。いくつかの実施形態において、バッテリパックは、バッテリセルの全てを備える。また、システムは、少なくとも1つのバッテリ層の電圧及び電流を受信し;バッテリパックの電圧及び電流を受信し;バッテリパックの電流を解析することによって、バッテリパックが充電しているか、放電しているか、又はアイドル状態かを判定し;かつ仮想セル管理コントローラが、バッテリパックが充電している又は放電しているうちのいずれかであると判定する場合に、基準電圧を決定する仮想セル管理コントローラを備える。さらに、システムは、バッテリパックにバッテリパック電圧を提供し;かつ電圧コントローラに関連するバッテリ層にそれぞれのバッテリ層電圧を提供する少なくとも1つの電圧コントローラであって、それぞれのバッテリ層電圧は基準電圧及び少なくとも1つのバッテリ層の電圧に依存する、少なくとも1つの電圧コントローラを備える。
1以上の実施形態において、システムはさらに、基準電圧、バッテリパックの電圧、バッテリパックの電流、少なくとも1つのバッテリ層の電圧、及び/又は少なくとも1つのバッテリ層の電流をロギングするシステムコントローラを備える。
特徴、機能、及び利点は、本発明の種々の実施形態において単独で達成することができるか、又は他の実施形態において組み合わせることができる。
本開示の上記及び他の特徴、態様、及び利点に対する理解は、後述の説明、特許請求の範囲、及び添付図面を参照することにより深まるであろう。
図1は、本開示の少なくとも1つの実施形態による、通常のバッテリセルと劣化したバッテリセルとの間の内部抵抗における差異を示す概略図である。 図2は、本開示の少なくとも1つの実施形態による、通常のバッテリセルと劣化したバッテリセルとの間の放電容量における差異を示すグラフである。 図3は、電圧平衡器を採用する従来のバッテリ管理システムの概略図である。 図4は、バッテリパックの放電の間に劣化したバッテリセルが存在する、図3の電圧平衡器を採用する従来のバッテリ管理システムの概略図である。 図5は、バッテリパックの充電の間に劣化したバッテリセルが存在する、図3の電圧平衡器を採用する従来のバッテリ管理システムの概略図である。 図6は、本開示の少なくとも1つの実施形態による、各々のバッテリ層に対して実質的に仮想バッテリセルを採用する、開示されるバッテリ管理システムの概略図である。 図7は、本開示の少なくとも1つの実施形態による、健全なバッテリセル及び劣化したバッテリセルを保護するために、いかにして仮想バッテリセルが電流を提供するかを示す、図6の開示されるバッテリ管理システムの概略図である。 図8は、本開示の少なくとも1つの実施形態による、健全なバッテリセル及び容量衰退のために劣化したバッテリセルを守るために、いかにして仮想バッテリセルが電流を提供するかを示す、図6の開示されるバッテリ管理システムの概略図である。 図9は、本開示の少なくとも1つの実施形態による、2つの劣化したバッテリセルを補うために、いかにして2つの仮想バッテリセルが電流を提供するかを示す、図6の開示されるバッテリ管理システムの概略図である。 図10は、本開示の少なくとも1つの実施形態による、3つの劣化したバッテリセルを補うために、いかにして2つの仮想バッテリセルが電流を提供するかを示す、図6の開示されるバッテリ管理システムの概略図である。 図11は、本開示の少なくとも1つの実施形態による、各々のバッテリ層に対して電圧コントローラを採用し、かつ仮想セルに対して電圧セル管理(VCM)コントローラを採用する、バッテリ管理システムの概略図である。 図12は、本開示の少なくとも1つの実施形態による、図11の例示的なシステムに対するバッテリ管理のための開示される方法を示す流れ図である。 図13は、本開示の少なくとも1つの実施形態による、図11の開示されたバッテリ管理システムによって採用される、例示的な電圧コントローラの概略図である。 図14は、本開示の少なくとも1つの実施形態による、図13の電圧コントローラによって採用され得る、例示的な孤立した双方向フルブリッジのコンバータの概略図である。 図15は、本開示の少なくとも1つの実施形態による、図13の電圧コントローラによって採用され得る、例示的な孤立した双方向ハーフブリッジのコンバータの概略図である。
本明細書の中において開示される方法及び装置は、バッテリ管理のための仮想セル法に対する作動システムを提供する。具体的には、このシステムは、仮想バッテリセルに対して、各々のバッテリ層のための電圧コントローラ、及び電圧セル管理(VCM)コントローラを採用する。
本開示は、1)バッテリセル劣化及び故障状態のリアルタイムの検出、2)バッテリセルの健全性及び故障管理、及び3)バッテリセル寿命管理を、実行する仮想セル法に基づくインテリジェントなバッテリ管理システムを教示する。システム統合アーキテクチャは、開示されるシステムが、特定のバッテリ化学をフィットさせる任意の充電/放電プロトコルを組み込むことを可能にする。仮想セルは、バッテリセルの充電状態及び健全性の状態を感知し、かつ決定する手段を提供する。仮想セルはまた、それらの健全性の状態に従って、電流負荷を共有することによって、かつその負荷をバッテリセルに分配することによって、バッテリシステムをアクティブに管理する手段を提供し、それによって、健全なバッテリセルを過負荷になることから保護し、かつ劣化したバッテリセルを加速する劣化プロセスから保護する。本開示のシステムは、バッテリパック性能を向上させ、かつバッテリパックの寿命を延ばす。本開示のシステムが移動可能な又は静止した電力システムのバッテリに対して使用される場合、かなり大きな費用削減が達成され得る。
従来のバッテリ管理システムは、バッテリセルが同じ電圧を有することを強いるために、電圧平衡器(又は「イコライザー」として知られる)を使用する。この方法は、バッテリセルが等しく健全である場合(又は等しく不健全である場合)、バッテリセルの電圧を等しくし、かつ劣化プロセスを緩和させる。しかしながら、バッテリセルのうちの1以上に欠陥がある場合、又はそれが他のものよりも劣化している場合、電圧平衡器は、それが通常の電流よりも高い電流を用いて健全なバッテリセルに過負荷をかけるように強い、かつその間に劣化したバッテリセルが処理できるよりもかなり高い電流負荷を用いて劣化したバッテリセルを悪化させるので、バッテリセルを保護することができない。その後、バッテリセル劣化のプロセスは、これらの状況の下に加速する。電圧平衡器の問題を緩和させるために、従来の方法は、非常に厳しい設計制約を課し、かつ大きなバッテリを使用し、そのことは費用、重量、及び容積に関する問題をもたらす。これらの既存の解決法の中において電圧平衡器は、2つのグループへ分類され得る。第1のグループは、受動的な平衡器であり、それは、抵抗器、コンデンサ、及び誘導子などの、受動的な構成要素を平衡化ネットワークの中で採用する。受動的な平衡器の欠点は、それが抵抗の平衡器である場合、低い精度、遅い反応、及び低い効率を含むが、それらに限定されるものではない。第2のグループは、能動的な平衡器であり、それは、様々な電力コンバータなどの、能動的な構成要素を平衡化ネットワークの中で採用する。既存の能動的な平衡器の主要な問題は、典型的には、電流制限抵抗器が平衡器の中で使用され、それは電力消費に貢献し、かつ動的な反応を制限することである。これらの場合の両方において、平衡器は、バッテリセルの健全性の健全状態に基づいて、電流を共有しかつ分配するメカニズムを有していない。
既存の解決法は、それらが受動的でも能動的でも、バッテリセルが等しく健全であり又は等しく劣化している場合、上手く作用するが、それはまれな状況でありかつおそらく実際には見られないものである。バッテリセルが等しく健全ではない場合、既存の解決法は、それらが受け入れるように設計されているよりも高い電流を用いて、健全なバッテリセルに過負荷をかけ、かつそれらが処理できるよりも高い電流を用いて、不健全なバッテリセルを悪化させる。それ故、既存の解決法は、バッテリパックの劣化プロセスを加速させる。
本開示のシステムは、電流を動的に供給することができ、かつバッテリセルの健全状態に従って電流を分配することができる。そうすることによって、健全なバッテリセルの電流は、その設計値を超えず、かつ不健全なバッテリセルの電流は、その能力の範囲内で制御される。それ故、健全及び不健全な両方のバッテリセルが、保護される。全体のバッテリパックの劣化プロセスは抑制され、かつバッテリの寿命が延ばされる。本開示のシステムは、健全及び不健全な両方のバッテリセルを保護することができるので、バッテリパックの性能は、電力レベル及び寿命サイクルに関して、十分に検査されかつ高められ得る。システムは、バッテリセルの大きさのマージンをかなり低減し、かつ従来の設計の安全性のマージンを改良するので、このことは直接的に費用削減に結び付く。
以下の説明において、システムのより徹底した説明を提供するために、多くの詳細が説明される。しかしながら、当業者にとって、開示されるシステムがこれらの具体的な詳細なしに実施され得ることは、明らかである。その他の場合、システムを不要に分かりにくくしないために、周知の特徴については詳細に説明しない。
バッテリセルが経験し得る様々な異なる劣化及び故障のモードが存在する。特に、2つの主要なバッテリセル劣化モードが存在する。第1のバッテリセル劣化モードは内部抵抗の増加であり、かつ第2のバッテリセル劣化モードは容量の衰退である。図1及び図2は、これらの2つのモードを示している。
図1は、本開示の少なくとも1つの実施形態による、通常のバッテリセル110と劣化したバッテリセル120との間の内部抵抗130、140における差異を示す概略図100である。この図において、通常のバッテリセル110は、Rオーム130の内部抵抗を有するように示され、一方、劣化したバッテリセル120は、R’オーム140の内部抵抗を有するように示されている。R’は、Rよりも大きく、そのようにして、劣化したバッテリセル120は、通常のバッテリセル110よりも大きい内部抵抗を有する。内部抵抗におけるこの増加は、電解質、電極、接触などにおけるオームの過電圧増加によってもたらされる。
図2は、本開示の少なくとも1つの実施形態による、通常のバッテリセルと劣化したバッテリセルとの間の放電容量における差異を示すグラフ200である。この図において、グラフ200は、通常のバッテリセル及び劣化したバッテリセルに対する電圧と、アンペア時間(Ah)における放電容量との関係を描いている。グラフ200は、劣化したバッテリセルは、通常のバッテリセルよりも低い量の放電容量を有することを示している。この結果として得られる、劣化したバッテリセルに対する容量の衰退は、活物質の損失からもたらされる。
2つの主要なバッテリセル故障モードが存在することに注意すべきである。第1のバッテリセル故障モードは、バッテリセルが故障した場合、それは内部開回路として働くということである。このモードは、より一般的な場合であり、かつ本質的にバッテリパックにとって安全である。第2のバッテリセル故障モードは、バッテリセルが故障した場合、それはショートとして働くということである。このモードは、バッテリパックに対して破壊的な損傷をもたらし得る。
図3は、電圧平衡器330、359を採用する従来のバッテリ管理システム300の概略図である。この図において、システム300は2つの主要な部分を含み、それらは、バッテリアレイ360及び平衡化システム305である。バッテリアレイ(又はバッテリパックとしても言及される)360は、直列に一緒に接続される複数のバッテリ層310a‐k(例えば、k個のバッテリ層)を備えるように示されている。複数のバッテリセル320、340は、各々のバッテリ層310a‐kの範囲内にある(例えば、バッテリ層310aはバッテリセル320a‐nを備え、かつバッテリ層310kはバッテリセル340a‐nを備える)。バッテリセル320、340は、それらのそれぞれのバッテリ層310a、310kの範囲内で、並列に一緒に接続される。平衡化システム305は、それらのそれぞれのバッテリ層310a、310kに各々が接続される、電圧平衡器330、350を備えるように示されている(例えば、電圧平衡器330はバッテリ層310aに接続され、かつ電圧平衡器350はバッテリ層310kに接続される)。
図4は、バッテリパック360の放電の間に劣化したバッテリセル320aが存在する、図3の電圧平衡器330、350を採用する従来のバッテリ管理システム300の概略図である。この図において、バッテリパック360は正の電流(3I)を生み出すように示されているので、バッテリパック360は放電している。システム300は、2つのバッテリ層310、315を備えるように示され、ここで、各々のバッテリ層310、315は、3つのバッテリセル320、340を備える。
この図の中においてまた示されるように、バッテリセル340aは劣化したバッテリセルであり、かつ残っているバッテリセル320a‐c、340b‐cは、通常のバッテリセルである。通常のバッテリセルは、それらのバッテリ層の範囲内のバッテリセルの全てが健全であるならは、Iアンペア(amps)の電流を有する。バッテリセル340aは劣化しているので、今やそれは電流I−ΔIアンペアを有する。劣化したバッテリセル340aを含んでいるバッテリ層315と関連する電圧平衡器350は、そのバッテリ層315の中の他のバッテリセル340b、340cが、劣化したバッテリセル340aの中の電流の損失を補うために、電流における増加を有する原因となる。そのようにして、電圧平衡器350は、バッテリセル340b、340cが各々I+ΔI/2アンペアの電流を有する原因となる。
図5は、バッテリパック360の充電の間に劣化したバッテリセル340aが存在する、図3の電圧平衡器330、350を採用する従来のバッテリ管理システム300の概略図である。この図において、バッテリパック360は正の電流(3I)を受信するように示されているので、バッテリパック360は充電している。電圧平衡器350は、バッテリパック360が放電している、図4の中において描かれている場合と同様に作動するように示されている。
図4及び図5の中において示されるこの2×3のバッテリアレイの実施例に対して、従来の電圧平衡器が、電圧平衡器330、350に対して採用されることが想定されることは、注意すべきである。バッテリセル340aは劣化しており、かつそれ故、R+ΔRの抵抗を有し、ここで、ΔRは抵抗の増加であり、Rは全ての通常のバッテリセル320a‐c、340b‐cの各々によって所有される抵抗である。電圧平衡器330、350は電流を共有することができないので、これは電圧が一時的に不安定になる原因となる。そのようにして、バッテリバック360が放電している場合、バッテリ層310の電圧がバッテリ層315の電圧よりも大きく(V2>V1);かつバッテリパック360が充電している場合、バッテリ層310の電圧はバッテリ層315の電圧よりも小さい(V2<V1)。これらの図から見られ得るように、下側のバッテリ層315の中の通常のセル340b‐cの各々がΔI/2アンペアによって過負荷となり、ここで、Iアンペアは、バッテリ層の中のバッテリセルのうちの全てが通常である場合の、バッテリセル電流である。並列に一緒に接続されるn個のバッテリセルのバッテリ層に対して、以下の数式が示され得る。
Figure 0006250680
それ故、各々のバッテリセルは、劣化したバッテリセルと一緒に並列に接続され、以下の数式のように過負荷となる。
Figure 0006250680
この電流過負荷は、バッテリセルが加速したペースで劣化する原因となる。
図6は、本開示の少なくとも1つの実施形態による、各々のバッテリ層610、615の各々に対して実質的に仮想バッテリセル630、650を採用する、開示されるバッテリ管理システム600の概略図である。この図は、バッテリセルのショートの故障モードの状態の下において、いかにして仮想セル650が通常のバッテリセル620a‐c、640b‐cを壊滅的な不具合から保護するかを示している。
この図において、システム600は、2つのバッテリ層610、615を備えるように示され、ここで、各々のバッテリ層610、615は、3つのバッテリセル620、640を備える(すなわち、バッテリ層610はバッテリセル620a‐cを備え、かつバッテリ層615はバッテリセル640a‐cを備える)。バッテリセル620、640は、それらのそれぞれのバッテリ層610、615の範囲内で、並列に一緒に接続されるように示されている。バッテリセル620、640の各々は、それぞれの保護回路(例えば、ヒューズ)680、670に接続される。バッテリ層610、615は、直列に一緒に接続されるように示されている。2つの仮想セル630、650は、各々それらのそれぞれのバッテリ層610、615に接続される。開示されるシステムの他の実施形態に対して、2つのバッテリ層610、615以外が採用され得;各々のバッテリ層610、615に対して3つのバッテリセル620、640以外が採用され得;バッテリ層610、615は、互いに異なる数のバッテリセル620、640を有し得;2つの仮想セル630、650以外が採用され得;保護回路680、670は、採用されるかもしれないし採用されないかもしれず;及び/又はバッテリセル620、640のうちの全てが保護回路680、670に接続されるわけではないことは、注意されるべきである。
典型的なバッテリセルの故障モードは、開放回路である。ショートの故障が生じる場合、保護回路(例えば、ヒューズ)は、バッテリセルを切断するように活動し、それによって、それが開放回路となる原因となる。両方の場合において、あがったバッテリセルは何らの電流も供給することができない。この図において、バッテリセル640aは内部のショートの故障を経験し、それはバッテリパック660に対して壊滅的な損傷をもたらし得る。保護回路670aは、バッテリセル640aに接続され、バッテリセル640aを切断するように活動し、それによってそれが開放回路となる原因となる。この場合において仮想セル650は、フルバッテリセル電流Iを提供するように機能する。図6は、バッテリセル電流及び電圧のうちの全てが平衡され(すなわち、V2=V1)、かつそれ故、バッテリセル620a‐c、640b‐cは、壊滅的な不具合及び加速する劣化から保護されることを示している。
図7は、本開示の少なくとも1つの実施形態による、健全なバッテリセル620a‐c、640b‐c及び劣化したバッテリセル640aを保護するために、いかにして仮想バッテリセル650が電流を提供するかを示す、図6の開示されるバッテリ管理システム600の概略図である。この図は、劣化したバッテリセル640aの状態(内部抵抗の増加)の下において、いかにして仮想セル650が電流を提供し、かつ通常のバッテリセル620a‐c、640b‐cを加速する劣化から保護するかを示している。
劣化したバッテリセル640aが存在する場合、仮想セル650は、劣化したバッテリセル640aからもたらされる電流の欠損を補い、かつ健全なバッテリセル620a‐c、640b‐cを加速する劣化から保護する。この図において、バッテリセル640aは劣化したバッテリセルであり、かつ今やI−ΔI’アンペアの電流を有している。仮想セル650は、劣化したバッテリセル640aからもたらされる電流の欠損(ΔI’)を補う。この図の中において示されるように、通常のバッテリセル620a‐c、640b‐cの全ては、電流及び電圧の両方において平衡される。n個のバッテリセルが並列に一緒に接続される場合、仮想セルから提供される電流は、以下のものであることが示される。
Figure 0006250680
Figure 0006250680
上記の数式4の関係が存在するので、数式3を従来の平衡器の場合に適用される数式1と比較すると、以下の数式5の関係が得られる。
Figure 0006250680
数式5は、仮想セルが、劣化したセルがより少ない電流負荷を有する原因となり、かつそれ故、劣化プロセスが抑制されることを説明している。
全体として、仮想セル650は、電圧を瞬間的に平衡させることができる。これは、通常のセル620a‐c、640b‐cの全ての間で電流の平衡をもたらし、かつ劣化したセル640aに対して低減された電流をもたらし、それ故、通常のバッテリセル620a‐c、640b‐cを過負荷から保護し、かつ劣化したセル640aを加速する劣化から保護する。
図8は、本開示の少なくとも1つの実施形態による、健全なバッテリセル620a‐c、640b‐c及び容量衰退のために劣化したバッテリセル640aを保護するために、いかにして仮想バッテリセル650が電流を提供するかを示す、図6の開示されるバッテリ管理システム600の概略図である。この図は、(容量衰退のために)劣化したバッテリセル640aの状態の下に、いかにして仮想セル650が、欠損を補うために電流を供給するかを示しており、それによって、通常のセル620a‐c、640b‐cを過負荷から保護し、かつ劣化したセル640aを加速する劣化から保護する。
バッテリセル640aが容量において劣化する場合、電流を提供するその能力は、同じ外的な条件の下における通常のバッテリセル620a‐c、640b‐cと比較して低減される。仮想セル650は、瞬間的に電圧を平衡させることができるので、劣化したバッテリセル640aによる電流の欠損は、仮想セル650によって補われ、かつ通常のバッテリセル620a‐c、640b‐cのうちの全ての電流が平衡され、それによって、通常のバッテリセル620a‐c、640b‐cを過負荷から保護する。この図において、バッテリセル640aは容量衰退のために劣化したバッテリセルであり、かつそのようにして今やI−ΔI’アンペアの電流を有している。仮想セル650は、劣化したバッテリセル640aからもたらされる電流の欠損(ΔI’)を補う。内部抵抗増加のために劣化したセルの場合と同様に、この場合における電流の減少は、従来の電圧平衡器の場合における電流の減少よりも大きい。それ故、劣化したセル340aの劣化プロセスは抑制される。
容量劣化したバッテリセルの電流欠損を補う仮想セル法は、容量衰退の関数としてどれだけ電流が減少するかから独立していることに注意しなさい。電流を提供するバッテリセルの能力は、容量衰退に従って減少する。仮想セルは、単に電流を供給して、バッテリパック660に対する平衡した電圧の状態の下で、電流欠損が何であれそれを補うことが注意されるべきである。
図9は、本開示の少なくとも1つの実施形態による、2つの劣化したバッテリセル620c、640aを補うために、いかにして2つの仮想バッテリセル630、650が電流を提供するかを示す、図6の開示されるバッテリ管理システム600の概略図である。そして図10は、本開示の少なくとも1つの実施形態による、3つの劣化したバッテリセル620c、640a、640bを補うために、いかにして2つの仮想バッテリセル630、650が電流を提供するかを示す、図6の開示されるバッテリ管理システム600の概略図である。
(図9において示されるように)1より多い数の劣化したバッテリセルの場合、及び(図10において示されるように)劣化したバッテリセルがバッテリパック660の異なるバッテリ層の中に配置されている場合、仮想セルシステム600は、全てのバッテリ層610、615に対して、かつ全ての通常のバッテリセル(図9に対して620a‐b、640b‐c、及び図10に対して620a‐b、640c)に対して、電圧及び電流の平衡化を同時かつ瞬間的に実行することができる。劣化したバッテリセル(図9に対して620c、640a、及び図10に対して620c、640a‐b)からもたらされる電流欠損は、抵抗増加又は容量衰退のいずれかから、又はそれらの両方からであっても、仮想セル630、650から自動的に補われる。そのようにして、通常のバッテリセルの全て(図9に対して620a‐b、640b‐c、及び図10に対して620a‐b、640c)は、過負荷から保護され、かつ劣化したバッテリセルの全て(図9に対して620c、640a、及び図10に対して620c、640a‐b)ては、加速する劣化から保護される。
図11は、本開示の少なくとも1つの実施形態による、各々のバッテリ層1110a‐kに対して電圧コントローラ1130a‐kを採用し、かつ仮想セル1105に対して電圧セル管理(VCM)コントローラ1190を採用する、バッテリ管理システム1100の概略図である。この実装において、仮想セルシステム1100は、バッテリアレイ(又はバッテリパック)1160のk個の直列接続したバッテリ層1110a‐kに対応する、k個の電圧コントローラ1130a‐kを有する。各々の電圧コントローラ1130a‐kは、その関連するバッテリ層1110a‐kに接続される。各々のバッテリ層1110a‐kは、n個のバッテリセル1120a‐n、1140a‐nを備える。バッテリセル1120a‐n、1140a‐nは、それらのそれぞれのバッテリ層1110a‐kの範囲内で並列に一緒に接続される。各々のバッテリセル1120a‐n、1140a‐nは、そのそれぞれの保護回路(例えば、ヒューズ)1180a‐n、1170a‐nに接続される。仮想セル管理(VCM)コントローラ1190は、電圧コントローラ1130a‐k、バッテリ層1110a‐k、及びバッテリパック1160に接続される。
他の実施形態において、システム1100は、図11の中において示されるような、k個の仮想コントローラ1130a‐kよりも少ない構成を採用し得ることは、注意されるべきである。特に、k個の仮想コントローラ1130a‐kの機能性は、単一の仮想コントローラユニット1130a‐kによって実行され得(すなわち、この場合、システム1100はただ1つの仮想コントローラ1130a‐kだけを有する)、又はk個の仮想コントローラ1130a‐kよりも少ない構成によって実行され得る。それに加えて、いくつかの実施形態において、VCMコントローラ1190が、少なくとも1つの仮想コントローラ1130a‐kの範囲内において統合され得ることは、注意されるべきである。これらの実施形態に対して、VCMコントローラ1190及び少なくとも1つの仮想コントローラ1130a‐kは、単一のユニットの範囲内において一緒に統合され得、それはシステム1100の中で実装され得る。
各々の電圧コントローラ1130a‐kの出力ターミナルは、その対応するバッテリ層1110a‐kの正及び負のターミナルに接続され、一方、各々の電圧コントローラ1130a‐kの入力ターミナルは、通常、バッテリパック1160の正及び負のターミナルに接続される。このやり方において、電圧コントローラ1130a‐kの全ての入力電圧は、バッテリ出力電圧と等しく、一方、電圧コントローラ1130a‐kの全ての出力電圧は、図11の中において描かれている実施形態に対して、(バッテリ出力電圧)/kに等しくなるように制御される。
様々な異なる実施形態に対して、様々な他の装置(例えば、別のバッテリ、直流(DC)電源など)が、電圧コントローラ1130a‐kの入力側と接続するために、開示されるシステム1100によって採用され得ることは、注意されるべきである。これらの実施形態に対して、電圧コントローラ1130a‐kの全ての入力電圧は、バッテリ出力電圧と等しく、かつ電圧コントローラ1130a‐kの全ての出力電圧は、(バッテリ出力電圧)/kに等しくなるように制御されるという記述は、正しくない。
電圧コントローラ1130a‐kは、それらが電流をソース又はシンクすることができるように、制御される。入力電圧は常に正なので、これは、電圧コントローラ1130a‐kがバッテリパック1160から電力を引くか、又はバッテリパック1160に電力を送り戻すかのいずれかを行うことができることを意味する。他の実施形態において、他の様々な装置が、電圧コントローラ1130a‐kの入力側に接続するために使用され得ることは、注意されるべきである。バッテリパック160に電圧をソースするために採用され得る他の様々な装置の実施例は、別のバッテリ及び直流(DC)電源を含むが、それらに限定されるものではない。
VCMコントローラ1190は、各々の対応するバッテリ層1110a‐kから電圧及び電流信号(Vn、In、n=1、2、…k)を受信し、かつバッテリパック1160から電圧及び電流信号(V0、I0)を受信する。VCMコントローラ1190は、電圧コントローラ1130a‐kに制御信号(Vref)を送る。各々のバッテリ層1110a‐kの状態は、バッテリの健全性及び寿命管理のために、VCMコントローラ1190によって収集され、かつ(図示せぬ)システムコントローラに対して送られる1195。
図12は、本開示の少なくとも1つの実施形態による、図11の例示的なシステムに対するバッテリ管理のための、開示される方法を示す流れ図1200である。方法1200の開始1205において、ステップは最初にゼロ(0)に初期化される。その後、VCMコントローラ1190は、バッテリパック1160及び各々のバッテリ層1110a‐kからの電流(Ii、ここでi=0、1、2、…k)を測定し、かつバッテリパック1160及び各々のバッテリ層からの電圧(Vi、ここでi=0、1、2、…k)を測定する。その後、VCMコントローラ1190は、バッテリパック1160の電流(I0)を解析することによって、バッテリパック1160が放電しているか、充電しているか、又はアイドル状態にあるかを判定する1220。バッテリパック1160の電流(I0)がゼロ(0)より大きい場合、VCMコントローラ1190は、バッテリパック1160が放電している(すなわち、電流はバッテリパック1160から流れ出ている)と判定し;電流(I0)がゼロ(0)より小さい場合、VCMコントローラ1190は、バッテリパック1160が充電している(すなわち、電流はバッテリパック1160の中へ流れ込んでいる)と判定し;かつ電流(I0)がゼロ(0)に等しい場合、VCMコントローラ1190は、バッテリパック1160がアイドル状態である(すなわち、電流はバッテリパック1160に流れ込んでも流れ出してもいない)と判定する。
VCMコントローラ1190が、バッテリパック1160が放電していると判定する場合、VCMコントローラ1190は、Vmax、Vmin、ΔV、及びIminを決定する1225。Vmaxは、バッテリ層1110a‐kのうちの全ての最大電圧と等しく、Vminは、バッテリ層1110a‐kのうちの全ての最小電圧と等しく、ΔVは、Vmax−Vminと等しく、かつIminは、バッテリ層1110a‐kのうちの全ての最小電流と等しい。その後、VCMコントローラ1190は、ΔVがΔVcrdより小さいか否かを判定し1230、ここで、Vcrdは、放電の間の2つのバッテリ層1110a‐kの間の許容可能な最大の電圧差と等しく、それは所定の正の値である。
VCMコントローラ1190が、ΔVがΔVcrdよりも小さいと判定する場合、VCMコントローラ1190は、ステップがゼロ(0)より大きいか否かを判定する1235。VCMコントローラ1190が、ステップがゼロ(0)より大きくないと判定する場合、その後、VCMコントローラはVrefがVmaxと等しくなるように設定する1240。また、VCMコントローラ1190が、ΔVがΔVcrdより小さくないと判定する場合、その後、VCMコントローラはVrefがVmaxと等しくなるように設定する1240。
しかしながら、VCMコントローラ1190が、ステップがゼロ(0)より大きいと判定する場合:Iminがゼロより大きい場合、VCMコントローラ1190は、VrefがVref−ΔVd(ここで、ΔVdは放電の間に電圧を調整するための所定の正の値に等しい)と等しくなるように設定し;Iminがゼロより小さい場合、VCMコントローラ1190は、VrefがVref+ΔVdと等しくなるように設定し;かつIminがゼロと等しい場合、VCMコントローラ1190は、VrefがVrefと等しくなるように設定する1245。その後、VCMコントローラ1190は、電圧コントローラ1130a‐k(番号1からk)のうちの全てに対してVrefを設定する1250。
VCMコントローラ1190が、バッテリパック1160が充電していると判定する場合、VCMコントローラ1190は、Vmax、Vmin、ΔV、及びIminを決定する1260。Vmaxは、バッテリ層1110a‐kのうちの全ての最大電圧と等しく、Vminは、バッテリ層1110a‐kのうちの全ての最小電圧と等しく、ΔVは、Vmax−Vminと等しく、かつImaxは、バッテリ層1110a‐kのうちの全ての最大電流と等しい。その後、VCMコントローラ1190は、ΔVがΔVcrcより小さいか否かを判定し1265、ここで、Vcrcは、充電の間の2つのバッテリ層1110a‐kの間の許容可能な最大の電圧差と等しく、それは所定の正の値である。
VCMコントローラ1190が、ΔVがΔVcrcよりも小さいと判定する場合、VCMコントローラ1190は、ステップがゼロ(0)より大きいか否かを判定する1270。VCMコントローラ1190が、ステップがゼロ(0)より大きくないと判定する場合、その後、VCMコントローラはVrefがVminと等しくなるように設定する1275。また、VCMコントローラ1190が、ΔVがΔcrdより大きくないと判定する場合、その後、VCMコントローラはVrefがVminと等しくなるように設定する1275。
しかしながら、VCMコントローラ1190が、ステップがゼロ(0)より大きいと判定する場合:Imaxがゼロより大きい場合、VCMコントローラ1190は、VrefがVref−ΔVc(ここで、ΔVcは充電の間に電圧を調整するための所定の正の値に等しい)と等しくなるように設定し;Imaxがゼロより小さい場合、VCMコントローラ1190は、VrefがVref+ΔVcと等しくなるように設定し;かつImaxがゼロと等しい場合、VCMコントローラ1190は、VrefがVrefと等しくなるように設定する1280。その後、VCMコントローラ1190は、電圧コントローラ1130a‐k(番号1からk)のうちの全てに対してVrefを設定する1285。
Vrefが電圧コントローラ1130a‐kのうちの全てに対して設定された後、電圧及び/又は電流データ(例えば、基準電圧(Vref)、バッテリパックの電圧(V0)、バッテリパックの電流(I0)、少なくとも1つのバッテリ層の電圧(V1‐Vk)、及び/又は少なくとも1つのバッテリ層の電流(I1‐Ik))は、随意に、システムコントローラに送られかつロギングされる1290。その後、ステップ番号は1つ(1)増加される1295。ステップ番号が1つ増加された後、方法1200はステップ1215からの開始を繰り返す。
図13は、本開示の少なくとも1つの実施形態による、図11の開示されるバッテリ管理システム1100によって採用される、例示的な電圧コントローラ1130の概略図である。この図において、Vref、及びバッテリ層からの電圧(Vi、ここで、i=1、2、…k)は、電圧コントローラ1130の中へ入力されるように示されている。その後、Vref、及びバッテリ層からの電圧は、足し合わされる1310(実際には、アナログ加算器1310がマイナスの作動を実行することに注意せよ)。その後、結果としての信号は、比例‐積分‐微分(PID)コントローラ1320の中へ入力される。その後、PIDコントローラ1320から出力された信号は、パルス幅変調(PWM)コントローラ1330の中へ入力される。その後、PWMコントローラ1330から出力された信号は、ゲートドライブ1340の中へ入力される。その後、ゲートドライブ1340は、電力ステージ1350のトランジスタに電圧を送る。その後、電力ステージ1350は、バッテリパック1160に電圧(V0)を提供し、かつバッテリ層1110a‐kの各々に電圧(Vi、i=1、2、…k)を提供する。
k個の電圧コントローラ1130の各々に対して、ただ2つのみの電圧が入力として必要とされる(すなわち、1つは基準電圧(Vref)であり、かつもう1つは、電圧コントローラ1130に関連するバッテリ層に対応する電圧(Vi)である)。そのようにして、各々の電圧コントローラ1130は、Vrefを、バッテリ層の全ての電圧(すなわち、Vi、ここで、i=1、2、…k)とは足し合わせない1310。しかしむしろ、電圧コントローラ1130は、Vrefを、電圧コントローラ1130に対応するバッテリ層に対する電圧(Vi)のみと足し合わせる1310。例えば、バッテリ層2に対して、Vref及びV2は、電圧コントローラに対する入力として使用され、かつ引き続いて電圧コントローラ1130によって一緒に足し合わされる1310。
図14は、本開示の少なくとも1つの実施形態による、図13の電圧コントローラ1130によって採用され得る、例示的な孤立した双方向フルブリッジのコンバータ1400の概略図である。図15は、本開示の少なくとも1つの実施形態による、図13の電圧コントローラ1130によって採用され得る、例示的な孤立した双方向ハーフブリッジのコンバータ1500の概略図である。特に、図14及び図15の中において描かれているコンバータ1400、1500は、図13の電圧コントローラ1130の電力ステージ1350に対して採用され得る。他の実施形態において、図14及び図15の中において示されているコンバータ以外の他のコンバータが、電圧コントローラ1130の電力ステージ1350に対して、開示されるシステムによって採用され得ることは、注意されるべきである。
特定の例示的な実施形態及び方法が本明細書の中に開示されたが、前述の開示内容から、当業者には、本開示の精神及び範囲から逸脱することなくこのような実施形態及び方法に変更及び修正を加えることが可能であることは明らかであろう。その他多数の本開示の実施例があり、各実施例はその詳細事項においてのみ他と異なる。したがって、本開示は特許請求の範囲及び適用法の規則及び原理によって要求される範囲にのみ制限されることが意図されている。

Claims (20)

  1. バッテリセルの能力に基づいて、前記バッテリセルを電流平衡させるためのバッテリ管理の方法であって、前記方法は:
    仮想セル管理コントローラによって、少なくとも1つのバッテリ層であって前記バッテリセルのうちの少なくとも1つを備える少なくとも1つのバッテリ層の電圧及び電流を受信すること;
    前記仮想セル管理コントローラによって、バッテリパックであって前記バッテリセルのうちの全てを備えるバッテリパックの電圧及び電流を受信すること;
    前記仮想セル管理コントローラによって、前記バッテリパックの前記電流を解析することによって、前記バッテリパックが、充電している、放電している、及びアイドル状態であるのうちのいずれの1つに該当するかを判定すること;
    前記仮想セル管理コントローラが前記バッテリパックが充電している及び放電しているのうちのいずれかの1つに該当すると判定するとき、前記仮想セル管理コントローラによって、基準電圧を決定すること;
    少なくとも1つの電圧コントローラによって、前記バッテリパックに対してバッテリパック電圧を提供すること;及び
    前記バッテリパック電圧は、前記電圧コントローラによって、関連する前記バッテリ層の電圧と前記基準電圧とに基づいてバッテリ層電圧として提供されることを含む、方法。
  2. 前記少なくとも1つのバッテリ層の範囲内に、1より多い数の前記バッテリセルが存在するとき、前記バッテリセルは、前記少なくとも1つのバッテリ層の範囲内において、並列に一緒に接続される、請求項1に記載の方法。
  3. 1より多い数の前記バッテリ層が存在するとき、前記バッテリ層は直列に一緒に接続される、請求項1に記載の方法。
  4. システムコントローラによって、前記基準電圧、前記バッテリパックの前記電圧、前記バッテリパックの前記電流、前記少なくとも1つのバッテリ層の前記電圧、及び前記少なくとも1つのバッテリ層の前記電流のうちの少なくとも1つをロギングすることをさらに含む、請求項1に記載の方法。
  5. 前記少なくとも1つの電圧コントローラは、比例‐積分‐微分(PID)コントローラ、パルス幅変調(PWM)コントローラ、ゲートドライブ、及びパワーステージのうちの少なくとも1つを備える、請求項3に記載の方法。
  6. 前記仮想セル管理コントローラは、前記少なくとも1つのバッテリ層の最大電圧、及び前記少なくとも1つのバッテリ層の最小電圧を使用することによって、前記基準電圧を決定する、請求項1に記載の方法。
  7. 前記バッテリパックが放電しているとき、前記仮想セル管理コントローラは、前記少なくとも1つのバッテリ層の最小電流をさらに使用することによって、前記基準電圧を決定する、請求項6に記載の方法。
  8. 前記バッテリパックが充電しているとき、前記仮想セル管理コントローラは、前記少なくとも1つのバッテリ層の最大電流をさらに使用することによって、前記基準電圧を決定する、請求項6に記載の方法。
  9. バッテリセルの能力に基づいて、バッテリセルを電流平衡させるためのバッテリ管理のシステムであって、前記システムは:
    少なくとも1つのバッテリ層であって、前記バッテリセルのうちの少なくとも1つを備える少なくとも1つのバッテリ層;
    バッテリパックであって、前記バッテリセルのうちの全てを備える、バッテリパック;
    仮想セル管理コントローラであって、前記少なくとも1つのバッテリ層の電圧及び電流を受信し、前記バッテリパックの電圧及び電流を受信し、前記バッテリパックの前記電流を解析することによって、前記バッテリパックが、充電している、放電している、及びアイドル状態であるのうちのいずれの1つに該当するかを判定し、かつ仮想セル管理コントローラが前記バッテリパックが充電している及び放電しているのうちのいずれかの1つに該当すると判定するとき、基準電圧を決定する、仮想セル管理コントローラ;及び
    少なくとも1つの電圧コントローラであって、前記バッテリパックに対してバッテリパック電圧を提供し、かつ前記電圧コントローラと関連する前記バッテリ層に対して、前記基準電圧と前記バッテリ層の電圧とに基づいてバッテリ層電圧としてバッテリパック電圧を提供する電圧コントローラを備える、システム。
  10. 前記仮想セル管理コントローラは、前記少なくとも1つの電圧コントローラの範囲内に統合される、請求項9に記載のシステム。
  11. 前記少なくとも1つのバッテリ層の範囲内に、1より多い数の前記バッテリセルが存在するとき、前記バッテリセルは、前記少なくとも1つのバッテリ層の範囲内において、並列に一緒に接続される、請求項9に記載のシステム。
  12. 1より多い数の前記バッテリ層が存在するとき、前記バッテリ層は直列に一緒に接続される、請求項9に記載のシステム。
  13. 前記基準電圧、前記バッテリパックの前記電圧、前記バッテリパックの前記電流、前記少なくとも1つのバッテリ層の前記電圧、及び前記少なくとも1つのバッテリ層の前記電流のうちの少なくとも1つをロギングする、システムコントローラをさらに備える、請求項9に記載のシステム。
  14. 前記少なくとも1つの電圧コントローラは、比例‐積分‐微分(PID)コントローラ、パルス幅変調(PWM)コントローラ、ゲートドライブ、及びパワーステージのうちの少なくとも1つを備える、請求項9に記載のシステム。
  15. 前記パワーステージは、直流電流/直流電流(DC/DC)コンバータである、請求項14に記載のシステム。
  16. 前記DC/DCコンバータは、孤立した双方向フルブリッジのコンバータ、及び孤立した双方向ハーフブリッジのコンバータのうちの1つである、請求項15に記載のシステム。
  17. 前記少なくとも1つのバッテリセルのうちの少なくとも1つは、ヒューズに接続される、請求項9に記載のシステム。
  18. 前記仮想セル管理コントローラは、前記少なくとも1つのバッテリ層の最大電圧、及び前記少なくとも1つのバッテリ層の最小電圧を使用することによって、前記基準電圧を決定する、請求項9に記載のシステム。
  19. 前記バッテリパックが放電しているとき、前記仮想セル管理コントローラは、前記少なくとも1つのバッテリ層の最小電流をさらに使用することによって、前記基準電圧を決定する、請求項18に記載のシステム。
  20. 前記バッテリパックが充電しているとき、前記仮想セル管理コントローラは、前記少なくとも1つのバッテリ層の最大電流をさらに使用することによって、前記基準電圧を決定する、請求項18に記載のシステム。
JP2015531917A 2012-09-17 2013-06-24 バッテリ管理のための仮想セル法 Active JP6250680B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/621,769 US9991723B2 (en) 2012-09-17 2012-09-17 Virtual cell method for battery management
US13/621,769 2012-09-17
PCT/US2013/047331 WO2014042740A2 (en) 2012-09-17 2013-06-24 Virtual cell method for battery management

Publications (2)

Publication Number Publication Date
JP2015534434A JP2015534434A (ja) 2015-11-26
JP6250680B2 true JP6250680B2 (ja) 2017-12-20

Family

ID=48747782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015531917A Active JP6250680B2 (ja) 2012-09-17 2013-06-24 バッテリ管理のための仮想セル法

Country Status (5)

Country Link
US (1) US9991723B2 (ja)
EP (1) EP2859642B1 (ja)
JP (1) JP6250680B2 (ja)
CN (1) CN104620462B (ja)
WO (1) WO2014042740A2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140253040A1 (en) * 2013-03-07 2014-09-11 Apple Inc. Preventive balancing technique for battery packs in portable electronic devices
NL2013929B1 (en) * 2014-12-05 2016-10-11 Gemex Consultancy B V Power optimization for battery powered street lighting system.
US11621441B2 (en) 2018-07-27 2023-04-04 The Boeing Company Li-Ion battery high voltage distribution system architecture
GB2580373B (en) * 2019-01-07 2021-04-28 Tanktwo Oy Modular battery system
US11495976B2 (en) * 2019-10-01 2022-11-08 Samsung Sdi Co., Ltd. Battery system and method for controlling battery system
CN110729798B (zh) * 2019-11-18 2021-01-29 溧阳中科海钠科技有限责任公司 钠离子电池组电压一致性的控制方法和控制***
KR102659479B1 (ko) * 2020-03-27 2024-04-23 동관 파워앰프 테크놀로지 리미티드 병렬 배터리 팩 충방전 관리 방법, 전자 장치 및 전기 시스템
US11125707B1 (en) * 2020-08-18 2021-09-21 Element Energy, Inc. Methods and systems for in-situ impedance spectroscopy analysis of battery cells in multi-cell battery packs
DE102020123864A1 (de) 2020-09-14 2022-03-17 Preh Gmbh Verfahren und Vorrichtung zum aktiven Balancieren von Batteriezellen mehrzelliger Energiespeicherr

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014013A (en) 1998-12-16 2000-01-11 Space Systems/Loral, Inc. Battery charge management architecture
JP2003102132A (ja) 2001-09-25 2003-04-04 Nisshinbo Ind Inc 蓄電電源装置及びその充電制御方法
US6777908B2 (en) * 2002-05-13 2004-08-17 Qualcomm Incorporated Method and apparatus for correcting and maintaining voltage balance in multiple cell battery configurations
US6873134B2 (en) 2003-07-21 2005-03-29 The Boeing Company Autonomous battery cell balancing system with integrated voltage monitoring
US7554294B2 (en) 2005-01-28 2009-06-30 The Johns Hopkins University Battery health monitor
JP4367374B2 (ja) * 2005-05-16 2009-11-18 パナソニック株式会社 蓄電装置
FI118656B (fi) 2006-05-05 2008-01-31 Finnish Electric Vehicle Techn Menetelmä ja laitteisto akkukennojen hoitamiseksi
US8058844B2 (en) 2006-05-31 2011-11-15 Aeroflex Plainview, Inc. Low-power battery system
CN101471577B (zh) * 2007-12-29 2011-06-15 比亚迪股份有限公司 双节可充电电池电压平衡电路
CN201402987Y (zh) * 2008-12-31 2010-02-10 广州西格美信电子科技有限公司 具有电池管理***的电池组
US8148942B2 (en) 2009-11-05 2012-04-03 O2Micro International Limited Charging systems with cell balancing functions
AU2010349140B2 (en) 2010-03-26 2014-03-06 Mitsubishi Electric Corporation Charge state estimation apparatus
WO2012042401A2 (en) 2010-09-29 2012-04-05 Sendyne Corp. Charge balancing system
JP5670212B2 (ja) 2011-01-28 2015-02-18 日立マクセル株式会社 電池ユニット

Also Published As

Publication number Publication date
WO2014042740A2 (en) 2014-03-20
JP2015534434A (ja) 2015-11-26
EP2859642B1 (en) 2019-01-09
EP2859642A2 (en) 2015-04-15
US20140077765A1 (en) 2014-03-20
CN104620462B (zh) 2019-10-08
WO2014042740A3 (en) 2014-05-08
CN104620462A (zh) 2015-05-13
US9991723B2 (en) 2018-06-05

Similar Documents

Publication Publication Date Title
JP6250680B2 (ja) バッテリ管理のための仮想セル法
JP5859341B2 (ja) 電圧均等化装置及び方法並びにプログラム、それを備えた電力貯蔵システム
US20140009116A1 (en) Balance correction apparatus and electric storage system
US11569668B2 (en) System and method for dynamic balancing power in a battery pack
JP2007300701A (ja) 車両用の電源装置
JP2010032412A (ja) 車両用の電源装置
JP2010063353A (ja) 変圧器を用いたセル平衡化システム
JP2011083182A (ja) 複数の電池セル間のエネルギー均衡を用いる電池管理システム
JPWO2013118271A1 (ja) 並列蓄電システムおよびその制御方法
JP2013179763A (ja) 充電方式の電池管理システム及びその方法
US9178367B2 (en) Balance correction apparatus and electric storage system
US9583952B2 (en) Shunt circuit, charging system and integrated circuit
JP2013116006A (ja) 電池均等化装置および方法
JP5744598B2 (ja) バランス補正装置および蓄電システム
CN112384405B (zh) 控制车辆中的电池***的方法
KR20190048972A (ko) 리튬전지 및 캐패시터의 셀 밸런싱을 통한 시동용 배터리 시스템
US20230179002A1 (en) System and method for dynamic balancing power in a battery pack
KR20090103132A (ko) 울트라 커패시터 균등 충전장치 및 그 충전방법
KR101846989B1 (ko) 다중셀 배터리의 액티브 밸런싱 회로
JP2016040999A (ja) 蓄電池装置の充電状態均等化方法
JP2013146159A (ja) 組電池の充電制御システムおよび充電制御方法
JP2011172433A (ja) 電池電圧監視装置
Hussein et al. A Prototype Development and Implementation of a Fast Lithium Battery Packs Active On-Load Balancing System
US20230140732A1 (en) Method for controlling a battery system
US20230327460A1 (en) Active battery balancer using spare cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171122

R150 Certificate of patent or registration of utility model

Ref document number: 6250680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250