JP6246473B2 - Carbonaceous fuel gasifier - Google Patents

Carbonaceous fuel gasifier Download PDF

Info

Publication number
JP6246473B2
JP6246473B2 JP2013038954A JP2013038954A JP6246473B2 JP 6246473 B2 JP6246473 B2 JP 6246473B2 JP 2013038954 A JP2013038954 A JP 2013038954A JP 2013038954 A JP2013038954 A JP 2013038954A JP 6246473 B2 JP6246473 B2 JP 6246473B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
bank
tube bank
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013038954A
Other languages
Japanese (ja)
Other versions
JP2014167043A (en
Inventor
洋輔 住田
洋輔 住田
柴田 泰成
泰成 柴田
治 品田
治 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013038954A priority Critical patent/JP6246473B2/en
Publication of JP2014167043A publication Critical patent/JP2014167043A/en
Application granted granted Critical
Publication of JP6246473B2 publication Critical patent/JP6246473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Description

本発明は、炭素質燃料ガス化装置に関し、より具体的には、運転中に伝熱管バンクの除煤を行う炭素質燃料ガス化装置に関するものである。   The present invention relates to a carbonaceous fuel gasifier, and more specifically to a carbonaceous fuel gasifier that removes a heat transfer tube bank during operation.

炭素質燃料ガス化装置は例えば石炭ガス化複合発電(IGCC: Integrated coal Gasification Combined Cycle)に利用されている。石炭ガス化複合発電施設では、ガス化装置で微粉炭(石炭)等の炭素質燃料をガス化して得た可燃性ガスによるガスタービンの駆動力と、ガスタービンの排熱等を回収して得られる蒸気タービンの駆動力によって発電する。ここでいう炭素質燃料は、微粉炭(石炭)の他、農業生産物又は副産物、木材、植物等の生物体等のバイオマス燃料も含まれる。   Carbonaceous fuel gasifiers are used for, for example, integrated coal gasification combined cycle (IGCC). In the coal gasification combined power generation facility, it is obtained by recovering the driving power of the gas turbine by the combustible gas obtained by gasifying carbonaceous fuel such as pulverized coal (coal) with the gasifier and the exhaust heat of the gas turbine. Power is generated by the driving force of the steam turbine. The carbonaceous fuel referred to here includes biomass fuel such as agricultural products or by-products, organisms such as wood and plants, in addition to pulverized coal (coal).

上記のように石炭ガス化複合発電施設に利用される炭素質燃料ガス化装置としては、例えば、図7に示すように、微粉炭、チャー(微粉炭中の未燃炭素分と灰分を含む粉状体)、酸化剤等を反応させ可燃性のガスを生成するガス化部110と、ガス化部110と連通した熱交換部120とを有するものが知られている。この熱交換部120には、ガス化部110で生成された生成ガスとの熱交換を行う複数の伝熱管バンク121〜124が設けられ、ガス化部にて生成された可燃性のガスが前記ガスタービンの駆動等に利用されるようになっている。   Examples of the carbonaceous fuel gasifier used in the coal gasification combined power generation facility as described above include pulverized coal, char (powder containing unburned carbon and ash in pulverized coal, as shown in FIG. A gasification unit 110 that generates a combustible gas by reacting an oxidant and the like, and a heat exchange unit 120 that communicates with the gasification unit 110 is known. The heat exchange unit 120 is provided with a plurality of heat transfer tube banks 121 to 124 that perform heat exchange with the generated gas generated in the gasification unit 110, and the combustible gas generated in the gasification unit is It is used for driving a gas turbine.

ここで、前記各伝熱管バンク121〜124は、図2に示すように、伝熱管を複数回に亘って折り返すことにより、熱交換部120における生成ガス流通方向に伝熱管を並設させたものである。また、各伝熱管バンク121〜124の伝熱管の中には水や蒸気等の熱媒体が流通しており、伝熱管を介して熱媒体と可燃性ガスとの間で熱交換が行われることにより可燃性ガスの温度が低下する。   Here, as shown in FIG. 2, each of the heat transfer tube banks 121 to 124 has the heat transfer tubes arranged in parallel in the direction of the product gas flow in the heat exchanging unit 120 by folding the heat transfer tubes a plurality of times. It is. In addition, a heat medium such as water or steam circulates in the heat transfer tubes of the heat transfer tube banks 121 to 124, and heat exchange is performed between the heat medium and the combustible gas via the heat transfer tubes. As a result, the temperature of the combustible gas decreases.

一方、各伝熱管バンク121〜124は可燃性ガスの冷却以外の機能も有する。例えば、特許文献1の装置には4つの伝熱管バンクが設けられており、各伝熱管バンクはそれぞれ、伝熱管の中を流通する蒸気を過熱して蒸気タービンの駆動に用いられる過熱蒸気を生成する過熱器や、伝熱管の中を流通する水を蒸発させる蒸発器や、前記蒸発器に供給するための水を加熱する節炭器として機能する。   On the other hand, each heat exchanger tube bank 121-124 has functions other than cooling of combustible gas. For example, the apparatus of Patent Document 1 is provided with four heat transfer tube banks, and each heat transfer tube bank superheats steam flowing through the heat transfer tubes to generate superheated steam used to drive a steam turbine. It functions as a superheater, an evaporator that evaporates the water circulating in the heat transfer tube, and a economizer that heats the water supplied to the evaporator.

このように、各伝熱管バンク121〜124は、可燃性ガスの温度を下げる機能と、可燃性ガスと熱交換した熱媒体を他の機器に供給する機能とを有し、さらに、各伝熱管バンク121〜124は上記のように互いに連携して機能する場合も多いので、各伝熱管バンク121〜124が常に要求される機能を発揮することが望ましい。   As described above, each of the heat transfer tube banks 121 to 124 has a function of lowering the temperature of the combustible gas, a function of supplying the heat medium exchanged with the combustible gas to other devices, and each heat transfer tube. Since the banks 121 to 124 often function in cooperation with each other as described above, it is desirable that the heat transfer tube banks 121 to 124 always perform the required functions.

しかしながら、ガス化炉部110で生成され熱交換部120に送られる可燃性ガスの中にはチャー等の粉状体が含まれており、この粉状体が各伝熱管バンク121〜124の伝熱管に堆積し、伝熱管を介した可燃性ガスと熱媒体との熱交換効率が低下する。そして、熱交換効率が低下することにより、熱媒体が供給される他の機器の機能低下、熱交換部120の下流側で可燃性ガスの温度が設計値以上となることによる熱交換部の下流側機器の損傷等を招来する。   However, the combustible gas generated in the gasification furnace unit 110 and sent to the heat exchanging unit 120 includes a powdery material such as char, and this powdery material is transferred to each of the heat transfer tube banks 121 to 124. The heat exchange efficiency between the combustible gas and the heat medium deposited on the heat pipe and the heat transfer pipe decreases. And, the heat exchange efficiency is lowered, so that the function of other equipment to which the heat medium is supplied is lowered, and the temperature of the combustible gas on the downstream side of the heat exchange unit 120 becomes the design value or more downstream of the heat exchange unit. This will cause damage to the equipment on the side.

このため、各伝熱管バンク121〜124の機能を維持するために除煤装置が設けられ、炭素質燃料ガス化装置の運転中に各伝熱管バンクに堆積した粉状体の除去が定期的に行われている(例えば、特許文献2参照。)。   For this reason, in order to maintain the function of each heat exchanger tube bank 121-124, the removal device is provided, and the removal of the powdery body deposited on each heat exchanger tube bank during the operation of the carbonaceous fuel gasifier is periodically performed. (For example, refer to Patent Document 2).

特開2011−241781号公報JP 2011-241781 A 特開平8−189630号公報JP-A-8-189630

しかしながら、各伝熱管バンクの機能を維持するために、炭素質燃料ガス化装置の運転中に除煤装置を定期的に作動させても、一部の伝熱管バンクの堆積物を除去することができず、このため、堆積物が堆積する傾向のある伝熱管バンクの機能が徐々に低下する傾向があった。また、各伝熱管バンクのうち上流側に配置された伝熱管バンクで前記堆積が発生し易いという傾向があった。   However, in order to maintain the function of each heat transfer tube bank, it is possible to remove some heat transfer tube bank deposits even if the removal device is periodically operated during operation of the carbonaceous fuel gasifier. For this reason, there was a tendency that the function of the heat transfer tube bank in which deposits tend to accumulate gradually deteriorates. Moreover, there existed a tendency for the said deposition to generate | occur | produce easily in the heat exchanger tube bank arrange | positioned in the upstream among each heat exchanger tube bank.

このため、上流側に配置された伝熱管バンクの熱交換効率が徐々に低下し、蒸気の流量が低減する。また、熱交換部の下流側に流れる可燃性ガスの温度が上昇し、設計値以上となることで、熱交換部の下流側に配置されている機器の損傷等を招来する可能性があった。   For this reason, the heat exchange efficiency of the heat transfer tube bank arranged on the upstream side is gradually lowered, and the flow rate of the steam is reduced. In addition, the temperature of the combustible gas flowing downstream of the heat exchanging unit rises and exceeds the design value, which may cause damage to equipment disposed on the downstream side of the heat exchanging unit. .

本発明は、このような事情に鑑みてなされたものであって、堆積物の付着や固化・成長による伝熱管バンクの機能低下を防止又は抑制することのできる炭素質燃料ガス化装置を提供することを目的とする。   This invention is made in view of such a situation, Comprising: The carbonaceous fuel gasification apparatus which can prevent or suppress the functional fall of the heat exchanger tube bank by adhesion of deposit, solidification, and growth is provided. For the purpose.

発明者らは、伝熱管バンクが配置される位置のガスの温度と付着した堆積物の固化・成長との関係に着眼し、上記課題を解決するために、以下の手段を採用する。
すなわち、本発明のある態様にかかる炭素質燃料ガス化装置は、生成ガスの流通方向後流に設置され、前記生成ガスと接触して熱交換する複数の伝熱管バンクと、該伝熱管バンクの除煤を行うための除煤装置と、を備えた炭素質燃料ガス化装置であって、前記複数の伝熱管バンクのうち接触する前記生成ガスの温度が炭素質燃料のガラス転移点以上である前記伝熱管バンクは、高温側伝熱管バンクとされ、前記高温側伝熱管バンクは、前記生成ガス流通方向におけるバンク高さが他の伝熱管バンクのバンク高さよりも低くなるように形成され、前記高温側伝熱管バンクは、前記バンク高さが2m以下となるように形成され、前記除煤装置は複数の煤吹管を有し、各前記煤吹管は、それぞれ対応する伝熱管バンクの上流側および下流側に配置され、該伝熱管バンクに蒸気等を噴射して除煤を行うものであって、各前記煤吹管から前記伝熱管バンクに噴射される前記蒸気等が及ぶ範囲は、チャーの固化・成長がほとんど無い有効除煤範囲に亘り、前記上流側に配置された前記煤吹管から吹いた前記蒸気の前記有効除煤範囲と、前記下流側に配置された前記煤吹管から吹いた前記蒸気の前記有効除煤範囲との和が2m以上である。
The inventors pay attention to the relationship between the temperature of the gas at the position where the heat transfer tube bank is disposed and the solidification / growth of the deposited deposit, and adopt the following means in order to solve the above problems.
That is, a carbonaceous fuel gasifier according to an aspect of the present invention is provided in the downstream of the product gas in the flow direction, and a plurality of heat transfer tube banks that exchange heat with the product gas, and removing soot apparatus for removing soot, a carbonaceous fuel gasifier having a temperature of the product gas Chi contact touch caries said plurality of heat transfer tubes bank above the glass transition point of the carbonaceous fuel The heat transfer tube bank is a high-temperature side heat transfer tube bank, and the high-temperature side heat transfer tube bank is formed so that the bank height in the product gas flow direction is lower than the bank height of other heat transfer tube banks. The high-temperature side heat transfer tube bank is formed so that the bank height is 2 m or less, the removal device has a plurality of soot-blowing tubes, and each soot-blowing tube is upstream of the corresponding heat-transfer tube bank. Placed on the side and downstream In addition, the steam is sprayed to the heat transfer tube bank to remove the debris, and the range of the steam sprayed from each of the soot blow tubes to the heat transfer tube bank has almost no solidification / growth of char. The effective removal range of the steam blown from the soot blower pipe disposed on the upstream side over the effective removal range, and the effective removal of the steam blown from the soot blow tube disposed on the downstream side The sum with the range is 2 m or more.

この態様によれば、前記高温側伝熱管バンクはバンク高さが他の伝熱管バンクのバンク高さよりも低くなるように形成されている。このため、例えば高温側伝熱管バンクのすぐ上流側に除煤装置を配置する場合、他の伝熱管バンクに比べて、除煤装置から伝熱管バンクの中央部又は下流側端部迄の距離が短い。従って、除煤装置から噴射される除煤用流体が伝熱管の全体に及び易く、高温側伝熱管バンクに付着する堆積物を効果的に除去することができる。
なお、発明者らは、炭素質燃料のガラス転移点以上の雰囲気で堆積物の固化が早期に発生し、堆積物の固化・成長により除煤装置での除去が困難になることを見出し、除煤装置により伝熱管の全体に除煤用流体が及び易くなるように上記手段を採用したものである。
According to this aspect, the high temperature side heat transfer tube bank is formed so that the bank height is lower than the bank heights of the other heat transfer tube banks. For this reason, for example, when arranging the removal device immediately upstream of the high temperature side heat transfer tube bank, the distance from the removal device to the central portion or the downstream end of the heat transfer tube bank is larger than that of other heat transfer tube banks. short. Therefore, the removal fluid sprayed from the removal device easily reaches the entire heat transfer tube, and the deposits adhering to the high temperature side heat transfer tube bank can be effectively removed.
The inventors have found that solidification of deposits occurs early in an atmosphere above the glass transition point of the carbonaceous fuel, and that the solidification and growth of the deposits makes it difficult to remove with a scrubber. The above-mentioned means is adopted so that the removal fluid can easily reach the entire heat transfer tube by the dredging device.

上記態様において、前記高温側伝熱管バンクのバンク高さは2m以下となるように形成されていることが好ましい。他の伝熱管バンクは、前記ガラス転移点以上の生成ガスに接触しないことから、早期にチャーの固化・成長による伝熱管の機能低下を生ずる可能性が低いので、経済性の面から無用にバンク高さを低くせずに、他の伝熱管バンクおよびその接続機器の機能を維持することができる。   The said aspect WHEREIN: It is preferable that the bank height of the said high temperature side heat exchanger tube bank is formed so that it may become 2 m or less. Since other heat transfer tube banks do not come into contact with the product gas above the glass transition point, it is unlikely to cause deterioration of the heat transfer tube function due to char solidification and growth at an early stage. The functions of other heat transfer tube banks and their connected devices can be maintained without reducing the height.

また、上記態様において、各煤吹管は、それぞれ対応する伝熱管バンクの上流側に配置され、該伝熱管バンクに蒸気を噴射して除煤を行うものである。また、前記各伝熱管バンクとその隣の伝熱管バンクとの間に少なくとも1つの前記煤吹管が配置されている。つまり、煤吹管によって隣り合う伝熱管バンクの境が明確になっている。このため、隣り合う煤吹管の間の伝熱管の束により伝熱管バンクが形成されており、その伝熱管バンクの生成ガス流通方向一端の伝熱管と他端の伝熱管によってバンク高さが決まる。   Moreover, in the said aspect, each soot blower pipe is arrange | positioned in the upstream of a corresponding heat exchanger tube bank, respectively, and sprays steam to this heat exchanger tube bank, and removes. In addition, at least one soot-blowing pipe is arranged between each heat transfer pipe bank and the adjacent heat transfer pipe bank. That is, the boundary between adjacent heat transfer tube banks is clarified by the soot tube. For this reason, a heat transfer tube bank is formed by a bundle of heat transfer tubes between adjacent soot blow tubes, and the bank height is determined by the heat transfer tube at one end of the generated gas flow direction of the heat transfer tube bank and the heat transfer tube at the other end.

本発明によれば、除煤装置から噴射される除煤用流体が、前記ガラス転移点以上の生成ガスに接触する伝熱管バンクの全体に及び易いので、チャーの固化・成長による高温側伝熱管バンクの機能低下を防止又は抑制することができる。
一方、前記ガラス転移点以上の生成ガスに接触しない他の伝熱管バンクについては無用にバンク高さを低減する必要が無いので、除煤装置の個数を低減することもでき、経済性の面において有利である。
According to the present invention, the removal fluid sprayed from the removal device easily reaches the entire heat transfer tube bank in contact with the product gas above the glass transition point, so that the high temperature side heat transfer tube by char solidification / growth Deterioration of bank functions can be prevented or suppressed.
On the other hand, for other heat transfer tube banks that do not come into contact with the product gas above the glass transition point, there is no need to reduce the bank height unnecessarily, so the number of removal devices can be reduced, and in terms of economy It is advantageous.

本発明の一実施形態に係る石炭ガス化炉の縦断面図である。It is a longitudinal cross-sectional view of the coal gasification furnace which concerns on one Embodiment of this invention. 伝熱管バンクの構成を示す石炭ガス化炉の要部拡大図である。It is a principal part enlarged view of the coal gasification furnace which shows the structure of a heat exchanger tube bank. 除煤装置の構成を示す石炭ガス化炉の要部拡大図である。It is a principal part enlarged view of the coal gasification furnace which shows the structure of a removal apparatus. 除煤装置の動作説明図である。It is operation | movement explanatory drawing of a removal apparatus. 除煤装置の動作説明図である。It is operation | movement explanatory drawing of a removal apparatus. 高温側伝熱管バンクの有効除媒範囲を示す図である。It is a figure which shows the effective removal range of a high temperature side heat exchanger tube bank. 従来の石炭ガス化炉の縦断面図である。It is a longitudinal cross-sectional view of the conventional coal gasifier.

以下、図1〜図5を参照して本発明にかかる一実施形態について説明する。
図1は、本発明を適用可能な炭素質燃料ガス化炉として石炭ガス化炉の一例を示す縦断面図である。この石炭ガス化炉は、微粉炭、チャー(微粉炭中の未燃炭素分と灰分を含む粉状体)、酸化剤等を反応させ可燃性のガスを生成するガス化部10と、ガス化部10と上端で連通され、生成ガスが上から下に向かって流通する熱交換部20とを有する。
Hereinafter, an embodiment according to the present invention will be described with reference to FIGS.
FIG. 1 is a longitudinal sectional view showing an example of a coal gasification furnace as a carbonaceous fuel gasification furnace to which the present invention can be applied. This coal gasification furnace includes a gasification unit 10 that generates flammable gas by reacting pulverized coal, char (powder containing unburned carbon and ash in pulverized coal), an oxidizer, and the like, and gasification The heat exchanger 20 is communicated with the unit 10 at the upper end, and the generated gas flows from the top to the bottom.

熱交換部20内には、ガス化部10で生成された生成ガスとの熱交換を行う複数の伝熱管バンク21〜24と、各伝熱管バンク21〜24の機能を維持するための除煤装置30とが設けられ、伝熱管バンク21〜24で温度が低下した生成ガスが熱交換部20の下端部からガスタービン等に供給されるようになっている。   In the heat exchanging unit 20, a plurality of heat transfer tube banks 21 to 24 that perform heat exchange with the generated gas generated in the gasification unit 10, and removal for maintaining the functions of the heat transfer tube banks 21 to 24. The apparatus 30 is provided, and the generated gas whose temperature has decreased in the heat transfer tube banks 21 to 24 is supplied from the lower end of the heat exchange unit 20 to a gas turbine or the like.

ガス化部10は一般的な構成を有しており、例えば特開2012−172131号公報や特開2011−68812号公報に開示されている構成とすることが可能である。   The gasification unit 10 has a general configuration, and can be configured as disclosed in, for example, Japanese Unexamined Patent Application Publication Nos. 2012-172131 and 2011-68812.

生成ガスはガス化炉部10の上部であるガス化炉出口10aを通過して熱交換部20に流入する。本実施形態では、ガス化炉出口10aの温度は1000℃〜1200℃程度となっている。   The generated gas passes through the gasification furnace outlet 10 a that is the upper part of the gasification furnace section 10 and flows into the heat exchange section 20. In this embodiment, the temperature of the gasifier outlet 10a is about 1000 ° C to 1200 ° C.

各伝熱管バンク21〜24は、図2に示すように、伝熱管を複数回に亘って折り返すことにより、熱交換部20における生成ガス流通方向である上下方向に伝熱管を設置させたものである。また、本実施形態における各伝熱管バンク21〜24は、前記折り返して並設させた伝熱管が水平方向(図2における紙面奥行方向)にも複数並設されている。このため、各伝熱管バンク21〜24は、上下方向および水平方向に伝熱管が並設された構成を有する。本実施形態では、図3に示すように、各伝熱管の直径Dは25〜60mm程度であり、隣り合う伝熱管同士の上下方向の配置距離L1は前記直径Dの2〜5倍程度であり、また隣り合う伝熱管同士の水平方向の配置距離L2は前記直径Dの2〜5倍程度である。各伝熱管バンク21〜24にはそれぞれ入口管21a,22a,23a,24aと出口管21b,22b,23b,24bが接続されており、入口管21a,22a,23a,24aから水、蒸気等の熱媒体が各伝熱管バンク21〜24に流入し、伝熱管を介して熱媒体と生成ガスとの間で熱交換が行われ、熱交換が行われた熱媒体が出口管21b,22b,23b,24bから流出するように構成されている。   As shown in FIG. 2, each of the heat transfer tube banks 21 to 24 is configured such that the heat transfer tubes are installed in the vertical direction, which is the generated gas flow direction in the heat exchanging unit 20, by folding the heat transfer tubes a plurality of times. is there. Further, in each of the heat transfer tube banks 21 to 24 in the present embodiment, a plurality of the heat transfer tubes folded and juxtaposed are juxtaposed in the horizontal direction (the depth direction in the drawing in FIG. 2). For this reason, each heat exchanger tube bank 21-24 has the structure by which the heat exchanger tube was arranged in parallel by the up-down direction and the horizontal direction. In this embodiment, as shown in FIG. 3, the diameter D of each heat transfer tube is about 25 to 60 mm, and the arrangement distance L1 in the vertical direction between adjacent heat transfer tubes is about 2 to 5 times the diameter D. Further, the horizontal arrangement distance L2 between the adjacent heat transfer tubes is about 2 to 5 times the diameter D. Each of the heat transfer tube banks 21 to 24 is connected with an inlet pipe 21a, 22a, 23a, 24a and an outlet pipe 21b, 22b, 23b, 24b, respectively, from the inlet pipe 21a, 22a, 23a, 24a such as water, steam, etc. The heat medium flows into each of the heat transfer tube banks 21 to 24, heat exchange is performed between the heat medium and the generated gas via the heat transfer tubes, and the heat medium subjected to the heat exchange is the outlet tubes 21b, 22b, and 23b. , 24b.

各伝熱管バンク21〜24はそれぞれ、伝熱管の中を流通する蒸気を過熱して過熱蒸気を生成する過熱器や、伝熱管の中を流通する水を蒸気化する蒸発器や、前記蒸発器に供給するための水を加熱する節炭器として機能する。また、各伝熱管バンク21〜24はそれぞれ、各入口管21a,22a,23a,24aおよび出口管21b,22b,23b,24bを介して蒸気ドラム、蒸気タービン等の各種機器に接続されている。   Each of the heat transfer tube banks 21 to 24 superheats the steam flowing through the heat transfer tube to generate superheated steam, the evaporator that vaporizes the water flowing through the heat transfer tube, and the evaporator It functions as a economizer that heats the water to be supplied. Moreover, each heat exchanger tube bank 21-24 is connected to various apparatuses, such as a steam drum and a steam turbine, via each inlet pipe 21a, 22a, 23a, 24a and outlet pipe 21b, 22b, 23b, 24b.

図2に示すように、各伝熱管バンク21〜24は生成ガス流通方向、つまり本実施形態では上下方向のバンク高さhを有している。伝熱管バンクのバンク高さhは、伝熱管バンクの生成ガス流通方向における一端(本実施形態では上端)を構成する伝熱管の中心軸と他端(本実施形態では下端)を構成する伝熱管の中心軸との距離である。本実施形態では、伝熱管バンク21および22のバンク高さは2m以下であり、伝熱管バンク23、24のバンク高さは3〜4mである。同じく、伝熱管バンク21〜24の幅方向(図2における奥行方向)のバンクの幅は2〜4m程度であり、伝熱管バンク21〜24の伝熱管の延設方向(図2における左右方向)のバンクの幅は2〜4m程度である。   As shown in FIG. 2, each of the heat transfer tube banks 21 to 24 has a bank height h in the product gas flow direction, that is, in the vertical direction in this embodiment. The bank height h of the heat transfer tube bank is the heat transfer tube constituting the central axis and the other end (lower end in the present embodiment) of one end (upper end in the present embodiment) of the heat transfer tube bank in the product gas flow direction. It is the distance from the center axis. In this embodiment, the bank height of the heat transfer tube banks 21 and 22 is 2 m or less, and the bank height of the heat transfer tube banks 23 and 24 is 3 to 4 m. Similarly, the width of the heat transfer tube banks 21 to 24 in the width direction (depth direction in FIG. 2) is about 2 to 4 m, and the heat transfer tube extending direction of the heat transfer tube banks 21 to 24 (left and right direction in FIG. 2). The bank width is about 2 to 4 m.

熱交換部20内は生成ガスが上流から下流に向かって流通し、流通する過程で生成ガスが各伝熱管バンク21〜24に接触して熱交換を行い、これにより、熱交換部20の上方から下方に向かって生成ガスの温度が下がっていく。本実施形態では、図1に示すように、伝熱管バンク21,22は生成ガスが炭素質燃料のガラス転移点以上である範囲AR1内に配置され、前記ガラス転移点以上の生成ガスに接触して熱交換を行う。   In the heat exchange unit 20, the generated gas flows from upstream to downstream, and in the process of flowing, the generated gas contacts the heat transfer tube banks 21 to 24 and performs heat exchange. The temperature of the product gas decreases from the bottom to the bottom. In the present embodiment, as shown in FIG. 1, the heat transfer tube banks 21 and 22 are arranged in a range AR1 in which the generated gas is equal to or higher than the glass transition point of the carbonaceous fuel, and contact with the generated gas equal to or higher than the glass transition point. Heat exchange.

一方、図3〜図5に示すように、熱交換部20には各伝熱管バンク21〜24の機能を維持するために除煤装置30が設けられている。除煤装置30は各伝熱管バンク21〜24に対して生成ガス流通方向の上流側および下流側に配置されている。   On the other hand, as shown in FIGS. 3 to 5, the heat exchanging unit 20 is provided with a hair removal device 30 in order to maintain the functions of the heat transfer tube banks 21 to 24. The removal device 30 is arranged on the upstream side and the downstream side in the product gas flow direction with respect to the heat transfer tube banks 21 to 24.

本実施形態において除煤装置30はスーツブロアと呼ばれるものであり、例えば特開平1−234711号公報や特開2010−117067号公報に開示されているものを用いることが可能である。本実施形態では、除煤装置30は、先端にノズル孔31a,31bが設けられた煤吹管31と、煤吹管31をその軸方向に移動自在に支持すると共にその軸周りに回動させる管支持機構32と、煤吹管31の軸方向の位置を検出する軸方向位置センサ33と、煤吹管31の前記軸周りの回動位置を検出する回動方向位置センサ34と、煤吹管31及び蒸気供給装置(図示せず)に接続され煤吹管31内に蒸気を供給する蒸気供給管35と、蒸気供給管35を開閉する開閉弁36と、管支持機構32、軸方向位置センサ33、回動方向位置センサ34および開閉弁36に接続された制御装置37と、を有する。尚、図1の最も上の除煤管31にはノズル孔31bが設けられておらず、図1の最も下の除煤管31にはノズル孔31aが設けられていない。また、煤吹管31はその先端側が熱交換部20の壁20aに設けられた孔20bに挿入された状態で管支持機構32によって支持されており、管支持機構32によって熱交換部20内に進入するようになっている。   In this embodiment, the hair removal device 30 is a so-called suit blower, and for example, those disclosed in Japanese Patent Application Laid-Open Nos. 1-223411 and 2010-1117067 can be used. In the present embodiment, the dehuller 30 includes a soot blower pipe 31 provided with nozzle holes 31a and 31b at the tip, and a pipe support that supports the soot blow pipe 31 so as to be movable in the axial direction and rotate around the axis. A mechanism 32, an axial position sensor 33 for detecting the axial position of the soot blow pipe 31, a rotational direction position sensor 34 for detecting the rotational position of the soot blow pipe 31 around the axis, the soot blow pipe 31 and the steam supply A steam supply pipe 35 that is connected to a device (not shown) and supplies steam into the soot blow pipe 31; an on-off valve 36 that opens and closes the steam supply pipe 35; a pipe support mechanism 32; an axial position sensor 33; And a control device 37 connected to the position sensor 34 and the on-off valve 36. In addition, the nozzle hole 31b is not provided in the uppermost removal pipe 31 of FIG. 1, and the nozzle hole 31a is not provided in the lowermost removal pipe 31 of FIG. Further, the soot blow pipe 31 is supported by the pipe support mechanism 32 in a state where the tip side is inserted into the hole 20b provided in the wall 20a of the heat exchange section 20, and enters the heat exchange section 20 by the pipe support mechanism 32. It is supposed to be.

各除煤装置30は、例えば、制御装置37に格納されているプログラムに基づき、所定の時間おきに各伝熱管バンク21〜24の除煤を行う。除煤時の制御装置37に制御される管支持機構32および開閉弁36の動作について以下に簡単に説明する。   Each removal device 30 removes each heat transfer tube bank 21-24 every predetermined time based on a program stored in the control device 37, for example. The operations of the tube support mechanism 32 and the on-off valve 36 controlled by the control device 37 during removal will be briefly described below.

前記所定の時間が経過すると、管支持機構32は煤吹管31を熱交換部20の中心方向に移動させ始める。続いて、煤吹管31のノズル孔31a,31bが煤吹管31から見て一番手間の伝熱管の上方又は下方に達する前に、開閉弁36が解放されて煤吹管31はノズル孔31a,31bから蒸気を噴射し始めると共に、管支持機構32は煤吹管31の所定の回動範囲での往復動を開始する。前記回動範囲は特に限定されないが、一例として、図5に示すように、ノズル孔31aが真下を、ノズル孔31bが真上を向く位置を中心に、ノズル孔31a,31bから噴射される蒸気が伝熱管に万遍なく吹きかけられる回動範囲とすることができる。   When the predetermined time has elapsed, the tube support mechanism 32 starts to move the soot blower tube 31 toward the center of the heat exchange unit 20. Subsequently, before the nozzle holes 31a and 31b of the soot blow pipe 31 reach the upper or lower side of the heat transfer pipe as viewed from the soot blow pipe 31, the on-off valve 36 is released so that the soot blow pipe 31 has the nozzle holes 31a and 31b. The pipe support mechanism 32 starts to reciprocate within a predetermined rotation range of the soot blow pipe 31 as well. Although the rotation range is not particularly limited, as an example, as shown in FIG. 5, steam sprayed from the nozzle holes 31 a and 31 b around the position where the nozzle hole 31 a faces directly below and the nozzle hole 31 b faces directly above. Can be set as a rotation range in which the heat transfer tube is sprayed evenly.

次に、煤吹管31のノズル孔31a,31bが煤吹管31から見て一番遠い伝熱管の上方又は下方を通過すると、前記回動動作および上記の噴射を維持したまま、管支持機構32は煤吹管31を熱交換部20の外側に向かって移動させ始める。続いて、煤吹管31のノズル孔31a,31bが煤吹管31から見て一番手前の伝熱管の上方又は下方を通過すると、管支持機構32および開閉弁36は前記回動動作および上記噴射を停止させ、煤吹管31が所定の待機位置まで移動すると、管支持機構32は煤吹管31の軸方向の移動を停止させる。この一連の煤吹動作が行われると、煤吹管31のノズル孔31a,31bから噴射される蒸気によって、各伝熱管に付着又は堆積したチャー等の粉状体の除去が行われる。尚、本実施形態ではノズル孔31aが下方に蒸気を噴射しノズル孔31bが上方に蒸気を噴射するものを示したが、煤吹管31にノズル孔31aだけを設け、煤吹管31の回動範囲を広くすることにより、ノズル孔31aによって上方および下方に蒸気を噴射することも可能である。   Next, when the nozzle holes 31a and 31b of the soot blow pipe 31 pass above or below the heat transfer pipe farthest from the soot blow pipe 31, the pipe support mechanism 32 is maintained while maintaining the above-described rotation operation and the above-described injection. The soot blower tube 31 starts to move toward the outside of the heat exchange unit 20. Subsequently, when the nozzle holes 31a and 31b of the soot blow pipe 31 pass above or below the foremost heat transfer pipe when viewed from the soot blow pipe 31, the pipe support mechanism 32 and the on-off valve 36 perform the above-described rotation operation and the above-described injection. When the soot blowing pipe 31 is moved to a predetermined standby position, the pipe support mechanism 32 stops the axial movement of the soot blowing pipe 31. When this series of soot blowing operations is performed, the powders such as char attached to or accumulated on the heat transfer tubes are removed by the steam sprayed from the nozzle holes 31a and 31b of the soot blowing tube 31. In this embodiment, the nozzle hole 31a injects steam downward and the nozzle hole 31b injects steam upward. However, only the nozzle hole 31a is provided in the soot blowing pipe 31, and the rotation range of the soot blowing pipe 31 is shown. It is possible to inject steam upward and downward through the nozzle hole 31a.

上記のように構成された石炭ガス化炉は、ガス化部10で生成された生成ガスが各伝熱管バンク21〜24を通過してガスタービン等に供給されるように運転される。この運転が行われている状態において、前述のように所定時間おきに各伝熱管バンク21〜24の除煤が行われる。   The coal gasification furnace configured as described above is operated so that the generated gas generated in the gasification unit 10 passes through the heat transfer tube banks 21 to 24 and is supplied to a gas turbine or the like. In the state where this operation is performed, the heat transfer tube banks 21 to 24 are removed every predetermined time as described above.

ここで、本実施形態では、炭素質燃料のガラス転移点以上の生成ガスに接触し熱交換する高温側伝熱管バンク21,22のバンク高さが、他の伝熱管バンク23,24のバンク高さよりも低くなるように形成されている。これは、発明者らが、伝熱管バンクが配置される位置のガス温度と伝熱管へのチャーの固化・成長との関係に着眼し、チャーの固化・成長を低減又は無くすために工夫を行った結果である。具体的には、発明者らの綿密なガス化炉内、特に伝熱管バンク部分の点検を繰り返すことで、生成ガス温度が前記ガラス転移点より低い領域には除煤装置による除煤効果が得られており、伝熱配管表面には堆積したチャーの固化・成長はほとんど無い状況であった。一方、生成ガス温度が前記ガラス転移点以上の領域では、伝熱管バンクの中央部に、チャーの固化・成長が確認された。すなわち、生成ガス温度が前記ガラス転移点より低い領域か、高い領域かにより除煤装置30による除煤効果が大きく変化し、伝熱配管の表面に堆積したチャーを固化・成長させないことが可能となる環境条件分岐温度点が存在することを発見した。一方、バンク高さが高いと、除煤装置30の煤吹管31のノズル孔31a,から伝熱管バンクの中央部迄の距離が長くなり、ノズル孔31a,31bから噴射される蒸気により伝熱管バンクの中央部に付着した堆積物(主に粉状体)を効率的に除去できないことにも注目した。具体的には、図6に示すように、生成ガス温度が前記ガラス転移点以上の領域では、伝熱管バンク上端より1m以内の範囲およびバンク下端より1m以内の範囲では伝熱配管の表面にはチャーの固化・成長はほとんど無い状況であるのに対して、伝熱管バンク上端より1m以上の範囲且つバンク下端より1m以上の範囲では、チャーの固化・成長が確認された。そこで、前記ガラス転移点以上の生成ガスに接触し熱交換する高温側伝熱管バンク21,22のバンク高さを低くする検討を行い、高温側伝熱管バンク21,22のバンク高さが2m以下であれば、除煤装置30により伝熱管バンク21,22の全体に蒸気が及び易くなり、チャーの固化・成長による高温側伝熱管バンクの機能低下を防止又は抑制することができるという結果を得た。   Here, in the present embodiment, the bank heights of the high-temperature side heat transfer tube banks 21 and 22 that contact the product gas above the glass transition point of the carbonaceous fuel and exchange heat are the same as the bank heights of the other heat transfer tube banks 23 and 24. It is formed to be lower than this. This is because the inventors focused on the relationship between the gas temperature at the position where the heat transfer tube bank is placed and the solidification / growth of char on the heat transfer tube, and devised to reduce or eliminate char solidification / growth. It is a result. Specifically, by repeatedly inspecting the inventor's close gasification furnace, particularly the heat transfer tube bank, the removal effect by the removal device is obtained in the region where the product gas temperature is lower than the glass transition point. As a result, there was almost no solidification or growth of the deposited char on the heat transfer pipe surface. On the other hand, in the region where the product gas temperature is equal to or higher than the glass transition point, char solidification / growth was confirmed at the center of the heat transfer tube bank. That is, the removal effect of the removal device 30 varies greatly depending on whether the generated gas temperature is lower or higher than the glass transition point, and it is possible to prevent the char deposited on the surface of the heat transfer pipe from solidifying and growing. It was discovered that there exists an environmental condition branch temperature point. On the other hand, when the bank height is high, the distance from the nozzle hole 31a of the soot blower 31 of the degassing device 30 to the center of the heat transfer tube bank becomes long, and the heat transfer tube bank is generated by the steam injected from the nozzle holes 31a and 31b. We also paid attention to the fact that deposits (mainly powders) adhering to the central part of the material cannot be removed efficiently. Specifically, as shown in FIG. 6, in the region where the product gas temperature is not lower than the glass transition point, the surface of the heat transfer pipe is not more than 1 m from the upper end of the heat transfer tube bank and within 1 m from the lower end of the bank. Char solidification / growth is almost absent, whereas char solidification / growth was confirmed in the range of 1 m or more from the upper end of the heat transfer tube bank and in the range of 1 m or more from the lower end of the bank. Therefore, a study was made to reduce the bank height of the high-temperature side heat transfer tube banks 21 and 22 that contact the product gas above the glass transition point and exchange heat, and the bank height of the high-temperature side heat transfer tube banks 21 and 22 is 2 m or less. If so, the removal device 30 makes it easy for the steam to reach the entire heat transfer tube banks 21 and 22, and it is possible to prevent or suppress the deterioration of the function of the high temperature side heat transfer tube bank due to the solidification and growth of char. It was.

前述のように、本実施形態によれば、前記ガラス転移点以上の生成ガスに接触し熱交換する高温側伝熱管バンク21,22のバンク高さが、他の伝熱管バンク23,24のバンク高さよりも低くなるように形成されているので、他の伝熱管バンク23,24に比べて、除煤装置30の煤吹管31のノズル孔31a,31bから伝熱管バンクの中央部迄の距離が短い。従って、煤吹管31のノズル孔31a,31bから噴射される蒸気が伝熱管の全体に亘って及び易く、高温側伝熱管バンク21,22に付着するチャー堆積を効果的に除去することができ、チャーの固化・成長による高温側伝熱管バンクの機能低下を防止又は抑制することができる。   As described above, according to the present embodiment, the bank heights of the high-temperature side heat transfer tube banks 21 and 22 that contact the product gas above the glass transition point and exchange heat are the same as the banks of the other heat transfer tube banks 23 and 24. Since it is formed so as to be lower than the height, the distance from the nozzle holes 31a, 31b of the soot blower tube 31 of the degassing device 30 to the center portion of the heat transfer tube bank is smaller than that of the other heat transfer tube banks 23, 24. short. Therefore, the steam sprayed from the nozzle holes 31a, 31b of the soot blower tube 31 is easy to spread over the entire heat transfer tube, and char deposits adhering to the high temperature side heat transfer tube banks 21, 22 can be effectively removed, It is possible to prevent or suppress the functional deterioration of the high-temperature side heat transfer tube bank due to the solidification / growth of char.

一方、前記ガラス転移点以上の生成ガスに接触しない他の伝熱管バンク23,24については無用にバンク高さを低減する必要が無いので、除煤装置30の個数を低減することもでき、経済性の面において有利である。   On the other hand, the other heat transfer tube banks 23 and 24 that do not come into contact with the product gas above the glass transition point do not need to reduce the height of the bank unnecessarily, so the number of the removal devices 30 can be reduced. It is advantageous in terms of sex.

また、本実施形態では、ガラス転移点以上の生成ガスに接触しない他の伝熱管バンク23,24のそのバンク高さが2mよりも高くなるように形成されている。前記ガラス転移点以上の温度の生成ガスに接触しないことから、チャーの固化・成長による機能低下を生ずる可能性が低いので、無用にバンク高さを低くせずに、他の伝熱管バンク23,24およびその接続機器の機能を維持することができる。   Moreover, in this embodiment, it forms so that the bank height of the other heat exchanger tube banks 23 and 24 which do not contact the product gas more than a glass transition point may become higher than 2 m. Since it does not come into contact with the product gas at a temperature higher than the glass transition point, it is unlikely to cause a functional deterioration due to char solidification / growth. Therefore, other heat transfer tube banks 23, 24 and the function of the connected device can be maintained.

尚、本発明は上記の実施形態の構成のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更や改良を加えることができ、このように変更や改良を加えた実施形態も本発明の権利範囲に含まれるものとする。   It should be noted that the present invention is not limited to the configuration of the above-described embodiment, and can be appropriately modified or improved without departing from the gist of the present invention. The form is also included in the scope of the right of the present invention.

例えば、上記の実施形態では、煤吹管31のノズル31a,31bから上記を噴射して煤吹を行うものを示したが、他の除煤用流体、粒状体を伝熱管バンクに向かって噴射して除煤を行う場合であっても、当該噴射口から高温側伝熱管バンクの中央部までの距離を、高温側伝熱管バンクのバンク高さを上記のように構成することにより短くすることができるので、上記と同様の効果を期待できる。   For example, in the above-described embodiment, the above-described spraying is performed by spraying the above from the nozzles 31a and 31b of the soot blowing pipe 31, but other decontamination fluid and granular materials are sprayed toward the heat transfer tube bank. Even in the case of removal, the distance from the injection port to the center of the high-temperature side heat transfer tube bank can be shortened by configuring the bank height of the high-temperature side heat transfer tube bank as described above. Therefore, the same effect as above can be expected.

10 ガス化部
20 熱交換部
21 伝熱管バンク
22 伝熱管バンク
23 伝熱管バンク
24 伝熱管バンク
DESCRIPTION OF SYMBOLS 10 Gasification part 20 Heat exchange part 21 Heat transfer tube bank 22 Heat transfer tube bank 23 Heat transfer tube bank 24 Heat transfer tube bank

Claims (1)

炭素質燃料と酸化剤を反応させるガス化炉部と、前記ガス化炉部で生成させた生成ガスの流通方向に並設されると共に前記生成ガスと接触して熱交換する複数の伝熱管バンクと、該伝熱管バンクの除煤を行うための除煤装置と、を備えた炭素質燃料ガス化装置であって、
前記複数の伝熱管バンクのうち接触する前記生成ガスの温度が前記炭素質燃料のガラス転移点以上である前記伝熱管バンクは、高温側伝熱管バンクとされ、
前記高温側伝熱管バンクは、前記生成ガス流通方向におけるバンク高さが他の伝熱管バンクのバンク高さよりも低くなるように形成され、
前記高温側伝熱管バンクは、前記バンク高さが2m以下となるように形成され、
前記除煤装置は複数の煤吹管を有し、
各前記煤吹管は、それぞれ対応する伝熱管バンクの上流側および下流側に配置され、該伝熱管バンクに蒸気等を噴射して除煤を行うものであって、
各前記煤吹管から前記伝熱管バンクに噴射される前記蒸気等が及ぶ範囲は、チャーの固化・成長がほとんど無い有効除煤範囲に亘り、
前記上流側に配置された前記煤吹管から吹いた前記蒸気の前記有効除煤範囲と、前記下流側に配置された前記煤吹管から吹いた前記蒸気の前記有効除煤範囲との和が2m以上であることを特徴とする炭素質燃料ガス化装置。
A gasification furnace section for reacting a carbonaceous fuel and an oxidant, and a plurality of heat transfer tube banks arranged in parallel in the flow direction of the product gas generated in the gasification furnace section and in contact with the product gas to exchange heat A carbonaceous fuel gasifier comprising: a heat removal tube bank for removing heat from the heat transfer tube bank;
Said plurality of said heat transfer tube bank is higher than the glass transition point temperature is the carbonaceous fuel of the product gas Chi contact touch sac heat transfer tube bank, is the hot side heat transfer tube bank,
The high temperature side heat transfer tube bank is formed such that the bank height in the product gas flow direction is lower than the bank height of other heat transfer tube banks,
The high temperature side heat transfer tube bank is formed so that the bank height is 2 m or less,
The depigmenting device has a plurality of soot blow tubes,
Each of the soot blow pipes is disposed on the upstream side and the downstream side of the corresponding heat transfer pipe bank, and performs steam removal by injecting steam or the like into the heat transfer pipe bank,
The range of the steam sprayed from each soot tube to the heat transfer tube bank spans an effective removal range in which there is almost no solidification / growth of char,
The sum of the effective removal range of the steam blown from the soot blowing pipe arranged on the upstream side and the effective removal range of the steam blown from the soot blowing pipe arranged on the downstream side is 2 m or more A carbonaceous fuel gasifier characterized by the above.
JP2013038954A 2013-02-28 2013-02-28 Carbonaceous fuel gasifier Active JP6246473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013038954A JP6246473B2 (en) 2013-02-28 2013-02-28 Carbonaceous fuel gasifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013038954A JP6246473B2 (en) 2013-02-28 2013-02-28 Carbonaceous fuel gasifier

Publications (2)

Publication Number Publication Date
JP2014167043A JP2014167043A (en) 2014-09-11
JP6246473B2 true JP6246473B2 (en) 2017-12-13

Family

ID=51616910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038954A Active JP6246473B2 (en) 2013-02-28 2013-02-28 Carbonaceous fuel gasifier

Country Status (1)

Country Link
JP (1) JP6246473B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2014786B1 (en) * 2015-05-11 2017-01-26 Dahlman Renewable Tech B V Method and systems for treating synthesis gas.
JP6602174B2 (en) * 2015-11-26 2019-11-06 三菱日立パワーシステムズ株式会社 Gasification apparatus, combined gasification power generation facility, gasification facility, and removal method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858236U (en) * 1981-10-14 1983-04-20 バブコツク日立株式会社 Soot blowing equipment for lime gasification process
JPS6281489A (en) * 1985-10-04 1987-04-14 Mitsubishi Heavy Ind Ltd Gasifier
JPH0721552Y2 (en) * 1990-02-28 1995-05-17 三菱重工業株式会社 Water level controller for slag hopper
JP3017623B2 (en) * 1993-09-28 2000-03-13 株式会社日立製作所 Coal gasifier
JP2003014397A (en) * 2001-06-27 2003-01-15 Babcock Hitachi Kk Soot blower
JP2005003266A (en) * 2003-06-12 2005-01-06 Mitsubishi Heavy Ind Ltd Stationary type soot blower for coal gasification device

Also Published As

Publication number Publication date
JP2014167043A (en) 2014-09-11

Similar Documents

Publication Publication Date Title
CN101896769B (en) Controlling cooling flow in a sootblower based on lance tube temperature
JP4923934B2 (en) Fluidized bed gasification method and apparatus
WO2019196497A1 (en) Synthesis-gas sensible heat recovery apparatus and recovery method, and gasifier
KR101998448B1 (en) Immersed heat transfer tube for fluidized-bed boiler
JP6246473B2 (en) Carbonaceous fuel gasifier
KR101452327B1 (en) Gasification reacting apparatus using biomass
KR20160003637A (en) Immersed heat transfer tube for fluidized bed boiler, and fluidized bed boiler
BRPI1003902A2 (en) fluidized circulation bed (cfb) with furnace secondary air flow nozzles
CN101672479B (en) Sweeping device for dust deposit in flue
CN104696975A (en) Steam air cap soot blower system and method thereof
JP2013536931A (en) Gasifier
US9021653B2 (en) Cleaning device for a convection section of a thermal power plant
US9279585B2 (en) Cleaning apparatus for a convective section of a thermal power plant
JP2007107833A (en) Soot blower and its operation method
CN204513422U (en) Steam blast cap soot blower system
US10808191B2 (en) Gasification apparatus, control device, integrated gasification combined cycle, and control method
CN210915951U (en) Coke discharging system
EP3438534A1 (en) Stoker-type garbage incinerator provided with waste heat recovery boiler
KR101032773B1 (en) Furnace of boiler for power station
CN202902893U (en) Smoke waste heat boiler system of rotary hearth furnace
JP2013151613A5 (en)
KR102536908B1 (en) fluidization system for biomass
JP7286504B2 (en) Gasification facility and gasification combined cycle facility equipped with the same
KR101627140B1 (en) Apparatus and method for cooling guide vane of syngas cooler with guide vain, and integrated gasification combined cycle power plant using the same
JP3223485U (en) Burner device and gasification furnace equipped with the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150602

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161012

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161019

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20161111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171115

R150 Certificate of patent or registration of utility model

Ref document number: 6246473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350