JP6243180B2 - Activated carbon molded body and method for producing activated carbon molded body - Google Patents

Activated carbon molded body and method for producing activated carbon molded body Download PDF

Info

Publication number
JP6243180B2
JP6243180B2 JP2013209942A JP2013209942A JP6243180B2 JP 6243180 B2 JP6243180 B2 JP 6243180B2 JP 2013209942 A JP2013209942 A JP 2013209942A JP 2013209942 A JP2013209942 A JP 2013209942A JP 6243180 B2 JP6243180 B2 JP 6243180B2
Authority
JP
Japan
Prior art keywords
activated carbon
core
molded body
water
carbon molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013209942A
Other languages
Japanese (ja)
Other versions
JP2015073919A (en
Inventor
外山 公也
公也 外山
佐藤 一博
一博 佐藤
中島 泰仁
泰仁 中島
石川 隆久
隆久 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2013209942A priority Critical patent/JP6243180B2/en
Publication of JP2015073919A publication Critical patent/JP2015073919A/en
Application granted granted Critical
Publication of JP6243180B2 publication Critical patent/JP6243180B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、活性炭成形体に関する。より詳しくは、本発明は、水を浄化するための活性炭成形体に関する。   The present invention relates to an activated carbon molded body. More specifically, the present invention relates to an activated carbon molded body for purifying water.

従来、浄水器で浄化された水道水が、飲み水や料理用の水として用いられている。一般的に、浄水器には、中空糸膜等のろ過フィルタと、活性炭とを含むろ材が組み込まれている。浄水器は、フィルタによって水道水中の粒子状物質(以下、単に粒子と言う場合がある)を除去し、活性炭によって水道水中の遊離残留塩素等の臭気物質や有機化合物を除去する。浄水器のろ材における活性炭は、複数の活性炭粒子によって構成されており、不定形である。従って、浄水器内では、活性炭の保持に透水性を有する袋等を使用せざるを得なかった。   Conventionally, tap water purified by a water purifier has been used as drinking water or cooking water. Generally, a filter medium including a filtration filter such as a hollow fiber membrane and activated carbon is incorporated in the water purifier. The water purifier removes particulate matter (hereinafter simply referred to as particles) in tap water using a filter, and removes odorous substances and organic compounds such as free residual chlorine in tap water using activated carbon. The activated carbon in the filter medium of the water purifier is composed of a plurality of activated carbon particles and is indefinite. Accordingly, in the water purifier, a water-permeable bag or the like has to be used to hold the activated carbon.

このような状況に鑑み、活性炭を成形する技術として、活性炭とフィブリル繊維とを混合して成形する技術が見出されている(例えば、特許文献1〜3参照)。また、繊維状活性炭素を成形する技術についても見出されている(例えば、特許文献4参照)。特に、特許文献2〜4においては、円筒形の芯部材の外側表面に活性炭成形体を成形させている。そして、これらの活性炭成形体は、成形後に、成形に用いられた円筒形の芯部材から分離された上で、粒子を除去するフィルタと一体化されて、浄水器に用いられる。   In view of such a situation, as a technique for forming activated carbon, a technique for mixing and forming activated carbon and fibril fibers has been found (for example, see Patent Documents 1 to 3). Moreover, the technique which shape | molds a fibrous activated carbon is also discovered (for example, refer patent document 4). In particular, in Patent Documents 2 to 4, an activated carbon molded body is formed on the outer surface of a cylindrical core member. These activated carbon molded bodies are separated from the cylindrical core member used for molding after molding, and then integrated with a filter for removing particles, and used in a water purifier.

特開平6−312133号公報JP-A-6-312133 特開2012−61390号公報JP 2012-61390 A 国際公開第2011/016548号公報International Publication No. 2011/016548 特開平4−346802号公報JP-A-4-346802

ところで、このような、活性炭成形体とフィルタとを一体化させるための工程は煩雑である上に、活性炭成形体とフィルタが別々の部材であることにより、複雑な構造となっていた。そこで、水道水中の臭気物質や有機化合物を除去する活性炭成形体が、粒子を除去するフィルタとしての役割を果たすことが期待される。   By the way, the process for integrating the activated carbon molded body and the filter is complicated, and the activated carbon molded body and the filter are separate members, resulting in a complicated structure. Therefore, an activated carbon molded body that removes odorous substances and organic compounds in tap water is expected to play a role as a filter that removes particles.

しかしながら、特許文献1においては、活性炭成形体による粒子の除去性能への言及はない。特許文献2においても、強アルカリ性の液で使用する際における活性炭成形体の耐薬品性の向上と、そのような使用における活性炭成形体の強度維持を目的とすることについては開示されているが、粒子の除去性能への言及はない。   However, in Patent Document 1, there is no mention of the particle removal performance by the activated carbon molded body. Patent Document 2 also discloses the improvement of chemical resistance of an activated carbon molded body when used in a strong alkaline solution and the purpose of maintaining the strength of the activated carbon molded body in such use, There is no mention of particle removal performance.

また、特許文献3は、活性炭成形体による粒子の除去性能を付与する技術を開示するものである。特許文献3には、活性炭成形体に採用する活性炭の粒子径及び粒度分布を規定することで、活性炭成形体に濁り除去性能を付与できることが記載されている。しかしながら、特許文献3に記載された活性炭成形体の粒子除去性能は、家庭用の浄水器に使用する上で十分に満足できるものではない。   Patent Document 3 discloses a technique for imparting particle removal performance with an activated carbon molded body. Patent Document 3 describes that turbidity removal performance can be imparted to an activated carbon molded body by defining the particle size and particle size distribution of the activated carbon employed in the activated carbon molded body. However, the particle removal performance of the activated carbon molded body described in Patent Document 3 is not sufficiently satisfactory for use in a domestic water purifier.

更に、特許文献4には、中芯としての繊維層とその外周表面に成形した円筒状多層吸着材が開示されており、円筒状多層吸着材全体で、懸濁物質、着色成分、臭気成分、残留塩素を効率よく除去することが記載されている。特許文献4には、円筒状多層吸着材が、糸巻き層、円筒状吸着材層、繊維層で構成され、円筒状吸着材層は着色成分、臭気成分及び残留塩素を除去し、繊維層が懸濁成分(粒子状物質)を除去することが記載されている。しかしながら、繊維層は円筒状多層吸着材の最も内側にあるため、その濾過表面積は小さく、すぐ目詰まりしてしまうことが問題であった。つまり、特許文献4に記載された活性炭成形体の粒子除去性能も、家庭用の浄水器に使用する上で十分に満足できるものではなかった。   Furthermore, Patent Document 4 discloses a cylindrical multilayer adsorbent formed on a fiber layer as an inner core and an outer peripheral surface thereof, and in the entire cylindrical multilayer adsorbent, suspended substances, coloring components, odor components, It describes that residual chlorine is efficiently removed. In Patent Document 4, a cylindrical multilayer adsorbent is composed of a thread wound layer, a cylindrical adsorbent layer, and a fiber layer. The cylindrical adsorbent layer removes coloring components, odor components, and residual chlorine, and the fiber layer is suspended. It describes the removal of turbid components (particulate matter). However, since the fiber layer is located on the innermost side of the cylindrical multilayer adsorbent, the filtration surface area is small and clogging occurs immediately. That is, the particle removal performance of the activated carbon molded body described in Patent Document 4 was not sufficiently satisfactory for use in a domestic water purifier.

このように、残留塩素等の臭気物質や有機化合物の除去性能に加えて、高い粒子状物質除去性能を有する活性炭成形体については得られていないのが現状である。すなわち、従来の活性炭成形体は、活性炭の吸着作用を利用した残留塩素等の臭気物質や有機化合物の除去する機能を有するが、満足できる粒子除去性能を有さない。従って、従来の活性炭成形体を浄水カートリッジに用いる際には、粒子状物質を除去することが可能なフィルタを別途用意せざるを得なかった。   As described above, the activated carbon molded body having high particulate matter removal performance in addition to the removal performance of odorous substances such as residual chlorine and organic compounds has not been obtained. That is, the conventional activated carbon molded body has a function of removing odorous substances such as residual chlorine and organic compounds utilizing the adsorption action of activated carbon, but does not have satisfactory particle removal performance. Therefore, when the conventional activated carbon molded body is used for the water purification cartridge, a filter capable of removing the particulate matter has to be prepared separately.

本発明は、上記課題に鑑みてなされたものであり、残留塩素等の臭気物質や有機化合物の除去性能に加えて、高い粒子状物質除去性能を有する活性炭成形体を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide an activated carbon molded body having high particulate matter removal performance in addition to removal performance of odorous substances such as residual chlorine and organic compounds. .

本発明者らは、中芯を使用した吸引法によって製造される活性炭成形体において、中芯の細孔径のモード径を特定の範囲とすることで、活性炭成形体に高い粒子除去性能を付与することができることを見出し、本発明を完成するに至った。   In the activated carbon molded body produced by the suction method using the core, the present inventors give high particle removal performance to the activated carbon molded body by setting the mode diameter of the pore diameter of the core to a specific range. As a result, the present invention has been completed.

本発明は、複数の細孔を有する筒状の中芯と、粒子状活性炭とフィブリル繊維と水とを含むスラリー中に、両端を塞いだ状態で前記中芯を浸漬し、前記中芯の内側から前記スラリーを吸引することで、前記中芯の外周面に形成された活性炭層と、を含み、前記中芯の複数の細孔のモード径は、10〜80μmである活性炭成形体に関する。   In the present invention, a cylindrical core having a plurality of pores, and a slurry containing particulate activated carbon, fibril fibers, and water are immersed in the core with both ends closed, and the inside of the core The activated carbon layer formed on the outer peripheral surface of the core, and the mode diameter of the plurality of pores of the core is 10 to 80 μm.

前記中芯の外周面の表面粗さRaは、5〜50μmであり、前記中芯の圧環強さは、5N/mm以上であることが好ましい。 The surface roughness Ra of the outer peripheral surface of the core is preferably 5 to 50 μm, and the crushing strength of the core is preferably 5 N / mm 2 or more.

前記中芯の軟化温度は、200℃以上であることが好ましい。   The softening temperature of the core is preferably 200 ° C. or higher.

前記中芯は、JIS L0222で規定された不織布からなることが好ましい。   The core is preferably made of a nonwoven fabric defined by JIS L0222.

前記活性炭層の外表面は、切削加工されていることが好ましい。   The outer surface of the activated carbon layer is preferably machined.

本発明によれば、残留塩素等の臭気物質や有機化合物の除去性能に加えて、高い粒子状物質除去性能を有する活性炭成形体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in addition to the removal performance of odorous substances, such as residual chlorine, and an organic compound, the activated carbon molded object which has high particulate matter removal performance can be provided.

本発明の実施形態に係る活性炭成形体の断面斜視図である。It is a section perspective view of an activated carbon fabrication object concerning an embodiment of the present invention. 上記実施形態に係る活性炭成形体の製造方法について示す図である。It is a figure shown about the manufacturing method of the activated carbon molded object which concerns on the said embodiment.

以下、本発明の一実施形態について詳細に説明する。
図1は、本実施形態に係る活性炭成形体1の断面斜視図である。
図1に示すように、活性炭成形体1は円筒状である。活性炭成形体1は、中芯2と、活性炭層3と、を含む。
中芯2は、活性炭成形体1の内側に位置する。
活性炭層3は、円筒形状であって、活性炭成形体1の外側に位置する。
Hereinafter, an embodiment of the present invention will be described in detail.
FIG. 1 is a cross-sectional perspective view of an activated carbon molded body 1 according to the present embodiment.
As shown in FIG. 1, the activated carbon molded body 1 is cylindrical. Activated carbon molded body 1 includes a core 2 and an activated carbon layer 3.
The core 2 is located inside the activated carbon molded body 1.
The activated carbon layer 3 has a cylindrical shape and is located outside the activated carbon molded body 1.

本実施形態に係る活性炭成形体は、複数の細孔を有する筒状の中芯と、粒子状活性炭とフィブリル繊維と水とを含むスラリー(以下、活性炭スラリーと言う場合がある)中に、両端を塞いだ状態で前記中芯を浸漬し、前記中芯の内側から前記スラリーを吸引することで、前記中芯の外周面に形成された活性炭層と、を含み、前記中芯の複数の細孔のモード径は、10〜80μmである。
本実施形態に係る活性炭成形体の製造方法については、後段で詳述する。
The activated carbon molded body according to the present embodiment includes a cylindrical core having a plurality of pores, a slurry containing particulate activated carbon, fibril fibers, and water (hereinafter sometimes referred to as activated carbon slurry). An activated carbon layer formed on the outer peripheral surface of the core by immersing the core in a state where the core is closed and sucking the slurry from the inside of the core, and a plurality of fines of the core The mode diameter of the hole is 10 to 80 μm.
The method for producing the activated carbon molded body according to this embodiment will be described in detail later.

本実施形態における中芯の外周面に形成された複数の細孔のモード径は、10〜80μmである。中芯の外周面に形成された複数の細孔のモード径が80μmを超えると、中芯の内側から活性炭スラリーを吸引した際に、中芯を水とともに透過する微粉活性炭量が多くなり、浄水器に組み込んだ際に十分な粒子状物質除去性能が得られない。また、中芯の外周面に形成された複数の細孔のモード径が10μmより小さいと、中芯の内側からで活性炭スラリーを吸引した際に、中芯を水とともに透過する微粉活性炭量が少なくなり、浄水器に組み込んだ際に十分なろ過流量が得られず、且つ、目詰まりも早くなる。中芯の外周面に形成された複数の細孔のモード径は、20〜70μmがより好ましく、30〜60μmが更に好ましい。   The mode diameter of the plurality of pores formed on the outer peripheral surface of the core in the present embodiment is 10 to 80 μm. If the mode diameter of the plurality of pores formed on the outer peripheral surface of the core exceeds 80 μm, the amount of fine activated carbon that permeates through the core along with water when the activated carbon slurry is sucked from the inside of the core increases. When installed in a vessel, sufficient particulate matter removal performance cannot be obtained. In addition, when the mode diameter of the plurality of pores formed on the outer peripheral surface of the core is smaller than 10 μm, the amount of fine activated carbon that permeates the core along with water when the activated carbon slurry is sucked from the inside of the core is small. That is, when it is incorporated into a water purifier, a sufficient filtration flow rate cannot be obtained, and clogging is also accelerated. The mode diameter of the plurality of pores formed on the outer peripheral surface of the core is more preferably 20 to 70 μm, and further preferably 30 to 60 μm.

また、活性炭成形体は、吐水と止水の繰り返しにともなう圧力変化によって、圧縮と膨張を繰り返す。活性炭成形体は、圧縮と膨張を繰り返すことによって変形すると、微視的な内部構造が崩壊して、粒子状物質を除去する性能が低下する。活性炭成形体は、微視的な内部構造が崩壊すると、使用開始時から活性炭成形体が捕捉してきた粒子状物質を、かえって放出し始めてしまう。
本実施形態に係る活性炭成形体は、活性炭スラリーに両端を塞いだ状態で中芯を浸漬し、中芯の内側から活性炭スラリーを吸引することで活性炭層を形成し、活性炭層の形成後に中芯を引き抜くことなく一体の成形体としている。そのため、活性炭層と中芯の間に隙間が全くないため、活性炭成形体は、圧縮と膨張を繰り返すことによる変形が抑制され、微視的な崩壊が防止される。また、使用開始時から活性炭成形体が捕捉してきた粒子状物質が再放出されるおそれもなくなる。
Further, the activated carbon molded body repeats compression and expansion due to a pressure change caused by repeated water discharge and water stoppage. When the activated carbon molded body is deformed by repeated compression and expansion, the microscopic internal structure is collapsed, and the performance of removing the particulate matter is lowered. When the microscopic internal structure collapses, the activated carbon molded body starts to release the particulate matter captured by the activated carbon molded body from the beginning of use.
The activated carbon molded body according to this embodiment is formed by immersing the core in a state where both ends are closed in the activated carbon slurry, and forming the activated carbon layer by sucking the activated carbon slurry from the inside of the core, and after the formation of the activated carbon layer, the core It is made into a one-piece molded body without pulling out. Therefore, since there is no gap between the activated carbon layer and the core, the activated carbon molded body is prevented from being deformed by repeated compression and expansion, and microscopic collapse is prevented. Further, there is no possibility that the particulate matter captured by the activated carbon molded body from the start of use is re-released.

本実施形態に係る活性炭成形体の性能は、具体的には、現実の家庭での浄水器の使われ方を想定して、「20秒の吐水及び10秒の止水」というサイクルを繰り返して、濁り除去性能を測定することで評価できる。なお、中芯と、活性炭層と、を含む活性炭成形体において、吐水と止水を500回繰り返した際の濁度除去率を測定し、濁度除去率80%以上であれば、複数の細孔のモード径が10〜80μmである中芯を活性炭スラリー中に両端を塞いだ状態で浸漬し、その中芯の内側から活性炭スラリーを吸引することで活性炭層が形成されたものと認められる。
濁度除去率とは、粒子状物質除去性能の指標である。濁度除去率は、浄水カートリッジを通過した水のJIS S3201(2004)で規定される濁度が、試験原水の濁度である2度から、減少した割合を100分率で表した数値である。例えば、浄水カートリッジを通過した水の濁度が0度である場合の濁度除去率は100%である。
Specifically, the performance of the activated carbon molded body according to the present embodiment repeats a cycle of “20 seconds of water discharge and 10 seconds of water stoppage” assuming that the water purifier is used in an actual home. It can be evaluated by measuring the turbidity removal performance. Note that, in an activated carbon molded body including a core and an activated carbon layer, the turbidity removal rate was measured when water discharge and water stopping were repeated 500 times. It is recognized that an activated carbon layer was formed by immersing a core having a pore mode diameter of 10 to 80 μm in an activated carbon slurry with both ends closed and sucking the activated carbon slurry from the inside of the core.
The turbidity removal rate is an index of the particulate matter removal performance. The turbidity removal rate is a numerical value representing the rate of decrease in turbidity specified in JIS S3201 (2004) of water that has passed through the water purification cartridge from 100% that is the turbidity of the test raw water in 100 minutes. . For example, when the turbidity of water that has passed through the water purification cartridge is 0 degree, the turbidity removal rate is 100%.

ところで、上述したように特許文献3には、活性炭成形体に採用する活性炭の粒子径及び粒度分布を規定することで、活性炭成形体に粒子状物質除去性能を付与できることが記載されている。特許文献3に記載されている粒子状物質除去性能(濁り除去性能)は、JIS S3201(2004)に規定された濁り除去性能試験方法に準拠して評価されている。この濁り除去性能試験方法は、粘土鉱物の一種であるカオリンを粒子状物質である濁り成分として一定の濁度となるように添加して原水とし、この原水を検体フィルタでろ過して濁り成分(カオリン)の除去率を測定するものである。   By the way, as described above, Patent Document 3 describes that the particulate matter removal performance can be imparted to the activated carbon molded body by defining the particle size and particle size distribution of the activated carbon employed in the activated carbon molded body. The particulate matter removal performance (turbidity removal performance) described in Patent Document 3 is evaluated according to the turbidity removal performance test method defined in JIS S3201 (2004). In this turbidity removal performance test method, kaolin, which is a kind of clay mineral, is added as a turbid component, which is a particulate material, so as to have a certain turbidity to obtain raw water. Kaolin) removal rate is measured.

このJIS S3201には、検体フィルタに5時間以上連続的に濁り成分を含んだ水を供給することが規定されている。つまり、JIS S3201に規定された濁り除去性能試験は、検体フィルタのろ過流量が半減するまでのろ過寿命の測定も兼ねている。しかし、現実に家庭で浄水器を使用する際には5時間以上連続で水を流し続けることはほとんどなく。JIS S3201に規定された濁り除去性能試験は、便宜的に浄水器の寿命を比較評価するための加速試験にすぎない。   This JIS S3201 stipulates that water containing a turbid component is continuously supplied to the specimen filter for 5 hours or more. In other words, the turbidity removal performance test defined in JIS S3201 also serves to measure the filtration life until the filtration flow rate of the sample filter is halved. However, when using a water purifier at home, there is almost no continuous flow of water for more than 5 hours. The turbidity removal performance test stipulated in JIS S3201 is merely an acceleration test for comparatively evaluating the life of the water purifier for convenience.

そこで、特許文献3に記載の浄水フィルタを作製し、本実施形態に係る活性炭成形体の評価と同様に現実の家庭での浄水器の使われ方を想定して、「20秒の吐水及び10秒の止水」というサイクルを繰り返す方法により濁り除去性能及びろ過流量を測定した。   Therefore, a water purifying filter described in Patent Document 3 is prepared, and it is assumed that the water purifier is used in an actual home as in the evaluation of the activated carbon molded body according to the present embodiment. Turbidity removal performance and filtration flow rate were measured by a method of repeating a cycle of “second water stop”.

その結果、吐水と止水を繰り返すことで、浄水フィルタの濁度除去率が徐々に低下した。このように、検体フィルタに5時間以上連続的に濁り成分を含んだ水を供給する、JIS S3201で規定された試験では観察できなかった、「次第に、濁り成分(粒子状物質)がフィルタを透過して漏出する」という現象が確認された。
粒子状物質が漏出する原因は、吐水と止水の繰り返しによる圧力変化によって、活性炭成形体が圧縮と膨張を繰り返して変形し、活性炭成形体の微視的な内部構造が崩壊してしまったためと考えられる。
As a result, the turbidity removal rate of the water purification filter gradually decreased by repeating water discharge and water stoppage. In this way, water that contains turbid components was continuously supplied to the specimen filter for 5 hours or longer, which could not be observed in the test specified in JIS S3201, “gradually turbid components (particulate matter) permeate the filter. The phenomenon of “leaking out” was confirmed.
The cause of leakage of particulate matter is that the activated carbon molded body was repeatedly compressed and expanded due to pressure changes due to repeated water discharge and water stoppage, and the microscopic internal structure of the activated carbon molded body collapsed. Conceivable.

本実施形態において、中芯の外周面の表面粗さRaは、5〜50μmであり、且つ、中芯の圧環強さは、5N/mm以上であることが好ましい。これにより、粒子状物質の再放出をより効果的に抑制できる。
これは、活性炭成形体の製造プロセスにおいて、中芯の外周面にフィブリル繊維が一部入り込み、中芯と活性炭層の結合力が高まることに拠るものと考えられる。活性炭成形体は、中芯と活性炭層の結合力が高ければ、吐水と止水の繰り返しにともなう圧力変化が加わったとしても、圧縮と膨張が起こりにくくなる。
In the present embodiment, the surface roughness Ra of the outer peripheral surface of the core is preferably 5 to 50 μm, and the crushing strength of the core is preferably 5 N / mm 2 or more. Thereby, re-release of particulate matter can be controlled more effectively.
This is considered to be due to a part of the fibril fibers entering the outer peripheral surface of the core in the manufacturing process of the activated carbon molded body, thereby increasing the bonding force between the core and the activated carbon layer. In the activated carbon molded body, if the bonding force between the core and the activated carbon layer is high, even if pressure change due to repeated water discharge and water stoppage is applied, compression and expansion are unlikely to occur.

中芯の外周面の表面粗さRaが5μmより小さいと、活性炭成形層の保形成分であるフィブリル繊維が中芯に十分入り込まず、中芯と活性炭層の結合力を高めるのが難しい傾向にある。また、中芯の外周面の表面粗さRaが50μmより大きいと、中芯に入り込んだフィブリル繊維が抜けやすくなり、やはり中芯と活性炭層の結合力を高めるのが難しい傾向にある。
If the surface roughness Ra of the outer peripheral surface of the center core is less than 5 μm, the fibril fiber that is the retained part of the activated carbon molding layer does not sufficiently enter the center core, and it tends to be difficult to increase the bonding force between the core and the activated carbon layer is there. Further, if the surface roughness Ra of the outer peripheral surface of the core is larger than 50 μm, the fibril fibers that have entered the core become easy to come out, and it tends to be difficult to increase the bonding force between the core and the activated carbon layer.

また、中芯の圧環強さは、5N/mm未満であると、吐水と止水の繰り返しにともなう圧力変化によって、活性炭成形体が圧縮と膨張を繰り返して変形し、中芯を配置しているにも関わらず粒子状物質が漏出してしまう場合がある。 Further, if the crushing strength of the core is less than 5 N / mm 2 , the activated carbon molded body is repeatedly compressed and expanded due to pressure changes caused by repeated water discharge and water stoppage, and the core is disposed. Despite this, particulate matter may leak out.

中芯としては、任意の材料を使用可能であるが、活性炭スラリーを吸引する際に変形しないこと、得られた活性炭成形体を浄水器に組み込み、ユーザーが実際に使用した際に変形しないこと、の要求を満たすことが必要になる。このような要求を満たす中芯の材料としては、多孔質セラミック、多孔質金属フィルタ、硬質不織布等が挙げられる。   As the core, any material can be used, but it does not deform when sucking the activated carbon slurry, the obtained activated carbon molded body is incorporated into the water purifier, and it does not deform when the user actually uses it, It is necessary to satisfy the requirements. Examples of the core material that satisfies such requirements include porous ceramics, porous metal filters, and hard nonwoven fabrics.

中芯の軟化温度は、200℃以上であることが好ましい。中芯の軟化温度を200℃以上とすることで、成形後の活性炭成形体の乾燥温度を高く設定でき、活性炭成形体をより短時間で製造できる。また、活性炭成形体の成形後の乾燥工程において、中芯の軟化に起因する活性炭成形体の変形を抑制することができる。中芯が200℃に加熱されても変形しなければ、中芯の軟化温度が200℃以上であると判断できる。一般的に、多孔質セラミックの軟化温度は、200℃以上であるので、多孔質セラミックからなる中芯を用いることが好ましい。   The softening temperature of the core is preferably 200 ° C. or higher. By setting the softening temperature of the core to 200 ° C. or higher, the drying temperature of the activated carbon molded body after molding can be set high, and the activated carbon molded body can be manufactured in a shorter time. In addition, in the drying step after molding the activated carbon molded body, deformation of the activated carbon molded body due to softening of the core can be suppressed. If the core does not deform even when heated to 200 ° C, it can be determined that the softening temperature of the core is 200 ° C or higher. Generally, since the softening temperature of the porous ceramic is 200 ° C. or higher, it is preferable to use a core made of porous ceramic.

本実施形態では、JIS L0222で規定された不織布からなる中芯を用いることも好ましい。中芯を不織布又はその加工品とすることで、活性炭成形体中のフィブリル繊維と中芯とが形成する中間層の結合力がより高まり、吐水と止水の繰り返しによる活性炭成形体の形状変化が更に抑制される。また、活性炭成形体からの粒子状物質の放出も抑制される。なお、不織布の加工品とは、厚さの薄いシート状不織布を複数積層後に熱溶融圧着させて成形したものや、厚いシート状不織布を一層丸めて円筒形状に成形したものである。   In the present embodiment, it is also preferable to use a core made of a nonwoven fabric defined by JIS L0222. By making the core as a non-woven fabric or processed product thereof, the bonding force of the intermediate layer formed by the fibril fiber and the core in the activated carbon molded body is further increased, and the shape change of the activated carbon molded body due to repeated water discharge and water stoppage It is further suppressed. Moreover, release of particulate matter from the activated carbon molded body is also suppressed. The nonwoven fabric processed product is formed by laminating a plurality of thin sheet-like nonwoven fabrics and then heat-melting and pressing them, or by rolling a thick sheet-like nonwoven fabric into a cylindrical shape.

本実施形態における活性炭スラリーの含有する粒子状活性炭としては、積算粒度分布での50%粒子径が50〜90μmのものを使用するのが好ましく、60〜80μmのものを使用するのがより好ましい。粒子径を調整するために、粒度分布の異なる2種以上の粒子状活性炭を混合させてもよい。粒子状活性炭の50%粒子径が50μmよりも小さいと、中芯の細孔径に関わらず活性炭成形体のろ過流量が低下し、目詰まりが早くなる傾向にある。また、粒子状活性炭の50%粒子径が90μmよりも大きいと、活性炭成形体が十分な粒子状物質除去性能を発揮できない傾向にある。
As the particulate activated carbon contained in the activated carbon slurry in the present embodiment, those having a 50% particle diameter of 50 to 90 μm in the cumulative particle size distribution are preferably used, and those having 60 to 80 μm are more preferably used. In order to adjust the particle diameter, two or more kinds of particulate activated carbons having different particle size distributions may be mixed. When the 50% particle diameter of the particulate activated carbon is smaller than 50 μm, the filtration flow rate of the activated carbon molded body is reduced regardless of the pore diameter of the core, and clogging tends to be accelerated. On the other hand, if the 50% particle diameter of the particulate activated carbon is larger than 90 μm, the activated carbon molded product tends not to exhibit sufficient particulate matter removing performance.

粒子状活性炭としては、任意の出発原料から得られる活性炭を使用できる。具体的には、ヤシ殻、石炭、フェノール樹脂等を賦活させて活性炭としたものを使用できるが、ここに例示した以外の出発原料で製造した活性炭も使用できる。   As the particulate activated carbon, activated carbon obtained from any starting material can be used. Specifically, activated carbon obtained by activating a coconut shell, coal, phenol resin, or the like can be used, but activated carbon manufactured using starting materials other than those exemplified here can also be used.

本実施形態における活性炭スラリーの含有するフィブリル繊維としては、粒子状活性炭を絡めて保形でき、且つ、中芯の表面と結合するものであれば、任意の繊維を使用できる。このようなフィブリル繊維としては、例えば、アクリル繊維、ポリエチレン繊維、セルロース繊維が挙げられる。   As the fibril fiber contained in the activated carbon slurry in the present embodiment, any fiber can be used as long as it can be entangled with particulate activated carbon and can be bonded to the surface of the core. Examples of such fibril fibers include acrylic fibers, polyethylene fibers, and cellulose fibers.

フィブリル繊維のろ水度は、200mL以下であることが好ましく、150mLであることがより好ましい。なお、ここに記載したろ水度とは、JIS P8121−2(2012)「パルプ−ろ水度試験方法−」で規定された試験方法によって測定されるろ水度である。
ろ水度とは、フィブリル繊維のろ過抵抗を示す尺度である。ろ水度の値が小さいほどフィブリル繊維のフィブリル化が進んで通水抵抗が大きくなり、ろ水度の値が大きい程フィブリル繊維のフィブリル化が進んでおらず通水抵抗は小さい。
本実施形態では、ろ水度の値が小さい場合には通水抵抗が大きくなり過ぎるが、この場合には活性炭成形体中のフィブリル繊維の配合量を減らすことで対応できる。従って、ろ水度が小さ過ぎることで発明の実施が困難になることはない。また、ろ水度の値が200mLより大きい場合には、フィブリル化度が低いために中芯と活性炭層との結合力が低くなり、複数回の吐水と止水の繰り返しによって濁り成分が漏出してしまう場合がある。
The freeness of the fibril fiber is preferably 200 mL or less, and more preferably 150 mL. In addition, the freeness described here is the freeness measured by the test method prescribed | regulated by JISP8121-2 (2012) "pulp-freeness test method-".
Freeness is a measure of the filtration resistance of fibril fibers. The smaller the freeness value, the more the fibril fibers are fibrillated and the greater the water resistance, and the greater the freeness value, the less the fibril fibers are fibrillated and the smaller the water resistance.
In this embodiment, when the freeness value is small, the water flow resistance becomes too large, but in this case, it can be dealt with by reducing the blending amount of the fibril fibers in the activated carbon molded body. Therefore, implementation of the invention does not become difficult when the freeness is too small. When the freeness value is larger than 200 mL, the binding strength between the core and the activated carbon layer is low because the degree of fibrillation is low, and turbid components leak due to repeated water discharge and water stoppage. May end up.

本実施形態における活性炭スラリーの含有する粒子状活性炭とフィブリル繊維との質量比(粒状活性炭/フィブリル繊維)は、90/10〜97/3であることが好ましい。粒子状活性炭とフィブリル繊維との質量比(粒状活性炭/フィブリル繊維)が、90/10よりも小さいと、粒子状活性炭の配合量が少なすぎることから、活性炭成形体の残留塩素等の臭気物質の除去性能が低下する傾向にある。粒子状活性炭とフィブリル繊維との質量比(粒状活性炭/フィブリル繊維)が、97/3よりも大きいと、粒子状活性炭の配合量が多すぎることから、活性炭成形体の保形強度及び活性炭層と中芯との結合力が低下する傾向にある。   The mass ratio (particulate activated carbon / fibril fiber) of the particulate activated carbon and the fibril fiber contained in the activated carbon slurry in the present embodiment is preferably 90/10 to 97/3. If the mass ratio of particulate activated carbon to fibril fiber (granular activated carbon / fibril fiber) is less than 90/10, the amount of particulate activated carbon is too small. The removal performance tends to decrease. If the mass ratio of particulate activated carbon to fibril fiber (granular activated carbon / fibril fiber) is greater than 97/3, the amount of particulate activated carbon is too large. There is a tendency for the bonding strength with the core to decrease.

活性炭スラリーには、配合物を粒子状活性炭とフィブリル繊維に加え、粒子状活性炭と同等の粒子径の材料を加えることができる。例えば、活性炭のみでは除去しきれないイオン成分を除去するために、活性炭スラリーにイオン交換性能を有する材料を配合してもよい。具体的には、ゼオライト、珪酸チタニウム、イオン交換樹脂等を活性炭スラリーに配合できる。これらイオン交換性能を有する材料を活性炭スラリーに配合することで、水中から溶解性鉛、ヒ素、硬度成分を更に除去することが可能になる。   In the activated carbon slurry, the compound can be added to the particulate activated carbon and the fibril fiber, and a material having a particle diameter equivalent to that of the particulate activated carbon can be added. For example, in order to remove an ionic component that cannot be removed only by activated carbon, a material having ion exchange performance may be blended in the activated carbon slurry. Specifically, zeolite, titanium silicate, ion exchange resin or the like can be blended in the activated carbon slurry. By blending these materials having ion exchange performance into the activated carbon slurry, it is possible to further remove soluble lead, arsenic and hardness components from water.

本実施形態では、活性炭層の外表面を、切削加工することが好ましい。つまり、成形後の活性炭成形体の外表面を、成形時の地肌がなくなるように切削加工することが好ましい。成形直後の活性炭成形体の外表面には、極薄い緻密な外表層が形成されている。この緻密な外表層が残っていると、活性炭成形体の外表面に粒子状物質が集中して堆積し、目詰まりが早くなってしまう。従って、活性炭層の極薄い緻密な外表層が無くなる様に切削加工すれば、活性炭成形体の粒子状物質の除去性能を向上させ、使用期間も延ばすことができる。切削加工の方法は、特に限定されない。切削加工の方法としては、旋盤や、ヤスリや、刃物などを用いて活性炭層の外表面を削る方法が例示される。   In this embodiment, it is preferable to cut the outer surface of the activated carbon layer. That is, it is preferable to cut the outer surface of the activated carbon molded body after molding so as to eliminate the ground at the time of molding. An extremely thin dense outer surface layer is formed on the outer surface of the activated carbon molded body immediately after molding. If this dense outer surface layer remains, particulate matter concentrates and accumulates on the outer surface of the activated carbon molded body, resulting in faster clogging. Therefore, if the active carbon layer is cut so that there is no dense outer surface layer, the performance of removing the particulate matter from the activated carbon molded body can be improved and the period of use can be extended. The cutting method is not particularly limited. Examples of the cutting method include a method of cutting the outer surface of the activated carbon layer using a lathe, a file, a blade or the like.

本実施形態に係る活性炭成形体は、中芯を引き抜くことなく浄水カートリッジに用いることができる。   The activated carbon molded body according to the present embodiment can be used for a water purification cartridge without pulling out the core.

続いて、活性炭成形体1の製造方法について説明する。図2は、本実施形態に係る活性炭成形体1の製造方法について示す図である。
まず、中芯2の中空の一端側を、ホース5を介して吸引装置6に接続する。この際、中芯2の他端側は封止しておく。吸引装置6に接続された中芯2を容器7に溜めた活性炭スラリー4中に浸漬し、真空ポンプ等の吸引手段によって吸引装置6を稼働させる。活性炭スラリー4のうち水が中芯2を透過し、活性炭及びフィブリル繊維の混合物が中芯表面に残留して徐々に堆積することで活性炭層3(図1参照)が形成される。なお、吸引装置6に吸引された活性炭スラリー4のうち水は、排水路8を通じて排出される。
続いて、規定の厚さまで活性炭層3が形成された後に、中芯2を活性炭スラリー4から引き上げ、乾燥させることで、中芯2と活性炭層3とが一体化した活性炭成形体1(図1参照)を得ることができる。活性炭成形体1は、混合したフィブリル繊維の保形効果によって、通常の使用において、巨視的な外観形状としては崩壊しない強度を得ることができる。
Then, the manufacturing method of the activated carbon molded object 1 is demonstrated. FIG. 2 is a diagram illustrating a method for manufacturing the activated carbon molded body 1 according to the present embodiment.
First, the hollow one end side of the core 2 is connected to the suction device 6 via the hose 5. At this time, the other end side of the core 2 is sealed. The core 2 connected to the suction device 6 is immersed in the activated carbon slurry 4 stored in the container 7, and the suction device 6 is operated by suction means such as a vacuum pump. In the activated carbon slurry 4, water permeates the core 2, and a mixture of activated carbon and fibril fibers remains on the surface of the core and gradually accumulates to form the activated carbon layer 3 (see FIG. 1). In the activated carbon slurry 4 sucked by the suction device 6, water is discharged through the drainage channel 8.
Subsequently, after the activated carbon layer 3 is formed to a specified thickness, the core 2 is pulled up from the activated carbon slurry 4 and dried, whereby the activated carbon molded body 1 in which the core 2 and the activated carbon layer 3 are integrated (FIG. 1). See). The activated carbon molded body 1 can obtain a strength that does not collapse as a macroscopic appearance shape in normal use due to the shape retention effect of the mixed fibril fibers.

活性炭スラリー4に中芯2を浸漬して吸引した際には、厳密には水だけでなく、配合した粒子状活性炭の中でも粒子径の小さい粒子状活性炭も、水とともに中芯2を透過して排出される。具体的には、中芯2の外周面に形成された細孔の細孔径よりも粒子径の小さい粒子状活性炭は、細孔を通過する。この、水とともに中芯を透過する微粉活性炭の量が少ない場合には、活性炭層3に含まれる微粉活性炭の量が多くなる。活性炭層3中の微粉活性炭の量が多い活性炭成形体を、浄水器フィルタとした場合には、活性炭層3中の粒子状活性炭によって形成される隙間が小さいことから、粒子状物質の除去性能は向上する。一方、活性炭層中の粒子状活性炭によって形成される隙間が小さいと、水のろ過流量は少なくなり、目詰まりが早くなる。   When the core 2 is immersed in the activated carbon slurry 4 and sucked, strictly speaking, not only water but also particulate activated carbon having a small particle diameter among the blended particulate activated carbon penetrates the core 2 together with water. Discharged. Specifically, particulate activated carbon having a particle diameter smaller than the pore diameter of the pores formed on the outer peripheral surface of the core 2 passes through the pores. When the amount of finely divided activated carbon that passes through the core together with water is small, the amount of finely divided activated carbon contained in the activated carbon layer 3 increases. When the activated carbon molded body having a large amount of finely activated carbon in the activated carbon layer 3 is used as a water purifier filter, since the gap formed by the particulate activated carbon in the activated carbon layer 3 is small, the particulate matter removal performance is improves. On the other hand, if the gap formed by the particulate activated carbon in the activated carbon layer is small, the filtration flow rate of water is reduced and clogging is accelerated.

また、水とともに中芯を透過する微粉活性炭量が多い場合には、活性炭成形体層に含まれる微粉活性炭量が少なくなる。すなわち、この活性炭成形体を浄水器フィルタとした際には、活性炭成形中の活性炭の粒子と粒子の間に形成される隙間が大きくなり、ろ過流量は多いものの、粒子状物質の除去性能が不十分なフィルタとなる。   Moreover, when there is much quantity of fine activated carbon which permeate | transmits a core with water, the quantity of fine activated carbon contained in an activated carbon molded object layer decreases. That is, when this activated carbon molded body is used as a water purifier filter, the gap formed between the activated carbon particles during the activated carbon molding becomes large and the filtration flow rate is high, but the particulate matter removal performance is poor. The filter is sufficient.

続いて、本実施形態に係る活性炭成形体を用いた浄水カートリッジの製造方法について説明する。
まず、本実施形態に係る活性炭成形体の外周面に透水性を有する不織布を巻く。更に、円筒形状の活性炭成形体の長手方向の一端側に、一端側の面を完全に閉塞できる円形状のキャップを装着させ、他端側にもう中心部分が開口した円形状のキャップを装着させることで、浄水カートリッジを製造することができる。この浄水カートリッジでは、円筒形状の活性炭成形体の外周面から内部の中空に水を通過させることによって、水を浄化することができる。
Then, the manufacturing method of the water purification cartridge using the activated carbon molded body which concerns on this embodiment is demonstrated.
First, a nonwoven fabric having water permeability is wound around the outer peripheral surface of the activated carbon molded body according to the present embodiment. Further, a circular cap capable of completely closing the surface on one end side is attached to one end side in the longitudinal direction of the cylindrical activated carbon molded body, and a circular cap having another central portion opened is attached to the other end side. Thus, a water purification cartridge can be manufactured. In this water purification cartridge, water can be purified by allowing water to pass from the outer peripheral surface of the cylindrical activated carbon molded body to the hollow inside.

本実施形態に係る活性炭成形体を実施例により具体的に説明するが、本発明はこれに限定されるものではない。なお、特に断りがない限り「部」、「%」及び「ppm」は、全て質量基準である。   The activated carbon molded body according to the present embodiment will be specifically described with reference to examples, but the present invention is not limited thereto. Unless otherwise specified, “part”, “%”, and “ppm” are all based on mass.

[実施例1]
活性炭成形体は、上述した図2を用いて説明された方法により製造した。
まず、水に粒子状活性炭として、クラレケミカル株式会社製の「PGW100MD」を80質量部、クラレケミカル株式会社製の「PGW20MD」を15質量部(粒子状活性炭全体の積算粒度分布での50%粒子径:70μm)、フィブリル繊維として東洋紡株式会社製「ビィパル」(ろ水度:150mL)を固形分として5質量部となるように混合することで、活性炭スラリー4を得た。活性炭スラリー4は、容器7に投入した。この活性炭スラリー4中に、吸引ポンプ6にホース5を介して接続された、中芯2(細孔径のモード径:50μm、表面粗さRa:8μm、圧環強さ:10N/mm)を投入し、吸引ポンプ6を起動して活性炭スラリー4の吸引を開始し、外径φ25×長さ90mmの湿潤活性炭成形体を得た。なお、中芯は、SiOを主成分とした多孔質セラミックによって作製されたものである。
粒子状活性炭の積算粒度分布での50%粒子径は、株式会社日機装製「マイクロトラックNo.9320−X100」によって粒度分布を測定して求めた。
中芯2のモードは、Quantachrome社製の「Poremaster 33P」により水銀圧入法に基づいて径細孔径分布を測定して求めた。また、中芯の表面粗さRaは、株式会社ミツトヨ製の表面粗さ計「SJ−400」及び表面粗さ測定針の先端角度:60°の針を使用し、評価長さ:4mm、測針早さ0.5mm/分の条件で測定した。また、中芯の圧環強さは、株式会社米倉製作所「CATY」を用いて、JIS Z2507に規定された測定方法に基づき測定した。
なお、中芯2は、200℃に加熱しても軟化することはなかった。すなわち、中芯2の軟化温度は、200℃以上である。
[Example 1]
The activated carbon molded body was manufactured by the method described with reference to FIG. 2 described above.
First, 80 parts by mass of “PGW100MD” manufactured by Kuraray Chemical Co., Ltd. and 15 parts by mass of “PGW20MD” manufactured by Kuraray Chemical Co., Ltd. (50% particles in the total particle size distribution of the entire particulate activated carbon) The activated carbon slurry 4 was obtained by mixing "Bipal" (freezing degree: 150 mL) manufactured by Toyobo Co., Ltd. as a fibril fiber so as to be 5 parts by mass as a solid content. The activated carbon slurry 4 was put into a container 7. In this activated carbon slurry 4, a core 2 (pore diameter mode diameter: 50 μm, surface roughness Ra: 8 μm, crushing strength: 10 N / mm 2 ) connected to a suction pump 6 via a hose 5 is introduced. Then, the suction pump 6 was started to start sucking the activated carbon slurry 4, and a wet activated carbon molded body having an outer diameter of φ25 × 90 mm in length was obtained. Incidentally, the central core are those prepared by a porous ceramic mainly composed of SiO 2.
The 50% particle size in the cumulative particle size distribution of the particulate activated carbon was determined by measuring the particle size distribution using “Microtrac No. 9320-X100” manufactured by Nikkiso Co., Ltd.
The mode of the core 2 was determined by measuring the pore size distribution based on the mercury intrusion method using “Poremaster 33P” manufactured by Quantachrome. Further, the surface roughness Ra of the core was measured using a surface roughness meter “SJ-400” manufactured by Mitutoyo Corporation and a tip of the surface roughness measuring needle with a tip angle of 60 °, and an evaluation length of 4 mm. Measurement was performed under the condition of a needle speed of 0.5 mm / min. Further, the crushing strength of the core was measured based on the measurement method defined in JIS Z2507 using Yonekura Seisakusho "CATY".
The core 2 was not softened even when heated to 200 ° C. That is, the softening temperature of the core 2 is 200 ° C. or higher.

得られた湿潤活性炭成形体を120℃雰囲気に設定した乾燥機に入れて十分乾燥させ、円筒形状の活性炭成形体を得た。
この活性炭成形体は、旋盤を用いて表面を切削加工した。続いて、活性炭成形体の外周面に透水性を有する不織布を巻いた。更に、円筒形状の活性炭成形体の長手方向の一端側に、一端側の面を完全に閉塞できる円形状のキャップを装着させ、他端側にもう中心部分が開口した円形状のキャップを装着させることで、浄水カートリッジを得た。
The obtained wet activated carbon molded body was put in a dryer set at 120 ° C. and sufficiently dried to obtain a cylindrical activated carbon molded body.
The surface of this activated carbon molded body was cut using a lathe. Then, the nonwoven fabric which has water permeability was wound around the outer peripheral surface of the activated carbon molding. Further, a circular cap capable of completely closing the surface on one end side is attached to one end side in the longitudinal direction of the cylindrical activated carbon molded body, and a circular cap having another central portion opened is attached to the other end side. Thus, a water purification cartridge was obtained.

この浄水カートリッジをLIXIL株式会社製の浄水器内蔵水栓「JF−AB461SYX(JW)」に装着し、粒子状物質除去性能を測定した。なお、粒子状物質除去性能測定では、JIS S3201(2004)で規定されたカオリンを濁り成分(粒子状物質)とした濁度2度の水を試験原水とした。JIS S3201(2004)では、通水開始後少なくとも5時間は連続通水しなければならないが、今回は実際の家庭での浄水器使用状況を想定し、20秒の吐水及び10秒の止水のサイクルを繰り返した。吐水と止水を繰り返した回数が、500回、1000回、1500回、2000回の際の、濁度除去率及びろ過流量を測定した。濁度除去率は、上述した方法により、ろ過流量については、JIS S3201(2004)で規定される方法により測定した。試験結果を表1に示す。なお、濁度除去率が80%以上、ろ過流量が1.25L/分の浄水カートリッジであれば、一般家庭での使用にも十分耐えることができる。   This water purification cartridge was attached to a water purifier built-in faucet “JF-AB461SYX (JW)” manufactured by LIXIL Corporation, and the particulate matter removal performance was measured. In the particulate matter removal performance measurement, water with a turbidity of 2 degrees using kaolin defined in JIS S3201 (2004) as a turbid component (particulate matter) was used as test raw water. In JIS S3201 (2004), it is necessary to continuously pass water for at least 5 hours after the start of water flow, but this time, assuming the actual condition of using a water purifier in an actual home, water discharge for 20 seconds and water stop for 10 seconds. The cycle was repeated. The turbidity removal rate and the filtration flow rate were measured when the number of times water discharge and water stop were repeated 500 times, 1000 times, 1500 times, and 2000 times. The turbidity removal rate was measured by the method described above, and the filtration flow rate was measured by the method defined in JIS S3201 (2004). The test results are shown in Table 1. In addition, if it is a water purification cartridge with a turbidity removal rate of 80% or more and a filtration flow rate of 1.25 L / min, it can sufficiently withstand use in ordinary households.

Figure 0006243180
Figure 0006243180

[実施例2]
実施例1において、硬質不織布(ポリエチレン製)からなる中芯(細孔径のモード径:40μm、表面粗さRa:42μm、圧環強さ:16N/mm)を用いた以外は実施例1と同様の方法により、浄水カートリッジを得た。
実施例1と同様の方法により濁り除去性能及びろ過流量を測定した結果を表2に示す。
[Example 2]
Example 1 was the same as Example 1 except that a medium core (mode diameter of pore diameter: 40 μm, surface roughness Ra: 42 μm, crushing strength: 16 N / mm 2 ) made of a hard nonwoven fabric (made of polyethylene) was used. Thus, a water purification cartridge was obtained.
Table 2 shows the results of measuring the turbidity removal performance and the filtration flow rate by the same method as in Example 1.

Figure 0006243180
Figure 0006243180

[実施例3]
実施例1において、硬質不織布(ポリエチレン製)からなる中芯(細孔径のモード径:30μm、表面粗さRa:1μm、圧環強さ:16N/mm)を用いた以外は実施例1と同様の方法により、浄水カートリッジを得た。
実施例1と同様の方法により濁り除去性能及びろ過流量を測定した結果を表3に示す。
[Example 3]
Example 1 was the same as Example 1 except that a medium core (pore diameter mode diameter: 30 μm, surface roughness Ra: 1 μm, crushing strength: 16 N / mm 2 ) made of a hard nonwoven fabric (made of polyethylene) was used. Thus, a water purification cartridge was obtained.
Table 3 shows the results of measuring the turbidity removal performance and the filtration flow rate by the same method as in Example 1.

Figure 0006243180
Figure 0006243180

[実施例4]
実施例1において、硬質不織布(ポリエチレン製)からなる中芯(細孔径のモード径:70μm、表面粗さRa:60μm、圧環強さ:16N/mm)を用いた以外は実施例1と同様の方法により、浄水カートリッジを得た。
実施例1と同様の方法により濁り除去性能及びろ過流量を測定した結果を表4に示す。
[Example 4]
Example 1 was the same as Example 1 except that a medium core (pore diameter mode diameter: 70 μm, surface roughness Ra: 60 μm, crushing strength: 16 N / mm 2 ) made of a hard nonwoven fabric (made of polyethylene) was used. Thus, a water purification cartridge was obtained.
Table 4 shows the results of measuring the turbidity removal performance and the filtration flow rate by the same method as in Example 1.

Figure 0006243180
Figure 0006243180

[実施例5]
実施例1において、活性炭成形体の表面を切削加工しなかった以外は実施例1と同様の方法により、浄水カートリッジを得た。
実施例1と同様の方法により濁り除去性能及びろ過流量を測定した結果を表5に示す。なお、吐水と止水の繰り返しが1500回の時点で濾過流量が下がり過ぎたことから、吐水と止水の繰り返しが2000回の時点での濁度除去率及びろ過流量については測定しなかった。
[Example 5]
In Example 1, a water purification cartridge was obtained by the same method as in Example 1 except that the surface of the activated carbon molded body was not cut.
Table 5 shows the results of measuring the turbidity removal performance and the filtration flow rate by the same method as in Example 1. In addition, since the filtration flow rate decreased too much when the water discharge and the water stop repetition were 1500 times, the turbidity removal rate and the filtration flow rate when the water discharge and the water stop repetition were 2000 times were not measured.

Figure 0006243180
Figure 0006243180

[比較例1]
実施例1において、SiOを主成分とした多孔質セラミックからなる中芯(細孔径のモード径:5μm、表面粗さRa:12μm、圧環強さ:10N/mm、軟化温度:200℃以上)を用いた以外は実施例1と同様の方法により、浄水カートリッジを得た。
実施例1と同様の方法により濁り除去性能及びろ過流量を測定した結果を表6に示す。なお、吐水と止水の繰り返しが1500回の時点で濾過流量が下がり過ぎたことから、吐水と止水の繰り返しが2000回の時点での濁度除去率及びろ過流量については測定しなかった。
[Comparative Example 1]
In Example 1, a core composed of a porous ceramic mainly composed of SiO 2 (pore diameter mode diameter: 5 μm, surface roughness Ra: 12 μm, crushing strength: 10 N / mm 2 , softening temperature: 200 ° C. or more ) Was used in the same manner as in Example 1 except that a water purification cartridge was obtained.
Table 6 shows the results of measuring the turbidity removal performance and the filtration flow rate by the same method as in Example 1. In addition, since the filtration flow rate decreased too much when the water discharge and the water stop repetition were 1500 times, the turbidity removal rate and the filtration flow rate when the water discharge and the water stop repetition were 2000 times were not measured.

Figure 0006243180
Figure 0006243180

[比較例2]
実施例1において、SiOを主成分とした多孔質セラミックからなる中芯(細孔径のモード径:100μm、表面粗さRa:40μm、圧環強さ:10N/mm、軟化温度:200℃以上)を用いた以外は実施例1と同様の方法により、浄水カートリッジを得た。
実施例1と同様の方法により濁り除去性能及びろ過流量を測定した結果を表7に示す。なお、吐水と止水の繰り返しが500回の時点で濁度除去率が下がり過ぎたことから、吐水と止水の繰り返しが1000回以降での濁度除去率及びろ過流量については測定しなかった。
[Comparative Example 2]
In Example 1, a core composed of a porous ceramic mainly composed of SiO 2 (pore diameter mode diameter: 100 μm, surface roughness Ra: 40 μm, crushing strength: 10 N / mm 2 , softening temperature: 200 ° C. or more ) Was used in the same manner as in Example 1 except that a water purification cartridge was obtained.
Table 7 shows the results of measuring the turbidity removal performance and the filtration flow rate by the same method as in Example 1. In addition, since the turbidity removal rate decreased too much when the water discharge and water stop were repeated 500 times, the turbidity removal rate and the filtration flow rate after 1000 times of water discharge and water stop were not measured. .

Figure 0006243180
Figure 0006243180

実施例1〜5並びに比較例1及び2の結果について表8にまとめる。
評価項目のうち、初期濁度除去性能は、吐水と止水の繰り返しが500回の時点での濁度除去率が80%以上である場合には評価を「○」とし、80%未満である場合には評価を「×」とした。繰返し濁度除去性能は、吐水と止水の繰り返しが2000回の時点での濁度除去率が80%以上である場合には評価を「○」とし、80%未満である場合には評価を「×」とした。実施例5及び比較例1は、吐水と止水の繰り返しが1500回の時点で十分に濁度除去率が高かったことから、繰返し濁度除去性能を「○」とした。比較例2は、初期濁度除去性能の評価が「×」であったことから、繰返し濁度除去性能についても「×」であると推測した。ろ過流量については、吐水と止水の繰り返しが2000回の時点でのろ過流量が1.25L/分以上である場合には評価を「○」とし、1.25L/分未満である場合には評価を「×」とした。実施例5及び比較例1は、吐水と止水の繰り返しが1500回の時点でろ過流量が下がりすぎていたことから、ろ過流量の評価を「×」とした。比較例2は、吐水と止水の繰り返しが500回の時点でのろ過流量が1.25L/分以上であり、濁度除去率が非常に低かったことから、吐水と止水の繰り返しが1500回の時点でのろ過流量も500回の時点でのろ過流量からほとんど低下しないと推測された。従って、比較例2のろ過流量の評価は「○」とした。
The results of Examples 1 to 5 and Comparative Examples 1 and 2 are summarized in Table 8.
Among the evaluation items, the initial turbidity removal performance is evaluated as “◯” when the turbidity removal rate when the repetition of water discharge and water stop is 500 times is 80% or more, and is less than 80%. In some cases, the evaluation was “x”. The repeated turbidity removal performance is evaluated as “◯” when the turbidity removal rate is 80% or more when the water discharge and stop water are repeated 2000 times, and is evaluated when it is less than 80%. It was set as “x”. In Example 5 and Comparative Example 1, since the turbidity removal rate was sufficiently high at the time when the water discharge and water stop were repeated 1500 times, the repeated turbidity removal performance was set to “◯”. In Comparative Example 2, since the evaluation of the initial turbidity removal performance was “x”, it was estimated that the repeated turbidity removal performance was also “x”. Regarding the filtration flow rate, when the filtration flow rate at the time when the water discharge and the stop water are repeated 2000 times is 1.25 L / min or more, the evaluation is “◯”, and when it is less than 1.25 L / min. Evaluation was set to "x". In Example 5 and Comparative Example 1, the filtration flow rate was too low at 1500 times when water discharge and water stop were repeated. Therefore, the filtration flow rate was evaluated as “x”. In Comparative Example 2, the filtration flow rate at the time of 500 repetitions of water discharge and water stop was 1.25 L / min or more, and the turbidity removal rate was very low. It was estimated that the filtration flow rate at the time of the first time hardly decreased from the filtration flow rate at the time of the 500th time. Therefore, the evaluation of the filtration flow rate in Comparative Example 2 was “◯”.

Figure 0006243180
Figure 0006243180

表1〜4及び表6に示した結果から、実施例1〜4の活性炭成形体は、比較例1の活性炭成形体よりも、ろ過流量が高いことが分かった。また、表1〜4及び表7に示した結果から、実施例1〜4の活性炭成形体は、比較例2の活性炭成形体よりも、濁度除去率が高いことが分かった。これら結果から、外周面に形成された細孔のモード径が10〜80μmの中芯の表面に活性炭層を形成させた活性炭成形体は、ろ過流量が高く、濁度除去性能も良好になることが確認された。   From the results shown in Tables 1 to 4 and Table 6, it was found that the activated carbon molded bodies of Examples 1 to 4 had a higher filtration flow rate than the activated carbon molded body of Comparative Example 1. Moreover, from the results shown in Tables 1 to 4 and Table 7, it was found that the activated carbon molded bodies of Examples 1 to 4 had a higher turbidity removal rate than the activated carbon molded body of Comparative Example 2. From these results, the activated carbon molded body in which the activated carbon layer is formed on the surface of the core having a pore mode diameter of 10 to 80 μm formed on the outer peripheral surface has a high filtration flow rate and good turbidity removal performance. Was confirmed.

表1〜4に示した結果から、実施例1及び2の活性炭成形体は、実施例3及び4の活性炭成形体よりも、吐水と止水を1500回以上繰り返した際の濁度除去率が高いことが分かった。この結果から、外周面の表面粗さRaが5〜50μmの中芯の表面に活性炭層を形成することで製造した活性炭成形体は、吐水と止水を繰り返しても濁度除去率が下がり難く、浄水カートリッジの使用期間を長くできることが確認された。   From the results shown in Tables 1 to 4, the activated carbon molded bodies of Examples 1 and 2 have a turbidity removal rate when water discharge and water stop are repeated 1500 times or more than the activated carbon molded bodies of Examples 3 and 4. I found it expensive. From this result, the activated carbon molded body produced by forming an activated carbon layer on the surface of the core having a surface roughness Ra of 5 to 50 μm on the outer peripheral surface hardly reduces the turbidity removal rate even when water discharge and water stop are repeated. It was confirmed that the water purification cartridge can be used for a longer period of time.

表1及び表5の結果から、実施例1の活性炭成形体は、実施例5の活性炭成形体よりもろ過流量が高いことが分かった。この結果から、活性炭層の外表面を切削加工することで、活性炭成形体のろ過流量を向上できることが確認された。   From the results of Table 1 and Table 5, it was found that the activated carbon molded body of Example 1 had a higher filtration flow rate than the activated carbon molded body of Example 5. From this result, it was confirmed that the filtration flow rate of the activated carbon molded body can be improved by cutting the outer surface of the activated carbon layer.

本発明によれば、活性炭が通常有している、残留塩素等の臭気物質や有機化合物の除去性能に加えて、高い粒子状物質除去性能を有する活性炭成形体を提供することができる。本発明によれば、従来よりも少ない部品数で浄水カートリッジの製造することが可能になる。更に、本発明に係る活性炭成形体は、吐水と止水の繰り返しに対して優れた耐久性を有するので、浄水カートリッジの寿命を長くすることができる。   ADVANTAGE OF THE INVENTION According to this invention, in addition to the removal performance of odorous substances, such as residual chlorine, and an organic compound which activated carbon has normally, the activated carbon molded object which has high particulate matter removal performance can be provided. According to the present invention, it is possible to manufacture a water purification cartridge with a smaller number of parts than before. Furthermore, since the activated carbon molded body according to the present invention has excellent durability against repeated water discharge and water stoppage, the life of the water purification cartridge can be extended.

1…活性炭成形体
2…中芯
3…活性炭層
4…活性炭スラリー
5…ホース
6…吸引装置
7…容器
8…排水路
DESCRIPTION OF SYMBOLS 1 ... Activated carbon molded object 2 ... Core 3 ... Activated carbon layer 4 ... Activated carbon slurry 5 ... Hose 6 ... Suction device 7 ... Container 8 ... Drainage channel

Claims (4)

複数の細孔を有する筒状の中芯と、
粒子状活性炭とフィブリル繊維と水とを含むスラリー中における、前記中芯の内側からの前記スラリーの吸引により、前記中芯の外周面に形成された活性炭層と、を含み、
前記中芯の複数の細孔のモード径は、10〜80μmであり、
前記中芯の圧環強さは、5N/mm以上であり、
前記中芯の外周面の表面粗さRaは、5〜50μmであり、
前記フィブリル繊維は前記中芯の前記外周面に入り込む活性炭成形体。
A cylindrical core having a plurality of pores;
In a slurry containing particulate activated carbon, fibril fiber, and water, an activated carbon layer formed on the outer peripheral surface of the core by suction of the slurry from the inside of the core, and
The mode diameter of the plurality of pores in the core is 10 to 80 μm,
The radial crushing strength in said core state, and are 5N / mm 2 or more,
The surface roughness Ra of the outer peripheral surface of the core is 5 to 50 μm,
The activated carbon molded body in which the fibril fiber enters the outer peripheral surface of the core .
前記中芯の軟化温度は、200℃以上である請求項1記載の活性炭成形体。 The activated carbon molded body according to claim 1 , wherein the softening temperature of the core is 200 ° C or higher. 複数の細孔を有する筒状の中芯と、
粒子状活性炭とフィブリル繊維と水とを含むスラリー中における、前記中芯の内側からの前記スラリーの吸引により、前記中芯の外周面に形成された活性炭層と、を含み、
前記中芯の複数の細孔のモード径は、10〜80μmであり、
前記中芯の圧環強さは、5N/mm 以上であり、
前記中芯は、JIS L0222で規定された不織布からなる活性炭成形体。
A cylindrical core having a plurality of pores;
In a slurry containing particulate activated carbon, fibril fiber, and water, an activated carbon layer formed on the outer peripheral surface of the core by suction of the slurry from the inside of the core, and
The mode diameter of the plurality of pores in the core is 10 to 80 μm,
The crushing strength of the core is 5 N / mm 2 or more,
The wick is activated carbon molded body ing from defined nonwoven JIS L0222.
細孔のモード径が10〜80μmである複数の細孔を有し、圧環強さが5N/mm以上であり、外周面の表面粗さRaは、5〜50μmである筒状の中芯を、粒子状活性炭とフィブリル繊維と水とを含むスラリー中に浸漬し、前記中芯の内側から前記スラリーを吸引することで、前記中芯の外周面に湿潤活性炭成形体を形成し、
形成直後の前記湿潤活性炭成形体を乾燥させることにより、活性炭成形体を得る工程を含み、
前記フィブリル繊維は前記中芯の前記外周面に入り込む活性炭成形体の製造方法。
Has a plurality of pores mode diameter of the pores is 10 to 80 [mu] m, the radial crushing Ri der is 5N / mm 2 or more strength, surface roughness Ra of the outer circumferential surface, in a tubular is 5~50μm The core is immersed in a slurry containing particulate activated carbon, fibril fibers and water, and the slurry is sucked from the inside of the core to form a wet activated carbon molded body on the outer peripheral surface of the core,
Including drying the wet activated carbon molded body immediately after formation to obtain an activated carbon molded body ,
The method for producing an activated carbon molded body in which the fibril fiber enters the outer peripheral surface of the core .
JP2013209942A 2013-10-07 2013-10-07 Activated carbon molded body and method for producing activated carbon molded body Active JP6243180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013209942A JP6243180B2 (en) 2013-10-07 2013-10-07 Activated carbon molded body and method for producing activated carbon molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013209942A JP6243180B2 (en) 2013-10-07 2013-10-07 Activated carbon molded body and method for producing activated carbon molded body

Publications (2)

Publication Number Publication Date
JP2015073919A JP2015073919A (en) 2015-04-20
JP6243180B2 true JP6243180B2 (en) 2017-12-06

Family

ID=52999207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013209942A Active JP6243180B2 (en) 2013-10-07 2013-10-07 Activated carbon molded body and method for producing activated carbon molded body

Country Status (1)

Country Link
JP (1) JP6243180B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6147283B2 (en) * 2015-01-30 2017-06-14 株式会社Lixil Water purification cartridge and water purifier
CN111960400A (en) 2016-02-23 2020-11-20 索尼公司 Solidified porous carbon material and method for producing same
JP6767146B2 (en) * 2016-03-30 2020-10-14 株式会社Lixil Granulated activated carbon

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122402A (en) * 1990-09-10 1992-04-22 Osaka Gas Co Ltd Molded body and its production
JP3537149B2 (en) * 1991-02-26 2004-06-14 大阪瓦斯株式会社 Molded adsorbent
JPH06312133A (en) * 1993-04-27 1994-11-08 Hayashi Seisakusho:Yugen Shaped adsorbent
JPH0824638A (en) * 1994-07-18 1996-01-30 Hayashi Seisakusho:Kk Molded adsorbing element
JP3516811B2 (en) * 1996-06-24 2004-04-05 クラレケミカル株式会社 Activated carbon fiber molded adsorbent
JP3007307B2 (en) * 1997-01-06 2000-02-07 大阪瓦斯株式会社 Hollow cylindrical molded adsorbent
JPH11309450A (en) * 1998-04-28 1999-11-09 Futamura Chemical Industries Co Ltd Water purifying filter
JP2002018280A (en) * 2000-07-04 2002-01-22 Unitika Ltd Activated carbon adsorbent
JP4251079B2 (en) * 2004-01-19 2009-04-08 パナソニック電工株式会社 Filtration device
JP2008073617A (en) * 2006-09-21 2008-04-03 Seiren Co Ltd Filter medium for water treatment
JP2012061390A (en) * 2010-09-14 2012-03-29 Futamura Chemical Co Ltd Filter for purification

Also Published As

Publication number Publication date
JP2015073919A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
JP6101195B2 (en) Molded adsorbent and water purifier using the same
JP6147283B2 (en) Water purification cartridge and water purifier
JP2012061390A (en) Filter for purification
CN111511466B (en) Adsorption filter
JP6243180B2 (en) Activated carbon molded body and method for producing activated carbon molded body
JP2016022399A (en) Water purification filter body
JP3164470U (en) Water purifier filter and water purifier using the same
US20090045133A1 (en) Low Pressure Drop Cyst Filter
JP6144655B2 (en) Molded adsorbent and water purifier using the same
JP6489735B2 (en) Method for producing a turbidity reducing filter body
JP7356458B2 (en) Water purification filter and water purifier using it
JP2019018154A (en) Filter body for water purification and water purifier
JP2022155561A (en) Water purification filter
JP6370130B2 (en) Manufacturing method of molded adsorbent
JP2019209311A (en) Activated carbon molded body
JP7180036B2 (en) adsorption filter
JPH04271830A (en) Molded adsorbent
WO2023008437A1 (en) Water purification filter and water purifier
TW202346215A (en) adsorption filter
WO2019235044A1 (en) Fibrous granulation binder
KR102183794B1 (en) High Viscous fluid filter assemblies and high Viscous fluid filtering apparatuscomprising thereof
JPH04247232A (en) Molded adsorbent
JP2021176609A (en) Water purification cartridge and water purifier
JPH0568966A (en) Activated carbon fiber sheet for purifying water
JPH06106056A (en) Formed adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171109

R150 Certificate of patent or registration of utility model

Ref document number: 6243180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350