JP6241187B2 - Anaerobic treatment method and anaerobic treatment apparatus - Google Patents

Anaerobic treatment method and anaerobic treatment apparatus Download PDF

Info

Publication number
JP6241187B2
JP6241187B2 JP2013214799A JP2013214799A JP6241187B2 JP 6241187 B2 JP6241187 B2 JP 6241187B2 JP 2013214799 A JP2013214799 A JP 2013214799A JP 2013214799 A JP2013214799 A JP 2013214799A JP 6241187 B2 JP6241187 B2 JP 6241187B2
Authority
JP
Japan
Prior art keywords
anaerobic
reaction tank
tank
anaerobic reaction
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013214799A
Other languages
Japanese (ja)
Other versions
JP2015077534A (en
Inventor
秀彰 進藤
秀彰 進藤
孝明 徳富
孝明 徳富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53009485&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6241187(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013214799A priority Critical patent/JP6241187B2/en
Publication of JP2015077534A publication Critical patent/JP2015077534A/en
Application granted granted Critical
Publication of JP6241187B2 publication Critical patent/JP6241187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は嫌気性処理方法及び嫌気性処理装置に関する。詳しくは、本発明は、反応槽内に流動性非生物担体を充填し、該非生物担体の表面及び/又は内部に生物膜を形成させて嫌気条件下で被処理水を通水して処理するに当たり、装置の運転開始に際して担体への微生物の付着を促進して担体の表面及び/又は内部に活性の高い生物膜を早期に形成させることにより、装置の立ち上げに要する時間を大幅に短縮するとともに、装置の立ち上げ後においても効率的な処理を行う嫌気性処理方法及び嫌気性処理装置を提供することを課題とする。   The present invention relates to an anaerobic processing method and an anaerobic processing apparatus. Specifically, in the present invention, a non-biological carrier is filled with a flowable non-biological carrier, and a biofilm is formed on the surface and / or the inside of the non-biological carrier, so that the treated water is passed under anaerobic conditions. At the start of the operation of the apparatus, the time required for starting up the apparatus is greatly reduced by promoting the attachment of microorganisms to the support and forming a highly active biofilm on the surface and / or inside of the support at an early stage. Another object is to provide an anaerobic processing method and an anaerobic processing apparatus that perform efficient processing even after the apparatus is started up.

従来、有機性排水の嫌気性処理方法として、高密度で沈降性の大きいグラニュール汚泥を形成し、溶解性BODを含む有機性排水を上向流で通水してスラッジブランケットを形成した状態で接触させることにより高負荷高速処理を行うUASB(Upflow Anaerobic Sludge Blanket:上向流嫌気性スラッジブランケット)法が採用されている。この方法は嫌気性微生物密度の高いグラニュール汚泥を用いて高負荷で高速処理する方法である。また、このUASB法を発展させたものとして、高さの高い反応槽を用いて有機性排水をさらに高流速で通水し、スラッジブランケットを高展開率で展開させて、より高負荷で嫌気性処理を行うEGSB(Expanded Granule Sludge Blanket)法も行われている。   Conventionally, as an anaerobic treatment method for organic wastewater, granular sludge with high density and large sedimentation is formed, and organic wastewater containing soluble BOD is passed in an upward flow to form a sludge blanket. A UASB (Upflow Anaerobic Sludge Blanket) method, which performs high-load high-speed processing by contact, is employed. This method is a method of high-speed treatment with a high load using granular sludge having a high anaerobic microorganism density. In addition, this UASB method has been developed as follows: Organic wastewater is passed at a higher flow rate using a tall reactor, sludge blanket is deployed at a high deployment rate, and anaerobic at a higher load. An EGSB (Expanded Granule Sludge Blanket) method for processing is also performed.

これらのUASB法、EGSB法などのグラニュール汚泥を用いる嫌気性処理法(以下「グラニュール法」という。)は、嫌気性微生物を含む汚泥をグラニュール状に維持、増殖させて処理する方法である。この方法は担体に汚泥を保持する固定床や流動床式の処理法と比較して高い汚泥保持濃度を達成できるため、高負荷運転が可能であり、また、装置の運転開始に際してもすでに稼働中の処理系から余剰汚泥を調達することにより短期間で立ち上げが可能であり、最も効率的な嫌気性処理法として一般にも認識されている。   These anaerobic treatment methods using granular sludge (hereinafter referred to as “granule method”) such as UASB method and EGSB method are methods in which sludge containing anaerobic microorganisms is maintained and propagated in a granular state. is there. This method can achieve a high sludge retention concentration compared to fixed bed or fluidized bed type treatment methods that hold sludge on the carrier, enabling high-load operation, and is already in operation at the start of operation of the equipment. It can be started up in a short period by procuring excess sludge from the treatment system, and is generally recognized as the most efficient anaerobic treatment method.

しかし、工場排水等にはグラニュールの形成、維持が難しい排水があり、それらについては流動床担体を用いる嫌気性処理プロセスが実用化されている。この流動床担体を用いる嫌気性処理プロセスの例としては、樹脂やゲル表面或いは内部に嫌気性微生物を保持し、排水と接触させて嫌気性処理を行う方式があり、反応槽の形式としてはUASB等と同様に上向流型反応槽、或いは完全混合型の反応槽が用いられる。   However, industrial wastewater and the like include wastewater that is difficult to form and maintain granules, and an anaerobic treatment process using a fluidized bed carrier has been put into practical use. As an example of the anaerobic treatment process using this fluidized bed carrier, there is a method in which anaerobic microorganisms are held on the resin or gel surface or inside, and anaerobic treatment is performed by contacting with waste water, and the type of reaction tank is UASB. In the same manner as above, an upward flow type reaction vessel or a complete mixing type reaction vessel is used.

樹脂やゲルなどの流動性非生物担体を用いた嫌気性処理方法では、装置の立ち上げ運転において速く担体表面に微生物を付着させることが重要となる。新品の非生物担体は通常微生物が全くついていないため、そのままでは処理を行うことができない。非生物担体を用いた嫌気性処理法では、グラニュール法では処理が困難な低濃度排水や組成の偏った排水を処理することが可能であるが、担体の表面に生物膜を形成するために長い期間が必要であり、グラニュール法と比較して立ち上げ期間が長くなるという問題がある。   In an anaerobic treatment method using a fluid non-biological carrier such as a resin or a gel, it is important to attach microorganisms to the carrier surface quickly in the start-up operation of the apparatus. Since a new non-biological carrier is usually free of microorganisms, it cannot be treated as it is. In anaerobic treatment using non-biological carrier, it is possible to treat low concentration wastewater that is difficult to treat by granule method and wastewater with uneven composition, but in order to form a biofilm on the surface of carrier There is a problem that a long period is required and the start-up period is longer than that of the granule method.

特許文献1には、非生物担体を用いた嫌気性処理方法において、立ち上げ期間を短縮するために、種汚泥としてグラニュールを添加する方法が記載されているが、担体表面に生物膜が形成されるまではグラニュールが処理の肩代わりをするため、グラニュール流出により処理能力が低下する危険性があり、また担体表面に生物膜が形成されるまでに約3ケ月もの長時間を要するという問題があった。このため、装置の立ち上げに際して、所定の性能を早期に発揮させるために担体表面への微生物付着を促進する技術が求められている。   Patent Document 1 describes a method of adding granules as seed sludge in order to shorten the start-up period in an anaerobic treatment method using a non-biological carrier, but a biofilm is formed on the surface of the carrier. Until it is done, the granule will take over the treatment, so there is a risk that the throughput will decrease due to granule outflow, and it takes about 3 months to form a biofilm on the carrier surface. was there. For this reason, there is a need for a technique that promotes the adhesion of microorganisms to the surface of the carrier in order to exhibit predetermined performance at an early stage when the apparatus is started up.

なお、特許文献2には、アンモニア性窒素を含有する排水を好気性条件下において硝化菌と接触させることにより硝化処理を行うに際し、有機物を基質として形成させた脱窒菌を含むグラニュールの破砕物を投入することにより、硝化性能を有するグラニュールを形成させて処理を行うことが記載されているが、この方法は嫌気性処理ではなく、好気性処理であり、また、流動性担体を用いるものでもない上に、単に「脱窒菌を含むグラニュールの径が大きい場合には破砕を行った後に投入する方法も非常に有効である。」と記載されるのみで、グラニュールの破砕により装置の立ち上げに要する時間を短縮することができることを示唆するものでもない。   Patent Document 2 discloses a crushed granule containing denitrifying bacteria formed using organic substances as a substrate when nitrification is performed by contacting wastewater containing ammonia nitrogen with nitrifying bacteria under aerobic conditions. However, this method is not anaerobic treatment but aerobic treatment, and uses a fluid carrier. In addition, it is simply described that “when the diameter of the granule containing denitrifying bacteria is large, the method of adding after crushing is also very effective”. It does not suggest that the time required for start-up can be shortened.

特開2012−110821号公報JP 2012-110281 A 特開2006−289310号公報JP 2006-289310 A

本発明は上記従来の問題点を解決し、嫌気反応槽内に流動性非生物担体を充填し、該非生物担体の表面及び/又は内部に生物膜を形成させて嫌気条件下で被処理水を通水して処理するに当たり、装置の運転開始に際して担体への微生物の付着を促進して担体の表面及び/又は内部に活性の高い生物膜を早期に形成させることにより、装置の立ち上げに要する時間を大幅に短縮するとともに、装置の立ち上げ後においても効率的な処理を行う嫌気性処理方法及び嫌気性処理装置を提供することを課題とする。   The present invention solves the above-mentioned conventional problems, fills the anaerobic reaction tank with a fluid non-biological carrier, forms a biofilm on the surface and / or inside of the non-biological carrier, and treats the water to be treated under anaerobic conditions. When processing by passing water, it is necessary to start up the device by promoting the attachment of microorganisms to the carrier at the start of operation of the device and forming a highly active biofilm on the surface and / or inside of the carrier at an early stage. It is an object of the present invention to provide an anaerobic processing method and an anaerobic processing apparatus that can significantly reduce the time and perform efficient processing even after the apparatus is started up.

本発明者らは上記課題を解決すべく検討を重ねた結果、流動性非生物担体を充填した嫌気反応槽の立ち上げ時に用いる種汚泥として、破砕した嫌気グラニュールを用いることにより、嫌気反応槽の処理能力を低下させることなく、担体への微生物の付着を促進することができ、装置の立ち上げに要する時間を大幅に短縮するとともに、装置の立ち上げ後においても効率的な処理を行うことができることを見出した。
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
As a result of repeated studies to solve the above-mentioned problems, the present inventors have used an anaerobic reaction tank by using a crushed anaerobic granule as a seed sludge used when starting an anaerobic reaction tank filled with a fluid non-biological carrier. Can promote the adhesion of microorganisms to the carrier without lowering the processing capacity of the system, greatly reducing the time required to start up the device and performing efficient processing even after the device is started up. I found out that I can.
The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 槽内に流動性非生物担体を充填した嫌気反応槽に被処理水を通水して嫌気性処理を行う嫌気性処理装置の立ち上げに際して、該嫌気反応槽に種汚泥を添加する嫌気性処理方法において、該流動性非生物担体は表面に凹凸のある樹脂製担体であり、該種汚泥として、少なくとも一部を破砕した平均粒径0.1〜1.0mmの嫌気グラニュールを用い、該嫌気反応槽の処理水の0.1〜10倍を該嫌気反応槽の入口側あるいは該嫌気反応槽の前処理槽である酸生成槽の入口側に循環させることを特徴とする嫌気性処理方法。 [1] When starting an anaerobic treatment apparatus that performs anaerobic treatment by passing water to be treated into an anaerobic reaction tank filled with a fluid abiotic carrier in the tank, seed sludge is added to the anaerobic reaction tank. In the anaerobic treatment method, the flowable non-biological carrier is a resin carrier having irregularities on the surface, and as the seed sludge , anaerobic granules having an average particle diameter of 0.1 to 1.0 mm obtained by crushing at least a part thereof are used. used, wherein the Rukoto by circulating 0.1-10 times the treated water該嫌gas reactor to the inlet side of the acid-forming tank is pretreatment tank on the inlet side or該嫌gas reactor該嫌gas reactor Anaerobic treatment method.

[2] [1]において、前記少なくとも一部を破砕した嫌気グラニュールが、前記嫌気反応槽外で破砕処理された後、該嫌気反応槽に添加された嫌気グラニュールであることを特徴とする嫌気性処理方法。 [2] In [1], the anaerobic granule obtained by crushing at least a part thereof is an anaerobic granule added to the anaerobic reaction tank after being crushed outside the anaerobic reaction tank. Anaerobic treatment method.

[3] [1]において、前記少なくとも一部を破砕した嫌気グラニュールが、前記嫌気反応槽内に添加された後、該嫌気反応槽内の破砕処理手段で破砕処理された嫌気グラニュールであることを特徴とする嫌気性処理方法。 [3] In [1], the anaerobic granule obtained by crushing at least a part of the anaerobic granule is added to the anaerobic reaction tank, and then the anaerobic granule is crushed by the crushing means in the anaerobic reaction tank. The anaerobic processing method characterized by this.

[4] [1]ないし[3]のいずれかにおいて、前記嫌気反応槽の運転開始時に前記種汚泥を一括投入することを特徴とする嫌気性処理方法。 [4] The anaerobic treatment method according to any one of [1] to [3], wherein the seed sludge is collectively charged at the start of operation of the anaerobic reaction tank.

[5] [1]ないし[3]のいずれかにおいて、前記嫌気反応槽の運転開始以降の立ち上げ運転期間に、前記種汚泥を該嫌気反応槽に連続的又は間欠的に添加することを特徴とする嫌気性処理方法。 [5] In any one of [1] to [3], the seed sludge is continuously or intermittently added to the anaerobic reaction tank during a startup operation period after the start of operation of the anaerobic reaction tank. An anaerobic treatment method.

[6] [1]ないし[5]のいずれかにおいて、前記嫌気反応槽への前記種汚泥の添加量が、該嫌気反応槽の槽容量に対して、破砕前の嫌気グラニュールの汚泥容量として1〜50%であることを特徴とする嫌気性処理方法。 [6] In any one of [1] to [5], the added amount of the seed sludge to the anaerobic reaction tank is a sludge capacity of the anaerobic granules before crushing with respect to the tank capacity of the anaerobic reaction tank. An anaerobic treatment method characterized by being 1 to 50%.

[7] [1]ないし[6]のいずれかにおいて、前記少なくとも一部を破砕した嫌気グラニュールの粒径が0.01〜10mmであることを特徴とする嫌気性処理方法。 [7] The anaerobic treatment method according to any one of [1] to [6], wherein the anaerobic granules obtained by crushing at least a part of the particles have a particle size of 0.01 to 10 mm.

[8] [1]ないし[7]のいずれかにおいて、前記流動性非生物担体が粒径1.0〜5.0mm、沈降速度100〜500m/hrの樹脂製担体であり、前記嫌気反応槽容量に対する該担体の充填量が10〜80%であることを特徴とする嫌気性処理方法。 [8] In any one of [1] to [7], the fluid non-biological carrier is a resin carrier having a particle size of 1.0 to 5.0 mm and a sedimentation speed of 100 to 500 m / hr, and the anaerobic reaction tank An anaerobic treatment method, wherein the filling amount of the carrier with respect to the volume is 10 to 80%.

[9] 槽内に、表面に凹凸のある樹脂製担体である流動性非生物担体を充填した嫌気反応槽と、該嫌気反応槽に被処理水を通水する手段と、該嫌気反応槽に少なくとも一部を破砕した平均粒径0.1〜1.0mmの嫌気グラニュールを添加する手段と、該嫌気反応槽の処理水の0.1〜10倍を該嫌気反応槽の入口側あるいは該嫌気反応槽の前処理槽である酸生成槽の入口側に循環させる手段とを備えることを特徴とする嫌気性処理装置。 [9] An anaerobic reaction tank filled with a fluid non-biological carrier, which is a resin carrier having an uneven surface, a means for passing water to be treated into the anaerobic reaction tank, and an anaerobic reaction tank. Means for adding anaerobic granules having an average particle size of 0.1 to 1.0 mm, at least partially crushed, and 0.1 to 10 times the treated water of the anaerobic reaction tank at the inlet side of the anaerobic reaction tank or the An anaerobic treatment apparatus comprising a means for circulating to an inlet side of an acid generation tank which is a pretreatment tank of an anaerobic reaction tank .

[10] [9]において、前記嫌気反応槽に少なくとも一部を破砕した嫌気グラニュールを添加する手段が、水中ポンプを備える嫌気グラニュール破砕槽を有し、該嫌気グラニュール破砕槽に投入された嫌気グラニュールを該水中ポンプで破砕すると共に前記嫌気反応槽に送給するように構成されていることを特徴とする嫌気性処理装置。 [10] In [9], the means for adding an anaerobic granule that is at least partially crushed to the anaerobic reaction tank has an anaerobic granule crushing tank equipped with a submersible pump, and is fed into the anaerobic granule crushing tank. An anaerobic treatment apparatus characterized in that the anaerobic granules are crushed by the submersible pump and fed to the anaerobic reaction tank.

[11] 槽内に、表面に凹凸のある樹脂製担体である流動性非生物担体を充填した嫌気反応槽と、該嫌気反応槽に被処理水を通水する手段と、該嫌気反応槽に嫌気グラニュールを添加する手段と、該嫌気グラニュールを該嫌気反応槽内で平均粒径0.1〜1.0mmに破砕する手段と、該嫌気反応槽の処理水の0.1〜10倍を該嫌気反応槽の入口側あるいは該嫌気反応槽の前処理槽である酸生成槽の入口側に循環させる手段とを備えることを特徴とする嫌気性処理装置。 [11] An anaerobic reaction tank filled with a fluid non-biological carrier, which is a resin carrier having an uneven surface, in the tank, means for passing water to be treated into the anaerobic reaction tank, and the anaerobic reaction tank Means for adding anaerobic granules, means for crushing the anaerobic granules to an average particle size of 0.1 to 1.0 mm in the anaerobic reaction tank, and 0.1 to 10 times the treated water in the anaerobic reaction tank An anaerobic treatment apparatus comprising a means for circulating the gas at an inlet side of the anaerobic reaction tank or an inlet side of an acid generation tank that is a pretreatment tank of the anaerobic reaction tank .

[12] [11]において、前記嫌気反応槽内で前記嫌気グラニュールを破砕する手段が、該嫌気反応槽内に設けられた異物通過性水中ポンプであることを特徴とする嫌気性処理装置。 [12] The anaerobic treatment apparatus according to [11], wherein the means for crushing the anaerobic granules in the anaerobic reaction tank is a foreign matter passing water pump provided in the anaerobic reaction tank.

本発明によれば、流動性非生物担体を用いた嫌気性処理方法において、担体として少なくとも一部を破砕した嫌気グラニュールを用いることで、破砕していないグラニュールを用いた場合と比較して、処理能力を低下させることなく、非生物担体への菌体付着速度及び菌体付着量を増加させることができ、装置の立ち上げに要する時間を大幅に短縮するとともに、装置の立ち上げ後においても効率的な処理を行うことができる。   According to the present invention, in the anaerobic treatment method using a fluid non-biological carrier, by using an anaerobic granule that is at least partially crushed as a carrier, compared with a case where an uncrushed granule is used. , Without decreasing the processing capacity, can increase the rate of bacterial cell adhesion and the amount of bacterial cell adhesion to non-biological carriers, greatly reducing the time required to start up the device, and after the startup of the device Can also perform efficient processing.

実施例で用いた実験装置を示す系統図である。It is a systematic diagram which shows the experimental apparatus used in the Example. 実施例1及び比較例1における原水と処理水のCODCr濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the COD Cr density | concentration of the raw | natural water and treated water in Example 1 and Comparative Example 1. 実施例2及び比較例1における原水と処理水のCODCr濃度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the CODCr density | concentration of the raw | natural water and treated water in Example 2 and Comparative Example 1. 実施例1、実施例2及び比較例1における非生物担体の菌体付着量の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the microbial cell adhesion amount of the non-biological carrier in Example 1, Example 2, and Comparative Example 1.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明は、槽内に流動性非生物担体を充填した嫌気反応槽(以下「流動床式嫌気反応槽」と称す場合がある。)の立ち上げに用いる種汚泥として、少なくとも一部を破砕した嫌気グラニュールを用いることを特徴とする。   In the present invention, at least a part of the seed sludge used for starting up an anaerobic reaction tank (hereinafter sometimes referred to as a “fluidized bed type anaerobic reaction tank”) filled with a fluid non-biological carrier in the tank is crushed. It is characterized by using anaerobic granules.

本発明において処理対象となる被処理水(以下「原水」と称す。)は、嫌気性微生物と接触させる嫌気性処理で処理可能な溶解性有機物を含むものであり、通常CODCr濃度として500〜10000mg/L程度のものである。 The water to be treated in the present invention (hereinafter referred to as “raw water”) contains a soluble organic substance that can be treated by an anaerobic treatment in contact with an anaerobic microorganism, and usually has a COD Cr concentration of 500 to 500. About 10,000 mg / L.

原水中に糖、タンパク等の高分子成分が含まれる場合には、流動床式嫌気反応槽の前処理として、これらの高分子成分を酢酸やプロピオン酸といった低分子有機酸まで分解する酸生成槽を設けてもよい。この場合、酸生成槽の処理条件は、原水の生分解性等の条件によっても異なるが、pH5〜8、好ましくは5.5〜7.0、温度20〜40℃、好ましくは25〜35℃、HRT2〜24時間、好ましくは2〜8時間が適当である。このような酸生成槽での前処理で、原水中の高分子成分の低分子化が十分に進行していると、後段の流動床式嫌気反応槽における処理が良好に進行するようになる。   When raw water contains high-molecular components such as sugar and protein, an acid generation tank that decomposes these high-molecular components into low-molecular organic acids such as acetic acid and propionic acid as pretreatment of a fluidized bed anaerobic reaction tank May be provided. In this case, the treatment conditions of the acid generation tank vary depending on conditions such as biodegradability of raw water, but pH 5-8, preferably 5.5-7.0, temperature 20-40 ° C, preferably 25-35 ° C. HRT is suitable for 2 to 24 hours, preferably 2 to 8 hours. If the polymer component in the raw water is sufficiently lowered in the pretreatment in such an acid generation tank, the treatment in the subsequent fluidized bed anaerobic reaction tank will proceed well.

一方、原水中に糖、タンパク等の高分子成分が殆ど含まれておらず、メタノール、酢酸等のメタン生成細菌が直接利用可能な化合物のみを含む場合には、酸生成槽を設ける必要はなく、原水を直接流動床式嫌気反応槽に通水することができる。   On the other hand, when the raw water contains almost no high-molecular components such as sugar and protein, and only contains compounds that can be directly used by methanogenic bacteria such as methanol and acetic acid, there is no need to provide an acid generation tank. The raw water can be directly passed through a fluidized bed type anaerobic reaction tank.

流動床式嫌気反応槽の種汚泥としては、基本的には嫌気性微生物(酸生成菌、メタン生成菌)が含まれているものであればいずれも利用できるが、汚泥消化プロセス等の低負荷運転を行っている反応槽では含まれる菌体の活性が低く、種汚泥としての添加効果も高くない。
UASB、EGSB法等により高負荷処理を行っている汚泥には活性の高いメタン菌が高濃度に含まれており、種汚泥として有効に機能する。また、グラニュールは分散状の汚泥と比べて汚泥濃度が10倍程度高く、同じ菌体量を輸送する場合には運搬する種汚泥量が少なくて済むという利点もある。
Any seed sludge in a fluidized bed anaerobic reaction tank can be used as long as it contains anaerobic microorganisms (acid-producing bacteria, methane-producing bacteria). In the reaction tank which is operating, the activity of the bacterial cells contained is low, and the addition effect as seed sludge is not high.
The sludge that has been subjected to high load treatment by UASB, EGSB method, etc. contains a high concentration of highly active methane bacteria and functions effectively as seed sludge. Further, granule has an advantage that the sludge concentration is about 10 times higher than that of dispersed sludge, and the amount of seed sludge to be transported is small when transporting the same amount of cells.

本発明において種汚泥として好適に用いられるUASB、EGSB法による嫌気性処理系等から得られる嫌気グラニュールは、通常汚泥濃度として40000〜60000mg−VSS/L程度であり、その粒径(破砕前の粒径)は概ね0.5〜3.0mmの範囲で、平均粒径として1.0〜2.0mm程度である。   The anaerobic granules obtained from an anaerobic treatment system such as UASB and EGSB methods preferably used as seed sludge in the present invention usually have a sludge concentration of about 40000 to 60000 mg-VSS / L, and its particle size (before crushing) The particle size is generally in the range of 0.5 to 3.0 mm, and the average particle size is about 1.0 to 2.0 mm.

従来技術では種汚泥の嫌気グラニュールは、破砕することなくそのまま嫌気反応槽に投入されていたが、この方法では、グラニュールから剥離した菌体が水流に乗って担体表面まで移動し、担体表面に付着する必要があり、菌体と担体の接触効率が悪く、担体に生物膜を形成させるまでに長い立ち上げ時間が必要となっていた。   In the conventional technology, the anaerobic granules of seed sludge were directly put into the anaerobic reaction tank without being crushed, but in this method, the cells detached from the granules move on the water stream to the carrier surface, and the carrier surface The contact efficiency between the bacterial cells and the carrier is poor, and a long start-up time is required until a biofilm is formed on the carrier.

これに対し、本発明では、嫌気グラニュールの一部又は全部を破砕して担体と接触させるため、担体表面に高濃度の菌体が接触することができる。また、嫌気グラニュールを破砕することで種菌が微細となり、非生物担体表面への物理的な接触頻度が増加し、非生物担体への菌体の付着が促進される。また、非生物担体表面に凸凹がある場合には微細なグラニュール汚泥が担体表面の該凸凹部分に吸着する。これにより破砕しない場合と比べて効率的に微生物を担体表面に付着させることができる。   In contrast, in the present invention, part or all of the anaerobic granules are crushed and brought into contact with the carrier, so that high-concentration bacterial cells can come into contact with the carrier surface. Further, by disrupting the anaerobic granules, the inoculum becomes finer, the frequency of physical contact with the surface of the non-biological carrier increases, and adhesion of the microbial cells to the non-biological carrier is promoted. In addition, when the surface of the non-biological carrier has irregularities, fine granular sludge is adsorbed on the irregularities of the carrier surface. Thereby, compared with the case where it does not crush, microorganisms can adhere to the support | carrier surface efficiently.

嫌気グラニュールの破砕方法としては特に制限はなく、ミルやホモジナイザなどの破砕手段を用いる方法であってもよいが、水中ポンプを用いる方法が好ましく、特にカッター付きの水中ポンプを用いることが破砕効率の面で好ましい。   The anaerobic granule crushing method is not particularly limited, and a method using a crushing means such as a mill or a homogenizer may be used, but a method using a submersible pump is preferable, and a crushing efficiency using a submerged pump with a cutter is particularly preferable. It is preferable in terms of

種汚泥の嫌気グラニュールは嫌気反応槽に投入された後流動床式嫌気反応槽内で破砕されてもよく(以下、この方法を「槽内破砕」と称す。)、また、予め破砕した嫌気グラニュールを流動床式嫌気反応槽に投入することもできる(以下、この方法を「槽外破砕」と称す。)。   Anaerobic granules of seed sludge may be crushed in a fluidized bed type anaerobic reaction tank after being put into the anaerobic reaction tank (hereinafter, this method is referred to as “crushing in the tank”). Granules can also be charged into a fluidized bed anaerobic reaction tank (hereinafter, this method is referred to as “outside crushing”).

なお、流動床式嫌気反応槽への種汚泥の添加方法としては特に制限はなく、
(1) 流動床式嫌気反応槽の任意の箇所、例えば、上部又は下部又はその中間位置から直接投入する方法
(2) 流動床式嫌気反応槽の前段の槽、例えば酸生成槽やpH調整槽などに投入して流動床式嫌気反応槽に流入させる方法
(3) 流動床式嫌気反応槽の原水又は流動床式嫌気反応槽の循環水に添加して原水又は循環水と共に流動床式嫌気反応槽に流入させる方法
などが挙げられる。
In addition, there is no restriction in particular as an addition method of seed sludge to a fluid bed type anaerobic reaction tank,
(1) A method in which the fluidized bed type anaerobic reaction tank is directly charged from any location, for example, the upper or lower part or an intermediate position thereof. (2) A preceding stage of the fluidized bed type anaerobic reaction tank, such as an acid generation tank or a pH adjustment tank. (3) Fluidized bed type anaerobic reaction tank is added to the raw water of the fluidized bed type anaerobic reaction tank or the circulating water of the fluidized bed type anaerobic reaction tank, and the fluidized bed type anaerobic reaction is added to the raw water or the circulating water. The method of making it flow into a tank is mentioned.

槽内破砕の場合は、破砕されていない嫌気グラニュールを上記(1)〜(3)のいずれかの方法で流動床式嫌気反応槽に添加した後、流動床式嫌気反応槽内に設けた水中ポンプで槽内の嫌気グラニュールを破砕する方法が好ましい。この場合、流動床式嫌気反応槽内の非生物担体が水中ポンプに流入しても、非生物担体は破砕されることがないように、異物通過径の大きい(例えば50〜200mm)異物通過性水中ポンプを用い、嫌気グラニュールのみを選択的に破砕することが好ましい。   In the case of crushing in the tank, after anaerobic granules that have not been crushed are added to the fluidized bed type anaerobic reaction tank by any of the above methods (1) to (3), they are provided in the fluidized bed type anaerobic reaction tank. A method of crushing anaerobic granules in the tank with a submersible pump is preferred. In this case, the foreign substance passage property has a large foreign substance passage diameter (for example, 50 to 200 mm) so that the non-biological carrier is not crushed even if the non-biological carrier in the fluidized bed anaerobic reaction tank flows into the submersible pump. It is preferable to selectively crush only anaerobic granules using a submersible pump.

また、槽外破砕の場合は、水中ポンプを設けた嫌気グラニュール破砕槽を用い、この破砕槽に嫌気グラニュールを投入して槽内の水中ポンプで破砕すると共に、この水中ポンプにより破砕グラニュールを送り出し、前記(1)〜(3)の方法で流動床式嫌気反応槽に添加することが好ましい。   In the case of crushing outside the tank, an anaerobic granule crushing tank equipped with a submersible pump is used. The anaerobic granule is introduced into the crushing tank and crushed by the submersible pump in the tank, and the crushing granule is submerged by the submersible pump. It is preferable to add to the fluidized bed type anaerobic reaction tank by the methods (1) to (3).

本発明においては、嫌気グラニュールの一部又は全部を破砕することで、その粒径が概ね0.01〜10mmの範囲となり、平均粒径で0.1〜1.0mmとなったものを種汚泥として用いることが好ましい。破砕後の嫌気グラニュールの粒径が大きすぎると、嫌気グラニュールを破砕することによる本発明の効果を十分に得ることができず、小さ過ぎると、流動床式嫌気反応槽から流出する種汚泥量が多くなり、種汚泥の添加効果が得られなくなる。   In the present invention, a part or all of the anaerobic granules are crushed so that the particle diameter is in the range of approximately 0.01 to 10 mm, and the average particle diameter is 0.1 to 1.0 mm. It is preferable to use it as sludge. If the particle size of the anaerobic granules after crushing is too large, the effect of the present invention by crushing the anaerobic granules cannot be obtained sufficiently, and if too small, the seed sludge flowing out from the fluidized bed type anaerobic reaction tank The amount increases and the effect of adding seed sludge cannot be obtained.

流動床式嫌気反応槽への種汚泥(槽外破砕の場合は破砕した嫌気グラニュール、槽内破砕の場合は槽内で破砕される破砕前の嫌気グラニュール)の添加は、装置の運転開始時(立ち上げ開始時)に、必要な種汚泥の全量を投入する一括投入であってもよく、所定の立ち上げ期間内に、種汚泥を連続的又は間欠的に添加する方法であってもよい。   Addition of seed sludge to the fluidized bed anaerobic reaction tank (crushed anaerobic granules for crushing outside the tank, and anaerobic granules before crushing inside the tank for crushing inside the tank) At the time of start-up (starting up), the entire amount of seed sludge required may be charged, or the method of adding seed sludge continuously or intermittently within a predetermined start-up period. Good.

種汚泥の添加量は、種汚泥の添加方法や流動床式嫌気反応槽の運転条件、原水の水質等によっても異なるが、流動床式嫌気反応槽の容量に対して、破砕前の嫌気グラニュールの容量として1〜50%、特に5〜20%となるように添加することが好ましい。
この添加量は一括投入の場合は、その一括投入量であり、種汚泥を連像的又は間欠的に添加する場合は、立ち上げ期間内に添加された合計の添加量である。種汚泥の添加量が少な過ぎると菌体量が不足して立ち上げ期間が長くなり、多過ぎると種汚泥となる嫌気グラニュールを調達して貯留、破砕するためのコストが増大し、好ましくない。
The amount of seed sludge added depends on the method of seed sludge addition, the operating conditions of the fluidized bed type anaerobic reaction tank, the quality of the raw water, etc., but the anaerobic granules before crushing with respect to the capacity of the fluidized bed type anaerobic reaction tank It is preferable to add so that it may become 1 to 50% as a capacity | capacitance of 5 to 20% especially.
This addition amount is the batch addition amount in the case of batch addition, and is the total addition amount added during the start-up period when seed sludge is added continuously or intermittently. If the amount of seed sludge added is too small, the amount of bacterial cells will be insufficient and the startup period will be long, and if it is too large, the cost for procuring, storing, and crushing anaerobic granules that will become seed sludge will increase. .

流動床式嫌気反応槽内の種汚泥のうち微細なものは、運転開始後、流動床式嫌気反応槽から流出してしまう場合がある。このため、この流出分を補うために、種汚泥の一部又は全部を流動床式嫌気反応槽に追加投入することが好ましい。
種汚泥を流動床式嫌気反応槽の立ち上げ期間に連続的又は間欠的に添加する場合には、処理水と共に流出する種汚泥を補足する効果が得られ、本発明による効果をより一層有効に得ることができる。
Fine seed sludge in the fluidized bed anaerobic reaction tank may flow out of the fluidized bed anaerobic reaction tank after the start of operation. For this reason, in order to make up for this outflow, it is preferable to add part or all of the seed sludge to the fluidized bed type anaerobic reaction tank.
When seed sludge is added continuously or intermittently during the start-up period of a fluidized bed type anaerobic reaction tank, the effect of supplementing the seed sludge flowing out with the treated water can be obtained, and the effect of the present invention can be made even more effective. Can be obtained.

種汚泥を流動床式嫌気反応槽の立ち上げ期間内に間欠的に添加する場合、その添加頻度や1回当たりの添加量には特に制限はないが、1〜20日に1回の頻度で、全種汚泥量の1/20〜1/1程度を添加することが好ましい。   When seed sludge is added intermittently within the start-up period of a fluidized bed anaerobic reaction tank, there is no particular limitation on the addition frequency and the amount added per time, but once every 1 to 20 days It is preferable to add about 1/20 to 1/1 of the total amount of sludge.

なお、種汚泥を連続的又は間欠的に添加する立ち上げ期間に特に制限はなく、処理水の水質が良好な値で安定し、また、流動床式嫌気反応槽内の非生物担体に十分量の菌体が付着してその付着量が安定するまでの期間であり、当該嫌気性処理装置全体の運転条件や原水水質によって異なる。   There is no particular limitation on the start-up period in which the seed sludge is added continuously or intermittently, the quality of the treated water is stable at a good value, and is sufficient for the non-biological carrier in the fluidized bed type anaerobic reaction tank. It is a period until the amount of the adhering bacteria is adhered and the amount of adhesion is stabilized, and varies depending on the operating conditions of the anaerobic treatment apparatus as a whole and the quality of the raw water.

本発明において、流動床式嫌気反応槽に充填する非生物担体の形状、材質には特に制限は無いが、比重、粒径の調整が容易な樹脂製担体が好ましい。非生物担体としては、大きさ(粒径)1.0〜5.0mm、好ましくは2.0〜4.0mm、沈降速度として100〜500m/hrのものが好ましい。
担体の沈降速度が小さいと、水流、発生ガスにより浮上し易く、水面近くにスカム状に蓄積してしまう。非生物担体では、菌体の付着で表面に生物膜が形成され、生物膜内部でガスが発生する反応が進行するため、担体の見掛け比重は生物膜の形成に伴って軽くなっていく。この生物膜の影響を考慮して、担体自体の比重、沈降速度を決定する必要がある。
逆に沈降速度が大きすぎると原水との接触効率が悪くなり、十分な処理性能を得ることができない場合があり、また担体の堆積層に固形物が蓄積して原水流路が閉塞するといった弊害が出る可能性がある。
In the present invention, the shape and material of the non-biological carrier filled in the fluidized bed type anaerobic reaction tank are not particularly limited, but a resin carrier that can easily adjust the specific gravity and particle size is preferable. The non-biological carrier preferably has a size (particle size) of 1.0 to 5.0 mm, preferably 2.0 to 4.0 mm, and a sedimentation speed of 100 to 500 m / hr.
When the sedimentation rate of the carrier is low, the carrier tends to float due to water flow and generated gas, and accumulates in a scum shape near the water surface. In a non-biological carrier, a biofilm is formed on the surface due to adhesion of bacterial cells, and a reaction in which gas is generated inside the biofilm proceeds. Therefore, the apparent specific gravity of the carrier becomes lighter as the biofilm is formed. In consideration of the influence of this biofilm, it is necessary to determine the specific gravity and sedimentation rate of the carrier itself.
Conversely, if the sedimentation rate is too high, the contact efficiency with the raw water may deteriorate, and sufficient processing performance may not be obtained. Also, solids accumulate in the deposit layer of the carrier and the raw water flow path is blocked. May come out.

本発明において、流動床式嫌気反応槽としては、攪拌機等を用いる完全混合型反応槽、水流と発生ガスにより槽内を混合する上向流型反応槽等を利用することができるが、特に反応槽の高さ、形を自由に設定でき、担体を多く投入できることから上向流型反応槽を用いることが好ましい。また、流動床式嫌気反応槽の処理水の一部、例えば0.1〜10倍、好ましくは0.1〜5倍程度を流動床式嫌気反応槽の入り口側或いは前述の酸生成槽の入口側に循環させることが好ましく、これにより、処理の安定化、高効率化を図ることができる。   In the present invention, as the fluidized bed type anaerobic reaction tank, a complete mixing type reaction tank using a stirrer or the like, an upward flow type reaction tank in which the inside of the tank is mixed with water flow and generated gas, and the like can be used. Since the height and shape of the tank can be freely set and a large amount of carrier can be charged, it is preferable to use an upward flow type reaction tank. Further, a part of the treated water in the fluidized bed type anaerobic reaction tank, for example, 0.1 to 10 times, preferably about 0.1 to 5 times, is added to the inlet side of the fluidized bed type anaerobic reaction tank or the inlet of the acid generation tank. It is preferable to make it circulate to the side, and thereby stabilization of processing and high efficiency can be achieved.

完全混合型反応槽、上向流型反応槽における処理条件としては、所望の処理効率を得ることができる範囲において、特に制限はないが、例えば以下のような条件を設定することができる。   The processing conditions in the complete mixing type reaction tank and the upward flow type reaction tank are not particularly limited as long as desired processing efficiency can be obtained. For example, the following conditions can be set.

<完全混合型反応槽>
担体充填率:10〜30%
HRT:1.0〜24hr
槽負荷:4.0〜12.0kg−CODCr/m/day
汚泥負荷:0.8〜3.0kg−CODCr/kg−VSS/day
pH:6.5〜7.5
温度:25〜38℃
<上向流型反応槽>
担体充填率:10〜80%
HRT:1.0〜24hr
上昇流速(LV):1.0〜20m/hr
槽負荷:4.0〜32kg−CODCr/m/day
汚泥負荷:0.8〜3.0kg−CODCr/kg−VSS/day
pH:6.5〜7.5
温度:25〜38℃
<Completely mixed reaction tank>
Carrier filling rate: 10-30%
HRT: 1.0-24 hr
Tank load: 4.0 to 12.0 kg-COD Cr / m 3 / day
Sludge load: 0.8~3.0kg-COD Cr / kg- VSS / day
pH: 6.5-7.5
Temperature: 25-38 ° C
<Upward flow reactor>
Carrier filling rate: 10-80%
HRT: 1.0-24 hr
Ascending flow velocity (LV): 1.0 to 20 m / hr
Tank load: 4.0 to 32 kg-COD Cr / m 3 / day
Sludge load: 0.8~3.0kg-COD Cr / kg- VSS / day
pH: 6.5-7.5
Temperature: 25-38 ° C

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

[実験装置及び通水試験条件]
以下の実施例及び比較例では、図1に示す実験装置を用いて通水試験を行った。この実験装置は、非生物性担体2が充填された、嫌気反応槽1の底部から、原水を配管11を経てポンプPより上向流で通水し、嫌気反応槽1の上記からの流出水の一部を配管12より処理水として系外へ排出し、残部を配管13を経てポンプPにより、嫌気性反応槽1の底部に循環させるものであり、破砕グラニュール(比較例では破砕していないグラニュール)をポンプPにより配管14及び原水の導入配管11を経て嫌気反応槽1に投入するように構成されている。
嫌気性反応槽1は、直径5cm、高さ40cm、容量約750mLの小型反応槽であり、原水としては、酢酸ナトリウムを主体とする合成排水(CODcr濃度として3500〜7000mg/L、pH7.0)を用い、以下の試験条件で通水試験を行った。
原水通水量:1440mL/day
嫌気反応槽 HRT:12hr
温度:35℃
通水LV:0.03m/hr
槽負荷:6.5〜13kg−CODCr/m/day
汚泥負荷:3〜26kg−CODCr/kg−VSS/day
非生物担体:ポリオレフィン系樹脂担体
粒径:1.8〜2.2mm
沈降速度:300m/hr
嫌気反応槽の担体充填率:40%
[Experimental equipment and water flow test conditions]
In the following Examples and Comparative Examples, a water flow test was conducted using the experimental apparatus shown in FIG. The experimental apparatus, abiotic carrier 2 has been filled, from the bottom of the anaerobic reactor 1, raw water through water at upflow from the pump P 1 through the pipe 11, the outflow from the anaerobic reactor 1 part of the water discharged from the system as treated water from the pipe 12 by the pump P 2 the remainder through a pipe 13, which is recycled to the bottom of the anaerobic reactor 1, crushing the crushed granules (Comparative example It is configured to put the anaerobic reactor 1 through the inlet pipe 11 of the piping 14 and the raw water by granules) the pump P 3 which is not.
The anaerobic reaction tank 1 is a small reaction tank having a diameter of 5 cm, a height of 40 cm, and a capacity of about 750 mL. As raw water, synthetic waste water mainly composed of sodium acetate (CODcr concentration of 3500 to 7000 mg / L, pH 7.0) A water flow test was conducted under the following test conditions.
Raw water flow rate: 1440mL / day
Anaerobic reaction tank HRT: 12 hr
Temperature: 35 ° C
Water flow LV: 0.03m / hr
Tank load: 6.5 to 13 kg-COD Cr / m 3 / day
Sludge load: 3 to 26 kg-COD Cr / kg-VSS / day
Non-biological carrier: Polyolefin resin carrier
Particle size: 1.8-2.2mm
Sedimentation speed: 300m / hr
Carrier filling rate of anaerobic reaction tank: 40%

嫌気グラニュールとしては、食品系嫌気装置から採取したUASBグラニュール(10000mg−VSS/L、粒径1.0〜2.0mm、平均粒径1.8mm)を用いた。なお、以下の実施例及び比較例において、嫌気反応槽への破砕グラニュールの投入量は、破砕前のグラニュールの容量として示す。
以下の実施例及び比較例では、嫌気反応槽の原水と処理水のCODCr濃度と、嫌気反応槽内の非生物担体に付着した菌体量を定期的に測定してその経時変化を調べた。非生物担体に付着した菌体量は、嫌気反応槽から定期的に非生物担体の一部を引き抜き、非生物担体に付着しているタンパク質量を測定し、計算により菌体量を算出して求めた。測定のために引き抜いた非生物担体は測定後は直ちに嫌気反応槽に戻した。
As an anaerobic granule, the UASB granule (10000 mg-VSS / L, the particle size of 1.0-2.0 mm, the average particle size of 1.8 mm) extract | collected from the food-type anaerobic apparatus was used. In the following examples and comparative examples, the amount of crushed granule input to the anaerobic reaction tank is shown as the granule volume before crushing.
In the following examples and comparative examples, the COD Cr concentration of raw water and treated water in an anaerobic reaction tank and the amount of cells attached to a non-biological carrier in the anaerobic reaction tank were measured periodically to examine the changes over time. . The amount of bacterial cells attached to the non-biological carrier is obtained by periodically extracting a part of the non-biological carrier from the anaerobic reaction tank, measuring the amount of protein adhering to the non-biological carrier, and calculating the amount of bacterial cells by calculation. Asked. The abiotic carrier extracted for measurement was immediately returned to the anaerobic reaction tank after the measurement.

[実施例1]
実験装置の運転開始時に、種汚泥として、ミキサーで粒径0.1〜1.0mm、平均粒径0.2mmに破砕した嫌気グラニュールを嫌気反応槽1に40mL(嫌気反応槽容量の5.3%)投入して通水試験を行った。
原水及び処理水のCODCr濃度の経時変化を図2に、非生物担体の菌体付着量の経時変化を図4に示す。
[Example 1]
At the start of operation of the experimental apparatus, 40 mL of anaerobic granules crushed with a mixer to a particle size of 0.1 to 1.0 mm and an average particle size of 0.2 mm as seed sludge in the anaerobic reaction tank 1 (anaerobic reaction tank capacity of 5. 3%) and conducted a water flow test.
The time course of COD Cr concentration of the raw water and the treated water 2 shows the time course of cell adhesion amount abiotic carrier in FIG.

[実施例2]
実施例1において、実験装置の運転開始時に破砕グラニュールを一括投入する代わりに、ミキサーで粒径0.1〜1.0mm、平均粒径0.2mmに破砕した嫌気グラニュールを、運転開始以降、嫌気反応槽1に1日1回4mL(嫌気反応槽容量の0.5%)ずつ、10日間、総投入量として40mL(嫌気反応槽容量の5.3%)投入したこと以外は同様に通水試験を行った。
原水及び処理水のCODCr濃度の経時変化を図3に、非生物担体の菌体付着量の経時変化を図4に示す。
[Example 2]
In Example 1, anaerobic granules crushed to a particle size of 0.1 to 1.0 mm and an average particle size of 0.2 mm with a mixer were used after the start of operation instead of charging the crushed granules all together at the start of operation of the experimental apparatus. , Except that 4 mL (0.5% of the anaerobic reaction tank capacity) once a day was added to the anaerobic reaction tank 1 for 10 days as a total input amount of 40 mL (5.3% of the anaerobic reaction tank capacity). A water flow test was conducted.
Figure 3 changes with time of COD Cr concentration of the raw water and treated water, showing the time course of cell adhesion amount abiotic carrier in FIG.

[比較例1]
実施例1において、グラニュール40mLを破砕することなく、実験装置の立ち上げ開始時に投入したこと以外は同様に通水試験を行った。
原水及び処理水のCODCr濃度の経時変化を図2,3に、非生物担体の菌体付着量の経時変化を図4に示す。
[Comparative Example 1]
In Example 1, a water flow test was performed in the same manner except that 40 mL of granules were not crushed and were added at the start of startup of the experimental apparatus.
2 and 3 the time course of COD Cr concentration of the raw water and treated water, showing the time course of cell adhesion amount abiotic carrier in FIG.

[考察]
実施例1と比較例1の処理水のCODCr濃度は同程度であり、グラニュールを破砕することによる処理能力の低下は起こらなかった。また、非生物担体の菌体付着量は、実施例1の場合は運転開始1日後に600mg−VSS/Lとなり、比較例1の場合は200mg−VSS/Lとなった。その後はほぼ同じ傾向で菌体量が増加し、初期の付着量の差の分、破砕したグラニュールを用いた実施例1の方が多くなった。菌体量が800mg−VSS/Lに達するまでの時間は、破砕したグラニュールを投入した実施例1の場合は約30日、破砕していないグラニュールを投入した比較例1の場合は60日掛かっており、破砕したグラニュールを用いることで約1カ月の短縮を図れた。
[Discussion]
The COD Cr concentration of the treated water of Example 1 and Comparative Example 1 was comparable, and the treatment capacity was not reduced by crushing the granules. In addition, in the case of Example 1, the bacterial cell adhesion amount of the non-biological carrier was 600 mg-VSS / L one day after the start of operation, and in the case of Comparative Example 1, it was 200 mg-VSS / L. Thereafter, the amount of bacterial cells increased with almost the same tendency, and the amount of Example 1 using crushed granules increased due to the difference in the initial amount of adhesion. The time required for the amount of cells to reach 800 mg-VSS / L is about 30 days in the case of Example 1 in which crushed granules are added, and 60 days in the case of Comparative Example 1 in which crushed granules are added. It took about 1 month by using crushed granules.

実施例2の場合は、運転開始初期は処理水CODCr濃度が高かったが、破砕したグラニュール添加量の増加とともに処理水CODCr濃度が減少し、添加量が嫌気反応槽容量の5.3%となった運転開始10日目には処理水CODCr濃度が500mg/L以下となり、その後の処理水CODCr濃度は比較例1と同程度となった。また、非生物担体の菌体付着量は、実施例2の場合は運転開始1日後に800mg−VSS/Lとなり、比較例1の場合の200mg−VSS/Lより高くなった。その後、実施例2では原水CODCr濃度が倍増した運転11日目より菌体付着量が大幅に増加し、その後は実施例1、比較例1とはほぼ同じ傾向で菌体量が増加した。非生物担体の菌体付着量が1500mg−VSS/Lに達するまでの時間は、実施例2の場合は25日、実施例1の場合は60日掛かっており、比較例1の場合は80日後も1000mg−VSS/L程度となった。これらの結果から、破砕したグラニュールを連続添加することで菌体付着期間を短縮し、さらに非生物担体への菌体の付着を促進できることが分かる。 In the case of Example 2, the treated water COD Cr concentration was high at the beginning of the operation, but the treated water COD Cr concentration decreased with an increase in the added amount of crushed granules, and the added amount was 5.3 of the anaerobic reaction tank capacity. On the 10th day from the start of operation, the concentration of treated water COD Cr became 500 mg / L or less, and the concentration of treated water COD Cr thereafter became approximately the same as in Comparative Example 1. Moreover, the bacterial cell adhesion amount of the non-biological carrier was 800 mg-VSS / L one day after the start of operation in the case of Example 2, and was higher than 200 mg-VSS / L in the case of Comparative Example 1. After that, in Example 2, the bacterial cell adhesion amount significantly increased from the 11th day of operation when the raw water COD Cr concentration doubled, and thereafter, the bacterial cell amount increased in substantially the same tendency as in Example 1 and Comparative Example 1. It takes 25 days for Example 2 to reach 1500 mg-VSS / L of the non-biological carrier, and 60 days for Example 1, and 80 days for Comparative Example 1. Was about 1000 mg-VSS / L. From these results, it can be seen that continuous addition of crushed granules can shorten the cell adhesion period and further promote the adhesion of the cells to the non-biological carrier.

1 嫌気反応槽
2 非生物担体
1 Anaerobic reaction tank 2 Non-biological carrier

Claims (12)

槽内に流動性非生物担体を充填した嫌気反応槽に被処理水を通水して嫌気性処理を行う嫌気性処理装置の立ち上げに際して、該嫌気反応槽に種汚泥を添加する嫌気性処理方法において、
該流動性非生物担体は表面に凹凸のある樹脂製担体であり、
該種汚泥として、少なくとも一部を破砕した平均粒径0.1〜1.0mmの嫌気グラニュールを用い
該嫌気反応槽の処理水の0.1〜10倍を該嫌気反応槽の入口側あるいは該嫌気反応槽の前処理槽である酸生成槽の入口側に循環させることを特徴とする嫌気性処理方法。
Anaerobic treatment in which seed sludge is added to the anaerobic reaction tank when the anaerobic treatment apparatus that performs anaerobic treatment by passing water to be treated into the anaerobic reaction tank filled with a fluid non-biological carrier in the tank In the method
The flowable non-biological carrier is a resin carrier having uneven surfaces,
As the seed sludge, an anaerobic granule having an average particle diameter of 0.1 to 1.0 mm obtained by crushing at least a part thereof ,
Anaerobic characterized by Rukoto by circulating 0.1-10 times the treated water該嫌gas reactor to the inlet side of the acid-forming tank is pretreatment tank on the inlet side or該嫌gas reactor該嫌gas reactor Processing method.
請求項1において、前記少なくとも一部を破砕した嫌気グラニュールが、前記嫌気反応槽外で破砕処理された後、該嫌気反応槽に添加された嫌気グラニュールであることを特徴とする嫌気性処理方法。   2. The anaerobic treatment according to claim 1, wherein the anaerobic granule obtained by crushing at least a part of the anaerobic granule is an anaerobic granule added to the anaerobic reaction tank after being crushed outside the anaerobic reaction tank. Method. 請求項1において、前記少なくとも一部を破砕した嫌気グラニュールが、前記嫌気反応槽内に添加された後、該嫌気反応槽内の破砕処理手段で破砕処理された嫌気グラニュールであることを特徴とする嫌気性処理方法。   The anaerobic granule obtained by pulverizing at least a part of the anaerobic reaction tank according to claim 1 is added to the anaerobic reaction tank and then crushed by a crushing means in the anaerobic reaction tank. An anaerobic treatment method. 請求項1ないし3のいずれか1項において、前記嫌気反応槽の運転開始時に前記種汚泥を一括投入することを特徴とする嫌気性処理方法。   The anaerobic treatment method according to any one of claims 1 to 3, wherein the seed sludge is collectively charged at the start of operation of the anaerobic reaction tank. 請求項1ないし3のいずれか1項において、前記嫌気反応槽の運転開始以降の立ち上げ運転期間に、前記種汚泥を該嫌気反応槽に連続的又は間欠的に添加することを特徴とする嫌気性処理方法。   The anaerobic process according to any one of claims 1 to 3, wherein the seed sludge is continuously or intermittently added to the anaerobic reaction tank during a start-up operation period after the start of operation of the anaerobic reaction tank. Sex processing method. 請求項1ないし5のいずれか1項において、前記嫌気反応槽への前記種汚泥の添加量が、該嫌気反応槽の槽容量に対して、破砕前の嫌気グラニュールの汚泥容量として1〜50%であることを特徴とする嫌気性処理方法。   In any 1 item | term of Claim 1 thru | or 5, the addition amount of the said seed sludge to the said anaerobic reaction tank is 1-50 as sludge capacity of the anaerobic granule before crushing with respect to the tank capacity of this anaerobic reaction tank. %, The anaerobic processing method characterized by being. 請求項1ないし6のいずれか1項において、前記少なくとも一部を破砕した嫌気グラニュールの粒径が0.01〜10mmであることを特徴とする嫌気性処理方法。   The anaerobic treatment method according to claim 1, wherein the anaerobic granules obtained by crushing at least a part of the particles have a particle size of 0.01 to 10 mm. 請求項1ないし7のいずれか1項において、前記流動性非生物担体が粒径1.0〜5.0mm、沈降速度100〜500m/hrの樹脂製担体であり、前記嫌気反応槽容量に対する該担体の充填量が10〜80%であることを特徴とする嫌気性処理方法。   The fluid abiotic carrier according to any one of claims 1 to 7, wherein the fluid abiotic carrier is a resin carrier having a particle size of 1.0 to 5.0 mm and a sedimentation speed of 100 to 500 m / hr, An anaerobic treatment method, wherein the filling amount of the carrier is 10 to 80%. 槽内に、表面に凹凸のある樹脂製担体である流動性非生物担体を充填した嫌気反応槽と、該嫌気反応槽に被処理水を通水する手段と、該嫌気反応槽に少なくとも一部を破砕した平均粒径0.1〜1.0mmの嫌気グラニュールを添加する手段と、該嫌気反応槽の処理水の0.1〜10倍を該嫌気反応槽の入口側あるいは該嫌気反応槽の前処理槽である酸生成槽の入口側に循環させる手段とを備えることを特徴とする嫌気性処理装置。 An anaerobic reaction tank filled with a fluid non-biological carrier, which is a resin carrier having an uneven surface, in the tank, means for passing water to be treated into the anaerobic reaction tank, and at least a part of the anaerobic reaction tank Means for adding anaerobic granules having an average particle size of 0.1 to 1.0 mm, and 0.1 to 10 times the treated water of the anaerobic reaction tank at the inlet side of the anaerobic reaction tank or the anaerobic reaction tank An anaerobic treatment apparatus comprising a means for circulating to the inlet side of an acid generation tank which is a pretreatment tank . 請求項9において、前記嫌気反応槽に少なくとも一部を破砕した嫌気グラニュールを添加する手段が、水中ポンプを備える嫌気グラニュール破砕槽を有し、該嫌気グラニュール破砕槽に投入された嫌気グラニュールを該水中ポンプで破砕すると共に前記嫌気反応槽に送給するように構成されていることを特徴とする嫌気性処理装置。   The anaerobic granule according to claim 9, wherein the means for adding anaerobic granules obtained by crushing at least a part of the anaerobic reaction tank includes an anaerobic granule crushing tank equipped with an underwater pump, and the anaerobic granule introduced into the anaerobic granule crushing tank. An anaerobic treatment apparatus characterized in that it is crushed by the submersible pump and fed to the anaerobic reaction tank. 槽内に、表面に凹凸のある樹脂製担体である流動性非生物担体を充填した嫌気反応槽と、該嫌気反応槽に被処理水を通水する手段と、該嫌気反応槽に嫌気グラニュールを添加する手段と、該嫌気グラニュールを該嫌気反応槽内で平均粒径0.1〜1.0mmに破砕する手段と、該嫌気反応槽の処理水の0.1〜10倍を該嫌気反応槽の入口側あるいは該嫌気反応槽の前処理槽である酸生成槽の入口側に循環させる手段とを備えることを特徴とする嫌気性処理装置。 An anaerobic reaction tank filled with a fluid non-biological carrier, which is a resin carrier having an uneven surface, a means for passing water to be treated into the anaerobic reaction tank, and an anaerobic granule in the anaerobic reaction tank , Means for crushing the anaerobic granules in the anaerobic reaction tank to an average particle size of 0.1 to 1.0 mm, and anaerobic 0.1 to 10 times the treated water in the anaerobic reaction tank An anaerobic treatment apparatus comprising a means for circulation to an inlet side of an acid generation tank which is an inlet side of a reaction tank or a pretreatment tank of the anaerobic reaction tank . 請求項11において、前記嫌気反応槽内で前記嫌気グラニュールを破砕する手段が、該嫌気反応槽内に設けられた異物通過性水中ポンプであることを特徴とする嫌気性処理装置。   The anaerobic treatment apparatus according to claim 11, wherein the means for crushing the anaerobic granules in the anaerobic reaction tank is a foreign matter permeable submersible pump provided in the anaerobic reaction tank.
JP2013214799A 2013-10-15 2013-10-15 Anaerobic treatment method and anaerobic treatment apparatus Active JP6241187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013214799A JP6241187B2 (en) 2013-10-15 2013-10-15 Anaerobic treatment method and anaerobic treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013214799A JP6241187B2 (en) 2013-10-15 2013-10-15 Anaerobic treatment method and anaerobic treatment apparatus

Publications (2)

Publication Number Publication Date
JP2015077534A JP2015077534A (en) 2015-04-23
JP6241187B2 true JP6241187B2 (en) 2017-12-06

Family

ID=53009485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013214799A Active JP6241187B2 (en) 2013-10-15 2013-10-15 Anaerobic treatment method and anaerobic treatment apparatus

Country Status (1)

Country Link
JP (1) JP6241187B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6048557B1 (en) * 2015-09-25 2016-12-21 栗田工業株式会社 Anaerobic treatment apparatus and anaerobic treatment method
CN105540831A (en) * 2015-12-12 2016-05-04 北京工业大学 Method for starting up anaerobic ammonium oxidation filter column
CN105540840B (en) * 2015-12-12 2018-11-13 北京工业大学 A method of starting whole process autotrophic denitrification filter column
JP6644586B2 (en) * 2016-03-04 2020-02-12 株式会社クラレ Anaerobic wastewater treatment method using carrier
JP6612195B2 (en) * 2016-07-26 2019-11-27 水ing株式会社 Organic wastewater treatment facility and operation method thereof
JP6675283B2 (en) * 2016-07-26 2020-04-01 水ing株式会社 Anaerobic treatment of organic wastewater
CN108892235B (en) * 2018-08-09 2021-07-20 南京江岛环境科技研究院有限公司 Method for improving filler film forming efficiency in water treatment reactor
JP7263075B2 (en) * 2019-03-25 2023-04-24 オルガノ株式会社 water treatment method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3175480B2 (en) * 1994-06-14 2001-06-11 栗田工業株式会社 Anaerobic treatment equipment
JPH08132091A (en) * 1994-11-16 1996-05-28 Kurita Water Ind Ltd Anaerobic treating device
JP4224951B2 (en) * 2001-05-22 2009-02-18 栗田工業株式会社 Denitrification method
JP4572504B2 (en) * 2003-03-24 2010-11-04 栗田工業株式会社 Biological denitrification method
JP5685902B2 (en) * 2010-11-24 2015-03-18 栗田工業株式会社 Organic wastewater treatment method
JP2013208563A (en) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd Anaerobic treatment method for organic waste water
JP5894857B2 (en) * 2012-05-22 2016-03-30 オルガノ株式会社 Waste water treatment apparatus and waste water treatment method
JP6046990B2 (en) * 2012-11-21 2016-12-21 株式会社クラレ Anaerobic wastewater treatment method using carrier
JP6046991B2 (en) * 2012-11-21 2016-12-21 株式会社クラレ Anaerobic wastewater treatment method using carrier

Also Published As

Publication number Publication date
JP2015077534A (en) 2015-04-23

Similar Documents

Publication Publication Date Title
JP6241187B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
Pronk et al. Full scale performance of the aerobic granular sludge process for sewage treatment
Aiyuk et al. Sedimentological evolution in an UASB treating SYNTHES, a new representative synthetic sewage, at low loading rates
Rajakumar et al. Treatment of poultry slaughterhouse wastewater in hybrid upflow anaerobic sludge blanket reactor packed with pleated poly vinyl chloride rings
Cresson et al. Biofilm formation during the start-up period of an anaerobic biofilm reactor—Impact of nutrient complementation
Chen et al. Evaluation of a sponge assisted-granular anaerobic membrane bioreactor (SG-AnMBR) for municipal wastewater treatment
JP6491406B2 (en) Anaerobic biological treatment method and anaerobic biological treatment apparatus
CN105174601B (en) A kind of biological treatment of cassava alcohol waste water
van Haandel et al. Methanosaeta dominate acetoclastic methanogenesis during high‐rate methane production in anaerobic reactors treating distillery wastewaters
Narra et al. Performance evaluation of anaerobic hybrid reactors with different packing media for treating wastewater of mild alkali treated rice straw in ethanol fermentation process
JP5685902B2 (en) Organic wastewater treatment method
JP6662424B2 (en) Anaerobic digestion method and apparatus for sewage sludge
Pérez et al. Anaerobic thermophilic fluidized bed treatment of industrial wastewater: effect of F: M relationship
JP2012210584A (en) Method for treating kraft pulp wastewater
JP2006110424A (en) Method and apparatus for treating organic waste water
JPWO2014156216A1 (en) Anaerobic treatment method
JP6432226B2 (en) Method and apparatus for anaerobic digestion of sewage treatment sludge
JP6654981B2 (en) Anaerobic treatment of organic wastewater
JP5930805B2 (en) Anaerobic wastewater treatment method and apparatus for organic wastewater
CN106587349A (en) Treating method and apparatus for corn deep-processing wastewater with high contents of ammonia, nitrogen and organic matters
JP6149446B2 (en) Kraft pulp wastewater treatment method and apparatus
KR101351005B1 (en) Anaerobic container and apparatus for producing biogas using it
Li et al. Anaerobic Biological Treatment of Alginate Production Wastewaters in a Pilot‐Scale Expended Granular Sludge Bed Reactor Under Moderate to Low Temperatures
JP2005103375A (en) Methane fermentation treatment method and apparatus
JPH04341397A (en) Methane fermentation treatment apparatus and methane fermentation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171023

R150 Certificate of patent or registration of utility model

Ref document number: 6241187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250