JP6236830B2 - Method for producing graphene aggregate and negative electrode carbon material for lithium ion battery - Google Patents

Method for producing graphene aggregate and negative electrode carbon material for lithium ion battery Download PDF

Info

Publication number
JP6236830B2
JP6236830B2 JP2013072245A JP2013072245A JP6236830B2 JP 6236830 B2 JP6236830 B2 JP 6236830B2 JP 2013072245 A JP2013072245 A JP 2013072245A JP 2013072245 A JP2013072245 A JP 2013072245A JP 6236830 B2 JP6236830 B2 JP 6236830B2
Authority
JP
Japan
Prior art keywords
graphene
aggregate
negative electrode
graphene aggregate
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013072245A
Other languages
Japanese (ja)
Other versions
JP2014196206A (en
Inventor
騫 程
騫 程
田村 宜之
宜之 田村
亮太 弓削
亮太 弓削
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2013072245A priority Critical patent/JP6236830B2/en
Publication of JP2014196206A publication Critical patent/JP2014196206A/en
Application granted granted Critical
Publication of JP6236830B2 publication Critical patent/JP6236830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、グラフェン凝集体の製造方法、それを用いたリチウムイオン電池用の負極炭素材料、並びにその炭素材料を含むリチウムイオン電池に関する。   The present invention relates to a method for producing graphene aggregates, a negative electrode carbon material for a lithium ion battery using the same, and a lithium ion battery including the carbon material.

リチウムイオン電池(Lithium ion batteries:LIBs)は、ノート型コンピュータ、携帯電話、スマートフォン、タブレット型端末などの現代の携帯電子機器に搭載されるようになり、さらに電気自動車(EV)やプラグインハイブリッド電気自動車(PHEV)への関心の到来と共に、EVやPHEVに搭載される高入力性能の可能なLIBs開発の要望が極めて高くなっている。   Lithium ion batteries (LIBs) have come to be installed in modern portable electronic devices such as notebook computers, mobile phones, smartphones, and tablet terminals, as well as electric vehicles (EV) and plug-in hybrid electricity. With the arrival of interest in automobiles (PHEV), there is an increasing demand for development of LIBs capable of high input performance mounted on EVs and PHEVs.

LIBsの負極材料として、可逆的にリチウムイオンを出し入れ可能な黒鉛などの黒鉛系負極材料が用いられている。   As a negative electrode material for LIBs, a graphite-based negative electrode material such as graphite capable of reversible lithium ions is used.

従来の黒鉛系負極材料は、バルクの電極物質中へのリチウムイオンの遅い拡散性のために高入力密度のLIBsを提供することは困難である。   Conventional graphite-based negative electrode materials are difficult to provide high input density LIBs due to the slow diffusivity of lithium ions into the bulk electrode material.

一方、グラフェンシートは、グラファイトの層間距離d002=0.3354nmよりも広い層間を有することで、リチウムイオンの拡散性が向上することが期待されている。 On the other hand, the graphene sheet is expected to improve lithium ion diffusivity by having an interlayer wider than the interlayer distance d 002 = 0.3354 nm of graphite.

例えば、特許文献1には、従来の黒鉛系負極材料が、サイクル寿命、可逆的容量、非可逆的容量などの特性面で十分でないとし、これを改良するものとして、ナノメーターオーダーの単層グラフェンシートまたはグラフェンシートの積層であるナノグラフェンプレートレット(NGPs)が提案されている。   For example, Patent Document 1 states that conventional graphite-based negative electrode materials are not sufficient in terms of characteristics such as cycle life, reversible capacity, irreversible capacity, and the like. Nano graphene platelets (NGPs), which are sheets or a stack of graphene sheets, have been proposed.

従来のグラフェンシートは、酸化グラファイトを熱的あるいは機械的に処理して酸化グラフェンシートに剥離し、これを化学的に還元して製造されている。   Conventional graphene sheets are manufactured by thermally or mechanically treating graphite oxide to peel it off to a graphene oxide sheet and chemically reducing it.

また、特許文献2には、黒鉛を酸性電解質水溶液中に浸漬し、該黒鉛を作用極(陽極)とし、対照極との間に、自然電位以外に0.6〜0.8Vの範囲の直流電圧を48時間以上、1000時間以下印加する電気化学的処理により、層間に陰イオン(硝酸アニオン)がインターカレートした膨張化黒鉛の製造方法が開示されている。また、この膨張化黒鉛に機械的剥離や超音波による剥離力を与えることで容易に剥離して、グラフェンや薄片化黒鉛を得ることができると記載されている。   In Patent Document 2, graphite is immersed in an acidic electrolyte aqueous solution, the graphite is used as a working electrode (anode), and a direct current in a range of 0.6 to 0.8 V is provided between the reference electrode and a natural electrode in addition to a natural potential. A method for producing expanded graphite in which anions (nitrate anions) are intercalated between layers by an electrochemical treatment in which a voltage is applied for 48 hours or more and 1000 hours or less is disclosed. Further, it is described that graphene and exfoliated graphite can be obtained by easily exfoliating the expanded graphite by applying mechanical exfoliation or ultrasonic peeling force.

特表2011−503804号公報(WO2009/061685)Special table 2011-503804 gazette (WO2009 / 061685) 特開2012−131691号公報JP 2012-131691 A

しかしながら、従来のグラフェンシートの製造方法では、一旦、酸化してから剥離し、その後還元処理を行う方法であり、非常に生産性が悪い。また、一旦酸化していることで、還元処理を施しても元の黒鉛等の導電性よりも低くなる。   However, the conventional method for producing a graphene sheet is a method in which the film is once oxidized and peeled and then subjected to a reduction treatment, and the productivity is very poor. Moreover, once oxidized, even if it performs a reduction process, it becomes lower than the conductivity of the original graphite or the like.

特許文献2の電気化学的処理でも黒鉛を陽極として処理を行うため、陽極酸化を受けて酸化グラフェンとなり、上記の化学的酸化還元の手法と同様の問題がある。また、必要以上に酸化されることを避けるため、低電位で行う必要がある。そのため、陰イオンのインターカレートの効率が悪く、長時間を要する。   In the electrochemical treatment of Patent Document 2, since the treatment is performed using graphite as an anode, it is subjected to anodization to become graphene oxide, which has the same problem as the above-described chemical redox technique. In addition, it is necessary to carry out at a low potential in order to avoid oxidation more than necessary. For this reason, the efficiency of anion intercalation is poor and a long time is required.

また、いずれの場合も機械的または熱的衝撃力により剥離を行うため、剥離したグラフェンは微粉砕され、凝集しても粒径(二次粒子径)が小さく、低密度となる。   In any case, since peeling is performed by mechanical or thermal impact force, the peeled graphene is finely pulverized and has a small particle diameter (secondary particle diameter) and a low density even when aggregated.

そのため、新たな構造で低コストに炭素系負極材料が、高入力密度LIBsを構築するために求められている。   For this reason, a carbon-based negative electrode material having a new structure and a low cost has been demanded in order to construct a high input density LIBs.

本発明者らは、酸化グラフェンを経ないグラフェンシートの製造について鋭意検討した結果、電解液中で炭素材料を陰極として電気化学的に剥離することで、密度が高く、粒径の大きなグラフェン凝集体が得られ、このようなグラフェン凝集体がリチウムイオン電池の負極材料として優れた特性を有することを見出した。   As a result of intensive studies on the production of a graphene sheet that does not pass through graphene oxide, the present inventors have electrochemically exfoliated carbon material as a cathode in an electrolyte solution, thereby providing a graphene aggregate having a high density and a large particle size. It was found that such graphene aggregates have excellent characteristics as a negative electrode material for lithium ion batteries.

すなわち、本発明の一実施形態によれば、
電解液中で、グラフェン積層体を含む炭素材料を陰極として電気化学的にグラフェンを剥離し、前記陰極から脱離したグラフェンの凝集体を回収するグラフェン凝集体の製造方法、が提供される。
That is, according to one embodiment of the present invention,
There is provided a method for producing a graphene aggregate, in which an graphene is electrochemically exfoliated in an electrolytic solution using a carbon material containing a graphene laminate as a cathode, and the graphene aggregate detached from the cathode is recovered.

また、本発明の別の実施形態によれば、
以下の条件を満たすグラフェン凝集体が提供される。
(1)粒子径が300μm以下でかつ平均粒子径D50が1〜20μm、
(2)真密度が0.5g/cm以上、
(3)BET法による表面積が300m/g以下。
Also, according to another embodiment of the present invention,
A graphene aggregate satisfying the following conditions is provided.
(1) The particle diameter is 300 μm or less and the average particle diameter D 50 is 1 to 20 μm,
(2) True density is 0.5 g / cm 3 or more,
(3) The surface area by the BET method is 300 m 2 / g or less.

本発明のさらに別の実施形態によれば、上記グラフェン凝集体を負極材料に用いたリチウムイオン電池が提供される。リチウムイオン電池の負極材料として使用するに際して、グラフェン凝集体表面に0.5〜500nm径の細孔が形成されていることが好ましく、又、リチウム吸蔵物質による修飾が施されていることが好ましい。さらにこれらの負極材料はアモルファスカーボンで被覆されていることが好ましい。   According to still another embodiment of the present invention, a lithium ion battery using the graphene aggregate as a negative electrode material is provided. When used as a negative electrode material for a lithium ion battery, pores having a diameter of 0.5 to 500 nm are preferably formed on the surface of the graphene aggregate, and are preferably modified with a lithium storage material. Further, these negative electrode materials are preferably coated with amorphous carbon.

本発明の一実施形態によれば、グラフェン積層体を含む炭素材料から酸化処理を経ることなくグラフェンの凝集体が得られるため、導電性の高いリチウムイオン電池用負極材料が提供でき、入出力特性が向上したリチウムイオン電池を提供できる。   According to one embodiment of the present invention, a graphene aggregate can be obtained from a carbon material containing a graphene laminate without undergoing an oxidation treatment, and thus a highly conductive negative electrode material for a lithium ion battery can be provided, and input / output characteristics can be provided. Can provide a lithium ion battery with improved performance.

本発明の一実施形態に係る陰極剥離に使用する電気化学セルの構成を説明する概念図である。It is a conceptual diagram explaining the structure of the electrochemical cell used for the cathode peeling which concerns on one Embodiment of this invention. 本発明の一実施形態に係る陰極剥離のメカニズムを説明する概念図である。It is a conceptual diagram explaining the mechanism of the cathode peeling which concerns on one Embodiment of this invention. 本発明の別の実施形態に係る陰極剥離のメカニズムを説明する概念図である。It is a conceptual diagram explaining the mechanism of the cathode peeling which concerns on another embodiment of this invention. 実施例1で得られたグラフェン凝集体のX線回折(XRD)図を、従来の黒鉛と共に示す。The X-ray diffraction (XRD) figure of the graphene aggregate obtained in Example 1 is shown with the conventional graphite. 実施例1で得られたグラフェン凝集体のSEM像(500倍)を示す。The SEM image (500 times) of the graphene aggregate obtained in Example 1 is shown. 実施例1で得られたグラフェン凝集体のSEM像(1万倍)を示す。The SEM image (10,000 times) of the graphene aggregate obtained in Example 1 is shown.

以下、本発明の実施形態例について具体的に説明するが、本発明はこれらの実施形態例のみに限定されるものではない。   Hereinafter, embodiments of the present invention will be specifically described, but the present invention is not limited to these embodiments.

〔1.グラフェン凝集体の製造方法〕
本発明におけるグラフェン凝集体の製造方法は、電解液中でグラフェン積層体を含む炭素材料を陰極として電気化学的にグラフェンを剥離(以下、陰極剥離という)し、陰極から脱離し、凝集したグラフェン凝集体を回収するものである。
[1. (Method for producing graphene aggregate)
In the method for producing graphene aggregates in the present invention, graphene is exfoliated electrochemically (hereinafter referred to as cathode exfoliation) using a carbon material containing a graphene laminate in an electrolyte solution as a cathode, and the aggregated graphene aggregates are desorbed from the cathode. Collect the collection.

(1A.炭素材料)
本発明の陰極剥離に供される炭素材料は、グラフェン積層体を含むものであり、天然または人造黒鉛などの高結晶性炭素材料と、易黒鉛化性炭素(ソフトカーボン)及び難黒鉛化性炭素(ハードカーボン)などの低結晶性炭素材料とがある。使用する炭素材料によって、得られるグラフェン凝集体の特性は異なる。詳細については後述する。これらの炭素材料は、電極形状に成形して使用する。電極形状としては、ロッド状(棒状)、プレート状(板状)などいずれの形状でも良く、特に限定されない。
(1A. Carbon material)
The carbon material to be used for cathode separation of the present invention includes a graphene laminate, a highly crystalline carbon material such as natural or artificial graphite, graphitizable carbon (soft carbon), and non-graphitizable carbon. And low crystalline carbon materials such as (hard carbon). Depending on the carbon material used, the characteristics of the graphene aggregate obtained are different. Details will be described later. These carbon materials are used after being formed into an electrode shape. The electrode shape may be any shape such as a rod shape (bar shape) or a plate shape (plate shape), and is not particularly limited.

(1B.陰極剥離)
炭素材料の陰極剥離は、例えば、図1に示すような電気化学セルを用いて行う。図1において、電気化学セルの筐体1中に電解液2が入れられており、電解液2中に作用極(陰極)として炭素材料3、対照極(陽極)として、酸化に強い貴金属電極や貴金属酸化物電極などの不溶性陽極4を用い、電源5より所定の電圧を印加して炭素材料3の陰極剥離を行う。陰極の炭素材料3上でグラフェン6の剥離が生じる電圧以上とすることで剥離が開始される。電圧を調整することで剥離速度を制御することができる。凝集体の大きさ(二次粒子径)は電圧及び浴組成によって0.1〜500μmの範囲に制御できる。リチウムイオン電池の負極材料として使用する場合は、300μm以下とすることが好ましい。電圧が高いほど、剥離が速く進行し、密度が大きく、大きな粒径を有するグラフェン凝集体7を製造できる。時間を長くして電圧を下げるほど、低密度で小さな粒径のグラフェン凝集体7を製造することができる。電気化学セルは、陽極−陰極間に隔壁を設け、それぞれの電極上で発生するガスが混合しないようにすることが好ましい。
(1B. Cathode peeling)
The cathode peeling of the carbon material is performed using, for example, an electrochemical cell as shown in FIG. In FIG. 1, an electrolytic solution 2 is placed in a casing 1 of an electrochemical cell. In the electrolytic solution 2, a carbon material 3 as a working electrode (cathode) and a noble metal electrode resistant to oxidation as a control electrode (anode) The insoluble anode 4 such as a noble metal oxide electrode is used, and a predetermined voltage is applied from the power source 5 to perform the cathode peeling of the carbon material 3. Peeling is started by setting the voltage to be higher than the voltage at which the graphene 6 is peeled on the carbon material 3 of the cathode. The peeling speed can be controlled by adjusting the voltage. The size of the aggregate (secondary particle diameter) can be controlled in the range of 0.1 to 500 μm depending on the voltage and the bath composition. When used as a negative electrode material for a lithium ion battery, the thickness is preferably 300 μm or less. The higher the voltage, the faster the exfoliation, the larger the density, and the graphene aggregate 7 having a large particle size can be produced. The longer the time and the lower the voltage, the lower the density and the smaller particle size graphene aggregate 7 can be produced. In the electrochemical cell, it is preferable to provide a partition between the anode and the cathode so that the gas generated on each electrode is not mixed.

(1C.電解液)
本発明の陰極剥離に使用する電解液は、グラフェン層間にインターカレートする陽イオンを含むものであり、グラフェン間の層間距離(黒鉛では0.34nm程度)よりも大きいイオン種を含む。このようなイオン種として、アルカリ金属イオンと有機溶媒との溶媒和物が好ましく、特に、ナトリウムイオンとジメチルスルフォキシド(DMSO)との溶媒和物(Na:DMSOということがある)がより好ましい。例えば、NaClをDMSOに容量比1:50〜1:1で混合することで所望の溶媒和物が得られる。さらに得られた溶媒和物を水と混合し、電解液を得ることができる。電解液中でのNaの濃度が0.1M〜1Mとなるように調節する。また、イオン液体をそのまま電解液として用いることもできる。イオン液体は常温で液状を呈するものが好ましく、例えば、イミダゾリウム塩、ピロリジウム塩、ピペリジニウム塩、ピリジニウム塩、アンモニウム・ホスホニウム・スルホニウム塩などが挙げられる。
(1C. Electrolytic solution)
The electrolytic solution used for the cathode stripping of the present invention contains a cation intercalating between graphene layers, and contains an ionic species larger than the interlayer distance between graphenes (about 0.34 nm for graphite). As such ionic species, a solvate of an alkali metal ion and an organic solvent is preferable, and in particular, a solvate of sodium ion and dimethyl sulfoxide (DMSO) (sometimes referred to as Na + : DMSO) is more preferable. preferable. For example, a desired solvate can be obtained by mixing NaCl in DMSO at a volume ratio of 1:50 to 1: 1. Furthermore, the obtained solvate can be mixed with water to obtain an electrolytic solution. It adjusts so that the density | concentration of Na <+> in electrolyte solution may be set to 0.1M-1M. Moreover, an ionic liquid can also be used as an electrolytic solution as it is. The ionic liquid is preferably in the form of a liquid at room temperature, and examples thereof include imidazolium salts, pyrrolidinium salts, piperidinium salts, pyridinium salts, and ammonium / phosphonium / sulfonium salts.

ここで、陰極剥離のメカニズムについて概念図を参照して説明する。図2は黒鉛について、NaとDMSOの溶媒和物を用いて陰極剥離を実施した例を示している。まず、図2(a)はグラフェン12が層状に積み重なった黒鉛11を示し、図2(b)に示すようにNaとDMSOの溶媒和物13を用いた陰極剥離を開始すると、グラフェン12の層間に溶媒和物13がインターカレートする。インターカレートする溶媒和物13の応力及び陰極発生ガス(例えば水素ガス)によりグラフェン12の層間が押し広げられて、陽陰極間に印加する電圧が3V以上になると剥離が生じる。剥離したグラフェン12は、陰極より脱離して電解液中で凝集してグラフェン凝集体14となる(図2(c))。本発明の陰極剥離では酸化反応が生じないことから、良好な導電性を有する単層または数層グラフェン材料を製造するための新規かつ低コストな方法である。ハードカーボンやソフトカーボンなどの低結晶性炭素材料、例えば、図3に示すソフトカーボン21の場合、グラフェン12’のクラスター22のサイズは小さい(図3(a))、溶媒和物13がインターカレートし(図3(b))、さらに剥離電圧を超えると、クラスター間の結合が弱いため、クラスター22間の分離と共にグラフェン12’の剥離が生じる(図3(c))。この結果、黒鉛などの高結晶性炭素材料の場合と比較すると粒径の小さいグラフェン凝集体14’が得られやすい(図3(d))。なお、必ずしも全てのグラフェン間で剥離が生じるわけではなく、複層グラフェンとして剥離するものがあり、通常は単層グラフェンと複層グラフェンの混合物として凝集体を構成する。また、クラスター同士が繋がったまま剥離する場合もある。 Here, the mechanism of cathode peeling will be described with reference to a conceptual diagram. FIG. 2 shows an example in which the cathode was stripped from graphite using a solvate of Na + and DMSO. First, FIG. 2A shows the graphite 11 in which the graphene 12 is stacked in layers. As shown in FIG. 2B, when the cathode exfoliation using the solvate 13 of Na + and DMSO is started, the graphene 12 The solvate 13 intercalates between the layers. Separation occurs when the voltage applied between the positive and negative electrodes becomes 3 V or more when the interlayer of the graphene 12 is expanded by the stress of the solvate 13 to be intercalated and the cathode generation gas (for example, hydrogen gas). The exfoliated graphene 12 is detached from the cathode and aggregated in the electrolytic solution to become a graphene aggregate 14 (FIG. 2C). Since the oxidation reaction does not occur in the cathode peeling according to the present invention, this is a new and low-cost method for producing a single-layer or several-layer graphene material having good conductivity. In the case of a low crystalline carbon material such as hard carbon or soft carbon, for example, soft carbon 21 shown in FIG. 3, the size of the cluster 22 of graphene 12 ′ is small (FIG. 3A), and the solvate 13 is intercalated. When the separation voltage is further exceeded (FIG. 3B), the bond between the clusters is weak, so that the separation of the graphene 12 ′ occurs along with the separation between the clusters 22 (FIG. 3C). As a result, it is easy to obtain a graphene aggregate 14 'having a small particle size as compared with the case of a highly crystalline carbon material such as graphite (FIG. 3 (d)). Note that exfoliation does not necessarily occur between all graphenes, and some exfoliate as multi-layer graphene. Usually, aggregates are formed as a mixture of single-layer graphene and multi-layer graphene. In some cases, the clusters may be separated while being connected.

(1D.グラフェン凝集体の構造)
従来の化学的酸化還元法によって合成された単層または数層グラフェンは、凝集体を形成しても0.01−0.5g/cm程度の密度のものしか得られなかった。これに対し、本発明に係るグラフェン凝集体は、陰極剥離条件を調節することで従来よりも高密度(0.5−2g/cm)品を提供することが可能である。このような高密度品は、リチウムイオン電池の負極材料に適している。又、本発明に係るグラフェン凝集体は、酸化グラフェンから化学還元して得られる従来のグラフェン(100−300 S/m)よりも良好な導電性(<500 S/m)を有している。陰極剥離で、原料炭素材料、剥離時間及び設定電圧で5nm−50μmサイズ(Lc(002))の単層または複層グラフェン(2−200層)に調整できる。グラフェン凝集体の比表面積は凝集体の大きさに依存して1−500m/gにできる。300m/g以下であることがリチウムイオン電池の負極材料に適している。酸化の指標となるカルボキシル基、ヒドロキシル基及びその他の官能基はFTIRによって特徴付けることができる。本発明のグラフェン凝集体は、従来の酸化グラフェンからの還元体に比較して、これら酸化の指標となる官能基は僅かである。また、本発明に係るグラフェン凝集体は、黒鉛(0.3354nm)よりも大きい格子間隔(d002:0.3355−0.4nm)を有する複層グラフェンを含む。
(1D. Structure of graphene aggregate)
Single-layer or several-layer graphene synthesized by a conventional chemical oxidation-reduction method can only be obtained with a density of about 0.01 to 0.5 g / cm 3 even when an aggregate is formed. On the other hand, the graphene aggregate according to the present invention can provide a higher density (0.5-2 g / cm 3 ) product than before by adjusting the cathode peeling condition. Such a high density product is suitable for a negative electrode material of a lithium ion battery. Further, the graphene aggregate according to the present invention has better conductivity (<500 S / m) than conventional graphene (100-300 S / m) obtained by chemical reduction from graphene oxide. Cathodic stripping can be adjusted to a single layer or multi-layer graphene (2-200 layers) of 5 nm-50 μm size (Lc (002)) with the raw carbon material, stripping time and set voltage. The specific surface area of the graphene aggregate can be 1-500 m 2 / g depending on the size of the aggregate. It is suitable for the negative electrode material of a lithium ion battery that it is 300 m < 2 > / g or less. Carboxyl groups, hydroxyl groups and other functional groups that are indicative of oxidation can be characterized by FTIR. The graphene aggregate of the present invention has few functional groups that serve as an index of oxidation as compared with a reduced product from conventional graphene oxide. The graphene aggregate according to the present invention includes multilayer graphene having a lattice spacing (d 002 : 0.3355-0.4 nm) larger than that of graphite (0.3354 nm).

〔2.リチウムイオン電池用負極材料〕
本発明に係るリチウムイオン電池用負極材料は、上記のグラフェン凝集体を含む。そのまま用いることもできるが、さらに、細孔形成(賦活処理)、各種リチウム吸蔵物質による修飾、被覆処理などを行うことが好ましい。
[2. (Anode material for lithium ion battery)
The negative electrode material for a lithium ion battery according to the present invention contains the above graphene aggregate. Although it can be used as it is, it is preferable to perform pore formation (activation treatment), modification with various lithium storage materials, coating treatment, and the like.

(2A.賦活処理)
炭素材料の賦活処理としては、ガス賦活と化学賦活とが知られているが、本発明に係るグラフェン凝集体では、化学賦活、特にナノ結晶(KOH、NaOH,ZrOまたはその他の水酸化物または酸化物)を用いた賦活処理が好ましく使用できる。賦活処理により0.5〜500nmの細孔を形成することができる。このように賦活による炭素材料上の細孔はリチウムイオンの拡散経路を短縮し、またリチウムイオン保持のためのより多くの活性サイトを提供する。細孔の大きさは、ナノ結晶の大きさに依存することから、これらの析出条件(例えばKOH溶液の濃度や乾燥時間)を適宜変更してある程度の範囲に調整することができる。特に、20〜100nmの細孔を形成することが好ましい。複層グラフェンが含まれる場合、細孔は表層のグラフェンのみに限定されず、2層以上にわたって形成されることがあるが、ここでの細孔径は表層のグラフェン、特に凝集体表面に観察される細孔の大きさを示す。
(2A. Activation treatment)
As the carbon material activation treatment, gas activation and chemical activation are known. However, in the graphene aggregate according to the present invention, chemical activation, particularly nanocrystals (KOH, NaOH, ZrO or other hydroxides or oxidations) is known. The activation treatment using the product can be preferably used. A pore of 0.5 to 500 nm can be formed by the activation treatment. Thus, the pores on the carbon material due to activation shorten the diffusion path of lithium ions and provide more active sites for lithium ion retention. Since the size of the pores depends on the size of the nanocrystals, these precipitation conditions (for example, the concentration of KOH solution and the drying time) can be appropriately changed and adjusted to a certain range. In particular, it is preferable to form pores of 20 to 100 nm. When multi-layer graphene is included, the pores are not limited to the surface layer graphene, and may be formed over two or more layers, but the pore diameter here is observed on the surface layer graphene, particularly the surface of the aggregate Indicates the size of the pores.

また、賦活処理の際の加熱温度は、特に限定されないが、その下限は、通常500℃、好ましくは600℃であり、上限は通常1200℃、好ましくは900℃、特に好ましくは800℃である。賦活処理は不活性ガス雰囲気下、例えば窒素雰囲気下で実施される。   The heating temperature during the activation treatment is not particularly limited, but the lower limit is usually 500 ° C., preferably 600 ° C., and the upper limit is usually 1200 ° C., preferably 900 ° C., particularly preferably 800 ° C. The activation process is performed in an inert gas atmosphere, for example, in a nitrogen atmosphere.

(2B.リチウム吸蔵物質による修飾)
本発明のグラフェン凝集体は、黒鉛よりも大きな層間距離を有しているため、黒鉛の理論容量(LiC)の372mAh/gよりも大きな容量を得ることができるが、リチウム吸蔵物質により修飾することで容量値の更なる増大が可能となる。このようなリチウム吸蔵物質としては、公知の材料が使用でき、例えば、SiOx(x<2),TiO,Co,SnOなどのリチウムイオン活性遷移金属酸化物またはSi,Ge,Sn,Pb,Al,Ga,In,Mgなどのリチウムと合金形成可能な金属が挙げられる。
(2B. Modification with lithium storage material)
Since the graphene aggregate of the present invention has a larger interlayer distance than graphite, a capacity larger than 372 mAh / g of the theoretical capacity of graphite (LiC 6 ) can be obtained, but is modified with a lithium storage material. Thus, the capacity value can be further increased. As such a lithium occlusion substance, a known material can be used, for example, a lithium ion active transition metal oxide such as SiOx (x <2), TiO 2 , Co 3 O 4 , SnO 2 or Si, Ge, Sn. , Pb, Al, Ga, In, Mg, and other metals capable of forming an alloy with lithium.

このようなリチウム吸蔵物質による修飾は、in-situ法にて行うことができ、例えば、リチウムイオン活性遷移金属酸化物に関しては、2種類の異なるタイプの溶液(NaSO及びX(CHCOO)、XCl、XSO、またはXNOなど、XはSn、Ti、Coなど)の混合物からナノ構造活物質が陽極電着される。修飾はまた、CVD、PVD、マグネトロンスパッタリングで行うことができる。金属は、マグネトロンスパッタや電気めっき等でグラフェン凝集体を被覆して修飾することができる。 Such modification with a lithium storage material can be performed by an in-situ method. For example, for lithium ion active transition metal oxides, two different types of solutions (Na 2 SO 4 and X (CH 3 COO) 2 , XCl 2 , XSO 4 , or XNO 3 , where X is Sn, Ti, Co, etc.). Modification can also be done by CVD, PVD, magnetron sputtering. The metal can be modified by coating the graphene aggregate by magnetron sputtering or electroplating.

リチウム吸蔵物質の含有量は、本発明に係るグラフェン凝集体に対して0.1〜30質量%が好ましい。この含有量が少なすぎると十分な含有効果がなく、この含有量が多すぎると、金属または金属酸化物の充放電時の体積膨張収縮の影響が大きく、グラフェン凝集体が劣化しやすくなる。   The content of the lithium storage material is preferably 0.1 to 30% by mass with respect to the graphene aggregate according to the present invention. If the content is too small, there is no sufficient content effect. If the content is too large, the influence of volume expansion / contraction during charging / discharging of the metal or metal oxide is large, and the graphene aggregate is likely to deteriorate.

(2C.被覆処理)
以上の賦活処理及び/又は修飾処理の施されたグラフェン凝集体は、1−500nm厚のアモルファスカーボン膜で被覆できる。アモルファスカーボン膜の被覆処理はCVD法、ゾル−ゲル法、ボールミル法、in-situ重合、乾式混合、スプレー熱分解、熱分解に続く湿式混合、熱蒸着、レオロジー相反応、液系合成、水熱法などによる。このような被覆処理を施すことで、グラフェン凝集体と電解質に用いられる非水溶媒との反応性が抑制され、使用できる溶媒の範囲が広がる。また、充放電効率が向上し、反応容量が増大する。
(2C. Coating treatment)
The graphene aggregate subjected to the above activation treatment and / or modification treatment can be coated with an amorphous carbon film having a thickness of 1 to 500 nm. Coating process of amorphous carbon film is CVD method, sol-gel method, ball mill method, in-situ polymerization, dry mixing, spray pyrolysis, wet mixing following thermal decomposition, thermal evaporation, rheological phase reaction, liquid system synthesis, hydrothermal It depends on the law. By performing such a coating treatment, the reactivity between the graphene aggregate and the nonaqueous solvent used for the electrolyte is suppressed, and the range of usable solvents is expanded. Moreover, charging / discharging efficiency improves and reaction capacity increases.

(2D.材料特性)
黒鉛などの高結晶性炭素材料から得られたグラフェン凝集体は、平均粒子径D50が10〜20μmと比較的狭い範囲で得られ、高密度な凝集体となる。一方、ソフトカーボンなどの低結晶性炭素材料から得られたグラフェン凝集体は、平均粒子径D50が1〜20μmと比較的広い範囲で得られる。また、両者を比べると、高結晶性炭素材料から得られたグラフェン凝集体は放電容量の高いリチウムイオン電池の提供に有利であり、低結晶性炭素材料から得られたグラフェン凝集体は充電レート特性に優れたリチウムイオン電池の提供に有利である。賦活処理、修飾処理、アモルファスカーボン被覆したグラフェン凝集体は、さらに容量に優れたリチウムイオン電池の提供に有利となる。これらのグラフェン凝集体は、一種を単独で、または粒径の異なる二種以上を組み合わせて使用することができる。原料炭素材料の異なるグラフェン凝集体を組み合わせて使用することもできる。
(2D. Material properties)
Graphene aggregates obtained from a highly crystalline carbon material such as graphite are obtained in a relatively narrow range with an average particle diameter D 50 of 10 to 20 μm and become high-density aggregates. On the other hand, a graphene aggregate obtained from a low crystalline carbon material such as soft carbon can be obtained in a relatively wide range of an average particle diameter D 50 of 1 to 20 μm. In addition, comparing the two, graphene aggregates obtained from highly crystalline carbon materials are advantageous for providing lithium ion batteries with high discharge capacity, and graphene aggregates obtained from low crystalline carbon materials have charge rate characteristics. It is advantageous to provide an excellent lithium ion battery. The graphene aggregate covered with the activation treatment, the modification treatment, and the amorphous carbon is advantageous for providing a lithium ion battery having further excellent capacity. These graphene aggregates can be used individually by 1 type or in combination of 2 or more types from which a particle size differs. It is also possible to use a combination of graphene aggregates of different raw carbon materials.

〔3.リチウムイオン電池〕
本発明の実施形態によるリチウムイオン電池は、上記リチウムイオン電池用負極材料を含む負極と正極と電解質を含む。本発明に係るリチウムイオン電池は主に二次電池として使用できる。
[3. Lithium ion battery)
The lithium ion battery by embodiment of this invention contains the negative electrode containing the said negative electrode material for lithium ion batteries, a positive electrode, and electrolyte. The lithium ion battery according to the present invention can be used mainly as a secondary battery.

(3A.負極)
本実施形態例に係るリチウムイオン電池用負極材料は、リチウムイオン電池の負極活物質に適用でき、この負極材料を負極活物質として用いることにより、特に入力特性が改善されたリチウムイオン電池を提供することができる。
(3A. Negative electrode)
The negative electrode material for a lithium ion battery according to the present embodiment can be applied to a negative electrode active material of a lithium ion battery. By using this negative electrode material as a negative electrode active material, a lithium ion battery having particularly improved input characteristics is provided. be able to.

リチウムイオン電池用の負極は、例えば、負極集電体上に、上記の負極材料を含む負極活物質と結着剤を含む負極活物質層を形成することで作製することができる。負極活物質には、必要に応じて本発明に係る負極材料以外の公知の負極活物質を添加しても良い。この負極活物質層は、一般的なスラリー塗布法で形成することができる。具体的には、負極活物質、結着剤および溶媒を含むスラリーを調製し、これを負極集電体上に塗布し、乾燥し、必要に応じて加圧することで、負極を得ることができる。負極スラリーの塗布方法としては、ドクターブレード法、ダイコーター法、ディップコーティング法が挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法で金属薄膜を集電体として形成して、負極を得ることもできる。   A negative electrode for a lithium ion battery can be produced, for example, by forming a negative electrode active material containing the negative electrode material and a negative electrode active material layer containing a binder on the negative electrode current collector. You may add well-known negative electrode active materials other than the negative electrode material which concerns on this invention to a negative electrode active material as needed. This negative electrode active material layer can be formed by a general slurry coating method. Specifically, a negative electrode can be obtained by preparing a slurry containing a negative electrode active material, a binder, and a solvent, applying the slurry onto a negative electrode current collector, drying, and pressing as necessary. . Examples of the method for applying the negative electrode slurry include a doctor blade method, a die coater method, and a dip coating method. A negative electrode can also be obtained by forming a negative electrode active material layer in advance and then forming a metal thin film as a current collector by vapor deposition, sputtering, or the like.

負極用の結着剤としては、特に制限されるものではないが、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド−ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド−テトラフルオロエチレン共重合体、スチレン−ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、イソプレンゴム、ブタジエンゴム、フッ素ゴムが挙げられる。スラリー溶媒としては、N−メチル−2−ピロリドン(NMP)や水を用いることができる。水を溶媒として用いる場合、さらに増粘剤として、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコールを用いることができる。   The binder for the negative electrode is not particularly limited, but polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene. Copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, isoprene rubber, butadiene rubber, fluorine rubber Can be mentioned. As the slurry solvent, N-methyl-2-pyrrolidone (NMP) or water can be used. When water is used as a solvent, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, and polyvinyl alcohol can be used as a thickener.

この負極用の結着剤の含有量は、トレードオフの関係にある結着力とエネルギー密度の観点から、負極活物質100質量部に対して0.1〜30質量部の範囲にあることが好ましく、0.5〜25質量部の範囲がより好ましく、1〜20質量部の範囲がさらに好ましい。   The content of the binder for the negative electrode is preferably in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoint of the binding force and energy density that are in a trade-off relationship. The range of 0.5-25 mass parts is more preferable, and the range of 1-20 mass parts is more preferable.

負極集電体としては、特に制限されるものではないが、電気化学的な安定性から、銅、ニッケル、ステンレス、モリブデン、タングステン、タンタルおよびこれらの2種以上を含む合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。   The negative electrode current collector is not particularly limited, but copper, nickel, stainless steel, molybdenum, tungsten, tantalum, and alloys containing two or more of these are preferable from the viewpoint of electrochemical stability. Examples of the shape include foil, flat plate, and mesh.

(3B.正極)
正極は、例えば、正極活物質、結着剤及び溶媒(さらに必要により導電補助材)を含むスラリーを調製し、これを正極集電体上に塗布し、乾燥し、必要に応じて加圧することにより、正極集電体上に正極活物質層を形成することにより作製できる。負極と同様に正極活物質層を形成した後、集電体用の薄膜を形成してもよい。
(3B. Positive electrode)
For the positive electrode, for example, a slurry containing a positive electrode active material, a binder, and a solvent (and a conductive auxiliary material if necessary) is prepared, applied to the positive electrode current collector, dried, and pressurized as necessary. Thus, a positive electrode active material layer can be formed on the positive electrode current collector. After forming the positive electrode active material layer in the same manner as the negative electrode, a thin film for the current collector may be formed.

正極活物質としては、特に制限されるものではないが、例えば、リチウム複合酸化物やリン酸鉄リチウムなどを用いることができる。リチウム複合酸化物としては、マンガン酸リチウム(LiMn);コバルト酸リチウム(LiCoO);ニッケル酸リチウム(LiNiO);これらのリチウム化合物のマンガン、コバルト、ニッケルの部分の少なくとも一部をアルミニウム、マグネシウム、チタン、亜鉛など他の金属元素で置換したもの;マンガン酸リチウムのマンガンの一部を少なくともニッケルで置換したニッケル置換マンガン酸リチウム;ニッケル酸リチウムのニッケルの一部を少なくともコバルトで置換したコバルト置換ニッケル酸リチウム;ニッケル置換マンガン酸リチウムのマンガンの一部を他の金属(例えばアルミニウム、マグネシウム、チタン、亜鉛の少なくとも一種)で置換したもの;コバルト置換ニッケル酸リチウムのニッケルの一部を他の金属元素(例えばアルミニウム、マグネシウム、チタン、亜鉛の少なくとも一種)で置換したものが挙げられる。これらのリチウム複合酸化物は一種を単独で使用してもよいし、二種以上を混合して用いてもよい。正極活物質の平均粒径については、電解液との反応性やレート特性等の観点から、例えば平均粒径が0.1〜50μmの範囲にある正極活物質を用いることができ、好ましくは平均粒径が1〜30μmの範囲にある正極活物質、より好ましくは平均粒径が5〜25μmの範囲にあるものを用いることができる。ここで、平均粒径は、レーザー回折散乱法による粒度分布(体積基準)における積算値50%での粒径(メジアン径:D50)を意味する。 Although it does not restrict | limit especially as a positive electrode active material, For example, lithium complex oxide, lithium iron phosphate, etc. can be used. Examples of the lithium composite oxide include lithium manganate (LiMn 2 O 4 ); lithium cobaltate (LiCoO 2 ); lithium nickelate (LiNiO 2 ); and at least part of the manganese, cobalt, and nickel portions of these lithium compounds. Replaced with other metal elements such as aluminum, magnesium, titanium, zinc; nickel-substituted lithium manganate in which part of manganese in lithium manganate is replaced with at least nickel; part of nickel in lithium nickelate is replaced with at least cobalt Cobalt-substituted lithium nickelate; a part of manganese of nickel-substituted lithium manganate substituted with another metal (for example, at least one of aluminum, magnesium, titanium, and zinc); one nickel of cobalt-substituted lithium nickelate Other metal elements (e.g. aluminum, magnesium, titanium, at least one zinc) include those substituted with. These lithium composite oxides may be used individually by 1 type, and 2 or more types may be mixed and used for them. Regarding the average particle diameter of the positive electrode active material, for example, a positive electrode active material having an average particle diameter in the range of 0.1 to 50 μm can be used from the viewpoint of reactivity with the electrolytic solution, rate characteristics, and the like. A positive electrode active material having a particle diameter in the range of 1 to 30 μm, more preferably an average particle diameter in the range of 5 to 25 μm can be used. Here, the average particle diameter means the particle diameter (median diameter: D 50 ) at an integrated value of 50% in the particle size distribution (volume basis) by the laser diffraction scattering method.

正極用の結着剤としては、特に制限されるものではないが、負極用結着剤と同様のものを用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。正極用の結着剤の含有量は、トレードオフの関係にある結着力とエネルギー密度の観点から、正極活物質100質量部に対して1〜25質量部の範囲が好ましく、2〜20質量部の範囲がより好ましく、2〜10質量部の範囲がさらに好ましい。ポリフッ化ビニリデン(PVdF)以外の結着剤としては、ビニリデンフルオライド−ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド−テトラフルオロエチレン共重合体、スチレン−ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミドが挙げられる。スラリー溶媒としては、N−メチル−2−ピロリドン(NMP)を用いることができる。   Although it does not restrict | limit especially as a binder for positive electrodes, The thing similar to the binder for negative electrodes can be used. Among these, polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost. The content of the binder for the positive electrode is preferably in the range of 1 to 25 parts by mass with respect to 100 parts by mass of the positive electrode active material, from the viewpoint of the binding force and energy density in a trade-off relationship, and 2 to 20 parts by mass. The range of 2-10 mass parts is more preferable. As binders other than polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, Examples include polyethylene, polyimide, and polyamideimide. As the slurry solvent, N-methyl-2-pyrrolidone (NMP) can be used.

正極集電体としては、特に制限されるものではないが、電気化学的な安定性の観点から、例えば、アルミニウム、ニッケル、チタン、タンタル、ステンレス鋼(SUS)、その他のバルブメタル、又はそれらの合金を用いることができる。その形状としては、箔、平板状、メッシュ状が挙げられる。特にアルミニウム箔を好適に用いることができる。   The positive electrode current collector is not particularly limited, but from the viewpoint of electrochemical stability, for example, aluminum, nickel, titanium, tantalum, stainless steel (SUS), other valve metals, or their Alloys can be used. Examples of the shape include foil, flat plate, and mesh. In particular, an aluminum foil can be suitably used.

正極の作製に際して、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。   In the production of the positive electrode, a conductive auxiliary material may be added for the purpose of reducing the impedance. Examples of the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.

(3C.電解質)
電解質としては、1種又は2種以上の非水溶媒に、リチウム塩を溶解させた非水系電解液を用いることができる。非水溶媒としては、特に制限されるものではないが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)などの鎖状カーボネート;ギ酸メチル、酢酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル;γ−ブチロラクトンなどのγ−ラクトン;1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)などの鎖状エーテル;テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテルが挙げられる。その他、非水溶媒として、ジメチルスルホキシド、1,3−ジオキソラン、ジオキソラン誘導体、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピオニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、N−メチルピロリドンなどの非プロトン性有機溶媒を用いることもできる。
(3C. Electrolyte)
As the electrolyte, a non-aqueous electrolyte solution in which a lithium salt is dissolved in one or two or more non-aqueous solvents can be used. The non-aqueous solvent is not particularly limited. For example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC) Chain carbonates such as diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC); aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; γ- such as γ-butyrolactone Lactones; chain ethers such as 1,2-ethoxyethane (DEE) and ethoxymethoxyethane (EME); and cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran. Other non-aqueous solvents include dimethyl sulfoxide, 1,3-dioxolane, dioxolane derivatives, formamide, acetamide, dimethylformamide, acetonitrile, propionitrile, nitromethane, ethyl monoglyme, phosphate triester, trimethoxymethane, sulfolane, methyl Non-protons such as sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone An organic solvent can also be used.

非水溶媒に溶解させるリチウム塩としては、特に制限されるものではないが、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCFCO、Li(CFSO、LiN(CFSO、リチウムビスオキサラトボレートなどが挙げられる。これらのリチウム塩は、一種を単独で、または二種以上を組み合わせて使用することができる。また、非水系電解液の代わりにポリマー電解質を用いてもよい。 Examples of the lithium salt dissolved in the nonaqueous solvent, is not particularly limited, for example, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Examples thereof include Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , lithium bisoxalatoborate, and the like. These lithium salts can be used individually by 1 type or in combination of 2 or more types. Further, a polymer electrolyte may be used instead of the non-aqueous electrolyte solution.

(3D.電池構成)
以上の正極及び負極はそれぞれの活物質層を対向させ、これらの間に上記電解質を充填することで電池を構成することができる。また、正極と負極との間にはセパレータを設けることができる。このセパレータとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリフッ化ビニリデン等のフッ素樹脂、ポリイミド等からなる多孔性フィルムや織布、不織布を用いることができる。
(3D. Battery configuration)
The positive electrode and the negative electrode described above can constitute a battery by making each active material layer face each other and filling the electrolyte therebetween. A separator can be provided between the positive electrode and the negative electrode. As this separator, a porous film, a woven fabric, or a nonwoven fabric made of a polyolefin such as polypropylene or polyethylene, a fluororesin such as polyvinylidene fluoride, polyimide, or the like can be used.

電池形状としては、円筒形、角形、コイン型、ボタン型、ラミネート型などが挙げられる。ラミネート型の場合、正極、セパレータ、負極および電解質を収容する外装体としてラミネートフィルムを用いることが好ましい。このラミネートフィルムは、樹脂基材と、金属箔層、熱融着層(シーラント)を含む。樹脂基材としては、ポリエステルやポリアミド(ナイロン)などが挙げられ、金属箔層としては、アルミニウム、アルミニウム合金、チタン箔などが挙げられる。熱溶着層の材質としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の熱可塑性高分子材料が挙げられる。また、樹脂基材層や金属箔層はそれぞれ1層に限定されるものではなく2層以上であってもよい。汎用性やコストの観点から、アルミニウムラミネートフィルムが好ましい。   Examples of the battery shape include a cylindrical shape, a square shape, a coin shape, a button shape, and a laminate shape. In the case of a laminate type, it is preferable to use a laminate film as an exterior body that accommodates a positive electrode, a separator, a negative electrode, and an electrolyte. The laminate film includes a resin base material, a metal foil layer, and a heat seal layer (sealant). Examples of the resin base material include polyester and polyamide (nylon), and examples of the metal foil layer include aluminum, aluminum alloy, and titanium foil. Examples of the material for the heat welding layer include thermoplastic polymer materials such as polyethylene, polypropylene, and polyethylene terephthalate. Moreover, the resin base material layer and the metal foil layer are not limited to one layer, and may be two or more layers. From the viewpoint of versatility and cost, an aluminum laminate film is preferable.

正極と負極とこれらの間に配置されたセパレータは、ラミネートフィルム等からなる外装容器に収容され、非水系電解液を用いる場合にはさらに電解液が注入され、封止される。複数の電極対が積層された電極群が収容された構造とすることもできる。   The positive electrode, the negative electrode, and the separator disposed between them are accommodated in an outer container made of a laminate film or the like, and when a nonaqueous electrolytic solution is used, the electrolytic solution is further injected and sealed. A structure in which an electrode group in which a plurality of electrode pairs are stacked can be accommodated.

以下、実施例を挙げて具体的に説明する。なお、本発明はこれらの実施例のみに限定されるものではない。   Hereinafter, an example is given and it demonstrates concretely. In addition, this invention is not limited only to these Examples.

なお、各種測定方法は以下による。
・密度(真密度)
JIS K2151に準拠して測定した。
・比表面積
BET法による(ISO 9277:2010, JIS Z8830)。
・結晶子径(Lc)、格子間隔(d002
XRD測定による[002]主ピークに基づく学振法に準拠した手法により求められる。
・最大粒子径、平均粒子径(D50
レーザー回折散乱法による粒度分布(体積基準)における最大値と積算値50%での粒径(メジアン径:D50)を測定した。
Various measurement methods are as follows.
・ Density (true density)
The measurement was performed according to JIS K2151.
Specific surface area According to the BET method (ISO 9277: 2010, JIS Z8830).
-Crystallite diameter (Lc), lattice spacing (d 002 )
It is calculated | required by the method based on the Gakushin method based on the [002] main peak by XRD measurement.
・ Maximum particle size, average particle size (D 50 )
The maximum value in the particle size distribution (volume basis) by the laser diffraction scattering method and the particle size (median diameter: D 50 ) at an integrated value of 50% were measured.

実施例1(黒鉛からのグラフェン凝集体の製造)
図1に示すような電気化学セルを用意し、陰極(作用極)に市販のグラファイト棒(ニラコ製グラファイトロッドC−072561)、陽極(対照極)に白金電極を用いた。電解液として、塩化ナトリウム1gをDMSO 20ml溶解させた後、脱イオン水5mlに添加したものを用いた。陰極剥離は電圧15V、電流密度10mA/cmで行った。24時間処理した後、セル底部に沈降したグラフェン凝集体を濾過により回収した。脱イオン水で洗浄した後、真空デシケーター中で80℃、4時間乾燥した。
Example 1 (Production of graphene aggregates from graphite)
An electrochemical cell as shown in FIG. 1 was prepared, and a commercially available graphite rod (Niraco graphite rod C-072561) was used as the cathode (working electrode), and a platinum electrode was used as the anode (control electrode). As an electrolytic solution, 1 g of sodium chloride was dissolved in 20 ml of DMSO and then added to 5 ml of deionized water. Cathode stripping was performed at a voltage of 15 V and a current density of 10 mA / cm 2 . After the treatment for 24 hours, the graphene aggregates settled at the bottom of the cell were collected by filtration. After washing with deionized water, it was dried in a vacuum desiccator at 80 ° C. for 4 hours.

得られたグラフェン凝集体について、各種物性を測定した。結果を表1に示す。また得られたグラフェン凝集体のXRD分析結果を未処理の黒鉛と共に図4に示す。さらに、得られたグラフェン凝集体のSEM像を図5(500倍),図6(1万倍)に示す。   Various physical properties of the obtained graphene aggregate were measured. The results are shown in Table 1. Moreover, the XRD analysis result of the obtained graphene aggregate is shown in FIG. 4 with untreated graphite. Further, SEM images of the obtained graphene aggregates are shown in FIG. 5 (500 times) and FIG. 6 (10,000 times).

実施例2(ソフトカーボンからのグラフェン凝集体の製造)
陰極としてソフトカーボン(ピッチコークス)をメッシュ状の袋に詰めて端子としてステンレス棒を挿したものを用意して、陰極剥離を実施した以外は実施例1と同様にしてグラフェン凝集体を得た。各種物性の測定結果を表1に示す。
Example 2 (Production of graphene aggregates from soft carbon)
A graphene aggregate was obtained in the same manner as in Example 1 except that a soft carbon (pitch coke) packed in a mesh bag as a cathode and a stainless bar inserted as a terminal was prepared and the cathode was peeled off. Table 1 shows the measurement results of various physical properties.

実施例3
実施例1で得られたグラフェン凝集体を、KOHを用いて賦活処理したリチウムイオン電池用の負極活物質を調製した。具体的には、まずグラフェン凝集体を7M KOH水溶液に12時間浸漬し、真空ろ過により粉末を分離後、窒素雰囲気下で800℃、1時間熱処理し、水洗後70℃、24時間乾燥して賦活処理した負極活物質を調製した。
Example 3
A negative electrode active material for a lithium ion battery in which the graphene aggregate obtained in Example 1 was activated using KOH was prepared. Specifically, graphene aggregates are first immersed in a 7M KOH aqueous solution for 12 hours, separated by vacuum filtration, heat treated at 800 ° C. for 1 hour in a nitrogen atmosphere, washed with water, dried at 70 ° C. for 24 hours, and activated. A treated negative electrode active material was prepared.

実施例4
実施例1で得られたグラフェン凝集体に酸化スズを修飾したリチウムイオン電池用の負極活物質を調製した。具体的には、まずグラフェン凝集体を200mlの水に分散させた溶液に、0.1−0.5M塩化スズ、20mlのエタノール、5mlの界面活性剤(Triton X100)を加え、220℃で4時間水熱合成した。これをPTFEフィルターに通して濾過し、得られたスラリーを真空中で80℃12時間乾燥した。乾燥粉末は真空中で800℃3時間熱処理した後、脱イオン水でpHが7になるまで洗浄した。その後、真空中で80℃4時間乾燥し、酸化スズを修飾した負極活物質を調製した。
Example 4
A negative electrode active material for a lithium ion battery in which tin oxide was modified on the graphene aggregate obtained in Example 1 was prepared. Specifically, first, 0.1-0.5 M tin chloride, 20 ml ethanol, 5 ml surfactant (Triton X100) was added to a solution in which graphene aggregates were dispersed in 200 ml water, and the mixture was heated at 220 ° C. for 4 hours. Hydrothermal synthesis for hours. This was filtered through a PTFE filter, and the resulting slurry was dried in vacuum at 80 ° C. for 12 hours. The dried powder was heat treated in vacuum at 800 ° C. for 3 hours and then washed with deionized water until the pH reached 7. Then, it dried at 80 degreeC for 4 hours in vacuum, and prepared the negative electrode active material which modified the tin oxide.

実施例5
実施例1で得られたグラフェン凝集体をアモルファスカーボン膜で被覆したリチウムイオン電池用の負極活物質を調製した。具体的には、まずグラフェン凝集体を0.1Mスクロース溶液の中に分散し、220℃で6時間水熱合成した。これをPTFEフィルターに通して濾過し、得られたスラリーを真空中で80℃、12時間乾燥した。乾燥粉末は真空中で800℃、3時間熱処理した後、脱イオン水でpHが7になるまで洗浄した。その後、真空中で80℃、4時間乾燥し、アモルファスカーボンを被覆した負極活物質を調製した。
Example 5
A negative electrode active material for a lithium ion battery in which the graphene aggregate obtained in Example 1 was coated with an amorphous carbon film was prepared. Specifically, graphene aggregates were first dispersed in a 0.1 M sucrose solution and hydrothermally synthesized at 220 ° C. for 6 hours. This was filtered through a PTFE filter, and the resulting slurry was dried in a vacuum at 80 ° C. for 12 hours. The dried powder was heat treated in vacuum at 800 ° C. for 3 hours and then washed with deionized water until the pH reached 7. Then, it dried at 80 degreeC in vacuum for 4 hours, and prepared the negative electrode active material which coat | covered the amorphous carbon.

比較例
平均粒径10μm、比表面積7m/gの黒鉛粉末を用意し、そのまま負極材料として用いた。
Comparative Example A graphite powder having an average particle size of 10 μm and a specific surface area of 7 m 2 / g was prepared and used as it was as a negative electrode material.

(充放電試験)
実施例1〜5及び比較例の負極活物質と導電剤(カーボンブラック)と結着剤(PVdF)を、負極活物質:導電剤:結着剤=92:1:7の質量比率で混合し、NMPに分散させてスラリーを作製した。このスラリーを銅箔上に塗布し、乾燥、圧延した後、22×25mmに切り出して電極を得た。この電極を作用極とし、セパレータを挟んで対極のLi箔と組み合わせて積層体を得た。この積層体と電解液(1MのLiPFを含むECとDECの混合溶液、容量比EC/DEC=3/7)をアルミラミネート容器内に封入し、電池を作製した。
(Charge / discharge test)
The negative electrode active material, conductive agent (carbon black), and binder (PVdF) of Examples 1 to 5 and Comparative Example were mixed at a mass ratio of negative electrode active material: conductive agent: binder = 92: 1: 7. The slurry was dispersed in NMP. The slurry was applied on a copper foil, dried and rolled, and then cut into 22 × 25 mm to obtain an electrode. This electrode was used as a working electrode, and a laminate was obtained by combining with a counter electrode Li foil across a separator. This laminate and an electrolytic solution (a mixed solution of EC and DEC containing 1M LiPF 6 and a volume ratio EC / DEC = 3/7) were sealed in an aluminum laminate container to produce a battery.

所定の電流値で、対極に対する作用極の電位が0Vまで充電(作用極にLiを挿入)し、1.5Vまで放電(作用極からLiを脱離)した。この充放電時の電流値は、作用極の放電容量を1時間で流す電流値を1Cとし、1サイクル目および2サイクル目の充放電は0.1C充電−0.1C放電とし、3サイクル目は0.5C充電−0.1C放電とした。   At a predetermined current value, the potential of the working electrode with respect to the counter electrode was charged to 0 V (Li was inserted into the working electrode), and discharged to 1.5 V (Li was desorbed from the working electrode). The current value at the time of charging / discharging is such that the current value for flowing the discharge capacity of the working electrode in 1 hour is 1C, and charging / discharging in the first and second cycles is 0.1C charging-0.1C discharging. Was 0.5 C charge-0.1 C discharge.

充放電特性として、初期放電容量(1サイクル目の放電容量)、充電レート特性(3サイクル目の放電容量/2サイクル目の放電容量)を求めた。結果を表2に示す。   As the charge / discharge characteristics, an initial discharge capacity (discharge capacity at the first cycle) and a charge rate characteristic (discharge capacity at the third cycle / discharge capacity at the second cycle) were obtained. The results are shown in Table 2.

1 電気化学セル筐体
2 電解液
3 炭素材料
4 不溶性陽極
5 電源
6 グラフェン
7 グラフェン凝集体
11 黒鉛
21 ソフトカーボン
12、12’ グラフェン
13 溶媒和物
14、14’ グラフェン凝集体
22 クラスター
DESCRIPTION OF SYMBOLS 1 Electrochemical cell housing | casing 2 Electrolyte 3 Carbon material 4 Insoluble anode 5 Power supply 6 Graphene 7 Graphene aggregate 11 Graphite 21 Soft carbon 12, 12 'Graphene 13 Solvate 14, 14' Graphene aggregate 22 Cluster

Claims (11)

溶媒和した陽イオンと水を含む電解液中で、グラフェン積層体を含む炭素材料を陰極として電気化学的にグラフェンを剥離し、前記陰極から脱離したグラフェンの凝集体を回収するグラフェン凝集体の製造方法であって、
前記電解液組成及び電気化学的剥離時の電圧を調整することによって、
(1)粒子径が300μm以下でかつ平均粒子径D 50 が1〜20μm、
(2)密度が0.5g/cm 以上、
(3)BET法による比表面積が300m /g以下、
の条件を満たすグラフェン凝集体を得ることを特徴とする方法
A graphene aggregate is obtained by electrochemically exfoliating graphene using a carbon material containing a graphene stack as a cathode in an electrolyte containing a solvated cation and water, and collecting the graphene aggregate desorbed from the cathode A manufacturing method comprising :
By adjusting the electrolyte composition and the voltage during electrochemical stripping,
(1) The particle diameter is 300 μm or less and the average particle diameter D 50 is 1 to 20 μm,
(2) Density is 0.5 g / cm 3 or more,
(3) Specific surface area by BET method is 300 m 2 / g or less,
A method comprising obtaining a graphene aggregate satisfying the following condition .
前記溶媒和した陽イオンは、ナトリウムイオンにジメチルスルホキシドが溶媒和したものである請求項に記載のグラフェン凝集体の製造方法。 The method for producing a graphene aggregate according to claim 1 , wherein the solvated cation is a sodium ion obtained by solvating dimethyl sulfoxide. 前記電気化学的剥離時の電圧が3V以上である請求項1又は2に記載のグラフェン凝集体の製造方法。 The method for producing a graphene aggregate according to claim 1 or 2 , wherein a voltage during the electrochemical stripping is 3 V or more. 前記陰極として用いる炭素材料が、天然黒鉛または人造黒鉛を含む請求項1乃至のいずれか1項に記載のグラフェン凝集体の製造方法。 The method for producing a graphene aggregate according to any one of claims 1 to 3 , wherein the carbon material used as the cathode includes natural graphite or artificial graphite. 前記陰極として用いる炭素材料が、難黒鉛化性または易黒鉛化性炭素を含む請求項1乃至のいずれか1項に記載のグラフェン凝集体の製造方法。 The method for producing a graphene aggregate according to any one of claims 1 to 3 , wherein the carbon material used as the cathode contains non-graphitizable or graphitizable carbon. 以下の条件を満たすグラフェン凝集体であって、
(1)粒子径が300μm以下でかつ平均粒子径D50が1〜20μm、
(2)密度が0.5g/cm以上、
(3)BET法による比表面積が300m/g以下
前記グラフェン凝集体は、単層グラフェン、グラフェンが複数積層された複層グラフェン、又はこれらの混合物が凝集して為るグラフェン凝集体
A graphene aggregate that satisfies the following conditions ,
(1) The particle diameter is 300 μm or less and the average particle diameter D 50 is 1 to 20 μm,
(2) Density is 0.5 g / cm 3 or more,
(3) Specific surface area by BET method is 300 m 2 / g or less ,
The graphene aggregate is a graphene aggregate formed by agglomerating single-layer graphene, multilayer graphene in which a plurality of graphenes are stacked, or a mixture thereof .
前記単層グラフェンは、結晶子径Lc(002)0.005〜50μmの範囲の単層グラフェンであり前記複層グラフェンは、前記結晶子径を有するグラフェンが0.3355nm以上の格子間隔(d002)で積層された複層グラフェンである請求項6に記載のグラフェン凝集体。 The single-layer graphene is single-layer graphene having a crystallite diameter Lc (002) in the range of 0.005 to 50 μm , and the multi-layer graphene has a lattice interval (d The graphene aggregate according to claim 6, which is a multilayer graphene laminated at 002 ). 請求項6又は7に記載のグラフェン凝集体を負極材料に用いたリチウムイオン電池。 A lithium ion battery using the graphene aggregate according to claim 6 or 7 as a negative electrode material. 前記グラフェン凝集体は、表面に0.5〜500nm径の細孔を有する請求項に記載のリチウムイオン電池。 The lithium ion battery according to claim 8 , wherein the graphene aggregate has pores having a diameter of 0.5 to 500 nm on the surface. 前記グラフェン凝集体は、リチウム吸蔵物質で修飾されて為る請求項又はに記載のリチウムイオン電池。 The lithium ion battery according to claim 8 or 9 , wherein the graphene aggregate is modified with a lithium storage material. 前記グラフェン凝集体は、その表面がアモルファスカーボン膜で被覆されて為る請求項乃至10のいずれか1項に記載のリチウムイオン電池。 The graphene aggregates, lithium ion battery according to any one of claims 8 to 10 reach to the surface is coated with amorphous carbon film.
JP2013072245A 2013-03-29 2013-03-29 Method for producing graphene aggregate and negative electrode carbon material for lithium ion battery Active JP6236830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013072245A JP6236830B2 (en) 2013-03-29 2013-03-29 Method for producing graphene aggregate and negative electrode carbon material for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013072245A JP6236830B2 (en) 2013-03-29 2013-03-29 Method for producing graphene aggregate and negative electrode carbon material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2014196206A JP2014196206A (en) 2014-10-16
JP6236830B2 true JP6236830B2 (en) 2017-11-29

Family

ID=52357340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013072245A Active JP6236830B2 (en) 2013-03-29 2013-03-29 Method for producing graphene aggregate and negative electrode carbon material for lithium ion battery

Country Status (1)

Country Link
JP (1) JP6236830B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10601043B2 (en) * 2014-08-29 2020-03-24 Nec Corporation Electrochemically modified carbon material for lithium-ion battery
WO2016031081A1 (en) * 2014-08-29 2016-03-03 Nec Corporation Electrochemically modified carbon material for lithium-ion battery
JP6399515B2 (en) * 2014-11-26 2018-10-03 昭和電工株式会社 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
KR101999616B1 (en) 2016-05-19 2019-07-15 주식회사 엘지화학 Composite negative electrode material for secondary battery, negative electrode and lithium secondary battery comprising the same
KR101866638B1 (en) * 2016-05-31 2018-06-11 한국기초과학지원연구원 Method and device for coating particles with graphene and making graphene flakes by using underwater plasma device
US10435797B2 (en) * 2016-06-26 2019-10-08 Global Graphene Group, Inc. Electrochemical production of graphene sheets from coke or coal
US11283065B2 (en) * 2017-09-27 2022-03-22 National Institute For Materials Science Graphene-containing electrode, method for manufacturing same, and power storage device using same
JP7305547B2 (en) * 2018-08-28 2023-07-10 積水化学工業株式会社 Carbon material and manufacturing method thereof, electrode material for power storage device, and power storage device
CN114132921B (en) * 2021-04-28 2023-04-18 宁波中乌新材料产业技术研究院有限公司 Electrochemical method for preparing graphene nanoparticles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745047B2 (en) * 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries
WO2011162727A1 (en) * 2010-06-25 2011-12-29 National University Of Singapore Methods of forming graphene by graphite exfoliation
GB201204279D0 (en) * 2012-03-09 2012-04-25 Univ Manchester Production of graphene

Also Published As

Publication number Publication date
JP2014196206A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
JP6236830B2 (en) Method for producing graphene aggregate and negative electrode carbon material for lithium ion battery
JP5604468B2 (en) Aluminum base material for current collector, current collector, positive electrode, negative electrode, and secondary battery
JP6500892B2 (en) Negative electrode carbon material, method of manufacturing negative electrode carbon material, negative electrode for lithium secondary battery, and lithium secondary battery
US9515318B2 (en) Mesoporous metal oxide microsphere electrode compositions and their methods of making
WO2017082083A1 (en) Lithium ion secondary battery and method for manufacturing same
JP5133020B2 (en) Method for producing positive electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the positive electrode plate
JP6303278B2 (en) Negative electrode active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP6101683B2 (en) Negative electrode for secondary battery, method for producing the same, and secondary battery
EP2874227B1 (en) Lithium secondary battery
JP6041867B2 (en) Method for producing secondary battery negative electrode active material, secondary battery negative electrode active material, secondary battery negative electrode production method, secondary battery negative electrode, and secondary battery
JP6384596B2 (en) Anode materials for lithium-ion batteries
JP6508049B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery and method for manufacturing the same
WO2013124950A1 (en) Lithium ion battery
KR101907240B1 (en) Method for preparing electrode materials and electrode materials produce therefrom
JP6555123B2 (en) Negative electrode carbon material for lithium secondary battery and method for producing the same, negative electrode for lithium secondary battery, and lithium secondary battery
JP2014199749A (en) Negative electrode carbon material for lithium secondary battery, negative electrode for lithium battery, and lithium secondary battery
CN108878880B (en) Negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
WO2014157503A1 (en) Negative electrode carbon material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP2017183256A (en) Nonaqueous electrolyte secondary battery
JP6658608B2 (en) Positive electrode for non-aqueous electrolyte storage element, non-aqueous electrolyte storage element, and method for manufacturing positive electrode mixture paste
JP2008257888A (en) Carbon material for electrode of electrochemical element, manufacturing method therefor, and electrode for electrochemical element
WO2014188474A1 (en) Negative electrode active material for lithium ion secondary batteries, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP6094372B2 (en) Composite metal oxide, positive electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP3985142B2 (en) Electrode material and lithium battery using the same
WO2019188092A1 (en) Lithium ion secondary battery and production method for same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6236830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150