JP6233376B2 - Solid-state imaging device and electronic device - Google Patents

Solid-state imaging device and electronic device Download PDF

Info

Publication number
JP6233376B2
JP6233376B2 JP2015190385A JP2015190385A JP6233376B2 JP 6233376 B2 JP6233376 B2 JP 6233376B2 JP 2015190385 A JP2015190385 A JP 2015190385A JP 2015190385 A JP2015190385 A JP 2015190385A JP 6233376 B2 JP6233376 B2 JP 6233376B2
Authority
JP
Japan
Prior art keywords
wiring
solid
state imaging
imaging device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015190385A
Other languages
Japanese (ja)
Other versions
JP2016034029A (en
Inventor
高橋 洋
洋 高橋
俊一 助川
俊一 助川
井上 啓司
啓司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2015190385A priority Critical patent/JP6233376B2/en
Publication of JP2016034029A publication Critical patent/JP2016034029A/en
Application granted granted Critical
Publication of JP6233376B2 publication Critical patent/JP6233376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

本発明は、固体撮像装置及び、固体撮像装置を備えた電子機器に関する。 The present invention relates to a solid-state imaging device and an electronic apparatus including the solid-state imaging device .

固体撮像装置として、CMOS(Complementary Metal Oxide Semiconductor)等のMOS型イメージセンサに代表される増幅型固体撮像装置が知られている。また、CCD(Charge Coupled Device)イメージセンサに代表される電荷転送型固体撮像装置が知られている。これら固体撮像装置は、デジタルスチルカメラ、デジタルビデオカメラなどに広く用いられている。近年、カメラ付き携帯電話やPDA(Personal Digital Assistant)などのモバイル機器に搭載される固体撮像装置としては、電源電圧が低く、消費電力の観点などからMOS型イメージセンサが多く用いられている。   As a solid-state imaging device, an amplification-type solid-state imaging device represented by a MOS type image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) is known. In addition, a charge transfer type solid-state imaging device represented by a CCD (Charge Coupled Device) image sensor is known. These solid-state imaging devices are widely used in digital still cameras, digital video cameras, and the like. In recent years, MOS image sensors are often used as solid-state imaging devices mounted on mobile devices such as camera-equipped mobile phones and PDAs (Personal Digital Assistants) from the viewpoint of low power supply voltage and power consumption.

MOS型の固体撮像装置は、単位画素が光電変換部となるフォトダイオードと複数の画素トランジスタで形成され、この複数の単位画素が2次元アレイ状に配列された画素アレイ(画素領域)と、周辺回路領域を有して構成される。複数の画素トランジスタは、MOSトランジスタで形成され、転送トランジスタ、リセットトランジスタ、増幅とトランジスタの3トランジスタ、あるいは選択トランジスタを加えた4トランジスタで構成される。   The MOS type solid-state imaging device has a pixel array (pixel area) in which a unit pixel is formed by a photodiode that serves as a photoelectric conversion unit and a plurality of pixel transistors, and the plurality of unit pixels are arranged in a two-dimensional array. It has a circuit area. The plurality of pixel transistors are formed of MOS transistors, and include transfer transistors, reset transistors, three transistors of amplification and transistors, or four transistors including a selection transistor.

従来、このようなMOS型固体撮像装置において、複数の画素が配列された画素領域が形成された半導体チップと、信号処理を行うロジック回路が形成された半導体チップを電気的に接続して1つのデバイスとして構成した固体撮像装置が種々提案されている。例えば、特許文献1では、各画素セル毎にマイクロパッドを有する裏面照射型のイメージセンサチップと、信号処理回路が形成されマイクロパッドを有する信号処理チップとを、マイクロバンプによって接続した半導体モジュールが開示されている。   Conventionally, in such a MOS type solid-state imaging device, a semiconductor chip in which a pixel region in which a plurality of pixels are arranged is formed and a semiconductor chip in which a logic circuit for performing signal processing is electrically connected to each other. Various solid-state imaging devices configured as devices have been proposed. For example, Patent Document 1 discloses a semiconductor module in which a back-illuminated image sensor chip having a micropad for each pixel cell and a signal processing chip in which a signal processing circuit is formed and having a micropad are connected by microbumps. Has been.

特許文献2では、インターポーザ(中間基板)上に、撮像画素部が設けられた裏面照射型のMOS固体撮像素子であるセンサチップと、信号処理を行う周辺回路が設けられた信号処理チップを実装したデバイスが開示されている。特許文献3では、イメージセンサチップと、薄型回路基板と、信号処理を行うロジック回路チップとを備えた構成である。そして、この薄膜回路基板とロジック回路チップが電気的に接続され、薄膜回路基板がイメージセンサチップの裏面からスルホールビアを介して電気的に接続された構成が開示されている。   In Patent Document 2, a sensor chip, which is a back-illuminated MOS solid-state imaging device provided with an imaging pixel unit, and a signal processing chip provided with a peripheral circuit for signal processing are mounted on an interposer (intermediate substrate). A device is disclosed. Patent Document 3 has a configuration including an image sensor chip, a thin circuit board, and a logic circuit chip that performs signal processing. A configuration is disclosed in which the thin film circuit board and the logic circuit chip are electrically connected, and the thin film circuit board is electrically connected from the back surface of the image sensor chip through a through-hole via.

また、特許文献4では、透明基板に支持された固体撮像素子に貫通電極を設け、この貫通電極を介して固体撮像素子をフレキシブル回路基板に電気的に接続した固体撮像装置が開示されている。さらに、特許文献5では、裏面照射型の固体撮像装置において、支持基板を貫通する電極を設けた構成が開示されている。   Patent Document 4 discloses a solid-state imaging device in which a through-electrode is provided in a solid-state imaging device supported by a transparent substrate, and the solid-state imaging device is electrically connected to a flexible circuit board via the through-electrode. Furthermore, Patent Document 5 discloses a configuration in which an electrode penetrating a support substrate is provided in a back-illuminated solid-state imaging device.

特許文献1〜3に示すように、イメージセンサチップとロジック回路などの異種回路チップを混載する技術は、種々提案されている。従来技では、いずれも機能チップがほぼ完成した状態のものを用い、貫通接続孔を形成して、上下に積層されるチップ間の相互接続を可能な状態で1つのチップ上に形成されることが特徴となっている。   As shown in Patent Documents 1 to 3, various techniques for mounting different types of circuit chips such as an image sensor chip and a logic circuit have been proposed. In the conventional technique, a functional chip is almost completed, a through-connection hole is formed, and a chip is formed on one chip in a state where interconnection between chips stacked vertically is possible. Is a feature.

特開2006−49361号公報JP 2006-49361 A 特開2007−13089号公報JP 2007-13089 A 特開2008−130603号公報JP 2008-130603 A 特許第4000507号公報Japanese Patent No. 40000507 特開2003−31785号公報JP 2003-31785 A

上述した従来の固体撮像装置にも見られるように、基板を貫通する接続導体によって積層された異種チップ間を接続して半導体デバイスを構成することは、アイデアとして知られていた。しかし、深い基板に絶縁を確保しながら接続孔を開けねばならず、接続孔の加工と、接続導体の埋め込みに必要な製造プロセスのコスト経済性から実用化は困難とされていた。   As seen in the above-described conventional solid-state imaging device, it has been known as an idea to configure a semiconductor device by connecting different chips stacked by a connection conductor that penetrates a substrate. However, it is necessary to open a connection hole while ensuring insulation on a deep substrate, and it has been difficult to put it to practical use because of the cost efficiency of the manufacturing process required for processing the connection hole and embedding the connection conductor.

一方、例えば1μm程度の小さなコンタク穴を形成するためには、上部チップを極限まで薄肉化する必要がある。この場合、薄肉化する前に上部チップを支持基板に貼り付ける等の複雑な工程とコスト増を招いてしまう。しかも、高アスペクト比の接続孔に接続導体で埋めるためには、接続導体としてタングステン(W)等の被覆性の良いCVD膜を使うことが必然的に求められ、接続導体材料が制約される。   On the other hand, in order to form a small contact hole of about 1 μm, for example, it is necessary to make the upper chip as thin as possible. In this case, a complicated process such as attaching the upper chip to the support substrate before thinning and an increase in cost are caused. Moreover, in order to fill the connection hole with a high aspect ratio with the connection conductor, it is necessary to use a CVD film having good coverage such as tungsten (W) as the connection conductor, and the connection conductor material is restricted.

量産で簡便に適用できる経済性を有する為には、この接続孔のアスペクト比を劇的に下げて、形成し易くすると共に、特別な接続孔加工を用いずに従来のウェハ製造プロセス内で加工できる技術を選択できることが望ましい。この際、上部チップに接続するコンタクト穴と、上部チップを貫通して下部チップに達するコンタクト穴は深さが異なるが、可能な限り同一のエッチング工程や金属埋め込み工程での形成ができることが求められている。   In order to have economic efficiency that can be easily applied in mass production, the aspect ratio of this connection hole is dramatically reduced to make it easier to form, and it is processed within the conventional wafer manufacturing process without using special connection hole processing. It is desirable to be able to select a technology that can be used. At this time, the contact hole connecting to the upper chip and the contact hole reaching the lower chip through the upper chip have different depths, but it is required that they can be formed in the same etching process or metal filling process as much as possible. ing.

また、固体撮像装置などでは、画像領域と、信号処理を行うロジック回路とを、それぞれの性能を十分発揮できるように形成し、高性能化が図られることが望まれている。
固体撮像装置に限らず、他の半導体集積回路を有する半導体装置においても、それぞれの半導体集積回路の性能を十分に発揮できるように形成し、高性能化が図れることが望まれる。
Further, in a solid-state imaging device or the like, it is desired that an image region and a logic circuit that performs signal processing are formed so as to sufficiently exhibit their respective performances, thereby improving performance.
It is desired that not only the solid-state imaging device but also a semiconductor device having another semiconductor integrated circuit be formed so that the performance of each semiconductor integrated circuit can be sufficiently exerted to improve the performance.

しかしながら、上下のチップそれぞれに必要な機能を盛り込んだ設計を行うと、共通の機能を持った部分の回路面積が重複してしまうため、チップサイズが大きくなり、コスト低減が困難になる。このため、少なくとも、コスト削減のためには、上下のチップで同じ機能を持つ部分の面積を極力共通に使えるような構成で設計されることが臨まれる。   However, if the design including the necessary functions is performed in the upper and lower chips, the circuit area of the portion having the common function is overlapped, so that the chip size is increased and it is difficult to reduce the cost. For this reason, at least in order to reduce costs, it is expected that the design is such that the area of the portion having the same function in the upper and lower chips can be used as much as possible.

本発明は、上述の点に鑑み、積層される半導体ウェハのそれぞれの性能を十分に発揮して高性能化を図り、且つ量産性、コスト低減を図った、固体撮像装置及び、固体撮像装置を備えた電子機器を提供するものである。 In view of the above-mentioned points, the present invention provides a solid-state imaging device and a solid-state imaging device that achieves high performance by fully exhibiting the performance of each of the semiconductor wafers to be stacked, and achieves mass productivity and cost reduction. The electronic device provided is provided.

本発明に係る固体撮像装置は、画素アレイが形成され、光入射面とは反対側に設けられた第1の配線層を備える第1の半導体ウェハと、第2の配線層が形成され、前記第1の半導体ウェハに貼り合わされた第2の半導体ウェハと、第1の半導体ウェハを貫通して設けられ、第2の配線層に達する接続孔と、接続孔内に形成され、第1の半導体ウェハと第2の半導体ウェハとを電気的に接続する一体となった導電材料からなる基板間配線と、基板間配線を囲む領域に形成された絶縁スペーサ層とを備え、前記第1の半導体ウェハは、フォトダイオードを含み、前記絶縁スペーサ層は、前記第1の半導体ウェハの前記画素アレイの外の領域に、前記フォトダイオードと同じ深さ位置を少なくとも含んで形成されている。
本発明に係る電子機器は、上記本発明に係る固体撮像装置の構成の固体撮像装置を搭載する。
In the solid-state imaging device according to the present invention, a pixel array is formed, a first semiconductor wafer including a first wiring layer provided on a side opposite to a light incident surface, and a second wiring layer are formed. A second semiconductor wafer bonded to the first semiconductor wafer; a connection hole provided through the first semiconductor wafer and reaching the second wiring layer; and formed in the connection hole. An inter-substrate wiring made of an integrated conductive material that electrically connects the wafer and the second semiconductor wafer, and an insulating spacer layer formed in a region surrounding the inter-substrate wiring , the first semiconductor wafer Includes a photodiode, and the insulating spacer layer is formed in a region outside the pixel array of the first semiconductor wafer so as to include at least the same depth position as the photodiode.
The electronic apparatus according to the present invention includes the solid-state imaging device having the configuration of the solid-state imaging device according to the present invention.

本発明によれば、最適なプロセス技術で、それぞれの性能を十分に発揮することができる回路が形成された半導体ウェハが複数積層された構成とされるので、量産性に優れ、低コストで高性能の固体撮像装置を得ることができる。   According to the present invention, a plurality of semiconductor wafers on which a circuit capable of sufficiently exhibiting the respective performances is formed by an optimum process technology is configured to be laminated, so that it is excellent in mass productivity, low in cost and high in cost. A solid-state imaging device with high performance can be obtained.

本発明に適用されるMOS固体撮像装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the MOS solid-state imaging device applied to this invention. A 従来の固体撮像装置の模式図である。B,C 本発明の実施の形態に係る固体撮像装置の模式図である。It is a schematic diagram of the conventional solid-state imaging device. B and C are schematic views of a solid-state imaging device according to an embodiment of the present invention. 本発明に適用されるMOS固体撮像装置の画素構成の回路の一例を示す図である。It is a figure which shows an example of the circuit of the pixel structure of the MOS solid-state imaging device applied to this invention. 第1の実施形態に係る固体撮像装置を示す要部の概略構成図である。It is a schematic block diagram of the principal part which shows the solid-state imaging device which concerns on 1st Embodiment. 第1の実施形態に係る固体撮像装置の製造方法例を示す製造工程図(その1)である。FIG. 6 is a manufacturing process diagram (part 1) illustrating an example of a manufacturing method of the solid-state imaging device according to the first embodiment; 第1の実施形態に係る固体撮像装置の製造方法例を示す製造工程図(その2)である。FIG. 6 is a manufacturing process diagram (part 2) illustrating the example of the method for manufacturing the solid-state imaging device according to the first embodiment; 第1の実施形態に係る固体撮像装置の製造方法例を示す製造工程図(その3)である。FIG. 6 is a manufacturing process diagram (part 3) illustrating the example of the manufacturing method of the solid-state imaging device according to the first embodiment; 第1の実施形態に係る固体撮像装置の製造方法例を示す製造工程図(その4)である。FIG. 6 is a manufacturing process diagram (part 4) illustrating an example of a manufacturing method of the solid-state imaging device according to the first embodiment; 第1の実施形態に係る固体撮像装置の製造方法例を示す製造工程図(その5)である。FIG. 6 is a manufacturing process diagram (part 5) illustrating an example of a manufacturing method of the solid-state imaging device according to the first embodiment; 第1の実施形態に係る固体撮像装置の製造方法例を示す製造工程図(その6)である。It is a manufacturing process figure (the 6) which shows the example of a manufacturing method of the solid-state imaging device concerning a 1st embodiment. 第1の実施形態に係る固体撮像装置の製造方法例を示す製造工程図(その7)である。It is a manufacturing process figure (the 7) which shows the example of a manufacturing method of the solid-state imaging device concerning a 1st embodiment. 第1の実施形態に係る固体撮像装置及びその製造方法を示す製造工程図(その8)である。It is a manufacturing process figure (the 8) which shows the solid-state imaging device which concerns on 1st Embodiment, and its manufacturing method. 第1の実施形態に係る固体撮像装置の製造方法を示す製造工程図(その9)である。It is a manufacturing process figure (the 9) which shows the manufacturing method of the solid-state imaging device concerning a 1st embodiment. 第1の実施形態に係る固体撮像装置の製造方法を示す製造工程図(その10)である。It is a manufacturing process figure (the 10) which shows the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1の実施形態に係る固体撮像装置の製造方法を示す製造工程図(その11)である。It is a manufacturing process figure (the 11) which shows the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1の実施形態に係る固体撮像装置の製造方法を示す製造工程図(その12)である。It is a manufacturing process figure (the 12) which shows the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1の実施形態に係る固体撮像装置の製造方法を示す製造工程図(その13)である。It is a manufacturing process figure (the 13) which shows the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1の実施形態に係る固体撮像装置の製造方法を示す製造工程図(その14)である。It is a manufacturing process figure (the 14) which shows the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 第1の実施形態に係る固体撮像装置の製造方法を示す製造工程図(その15)である。It is a manufacturing process figure (the 15) which shows the manufacturing method of the solid-state imaging device which concerns on 1st Embodiment. 本発明の第2の実施形態に係る固体撮像装置の概略断面構成図である。It is a schematic sectional block diagram of the solid-state imaging device which concerns on the 2nd Embodiment of this invention. 第2の実施形態に係る半導体装置の製造方法を示す製造工程図(その1)である。FIG. 10 is a manufacturing process diagram (part 1) illustrating a method for manufacturing a semiconductor device according to a second embodiment; 第2の実施形態に係る半導体装置の製造方法を示す製造工程図(その2)である。FIG. 10 is a manufacturing process diagram (part 2) illustrating the manufacturing method of the semiconductor device according to the second embodiment; 第2の実施形態に係る半導体装置の製造方法を示す製造工程図(その3)である。FIG. 10 is a manufacturing process diagram (part 3) illustrating the method for manufacturing the semiconductor device according to the second embodiment; 第2の実施形態に係る半導体装置の製造方法を示す製造工程図(その4)である。FIG. 6D is a manufacturing process diagram (part 4) illustrating the manufacturing method of the semiconductor device according to the second embodiment; 第2の実施形態に係る半導体装置の製造方法を示す製造工程図(その5)である。It is a manufacturing process figure (the 5) which shows the manufacturing method of the semiconductor device concerning a 2nd embodiment. 第2の実施形態に係る半導体装置の製造方法を示す製造工程図(その6)である。FIG. 10 is a manufacturing process diagram (part 6) illustrating the manufacturing method of the semiconductor device according to the second embodiment; 本発明の第3の実施形態に係る固体撮像装置の要部の概略断面構成図である。It is a schematic sectional block diagram of the principal part of the solid-state imaging device which concerns on the 3rd Embodiment of this invention. A,B 第1の半導体基板の裏面側に裏面配線を用いた例と、用いない例である。A, B An example in which a back surface wiring is used on the back surface side of the first semiconductor substrate and an example in which no back surface wiring is used. A,B 積層されるチップ間で共通の電位の配線を接続した場合の平面レイアウトの構成例と、共通の電位の配線を接続しない場合の平面レイアウトの構成例である。A and B are a configuration example of a planar layout when wirings having a common potential are connected between stacked chips, and a configuration example of a planar layout when wirings having a common potential are not connected. 本発明の固体撮像装置の設計方法を示すフローである。It is a flow which shows the design method of the solid-state imaging device of this invention. A,B 本発明の設計方法に沿った上チップ及び下チップの製造工程図である。A and B are manufacturing process diagrams of an upper chip and a lower chip according to the design method of the present invention. A,B 本発明の設計方法に沿った上チップ及び下チップの製造工程図である。A and B are manufacturing process diagrams of an upper chip and a lower chip according to the design method of the present invention. A,B 本発明の設計方法に沿った上チップ及び下チップの製造工程図である。A and B are manufacturing process diagrams of an upper chip and a lower chip according to the design method of the present invention. A,B 本発明の設計方法に沿った上チップ及び下チップの製造工程図である。A and B are manufacturing process diagrams of an upper chip and a lower chip according to the design method of the present invention. 本発明の第4の実施形態に係る電子機器を示す概略構成図である。It is a schematic block diagram which shows the electronic device which concerns on the 4th Embodiment of this invention.

以下、発明を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
1.MOS型固体撮像装置の概略構成例
2.第1の実施形態(裏面照射型の固体撮像装置の構成例とその製造方法例)
3.第2の実施形態(半導体装置の構成例とその製造方法例)
4.第3の実施形態(固体撮像装置の構成例と、その設計方法)
5.第4の実施形態(電子機器の構成例)
Hereinafter, modes for carrying out the invention (hereinafter referred to as embodiments) will be described. The description will be given in the following order.
1. 1. Schematic configuration example of MOS type solid-state imaging device First Embodiment (Configuration Example of Back-illuminated Solid-State Imaging Device and Method for Manufacturing the Same)
3. Second Embodiment (Structural Example of Semiconductor Device and Manufacturing Method Thereof)
4). Third embodiment (configuration example of solid-state imaging device and design method thereof)
5. Fourth Embodiment (Configuration Example of Electronic Device)

〈1.MOS型固体撮像装置の概略構成例〉
図1に、本発明の半導体装置に適用されるMOS型固体撮像装置の概略構成を示す。このMOS型固体撮像装置は、各実施の形態の固体撮像装置に適用される。本例の固体撮像装置1は、図示しない半導体基板例えばシリコン基板に複数の光電変換部を含む画素2が規則的に2次元アレイ状に配列された画素領域(いわゆる画素アレイ)3と、周辺回路部とを有して構成される。画素2は、光電変換部となる例えばフォトダイオードと、複数の画素トランジスタ(いわゆるMOSトランジスタ)を有して成る。複数の画素トランジスタは、例えば転送トランジスタ、リセットトランジスタ及び増幅トランジスタの3つのトランジスタで構成することができる。その他、選択トランジスタ追加して4つのトランジスタで構成することもできる。単位画素の等価回路については後述する。画素2は、1つの単位画素として構成することができ、また、複数の画素でトランジスタを共有する共有画素構造とすることもできる。この共有画素構造は、複数のフォトダイオードが、転送トランジスタを構成するフローティングディフュージョン、及び転送トランジスタ以外の他のトランジスタを共有する構造である。
<1. Example of schematic configuration of MOS solid-state imaging device>
FIG. 1 shows a schematic configuration of a MOS type solid-state imaging device applied to the semiconductor device of the present invention. This MOS type solid-state imaging device is applied to the solid-state imaging device of each embodiment. The solid-state imaging device 1 of this example includes a pixel region (so-called pixel array) 3 in which pixels 2 including a plurality of photoelectric conversion units are regularly arranged in a two-dimensional array on a semiconductor substrate (not shown) such as a silicon substrate, and a peripheral circuit. And is configured. The pixel 2 includes, for example, a photodiode serving as a photoelectric conversion unit and a plurality of pixel transistors (so-called MOS transistors). The plurality of pixel transistors can be constituted by three transistors, for example, a transfer transistor, a reset transistor, and an amplification transistor. In addition, a selection transistor may be added to configure the transistor with four transistors. An equivalent circuit of the unit pixel will be described later. The pixel 2 can be configured as one unit pixel, and can also have a shared pixel structure in which a plurality of pixels share a transistor. This shared pixel structure is a structure in which a plurality of photodiodes share a floating diffusion that constitutes a transfer transistor and a transistor other than the transfer transistor.

周辺回路部は、垂直駆動回路4と、カラム信号処理回路5と、水平駆動回路6と、出力回路7と、制御回路8などを有して構成される。   The peripheral circuit section includes a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, a control circuit 8, and the like.

制御回路8は、入力クロックと、動作モードなどを指令するデータを受け取り、また固体撮像装置の内部情報などのデータを出力する。すなわち、制御回路8では、垂直同期信号、水平同期信号及びマスタクロックに基いて、垂直駆動回路4、カラム信号処理回路5及び水平駆動回路6などの動作の基準となるクロック信号や制御信号を生成する。そして、これらの信号を垂直駆動回路4、カラム信号処理回路5及び水平駆動回路6等に入力する。   The control circuit 8 receives an input clock and data for instructing an operation mode, and outputs data such as internal information of the solid-state imaging device. That is, the control circuit 8 generates a clock signal and a control signal that serve as a reference for operations of the vertical drive circuit 4, the column signal processing circuit 5, and the horizontal drive circuit 6 based on the vertical synchronization signal, the horizontal synchronization signal, and the master clock. To do. These signals are input to the vertical drive circuit 4, the column signal processing circuit 5, the horizontal drive circuit 6, and the like.

垂直駆動回路4は、例えばシフトレジスタによって構成され、画素駆動配線を選択し、選択された画素駆動配線に画素を駆動するためのパルスを供給し、行単位で画素を駆動する。すなわち、垂直駆動回路4は、画素領域3の各画素2を行単位で順次垂直方向に選択走査し、垂直信号線9を通して各画素2の光電変換部となる例えばフォトダイオードにおいて受光量に応じて生成した信号電荷に基づく画素信号をカラム信号処理回路5に供給する。   The vertical drive circuit 4 is configured by, for example, a shift register, selects a pixel drive wiring, supplies a pulse for driving the pixel to the selected pixel drive wiring, and drives the pixels in units of rows. That is, the vertical drive circuit 4 selectively scans each pixel 2 in the pixel region 3 in the vertical direction sequentially in units of rows, and according to the amount of light received in, for example, a photodiode serving as a photoelectric conversion unit of each pixel 2 through the vertical signal line 9. A pixel signal based on the generated signal charge is supplied to the column signal processing circuit 5.

カラム信号処理回路5は、画素2の例えば列ごとに配置されており、1行分の画素2から出力される信号を画素列ごとにノイズ除去などの信号処理を行う。すなわちカラム信号処理回路5は、画素2固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling:相関二重サンプリング)や、信号増幅、AD変換等の信号処理を行う。カラム信号処理回路5の出力段には水平選択スイッチ(図示せず)が水平信号線10との間に接続されて設けられる。   The column signal processing circuit 5 is disposed, for example, for each column of the pixels 2, and performs signal processing such as noise removal on the signal output from the pixels 2 for one row for each pixel column. That is, the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) for removing fixed pattern noise unique to the pixel 2, signal amplification, and AD conversion. A horizontal selection switch (not shown) is connected to the horizontal signal line 10 at the output stage of the column signal processing circuit 5.

水平駆動回路6は、例えばシフトレジスタによって構成され、水平走査パルスを順次出力することによって、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々から画素信号を水平信号線10に出力させる。   The horizontal drive circuit 6 is constituted by, for example, a shift register, and sequentially outputs horizontal scanning pulses to select each of the column signal processing circuits 5 in order, and the pixel signal is output from each of the column signal processing circuits 5 to the horizontal signal line. 10 to output.

出力回路7は、カラム信号処理回路5の各々から水平信号線10を通して順次に供給される信号に対し、信号処理を行って出力する。例えば、バファリングだけする場合もあるし、黒レベル調整、列ばらつき補正、各種デジタル信号処理などが行われる場合もある。入出力端子12は、外部と信号のやりとりをする。   The output circuit 7 performs signal processing and outputs the signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 10. For example, only buffering may be performed, or black level adjustment, column variation correction, various digital signal processing, and the like may be performed. The input / output terminal 12 exchanges signals with the outside.

次に、本実施形態に係るMOS型固体撮像装置の構造について説明する。図2Aは、従来のMOS型固体撮像装置の構造を示す概略構成図であり、図2B及び図2Cは、本実施形態に係るMOS型固体撮像装置の構造を示す概略構成図である。   Next, the structure of the MOS type solid-state imaging device according to this embodiment will be described. 2A is a schematic configuration diagram illustrating a structure of a conventional MOS solid-state imaging device, and FIGS. 2B and 2C are schematic configuration diagrams illustrating a structure of a MOS solid-state imaging device according to the present embodiment.

従来のMOS型固体撮像装置151は、図2Aに示すように、1つの半導体チップ152内に、画素領域153と、制御回路154と、信号処理するためのロジック回路155とを搭載して構成される。通常、画素領域153と制御回路154でイメージセンサ156が構成される。   As shown in FIG. 2A, a conventional MOS solid-state imaging device 151 is configured by mounting a pixel region 153, a control circuit 154, and a logic circuit 155 for signal processing in one semiconductor chip 152. The Normally, the image sensor 156 is configured by the pixel region 153 and the control circuit 154.

これに対して、本実施形態例のMOS型固体撮像装置21は、図2Bに示すように、第1の半導体チップ部22に画素領域23と制御領域24を搭載し、第2の半導体チップ部26に信号処理するための信号処理回路を含むロジック回路25を搭載する。この第1の半導体チップ部22と第2の半導体チップ部26を相互に電気的に接続して1つの半導体チップとしてMOS型固体撮像装置21が構成される。   On the other hand, as shown in FIG. 2B, the MOS type solid-state imaging device 21 of the present embodiment has the pixel region 23 and the control region 24 mounted on the first semiconductor chip portion 22, and the second semiconductor chip portion. 26 includes a logic circuit 25 including a signal processing circuit for signal processing. The first semiconductor chip portion 22 and the second semiconductor chip portion 26 are electrically connected to each other to constitute the MOS type solid-state imaging device 21 as one semiconductor chip.

本発明の他の実施形態例におけるMOS型固体撮像装置27は、図2Cに示すように、第1の半導体チップ部22に画素領域23を搭載し、第2の半導体チップ部26にと制御領域24、信号処理回路を含むロジック回路25を搭載する。この第1の半導体チップ部22と第2の半導体チップ部26を相互に電気的に接続して1つの半導体チップとしてMOS型固体撮像装置27が構成される。   As shown in FIG. 2C, a MOS type solid-state imaging device 27 according to another embodiment of the present invention includes a pixel region 23 mounted on the first semiconductor chip unit 22 and a control region connected to the second semiconductor chip unit 26. 24. A logic circuit 25 including a signal processing circuit is mounted. The first semiconductor chip portion 22 and the second semiconductor chip portion 26 are electrically connected to each other to constitute a MOS solid-state imaging device 27 as one semiconductor chip.

図3は、単位画素2の回路構成の一例を示す回路図である。本回路例に係る単位画素2は、光電変換部、例えばフォトダイオードPDと、4つの画素トランジスタとを有して構成される。4つの画素トランジスタは、例えば転送トランジスタ11、リセットトランジスタ13、増幅トランジスタ14及び選択トランジスタ15である。これら画素トランジスタは、例えばnチャネルのMOSトランジスタを用いている。   FIG. 3 is a circuit diagram illustrating an example of a circuit configuration of the unit pixel 2. The unit pixel 2 according to this circuit example includes a photoelectric conversion unit, such as a photodiode PD, and four pixel transistors. The four pixel transistors are, for example, a transfer transistor 11, a reset transistor 13, an amplification transistor 14, and a selection transistor 15. These pixel transistors are, for example, n-channel MOS transistors.

転送トランジスタ11は、フォトダイオードPDのカソードとフローティングディフュージョン部16との間に接続される。フォトダイオードPDで光電変換され、ここに蓄積された信号電荷(ここでは、電子)を、ゲートに転送パルスφTRGが与えられることによってフローティングディフュージョン部16に転送する。   The transfer transistor 11 is connected between the cathode of the photodiode PD and the floating diffusion portion 16. Signal charges (here, electrons) that have been photoelectrically converted by the photodiode PD and stored therein are transferred to the floating diffusion section 16 by being given a transfer pulse φTRG to the gate.

リセットトランジスタ13は、電源VDDにドレインが、フローティングディフュージョン部16にソースがそれぞれ接続される。そして、フォトダイオードPDからフローティングディフュージョン部16への信号電荷の転送に先立って、ゲートにリセットパルスφRSTが与えられることによってフローティングディフュージョン部16の電位をリセットする。   The reset transistor 13 has a drain connected to the power supply VDD and a source connected to the floating diffusion portion 16. Prior to the transfer of signal charges from the photodiode PD to the floating diffusion portion 16, the potential of the floating diffusion portion 16 is reset by applying a reset pulse φRST to the gate.

選択トランジスタ15は、例えば、電源VDDにそのドレインが接続され、増幅トランジスタ14のドレインにそのソースがそれぞれ接続される。そして選択トランジスタ15のゲートに選択パルスφSELが与えられることによってオン状態となり、増幅トランジスタ14に対して電源VDDを供給することによって画素2の選択ができる。なお、この選択トランジスタ15については、増幅トランジスタ14のソースと垂直信号線9との間に接続した構成を採ることも可能である。   For example, the drain of the selection transistor 15 is connected to the power supply VDD, and the source thereof is connected to the drain of the amplification transistor 14. When the selection pulse φSEL is applied to the gate of the selection transistor 15, the pixel 2 can be selected by supplying the power supply VDD to the amplification transistor 14. The selection transistor 15 may be configured to be connected between the source of the amplification transistor 14 and the vertical signal line 9.

増幅トランジスタ14は、フローティングディフュージョン部16にゲートが、選択トランジスタ15のソースにドレインが、垂直信号線9にソースがそれぞれ接続されたソースフォロア構成となっている。増幅トランジスタ14は、リセットトランジスタ13によってリセットした後のフローティングディフュージョン部16の電位をリセットレベルとして垂直信号線9に出力する。さらに増幅トランジスタ14は、転送トランジスタ11によって信号電荷を転送した後のフローティングディフュージョン部16の電位を信号レベルとして垂直信号線9に出力する。   The amplification transistor 14 has a source follower configuration in which a gate is connected to the floating diffusion portion 16, a drain is connected to the source of the selection transistor 15, and a source is connected to the vertical signal line 9. The amplification transistor 14 outputs the potential of the floating diffusion portion 16 after being reset by the reset transistor 13 to the vertical signal line 9 as a reset level. Further, the amplification transistor 14 outputs the potential of the floating diffusion portion 16 after the signal charge is transferred by the transfer transistor 11 to the vertical signal line 9 as a signal level.

本実施形態例の固体撮像装置1では、例えば、フォトダイオード及び複数のMOSトランジスタ等の素子が図2B又は図2Cの第1の半導体チップ部22に形成される。また、転送パルス、リセットパルス、選択パルス、電源電圧は、図2B又は図2Cの制御領域24から供給される。また、選択トランジスタのドレインに接続される垂直信号線9から後段の素子は、図2B又は図2Cのロジック回路25に構成されており、第2の半導体チップ部26に形成される。   In the solid-state imaging device 1 of the present embodiment, for example, elements such as a photodiode and a plurality of MOS transistors are formed in the first semiconductor chip portion 22 of FIG. 2B or FIG. 2C. Further, the transfer pulse, reset pulse, selection pulse, and power supply voltage are supplied from the control region 24 of FIG. 2B or 2C. Further, the elements after the vertical signal line 9 connected to the drain of the selection transistor are configured in the logic circuit 25 of FIG. 2B or FIG. 2C and are formed in the second semiconductor chip portion 26.

上述の実施形態例に係るMOS型固体撮像装置は、異種の半導体チップが積層した構造を有しており、後述するように、その製造方法と、その製造方法に基づいて得られた構成に特徴を有している。
以下に説明する実施形態例では、本発明の固体撮像装置と、その製造方法について説明する。
The MOS type solid-state imaging device according to the above-described embodiment has a structure in which different types of semiconductor chips are stacked. As will be described later, the manufacturing method and the structure obtained based on the manufacturing method are characterized. have.
In the embodiment described below, the solid-state imaging device of the present invention and the manufacturing method thereof will be described.

〈2.第1の実施形態〉
[固体撮像装置の構成例とその製造方法例]
図4〜図19を用いて、本発明の第1の実施形態例に係る半導体装置として、裏面照射型のMOS型固体撮像装置をその製造方法と共に説明する。
<2. First Embodiment>
[Configuration Example of Solid-State Imaging Device and Method for Manufacturing the Same]
A backside illumination type MOS solid-state imaging device will be described together with its manufacturing method as a semiconductor device according to the first embodiment of the present invention, with reference to FIGS.

図4は、本実施形態例の固体撮像装置81の電極パッド部78を含む概略断面構成図(完成図)である。本実施形態例の固体撮像装置81は、画素アレイ(以下、画素領域という)23と制御領域24とを含む第1の半導体チップ部22と、ロジック回路25が搭載された第2の半導体チップ部26が電気的に接続された状態で上下に積層されている。
図5〜図19を用いて、本実施形態例の固体撮像装置81の製造方法について説明する。
FIG. 4 is a schematic cross-sectional configuration diagram (complete drawing) including the electrode pad portion 78 of the solid-state imaging device 81 of the present embodiment. The solid-state imaging device 81 according to the present embodiment includes a first semiconductor chip unit 22 including a pixel array (hereinafter referred to as a pixel region) 23 and a control region 24, and a second semiconductor chip unit on which a logic circuit 25 is mounted. 26 are stacked one above the other in an electrically connected state.
A method for manufacturing the solid-state imaging device 81 according to the present embodiment will be described with reference to FIGS.

第1の実施形態例においては、先ず、図5に示すように、第1の半導体ウェハ(以下、第1の半導体基板という)31の各チップ部となる領域に、半製品状態のイメージセンサ、すなわち画素領域23と制御領域24を形成する。すなわち、シリコン基板からなる第1の半導体基板31の各チップ部となる領域に、各画素の光電変換部となるフォトダイオード(PD)を形成し、その半導体ウェル領域32に各画素トランジスタのソース/ドレイン領域33を形成する。半導体ウェル領域32は、第1導電型、例えばp型の不純物を導入して形成し、ソース/ドレイン領域33は、第2導電型、例えばn型の不純物を導入して形成する。フォトダイオード(PD)及び各画素トランジスタのソース/ドレイン領域33は、基板表面からのイオン注入で形成する。   In the first embodiment, first, as shown in FIG. 5, an image sensor in a semi-finished state is formed in each chip portion of a first semiconductor wafer (hereinafter referred to as a first semiconductor substrate) 31. That is, the pixel region 23 and the control region 24 are formed. That is, a photodiode (PD) serving as a photoelectric conversion unit of each pixel is formed in a region serving as each chip portion of the first semiconductor substrate 31 formed of a silicon substrate, and the source / source of each pixel transistor is formed in the semiconductor well region 32. A drain region 33 is formed. The semiconductor well region 32 is formed by introducing a first conductivity type, for example, a p-type impurity, and the source / drain region 33 is formed by introducing a second conductivity type, for example, an n-type impurity. The photodiode (PD) and the source / drain region 33 of each pixel transistor are formed by ion implantation from the substrate surface.

フォトダイオード(PD)は、n型半導体領域34と基板表面側のp型半導体領域35を有して形成される。画素を構成する基板表面上にはゲート絶縁膜を介してゲート電極36を形成し、ゲート電極36と対のソース/ドレイン領域33により画素トランジスタTr1、Tr2を形成する。図5では、複数の画素トランジスタを、2つの画素トランジスタTr1、Tr2で代表して示す。フォトダイオード(PD)に隣接する画素トランジスタTr1が転送トランジスタに相当し、そのソース/ドレイン領域がフローティングディフージョン(FD)に相当する。各単位画素30が素子分離領域38で分離される。   The photodiode (PD) is formed having an n-type semiconductor region 34 and a p-type semiconductor region 35 on the substrate surface side. A gate electrode is formed on the surface of the substrate constituting the pixel via a gate insulating film, and pixel transistors Tr1 and Tr2 are formed by the source / drain regions 33 paired with the gate electrode. In FIG. 5, a plurality of pixel transistors are represented by two pixel transistors Tr1 and Tr2. A pixel transistor Tr1 adjacent to the photodiode (PD) corresponds to a transfer transistor, and its source / drain region corresponds to a floating diffusion (FD). Each unit pixel 30 is separated by an element isolation region 38.

一方、制御領域24側では、第1の半導体基板31に制御回路を構成するMOSトランジスタを形成する。図4では、MOSトランジスタTr3、Tr4で代表して、制御領域24を構成するMOSトランジスタを示す。各MOSトランジスタTr3、Tr4は、n型のソース/ドレイン領域33と、ゲート絶縁膜を介して形成したゲート電極36とのより形成される。   On the other hand, on the control region 24 side, a MOS transistor constituting a control circuit is formed on the first semiconductor substrate 31. In FIG. 4, MOS transistors constituting the control region 24 are shown as representatives of the MOS transistors Tr3 and Tr4. Each of the MOS transistors Tr3 and Tr4 is formed by an n-type source / drain region 33 and a gate electrode 36 formed through a gate insulating film.

次いで、第1の半導体基板31の表面上に、1層目の層間絶縁膜39を形成し、その後、層間絶縁膜39にコンタクトホールを形成し、所要のトランジスタに接続する接続導体44を形成する。高さの異なる接続導体44の形成に際しては、トランジスタ上面を含む全面に第1絶縁薄膜43aを例えばシリコン酸化膜にて形成し、エッチングストッパとなる第2絶縁薄膜43bを例えばシリコン窒化膜にて形成して積層する。この第2絶縁薄膜43b上に1層目の層間絶縁膜39を形成する。1層目の層間絶縁膜39は、例えば、P−SiO膜(プラズマ酸化膜)を10〜150nmで成膜後、NSG(ノンドープケイ酸ガラス)膜又はPSG膜(リンケイ酸ガラス)を50nm〜1000nmで形成する。その後、dTEOS膜を100〜1000nmで成膜後、P−SiH膜(プラズマ酸化膜)を50〜200nmで成膜することで形成することができる。 Next, a first interlayer insulating film 39 is formed on the surface of the first semiconductor substrate 31, and then a contact hole is formed in the interlayer insulating film 39 to form a connection conductor 44 connected to a required transistor. . When forming the connection conductors 44 having different heights, the first insulating thin film 43a is formed of, for example, a silicon oxide film on the entire surface including the upper surface of the transistor, and the second insulating thin film 43b serving as an etching stopper is formed of, for example, a silicon nitride film. And laminate. A first interlayer insulating film 39 is formed on the second insulating thin film 43b. As the first interlayer insulating film 39, for example, a P-SiO film (plasma oxide film) is formed at 10 to 150 nm, and then an NSG (non-doped silicate glass) film or a PSG film (phosphosilicate glass) is formed at 50 nm to 1000 nm. Form with. Then, after forming a dTEOS film with a thickness of 100 to 1000 nm, a P-SiH 4 film (plasma oxide film) can be formed with a thickness of 50 to 200 nm.

その後、1層目の層間絶縁膜39に深さの異なるコンタクトホールをエッチングストッパとなる第2絶縁薄膜43bまで選択的に形成する。次いで、各コンタクトホールに連続するように、各部で同じ膜厚の第1絶縁薄膜43a及び第2絶縁薄膜43bを選択エッチングしてコンタクトホールを形成する。そして、各コンタクトホールに接続導体44を埋め込む。   Thereafter, contact holes having different depths are selectively formed in the first interlayer insulating film 39 up to the second insulating thin film 43b serving as an etching stopper. Next, the first insulating thin film 43a and the second insulating thin film 43b having the same film thickness are selectively etched in each part so as to be continuous with each contact hole, thereby forming a contact hole. Then, the connection conductor 44 is embedded in each contact hole.

また、第2絶縁薄膜43b形成後、第1の半導体基板31の半導体ウェル領域32内の所望の領域を分離する絶縁スペーサ層42を形成する。絶縁スペーサ層42は、第2絶縁薄膜43b形成後、第1の半導体基板31の所望の位置を表面側から開口し、絶縁材料を埋め込むことで形成される。この絶縁スペーサ層42は、図4の基板間配線68を囲む領域に形成されるものである。   In addition, after the formation of the second insulating thin film 43b, an insulating spacer layer 42 that separates a desired region in the semiconductor well region 32 of the first semiconductor substrate 31 is formed. The insulating spacer layer 42 is formed by opening a desired position of the first semiconductor substrate 31 from the surface side and embedding an insulating material after forming the second insulating thin film 43b. The insulating spacer layer 42 is formed in a region surrounding the inter-substrate wiring 68 in FIG.

次いで、各接続導体44に接続するように、層間絶縁膜39を介して複数層、本例では3層の銅配線40を形成して第1の多層配線層41を形成する。通常、各銅配線40は、Cu拡散を防止するため図示しないバリアメタル層で覆われる。バリアメタル層は、例えばSiN膜、SiC膜を10〜150nmで成膜することで形成することができる。また、2層目からの層間絶縁膜39は、dTEOS膜(プラズマCVD(Chemical Vapor Deposition)法により形成されたシリコン酸化膜)を100〜1000nmで成膜することで形成することができる。層間絶縁膜39とバリアメタル層を介して形成される銅配線40とを交互に形成することにより、第1の多層配線層41が形成される。本実施形態例では、第1の多層配線層41を銅配線40で形成する例としたが、その他の金属材料によるメタル配線とすることも可能である。   Next, a plurality of layers, in this example, three layers of copper wirings 40 are formed via the interlayer insulating film 39 so as to connect to the respective connection conductors 44 to form a first multilayer wiring layer 41. Usually, each copper wiring 40 is covered with a barrier metal layer (not shown) to prevent Cu diffusion. The barrier metal layer can be formed, for example, by forming a SiN film or a SiC film at 10 to 150 nm. The interlayer insulating film 39 from the second layer can be formed by forming a dTEOS film (a silicon oxide film formed by a plasma CVD (Chemical Vapor Deposition) method) with a thickness of 100 to 1000 nm. By alternately forming the interlayer insulating film 39 and the copper wiring 40 formed via the barrier metal layer, the first multilayer wiring layer 41 is formed. In the present embodiment example, the first multilayer wiring layer 41 is formed of the copper wiring 40, but it is also possible to use a metal wiring made of other metal materials.

これまでの工程で、上部に第1の多層配線層41を有し、半製品状態の画素領域23及び制御領域24が構成された第1の半導体基板31が形成される。   Through the steps so far, the first semiconductor substrate 31 having the first multilayer wiring layer 41 on the upper part and having the semi-finished pixel region 23 and the control region 24 is formed.

一方、図6に示すように、例えばシリコンからなる第2の半導体基板(半導体ウェハ)45の各チップ部となる領域に、半製品状態の信号処理するための信号処理回路を含むロジック回路25を形成する。すなわち、第2の半導体基板45の表面側のp型の半導体ウェル領域46に、素子分離領域50で分離されるようにロジック回路25を構成する複数のMOSトランジスタを形成する。ここでは、複数のMOSトランジスタを、MOSトランジスタTr6,Tr7、Tr8で代表する。各MOSトランジスタTr6、Tr7、Tr8は、それぞれ1対のn型のソース/ドレイン領域47と、ゲート絶縁膜を介して形成したゲート電極48を有して形成される。ロジック回路25は、CMOSトランジスタで構成することができる。   On the other hand, as shown in FIG. 6, a logic circuit 25 including a signal processing circuit for signal processing in a semi-finished product state is provided in each chip portion of a second semiconductor substrate (semiconductor wafer) 45 made of, for example, silicon. Form. That is, a plurality of MOS transistors constituting the logic circuit 25 are formed in the p-type semiconductor well region 46 on the surface side of the second semiconductor substrate 45 so as to be isolated by the element isolation region 50. Here, the plurality of MOS transistors are represented by MOS transistors Tr6, Tr7, Tr8. Each of the MOS transistors Tr6, Tr7, Tr8 is formed having a pair of n-type source / drain regions 47 and a gate electrode 48 formed through a gate insulating film. The logic circuit 25 can be composed of a CMOS transistor.

次いで、第2の半導体基板45の表面上に、1層目の層間絶縁膜49を形成し、その後、層間絶縁膜49にコンタクトホールを形成し、所要のトランジスタに接続する接続導体54を形成する。高さの異なる接続導体54の形成に際しては、前述と同様に、トランジスタ上面を含む全面に第1絶縁薄膜43a、例えばシリコン酸化膜と、エッチングストッパとなる第2絶縁薄膜43b、例えばシリコン窒化膜を積層する。この第2絶縁薄膜43b上に1層目の層間絶縁膜49を形成する。そして、1層目の層間絶縁膜39に深さの異なるコンタクトホールをエッチングストッパとなる第2絶縁薄膜43bまで選択的に形成する。次いで、各コンタクトホールに連続するように、各部で同じ膜厚の第1絶縁薄膜43a及び第2絶縁薄膜43bを選択エッチングしてコンタクトホールを形成する。そして、各コンタクトホールに接続導体54を埋め込む。   Next, a first interlayer insulating film 49 is formed on the surface of the second semiconductor substrate 45, and then a contact hole is formed in the interlayer insulating film 49, and a connection conductor 54 connected to a required transistor is formed. . When the connection conductors 54 having different heights are formed, the first insulating thin film 43a, for example, a silicon oxide film, and the second insulating thin film 43b, for example, a silicon nitride film serving as an etching stopper are formed on the entire surface including the upper surface of the transistor, as described above. Laminate. A first interlayer insulating film 49 is formed on the second insulating thin film 43b. Then, contact holes having different depths are selectively formed in the first interlayer insulating film 39 up to the second insulating thin film 43b serving as an etching stopper. Next, the first insulating thin film 43a and the second insulating thin film 43b having the same film thickness are selectively etched in each part so as to be continuous with each contact hole, thereby forming a contact hole. Then, the connection conductor 54 is embedded in each contact hole.

その後、層間絶縁膜49の形成と複数層のメタル配線の形成を繰り返すことにより、第2の多層配線層55を形成する。本実施形態例では、第1の半導体基板31上に形成した第1の多層配線層41の形成工程と同様の工程と同様にして3層の銅配線53を形成したあと、最上層にアルミ配線57を形成する例とする。アルミ配線57の形成は、まず、最上層の銅配線53上部に層間絶縁膜49形成した後、最上層の銅配線53上部の所望の位置が露出されるように層間絶縁膜49をエッチング除去し、コンタクトホールを形成する。そして、コンタクトホール内を含む領域にバリアメタル層56となるTiN(下層)/Ti(上層)からなる積層膜を5〜10nm、又はTaN(下層)/Ta(上層)からなる積層膜を10〜100nmで成膜する。その後、コンタクトホールを被覆してアルミニウムを500〜2000nmで成膜した後、所望の形状にパターニングすることによりアルミ配線57を形成する。さらに、アルミ配線57上部に、後の工程で必要となるバリアメタル層58を成膜する。このバリアメタル層58も、アルミ配線57の下層に成膜したバリアメタル層56と同様の構成とすることができる。   Thereafter, the second multilayer wiring layer 55 is formed by repeating the formation of the interlayer insulating film 49 and the formation of a plurality of layers of metal wiring. In this embodiment, after forming a three-layer copper wiring 53 in the same manner as the first multilayer wiring layer 41 forming process on the first semiconductor substrate 31, an aluminum wiring is formed on the uppermost layer. As an example of forming 57. The aluminum wiring 57 is formed by first forming the interlayer insulating film 49 on the uppermost copper wiring 53 and then etching away the interlayer insulating film 49 so that a desired position on the uppermost copper wiring 53 is exposed. A contact hole is formed. Then, in a region including the inside of the contact hole, a laminated film made of TiN (lower layer) / Ti (upper layer) to be the barrier metal layer 56 is 5 to 10 nm, or a laminated film made of TaN (lower layer) / Ta (upper layer) is 10 to 10 nm. The film is formed at 100 nm. Thereafter, the contact hole is covered and an aluminum film is formed at a thickness of 500 to 2000 nm, and then an aluminum wiring 57 is formed by patterning into a desired shape. Further, a barrier metal layer 58 required in a later process is formed on the aluminum wiring 57. The barrier metal layer 58 can also have the same configuration as the barrier metal layer 56 formed under the aluminum wiring 57.

続いて、上部にバリアメタル層58が形成されたアルミ配線57を被覆して層間絶縁膜49を成膜する。アルミ配線57上部の層間絶縁膜49は、例えばHDP膜(高密度プラズマ酸化膜)又はP−SiO膜(プラズマ酸化膜)を500〜2000nmで成膜した後、その上部にさらにP−SiO膜を100〜2000nmの厚みで成膜することで形成することができる。以上により、層間絶縁膜49を介して形成された3層の銅配線53と最上層に形成されたアルミ配線57からなる第2の多層配線層55が形成される。   Subsequently, an interlayer insulating film 49 is formed so as to cover the aluminum wiring 57 having the barrier metal layer 58 formed thereon. As the interlayer insulating film 49 on the aluminum wiring 57, for example, an HDP film (high density plasma oxide film) or a P-SiO film (plasma oxide film) is formed with a thickness of 500 to 2000 nm, and then a P-SiO film is further formed thereon. It can be formed by forming a film with a thickness of 100 to 2000 nm. As a result, the second multilayer wiring layer 55 is formed which includes the three-layer copper wiring 53 formed through the interlayer insulating film 49 and the aluminum wiring 57 formed in the uppermost layer.

そして、第2の多層配線層55上部には、第1の半導体基板31と第2の半導体基板45の貼り合わせの際に反りを軽減するための反り矯正膜59を形成する。反り矯正膜59は、例えばP−SiN膜又はP−SiON膜(プラズマ窒酸化膜)を100〜2000nmで成膜することで形成することができる。   A warp correction film 59 is formed on the second multilayer wiring layer 55 to reduce the warp when the first semiconductor substrate 31 and the second semiconductor substrate 45 are bonded together. The warp correction film 59 can be formed, for example, by forming a P-SiN film or a P-SiON film (plasma oxynitride film) at 100 to 2000 nm.

これまでの工程で、上部に第2の多層配線層55を有し、半製品状態のロジック回路が構成された第2の半導体基板45が形成される。   Through the steps so far, the second semiconductor substrate 45 having the second multilayer wiring layer 55 on the upper part and having a semi-finished logic circuit is formed.

次に、図7に示すように、第1の半導体基板31と第2の半導体基板45とを、第1の多層配線層41、及び第2の多層配線層55が向き合うように貼り合わせる。貼り合わせは、例えば接着剤にて行う。接着剤にて接合する場合には、第1の半導体基板31又は第2の半導体基板45の接合面の一方の側に接着剤層60を形成し、この接着剤層60を介して重ね合わせて両者を接合する。本実施形態例では、画素領域が構成された第1の半導体基板31を上層に配置し、第2の半導体基板45を下層に配置して貼り合わせた。   Next, as shown in FIG. 7, the first semiconductor substrate 31 and the second semiconductor substrate 45 are bonded together so that the first multilayer wiring layer 41 and the second multilayer wiring layer 55 face each other. The bonding is performed with an adhesive, for example. In the case of bonding with an adhesive, an adhesive layer 60 is formed on one side of the bonding surface of the first semiconductor substrate 31 or the second semiconductor substrate 45, and the adhesive layer 60 is overlapped via the adhesive layer 60. Join them together. In the present embodiment example, the first semiconductor substrate 31 in which the pixel region is configured is disposed in the upper layer, and the second semiconductor substrate 45 is disposed in the lower layer and bonded together.

また、本実施形態例では、接着剤層60を介して第1の半導体基板31上部の第1の多層配線層41と第2の半導体基板45上部の第2の多層配線層55とを貼り合わせる例としたが、この他、プラズマ接合で貼り合わせる例としてもよい。プラズマ接合の場合には、第1の多層配線層41と第2の多層配線層55の接合面に、それぞれプラズマTEOS膜、プラズマSiN膜、SiON膜(ブロック膜)、あるいは、SiC膜などを形成する。この膜が形成された接合面をプラズマ処理して重ね合わせ、その後、アニール処理して両者を接合する。貼り合わせ処理は、配線などに影響を与えない400℃以下の低温プロセスで行うことが好ましい。   In this embodiment, the first multilayer wiring layer 41 above the first semiconductor substrate 31 and the second multilayer wiring layer 55 above the second semiconductor substrate 45 are bonded together via the adhesive layer 60. As an example, in addition to this, an example of bonding by plasma bonding may be used. In the case of plasma bonding, a plasma TEOS film, a plasma SiN film, a SiON film (block film), a SiC film, or the like is formed on the bonding surface of the first multilayer wiring layer 41 and the second multilayer wiring layer 55, respectively. To do. The joining surface on which this film is formed is overlapped by plasma treatment, and then annealed to join them together. The bonding process is preferably performed by a low-temperature process of 400 ° C. or lower that does not affect the wiring or the like.

そして、上部に多層配線層を有する第1の半導体基板31と第2の半導体基板45とが積層して貼り合わされることにより、2つの異種基板からなる積層体81aが形成される。   Then, the first semiconductor substrate 31 and the second semiconductor substrate 45 having a multilayer wiring layer on the top are stacked and bonded together, thereby forming a stacked body 81a composed of two different substrates.

次に、図8に示すように、第1の半導体基板31の裏面側から研削、研磨して第1の半導体基板31を薄肉化する。この薄肉化は、フォトダイオード(PD)が臨むように行われる。第1の半導体基板31として、例えばp型の高濃度不純物層をエッチングストッパ層(図示せず)として形成された半導体基板を用いることにより、エッチングストッパ層まで基板をエッチング除去することで平坦に薄肉化することができる。薄肉化した後、フォトダイオード(PD)の裏面に暗電流抑制のためのp型半導体層(図示せず)を形成する。第1の半導体基板31の厚さは例えば600μm程度あるが、例えば3〜5μm程度まで薄肉化する。   Next, as shown in FIG. 8, the first semiconductor substrate 31 is thinned by grinding and polishing from the back surface side of the first semiconductor substrate 31. This thinning is performed so that the photodiode (PD) faces. As the first semiconductor substrate 31, for example, a semiconductor substrate formed using a p-type high-concentration impurity layer as an etching stopper layer (not shown) is used. Can be After thinning, a p-type semiconductor layer (not shown) for suppressing dark current is formed on the back surface of the photodiode (PD). The thickness of the first semiconductor substrate 31 is, for example, about 600 μm, but the thickness is reduced to, for example, about 3-5 μm.

従来、このような薄肉化は、別途用意した支持基板を第1の半導体基板31上に形成された第1の多層配線層41側に貼り合わせて行われていた。しかし、本実施の形態では、ロジック回路25が形成された第2の半導体基板45を支持基板に兼用して第1の半導体基板31の薄肉化が行われる。この第1の半導体基板31の裏面が裏面照射型の固体撮像装置として構成されたときの、光入射面となる。   Conventionally, such thinning has been performed by attaching a separately prepared support substrate to the first multilayer wiring layer 41 formed on the first semiconductor substrate 31. However, in the present embodiment, the thickness of the first semiconductor substrate 31 is reduced by using the second semiconductor substrate 45 on which the logic circuit 25 is formed as a support substrate. The back surface of the first semiconductor substrate 31 is a light incident surface when configured as a back-illuminated solid-state imaging device.

次に、図9に示すように、第1の半導体基板31の裏面上に、反射防止膜61を形成する。反射防止膜61は、例えばTaO又はHfOを5〜100nmで成膜し、必要な熱処理を行うことで暗電流が抑制する効果を付加することができる。その後、反射防止膜61上に、プラズマSiO膜を100〜1500nmの厚みに成膜することにより、絶縁膜62を形成する。 Next, as shown in FIG. 9, an antireflection film 61 is formed on the back surface of the first semiconductor substrate 31. The antireflection film 61 can be added with an effect of suppressing dark current by forming, for example, TaO 2 or HfO 2 at 5 to 100 nm and performing necessary heat treatment. Thereafter, an insulating film 62 is formed on the antireflection film 61 by forming a plasma SiO film with a thickness of 100 to 1500 nm.

次に、図10に示すように、絶縁スペーサ層42の内側の所望の領域に溝部64を形成し、遮光が必要な遮光領域に、遮光膜用溝部82を形成する。この溝部64及び遮光膜用溝部82は、第1の半導体基板31の裏面側に形成された絶縁膜62上面からエッチングにより開口を形成することで形成し、例えば第1の半導体基板31に達しない深さに形成する。   Next, as shown in FIG. 10, a groove portion 64 is formed in a desired region inside the insulating spacer layer 42, and a light shielding film groove portion 82 is formed in a light shielding region where light shielding is necessary. The groove portion 64 and the light shielding film groove portion 82 are formed by forming an opening by etching from the upper surface of the insulating film 62 formed on the back surface side of the first semiconductor substrate 31, and do not reach, for example, the first semiconductor substrate 31. Form to depth.

次に、図11に示すように、絶縁スペーサ層42の内側に形成された溝部64の所望の底部領域から第1の多層配線層41の最下層(図11では、一番上側)の銅配線40に達する直前の深さまで開口し、接続孔66を形成する。   Next, as shown in FIG. 11, the copper wiring from the desired bottom region of the groove 64 formed inside the insulating spacer layer 42 to the lowermost layer (uppermost in FIG. 11) of the first multilayer wiring layer 41. The hole is opened to a depth just before reaching 40 and a connection hole 66 is formed.

また、同じく、絶縁スペーサ層42の内側に形成された溝部64の所望の底部領域から第1の多層配線層41と第2の多層配線層55との貼り合わせ面を貫通する貫通接続孔65を形成する。この貫通接続孔65は、第2の半導体基板45上部に形成された第2の多層配線層55の最上層のアルミ配線57に達する直前の深さまで開口することにより形成する。このとき、貫通接続孔65の直径は接続孔66の直径の1.5〜10倍程度大きく、より好ましくは、3〜4倍程度大きく形成する。   Similarly, a through-connection hole 65 penetrating the bonding surface of the first multilayer wiring layer 41 and the second multilayer wiring layer 55 from a desired bottom region of the groove 64 formed inside the insulating spacer layer 42 is formed. Form. The through-hole 65 is formed by opening to a depth just before reaching the uppermost aluminum wiring 57 of the second multilayer wiring layer 55 formed on the second semiconductor substrate 45. At this time, the diameter of the through-connection hole 65 is about 1.5 to 10 times larger than the diameter of the connection hole 66, more preferably about 3 to 4 times larger.

貫通接続孔65の直径が接続孔66の1.5倍よりも小さい場合には、貫通接続孔65のアスペクト比が大きくなり、後の工程で導電材料を孔内に埋め込む際に、ボイドが発生するおそれがある。また、貫通接続孔65の直径が接続孔66の10倍よりも大きい場合には、貫通接続孔65の占める領域が大きくなり、装置の小型化が実施できないという問題がある。したがって、貫通接続孔65の直径を接続孔66の直径の1.5〜10倍程度大きくすることで、導電材料の埋め込みに最適なアスペクト比で、かつ、レイアウトスペースも大きくならない孔とすることができる。   When the diameter of the through-hole 65 is smaller than 1.5 times the diameter of the through-hole 66, the aspect ratio of the through-hole 65 is increased, and voids are generated when the conductive material is embedded in the hole in a later process. There is a risk. Moreover, when the diameter of the through-connection hole 65 is larger than 10 times that of the connection hole 66, there is a problem that the area occupied by the through-connection hole 65 becomes large and the apparatus cannot be downsized. Therefore, by increasing the diameter of the through-hole 65 by about 1.5 to 10 times the diameter of the connection hole 66, it is possible to obtain a hole having an optimal aspect ratio for embedding a conductive material and having a small layout space. it can.

接続孔66、及び貫通接続孔65は、第1の半導体基板31を薄肉化(図8の工程)した後に形成するので、アスペクト比が小さくなり、微細孔として形成することができる。また、接続孔66は、第1の半導体基板31上部の第1の多層配線層41のうち、最下層、すなわち、第1の半導体基板31に最も近い側の銅配線40に達する直前まで開口して形成されるため、開口深さがより浅くなり、微細孔に形成に有利になる。   Since the connection hole 66 and the through-connection hole 65 are formed after the first semiconductor substrate 31 is thinned (step of FIG. 8), the aspect ratio becomes small and can be formed as a fine hole. Further, the connection hole 66 is opened until just before reaching the lowermost layer, that is, the copper wiring 40 closest to the first semiconductor substrate 31 in the first multilayer wiring layer 41 on the first semiconductor substrate 31. Therefore, the opening depth becomes shallower, which is advantageous for forming fine holes.

次に、接続孔66、及び貫通接続孔65の側壁及び底部を含む領域に、例えばSiO膜から成る絶縁層67を成膜し、その後エッチバックする。これにより、図12に示すように接続孔66及び貫通接続孔65の側壁のみに絶縁層67を残す。その後、接続孔66及び貫通接続孔65の底部をさらにエッチング除去する。これにより、接続孔66おいては、第1の多層配線層41の最下層の銅配線40を、貫通接続孔65においては第2の多層配線層55の最上層のアルミ配線57(厳密にはアルミ配線上部のバリアメタル層58)を露出させる。 Next, an insulating layer 67 made of, for example, a SiO 2 film is formed in the region including the side wall and the bottom of the connection hole 66 and the through connection hole 65, and then etched back. Thus, the insulating layer 67 is left only on the side walls of the connection hole 66 and the through-connection hole 65 as shown in FIG. Thereafter, the bottoms of the connection hole 66 and the through connection hole 65 are further etched away. As a result, the lowermost copper wiring 40 of the first multilayer wiring layer 41 is connected to the connection hole 66, and the uppermost aluminum wiring 57 (strictly speaking, the second multilayer wiring layer 55 is connected to the through-connection hole 65. The barrier metal layer 58) above the aluminum wiring is exposed.

この結果、接続孔66は、は第1の多層配線層41の銅配線40に達する。また、貫通接続孔65は、第1の多層配線層41及び第2の多層配線層55の貼り合わせ面を貫通し、第2の多層配線層55に形成されたアルミ配線57に達する。   As a result, the connection hole 66 reaches the copper wiring 40 of the first multilayer wiring layer 41. The through-connection hole 65 passes through the bonding surface of the first multilayer wiring layer 41 and the second multilayer wiring layer 55 and reaches the aluminum wiring 57 formed in the second multilayer wiring layer 55.

この時点では未だ画素アレイの製造プロセスとしてオンチップカラーフィルタ、オンチップレンズの加工工程を経ておらず、未完成である。それと共に、銅配線40上に形成された接続孔66とアルミ配線57上に形成された貫通接続孔65は、従来のウェハプロセスの延長で加工、形成することが可能である。一方、ロジック回路25においても、回路技術として最適な最上層のメタル配線までの工程であって未完成である。このように、半製品である異種基板を貼り合わせるので、完成品とされた異種基板を貼り合わせる場合よりも製造コストの抑制を可能となる。   At this point in time, the pixel array manufacturing process has not undergone the processing steps of the on-chip color filter and the on-chip lens, and is incomplete. At the same time, the connection hole 66 formed on the copper wiring 40 and the through connection hole 65 formed on the aluminum wiring 57 can be processed and formed by extension of the conventional wafer process. On the other hand, the logic circuit 25 is a process up to the uppermost metal wiring that is optimal as a circuit technology, and is not completed. In this manner, since the different types of substrates, which are semi-finished products, are bonded together, the manufacturing cost can be reduced as compared with the case where the different types of finished substrates are bonded.

その後、図13に示すように、溝部64、遮光膜用溝部82、接続孔66、及び貫通接続孔65を含む領域に、例えば、銅などの導電材料を形成し、CMP(ChemicalMechanical Polising)法で表面を研磨する。これにより、溝部64、遮光膜用溝部82、接続孔66、及び貫通接続孔65の導電材料のみを残存させる。これにより、絶縁スペーサ層42内の領域では、基板間配線68が形成されると共に、遮光領域では遮光膜63が形成される。本実施形態例では、接続孔66内に形成された基板間配線68、及び貫通接続孔65内に形成された基板間配線68は、溝部64に形成されたダマシン配線からなる接続配線68aにより電気的に接続される。また、遮光膜63もダマシン法によって形成される。そして、溝部64、遮光膜用溝部82、接続孔66、及び貫通接続孔65が導電材料で埋め込まれることにより、第1の多層配線層41に形成された銅配線40と第2の多層配線層55に形成されたアルミ配線57とが電気的に接続される。   Thereafter, as shown in FIG. 13, a conductive material such as copper is formed in a region including the groove 64, the light shielding film groove 82, the connection hole 66, and the through-connection hole 65, and is subjected to CMP (Chemical Mechanical Polising) Polish the surface. Thereby, only the conductive material of the groove portion 64, the light shielding film groove portion 82, the connection hole 66, and the through-connection hole 65 is left. Thereby, the inter-substrate wiring 68 is formed in the region in the insulating spacer layer 42, and the light shielding film 63 is formed in the light shielding region. In the present embodiment, the inter-substrate wiring 68 formed in the connection hole 66 and the inter-substrate wiring 68 formed in the through-connection hole 65 are electrically connected by the connection wiring 68 a made of damascene wiring formed in the groove portion 64. Connected. The light shielding film 63 is also formed by the damascene method. Then, the copper wiring 40 and the second multilayer wiring layer formed in the first multilayer wiring layer 41 are formed by embedding the groove 64, the light shielding film groove 82, the connection hole 66, and the through-connection hole 65 with a conductive material. The aluminum wiring 57 formed in 55 is electrically connected.

そして、このとき、第2の半導体基板45上の第2の多層配線層55に形成されたアルミ配線57上部にはバリアメタル層58が形成されるため、基板間配線68を銅で形成した場合でも、銅の拡散が防止される。また、接続孔66及び貫通接続孔65の孔内における第1の半導体基板31を貫通する側壁には、絶縁層67が形成されている。このため、基板間配線68と第1の半導体基板31とが電気的に分離されており、接続されることがない。また、本実施形態例では、基板間配線68は、第1の半導体基板31に形成された絶縁スペーサ層42の領域内に形成されるので、これによっても、基板間配線68と第1の半導体基板31が電気的に接続されることが防止される。   At this time, since the barrier metal layer 58 is formed on the aluminum wiring 57 formed in the second multilayer wiring layer 55 on the second semiconductor substrate 45, the inter-substrate wiring 68 is formed of copper. However, copper diffusion is prevented. In addition, an insulating layer 67 is formed on the side wall penetrating the first semiconductor substrate 31 in the connection hole 66 and the through connection hole 65. For this reason, the inter-substrate wiring 68 and the first semiconductor substrate 31 are electrically separated and are not connected. Further, in the present embodiment example, the inter-substrate wiring 68 is formed in the region of the insulating spacer layer 42 formed on the first semiconductor substrate 31, so that the inter-substrate wiring 68 and the first semiconductor are also formed. The substrate 31 is prevented from being electrically connected.

本実施形態例の基板間配線68の形成工程では、溝部64と遮光膜用溝部82、接続孔66、貫通接続孔65を3段階に分けて形成し、銅を埋め込むダマシン法を用いたが、これに限られるものでは無い。第1の半導体基板31上部の第1の多層配線層41の銅配線40と、第2の半導体基板45上部の第2の多層配線層55のアルミ配線57とが電気的に接続される基板間配線68が形成される例であれば種々の変更が可能である。   In the formation process of the inter-substrate wiring 68 of the present embodiment example, the damascene method in which the groove portion 64, the light shielding film groove portion 82, the connection hole 66, and the through connection hole 65 are formed in three stages and copper is embedded is used. It is not limited to this. Between the substrates to which the copper wiring 40 of the first multilayer wiring layer 41 above the first semiconductor substrate 31 and the aluminum wiring 57 of the second multilayer wiring layer 55 above the second semiconductor substrate 45 are electrically connected Various modifications are possible as long as the wiring 68 is formed.

たとえば、基板間配線68は、CVD法やスパッタ法などにより形成し、通常のリソグラフィーとドライエッチングにより形成することも可能であるが、配線層を積み上げることにより感度劣化が許容し難くなる。このため、絶縁膜の積み増しが少ないダマシン配線構造を適用することが望ましい。   For example, the inter-substrate wiring 68 can be formed by a CVD method, a sputtering method, or the like, and can be formed by normal lithography and dry etching. However, it is difficult to tolerate deterioration of sensitivity by stacking wiring layers. For this reason, it is desirable to apply a damascene wiring structure in which the accumulation of insulating films is small.

また、本実施形態例では、遮光膜63を形成するための遮光膜用溝部82を、基板間配線68を形成するための溝部64と同時に加工する構成としたが、溝部64、接続孔66、貫通接続孔65及び絶縁スペーサ層42の形成後に形成してもよい。この場合にも、遮光膜用溝部82は、溝部64と同層に形成し、遮光膜用溝部82内への導電材料の埋め込みは、溝部64、接続孔66、及び貫通接続孔65への導電材料の埋め込みと同時に行う。遮光膜用溝部82を溝部64、接続孔66、及び貫通接続孔65と同時に加工する方が工程としては簡略化される。しかしながら、この場合には、絶縁スペーサ層42を形成する際に遮光膜用溝部82内にも絶縁スペーサ層42が形成されてしまい、所望の遮光膜63の線幅が得られない可能性がある。画素の微細化が進んだ場合は、遮光膜用溝部82を溝部64、接続孔66、及び貫通接続孔65と別工程で形成する方がより望ましい。   In this embodiment, the light shielding film groove 82 for forming the light shielding film 63 is processed simultaneously with the groove 64 for forming the inter-substrate wiring 68. However, the groove 64, the connection hole 66, You may form after formation of the through-connection hole 65 and the insulating spacer layer 42. Also in this case, the light shielding film groove 82 is formed in the same layer as the groove 64, and the conductive material is embedded in the light shielding film groove 82 in order to conduct the conductive to the groove 64, the connection hole 66, and the through connection hole 65. Simultaneous with material embedding. Processing the light shielding film groove 82 simultaneously with the groove 64, the connection hole 66, and the through connection hole 65 simplifies the process. However, in this case, when the insulating spacer layer 42 is formed, the insulating spacer layer 42 is also formed in the light shielding film groove 82, and a desired line width of the light shielding film 63 may not be obtained. . When the pixel is miniaturized, it is more preferable to form the light shielding film groove 82 in a separate process from the groove 64, the connection hole 66, and the through connection hole 65.

従来は、遮光膜63は、基板間配線68を形成する前の工程において、タングステンやアルミニウムなどによって別に形成されていたが、基板間配線68の形成と同時のダマシン法によって形成することにより、工程を簡略できる。それと共に、第1の半導体基板31の受光部側(裏面側)の絶縁膜厚を薄膜化することができ、感度向上に寄与できる。   Conventionally, the light shielding film 63 is separately formed of tungsten, aluminum, or the like in the step before the formation of the inter-substrate wiring 68. However, the light shielding film 63 is formed by a damascene method at the same time as the formation of the inter-substrate wiring 68. Can be simplified. At the same time, the insulating film thickness on the light receiving part side (back side) of the first semiconductor substrate 31 can be reduced, which contributes to improvement in sensitivity.

また、貫通接続孔65は接続孔66の深さに対して、1.5〜10倍の範囲内で深くなるため、同じ開口サイズでは、接続孔66が導電材料で埋め込まれても、貫通接続孔65内の導電材料にボイドを生じることがあり得る。   Further, since the through-connection hole 65 becomes deep within a range of 1.5 to 10 times the depth of the connection hole 66, even if the connection hole 66 is embedded with a conductive material, the through-connection is the same. Voids may occur in the conductive material in the holes 65.

本実施形態例では、深さに応じて、開口サイズの異なる貫通接続孔65及び接続孔66を開口することにより、導電材料の埋め込みに最適なアスペクト比で、かつ、レイアウトスペースも大きくならない孔を形成することを可能としている。これにより、深さの深い貫通接続孔65においても、導電材料の埋め込み時におけるボイドの発生を防止することができる。   In the present embodiment, by opening the through-connection hole 65 and the connection hole 66 having different opening sizes according to the depth, holes having an aspect ratio that is optimal for embedding a conductive material and that does not increase the layout space are provided. It is possible to form. Thereby, even in the deep through-hole 65, it is possible to prevent the generation of voids when the conductive material is embedded.

また、本実施形態例では、接続孔66は第1の半導体基板31上部の第1の多層配線層41の最下層の銅配線40に接続する構成としているため、接続孔66の周辺やその直下のスペースを、配線を通すことのできる有効スペースとして活用できる。このため、チップの縮小化に有利に働く。   In the present embodiment, the connection hole 66 is connected to the lowermost copper wiring 40 of the first multilayer wiring layer 41 on the first semiconductor substrate 31, so that the periphery of the connection hole 66 or directly below it. Can be used as an effective space through which wiring can pass. For this reason, it works advantageously for chip reduction.

なお、本実施形態例では、基板間配線68と第1の半導体基板31との絶縁は、絶縁層67及び、絶縁スペーサ層42で行う例としたが、どちらか一方で構成する例としてもよい。絶縁スペーサ層42を形成しない場合には、絶縁スペーサ層42分の領域が必要無くなるので、画素面積の縮小や、フォトダイオード(PD)の面積の拡大が可能となる。   In this embodiment, the insulation between the inter-substrate wiring 68 and the first semiconductor substrate 31 is performed by the insulating layer 67 and the insulating spacer layer 42. However, an example in which one of them is configured may be used. . When the insulating spacer layer 42 is not formed, a region corresponding to the insulating spacer layer 42 is not necessary, so that the pixel area can be reduced and the photodiode (PD) area can be increased.

次に、図14に示すように、基板間配線68、及び遮光膜63の上部を覆うように、キャップ膜72を形成する。このキャップ膜72は、例えばSiN膜、又はSiCN膜を10〜150nmで成膜することにより形成することができる。その後、フォトダイオード(PD)上部の絶縁膜62に開口部を形成し、その開口部を含む所望の領域に導波路材料膜69を成膜する。導波路材料膜69としては、例えば、SiNを用いることができ、開口部に形成された導波路材料膜69により、導波路70が構成される。導波路70を形成することにより、第1の半導体基板31の裏面側から入射してくる光は、効率よくフォトダイオード(PD)に集光される。その後、導波路材料膜69を含む全面に平坦化膜71を形成する。   Next, as shown in FIG. 14, a cap film 72 is formed so as to cover the upper portion of the inter-substrate wiring 68 and the light shielding film 63. The cap film 72 can be formed, for example, by forming a SiN film or a SiCN film with a thickness of 10 to 150 nm. Thereafter, an opening is formed in the insulating film 62 above the photodiode (PD), and a waveguide material film 69 is formed in a desired region including the opening. For example, SiN can be used as the waveguide material film 69, and the waveguide material 70 is formed by the waveguide material film 69 formed in the opening. By forming the waveguide 70, the light incident from the back side of the first semiconductor substrate 31 is efficiently condensed on the photodiode (PD). Thereafter, a planarizing film 71 is formed on the entire surface including the waveguide material film 69.

本実施形態例では、キャップ膜72と、その上部の導波路材料膜69を別の工程で別々に形成したが、導波路材料膜69をキャップ膜72に兼用する例としてもよい。また、本実施形態例では、フォトダイオード(PD)の光入射面側に導波路70を形成する例としたが、導波路70を形成しない例としてもよい。   In this embodiment, the cap film 72 and the waveguide material film 69 on the cap film 72 are separately formed in separate steps. However, the waveguide material film 69 may be used as the cap film 72. In this embodiment, the waveguide 70 is formed on the light incident surface side of the photodiode (PD). However, the waveguide 70 may not be formed.

次に、図15に示すように、平坦化膜71上に各画素に対応して例えば赤(R)、緑(G)、青(B)のオンチップカラーフィルタ73を形成する。オンチップカラーフィルタ73は、所望の色の顔料又は染料が含有された有機膜を成膜し、パターニングすることにより、所望の画素アレイを構成するフォトダイオード(PD)上部に形成することができる。その後、オンチップカラーフィルタ73上部を含む画素アレイ領域にオンチップレンズ材料74aを成膜する。オンチップレンズ材料74aとしては,例えば有機膜、又はSiO、SiN、SiON等の無機膜を用いることができ、3000nm〜4500nmに成膜する。   Next, as shown in FIG. 15, on-chip color filters 73 of, for example, red (R), green (G), and blue (B) are formed on the planarizing film 71 corresponding to each pixel. The on-chip color filter 73 can be formed on a photodiode (PD) constituting a desired pixel array by depositing and patterning an organic film containing a pigment or dye of a desired color. Thereafter, an on-chip lens material 74 a is formed on the pixel array region including the upper part of the on-chip color filter 73. As the on-chip lens material 74a, for example, an organic film or an inorganic film such as SiO, SiN, or SiON can be used, and the film is formed to 3000 nm to 4500 nm.

次に、図16に示すように、オンチップレンズ材料74a上部の各画素に対応する領域に、オンチップレンズ用のレジスト膜75を、例えば300nm〜1000nmの厚みに形成し、エッチング処理を行う。これにより、オンチップレンズ用のレジスト膜75の形状が、オンチップレンズ材料74aに転写され、図17に示すように、各画素上部に、オンチップレンズ74が形成される。その後、CF系のガス(流量10〜200sccm)により、第1の半導体基板31上部に形成された絶縁膜62等の酸化膜をエッチングし、第1の半導体基板31を露出させる。 Next, as shown in FIG. 16, an on-chip lens resist film 75 is formed in a region corresponding to each pixel above the on-chip lens material 74a to a thickness of, for example, 300 nm to 1000 nm, and an etching process is performed. Thereby, the shape of the resist film 75 for the on-chip lens is transferred to the on-chip lens material 74a, and the on-chip lens 74 is formed above each pixel as shown in FIG. Thereafter, an oxide film such as the insulating film 62 formed on the first semiconductor substrate 31 is etched by CF 4 gas (flow rate: 10 to 200 sccm) to expose the first semiconductor substrate 31.

次に、図18に示すように、オンチップレンズ74上部に、図3の電極パッド部78が開口されたレジスト膜76を形成する。このレジスト膜76は、図18に示すように、開口端部がオンチップレンズ74の端部よりも画素側にくるように形成する。   Next, as shown in FIG. 18, a resist film 76 in which the electrode pad portion 78 of FIG. 3 is opened is formed on the on-chip lens 74. As shown in FIG. 18, the resist film 76 is formed so that the opening end portion is closer to the pixel side than the end portion of the on-chip lens 74.

次に、レジスト膜76をマスクとして所望のエッチング条件でエッチング処理する。これにより、図19に示すように、最上層の基板である第1の半導体基板31側からエッチングされ、第1の多層配線層41と第2の多層配線層55の接合面を貫通する貫通開口部77が形成される。そして、最下層の基板である第2の半導体基板45上部に形成された第2の多層配線層55に形成されたアルミ配線57が露出するまで貫通開口部77を形成する。このエッチング工程では、例えば、SF/O系のガス(流量は、SF:50〜500sccm、O:10〜300sccm)を用い、1〜60分間エッチング処理することにより、第1の半導体基板31をエッチング除去することができる。その後、CF系のガス(流量10〜150sccm)を用いて1〜100分間エッチング処理することにより、アルミ配線57に至るまでの酸化膜等をエッチング除去することができる。 Next, an etching process is performed under desired etching conditions using the resist film 76 as a mask. As a result, as shown in FIG. 19, a through-opening that is etched from the first semiconductor substrate 31 side, which is the uppermost substrate, and penetrates the bonding surface of the first multilayer wiring layer 41 and the second multilayer wiring layer 55. A portion 77 is formed. Then, the through opening 77 is formed until the aluminum wiring 57 formed in the second multilayer wiring layer 55 formed on the second semiconductor substrate 45 which is the lowermost substrate is exposed. In this etching step, for example, SF 6 / O 2 -based gas (flow rates are SF 6 : 50 to 500 sccm, O 2 : 10 to 300 sccm) and etching is performed for 1 to 60 minutes, whereby the first semiconductor is processed. The substrate 31 can be removed by etching. After that, the oxide film or the like up to the aluminum wiring 57 can be removed by etching using a CF 4 gas (flow rate: 10 to 150 sccm) for 1 to 100 minutes.

そして、このようにして露出されたアルミ配線57は、外部配線との接続を行う際に用いられる電極パッド部78とされる。以下、露出されたアルミ配線57を電極パッド部78という。この電極パッド部78は、各チップに形成される画素領域の外側の3辺若しくは4辺に複数ずつ形成されるのが好ましい。   The aluminum wiring 57 exposed in this way is used as an electrode pad portion 78 used when connecting to an external wiring. Hereinafter, the exposed aluminum wiring 57 is referred to as an electrode pad portion 78. It is preferable that a plurality of electrode pad portions 78 are formed on three or four sides outside the pixel region formed on each chip.

そして、図19に示したような2つ半導体基板を積層して形成された積層体81aは、その後、ダイシング加工することにより各チップ部に分割される。これにより、図4に示すように、第1の半導体チップ部22と第2の半導体チップ部26とからなる固体撮像装置81が完成される。   And the laminated body 81a formed by laminating | stacking two semiconductor substrates as shown in FIG. 19 is divided | segmented into each chip | tip part by carrying out a dicing process after that. Thereby, as shown in FIG. 4, the solid-state imaging device 81 which consists of the 1st semiconductor chip part 22 and the 2nd semiconductor chip part 26 is completed.

このようにして形成された固体撮像装置81は、図4に示すように、電極パッド部78に対してボンディングワイヤ79を接続し、ボンディングワイヤ79によって実装基板の外部配線と接続することができる。そして、電極パッド部78に外部配線が電気的に接続されることにより、基板間配線68で接続された第1の多層配線層41、及び第2の多層配線層55の各配線間も電気的に接続される。   As shown in FIG. 4, the solid-state imaging device 81 formed in this way can connect a bonding wire 79 to the electrode pad portion 78, and can be connected to an external wiring of the mounting substrate by the bonding wire 79. Then, the external wiring is electrically connected to the electrode pad portion 78 so that the wirings of the first multilayer wiring layer 41 and the second multilayer wiring layer 55 connected by the inter-substrate wiring 68 are also electrically connected. Connected to.

第1の実施形態の固体撮像装置81では、電極パッド部78に対してボンディングワイヤ79を接続する例としたが、半田バンプを用い、電極パッド部78と外部配線とを接続することができる。ユーザの希望により、ボンディングワイヤか半田バンプを選択することができる。   In the solid-state imaging device 81 of the first embodiment, the bonding wire 79 is connected to the electrode pad portion 78. However, the solder pad can be used to connect the electrode pad portion 78 and the external wiring. A bonding wire or a solder bump can be selected according to the user's request.

なお、第1の実施形態において、半導体ウェハでの固体撮像装置81に対する検査は、電極パッド部78を用いて行われる。また、検査は、ウェハ状態での検査と、チップに切断して最終モジュール状態での検査の2回である。   In the first embodiment, the inspection for the solid-state imaging device 81 on the semiconductor wafer is performed using the electrode pad portion 78. The inspection is performed twice, that is, inspection in a wafer state and inspection in a final module state after cutting into chips.

第1の実施形態に係る固体撮像装置81及びその製造方法によれば、第1の半導体基板31側のチップ部に画素領域23及び制御領域24を形成し、第2の半導体基板45側のチップ部に信号処理するロジック回路25を形成している。このように画素アレイの機能とロジック機能を異なるチップ部に形成した構成であるので、画素アレイ、ロジック回路のそれぞれに最適なプロセス形成技術を用いることができる。従って、画素アレイ、ロジック回路それぞれの性能を十分に発揮させることができ、高性能の固体撮像装置を提供することができる。   According to the solid-state imaging device 81 and the manufacturing method thereof according to the first embodiment, the pixel region 23 and the control region 24 are formed in the chip portion on the first semiconductor substrate 31 side, and the chip on the second semiconductor substrate 45 side. A logic circuit 25 for signal processing is formed in the part. As described above, since the pixel array function and the logic function are formed in different chip portions, an optimum process forming technique can be used for each of the pixel array and the logic circuit. Therefore, the performance of each of the pixel array and the logic circuit can be sufficiently exhibited, and a high-performance solid-state imaging device can be provided.

図2Cの構成を採用すれば、第1の半導体チップ部22側には光を受ける画素領域23を形成するだけで良く、その制御領域24及びロジック回路25は分離して第2の半導体チップ部26に形成することができる。これによって、それぞれの機能チップに最適なプロセス技術を独立して選択できると共に、製品モジュールの面積も削減することができる。   If the configuration of FIG. 2C is adopted, it is only necessary to form a pixel region 23 for receiving light on the first semiconductor chip unit 22 side, and the control region 24 and the logic circuit 25 are separated to form the second semiconductor chip unit. 26 can be formed. As a result, the optimum process technology for each functional chip can be selected independently, and the area of the product module can be reduced.

従来のウェハプロセス技術で画素アレイとロジック回路との混載を可能にするので、製造も容易である。   Since the pixel array and the logic circuit can be mixedly mounted by the conventional wafer process technology, manufacturing is also easy.

また、本実施形態例では、画素領域23及び制御領域24を有する第1の半導体基板31と、ロジック回路25を有する第2の半導体基板45を共に半製品状態で貼り合わせ、第1の半導体基板31を薄肉化している。つまり、第2の半導体基板45を、第1の半導体基板31の薄肉化の際の支持基板として用いている。これによって、部材の節約、製造工程の節減を図ることができる。さらに、薄肉化後に貫通接続孔65、接続孔66の形成を行うので、孔のアスペクト比が小さくなり、高精度の接続孔の形成が可能になる。   In this embodiment, the first semiconductor substrate 31 having the pixel region 23 and the control region 24 and the second semiconductor substrate 45 having the logic circuit 25 are bonded together in a semi-finished state, and the first semiconductor substrate 31 is thinned. That is, the second semiconductor substrate 45 is used as a support substrate when the first semiconductor substrate 31 is thinned. As a result, the members can be saved and the manufacturing process can be saved. Furthermore, since the through-connection hole 65 and the connection hole 66 are formed after the thinning, the aspect ratio of the hole is reduced, and a highly accurate connection hole can be formed.

また、基板間配線68は、低アスペクト比の貫通接続孔65及び接続孔66に導電材料を埋め込むことで形成できるため、被覆性の良いタングステン(W)などの金属材料は勿論のこと、被覆性の悪い例えば銅(Cu)などの金属材料を用いることができる。つまり、基板間配線68を構成する導体材料の制約を受けることがない。これにより、画素領域及び制御回路と、ロジック回路の電気的接続を高精度で行うことができる。従って、量産性を図り、製造コストを抑え、且つ高性能の固体撮像装置を製造することができる。   The inter-substrate wiring 68 can be formed by embedding a conductive material in the low aspect ratio through-connection hole 65 and connection hole 66, so that the metal material such as tungsten (W) having good coverage is of course covered. For example, a metal material such as copper (Cu) can be used. That is, there is no restriction on the conductor material constituting the inter-substrate wiring 68. Thereby, the electrical connection between the pixel region and the control circuit and the logic circuit can be performed with high accuracy. Therefore, it is possible to manufacture a high-performance solid-state imaging device while achieving mass productivity, suppressing manufacturing costs.

さらに、本実施形態例では、電極パッド部78を開口するために形成された貫通開口部77は、第1の多層配線層41と第2の多層配線層55の接合面を貫通して形成され、電極パッド部78は、接合面より下層の第2の多層配線層55の配線で構成される。これにより、電極パッド部78は、第1の多層配線層41と第2の多層配線層55との間の脆弱な面とされる接合面よりも下層に形成される。このため、例えば、ボンディングワイヤ79を電極パッド部78に押し付ける際に、脆弱な面となる接合面にかかるボンディング応力を低減することができる。これにより、ワイヤボンディング時において、脆弱な接合面からクラックが発生するのを防ぐことができる。   Furthermore, in the present embodiment example, the through opening 77 formed to open the electrode pad portion 78 is formed so as to penetrate the bonding surface between the first multilayer wiring layer 41 and the second multilayer wiring layer 55. The electrode pad portion 78 is composed of the wiring of the second multilayer wiring layer 55 below the bonding surface. As a result, the electrode pad portion 78 is formed in a lower layer than the bonding surface which is a fragile surface between the first multilayer wiring layer 41 and the second multilayer wiring layer 55. For this reason, for example, when the bonding wire 79 is pressed against the electrode pad portion 78, it is possible to reduce the bonding stress applied to the bonding surface which is a fragile surface. Thereby, it can prevent that a crack generate | occur | produces from a weak joint surface at the time of wire bonding.

本実施形態例では、2層の半導体ウェハを積層する例としたが、2層以上の複数層積層する構成に本発明を応用することができる。その場合には、一番下層の半導体ウェハの配線層を構成する配線が露出するように貫通開口部を形成し、その露出された配線を配線パッド部とする。これにより、外部配線と電極パッド部との接続を行う際に、基板間の脆弱な接合面に応力が発生することを低減することができる。   In the present embodiment, an example in which two layers of semiconductor wafers are stacked is used, but the present invention can be applied to a configuration in which two or more layers are stacked. In that case, a through opening is formed so that the wiring constituting the wiring layer of the lowermost semiconductor wafer is exposed, and the exposed wiring is used as a wiring pad portion. Thereby, when connecting an external wiring and an electrode pad part, it can reduce that a stress generate | occur | produces on the weak joint surface between board | substrates.

また、本実施形態例のように、裏面照射型の固体撮像装置では、受光部となるフォトダイオードを回路に近づけることが必要であるため、上述したような半導体層の薄肉化が必須とされている。また、接合面よりも下側の配線を露出させるための開口はより浅い方が好ましい。したがって、本実施形態例のように上層の半導体基板(本実施形態例では、第1の半導体基板)が画素アレイを備えた固体撮像素子である場合には、半導体層が薄肉化された第1の半導体基板側から電極パッド部を開口することが好ましい。   Further, as in the present embodiment example, in the backside illumination type solid-state imaging device, it is necessary to bring the photodiode serving as the light receiving portion closer to the circuit, and thus the semiconductor layer as described above must be thinned. Yes. Further, it is preferable that the opening for exposing the wiring below the bonding surface is shallower. Accordingly, when the upper semiconductor substrate (in this embodiment example, the first semiconductor substrate) is a solid-state imaging device having a pixel array as in this embodiment example, the first semiconductor layer is thinned. It is preferable to open the electrode pad portion from the semiconductor substrate side.

なお、上述の実施の形態に係る固体撮像装置では、信号電荷を電子とし、第1導電型をp型、第2導電型をn型として構成したが、信号電荷を正孔とする固体撮像装置にも適用できる。この場合、各半導体基板、半導体ウェル領域あるいは半導体領域の導電型を逆にし、n型が第1導電型,p型が第2導電型となる。   In the solid-state imaging device according to the above-described embodiment, the signal charge is an electron, the first conductivity type is a p-type, and the second conductivity type is an n-type, but the signal charge is a hole. It can also be applied to. In this case, the conductivity type of each semiconductor substrate, semiconductor well region or semiconductor region is reversed, n-type being the first conductivity type and p-type being the second conductivity type.

上述の第1の実施形態例では、MOS型固体撮像装置を例としたが、本発明は、半導体装置にも適用することができる。次に、本発明の第2の実施形態として、異種チップが積層された構造を有する半導体装置について説明する。   In the first embodiment described above, the MOS type solid-state imaging device is taken as an example, but the present invention can also be applied to a semiconductor device. Next, a semiconductor device having a structure in which different types of chips are stacked will be described as a second embodiment of the present invention.

〈3.第2の実施形態〉
[半導体装置の構成例とその製造方法例]
図20〜図26を用いて、本発明の第2の実施形態に係る半導体装置をその製造方法と共に説明する。本実施形態例の半導体装置140は、第1の半導体集積回路が形成された第1の半導体基板101と第2の半導体集積回路が形成された第2の半導体基板102が積層して構成された半導体装置である。図20において、図4に対応する部分には同一符号を付し重複説明を省略する。
<3. Second Embodiment>
[Configuration example of semiconductor device and manufacturing method thereof]
A semiconductor device according to the second embodiment of the present invention will be described together with a manufacturing method thereof with reference to FIGS. The semiconductor device 140 according to the present embodiment is configured by stacking a first semiconductor substrate 101 on which a first semiconductor integrated circuit is formed and a second semiconductor substrate 102 on which a second semiconductor integrated circuit is formed. It is a semiconductor device. 20, parts corresponding to those in FIG. 4 are denoted by the same reference numerals, and redundant description is omitted.

第2の実施形態においては、先ず、図21に示すように、第1の半導体基板(半導体ウェハ)101の各チップ部となる領域に、半製品状態の第1の半導体集積回路、本例ではロジック回路を形成する。すなわち、シリコン基板からなる第1の半導体基板101に形成した半導体ウェル領域108の各チップ部となる領域に、複数のMOSトランジスタTr9、Tr10、Tr11を形成する。各MOSトランジスタTr9〜Tr11は、それぞれ1対のソース/ドレイン領域105と、ゲート絶縁膜を介して形成されたゲート電極106とを有して構成される。各MOSトランジスタTr9〜Tr11は、素子分離領域100により分離される。   In the second embodiment, first, as shown in FIG. 21, the first semiconductor integrated circuit in a semi-finished state, in this example, is formed in each chip portion of the first semiconductor substrate (semiconductor wafer) 101. A logic circuit is formed. That is, a plurality of MOS transistors Tr9, Tr10, and Tr11 are formed in regions to be the chip portions of the semiconductor well region 108 formed on the first semiconductor substrate 101 made of a silicon substrate. Each of the MOS transistors Tr9 to Tr11 includes a pair of source / drain regions 105 and a gate electrode 106 formed via a gate insulating film. The MOS transistors Tr9 to Tr11 are isolated by the element isolation region 100.

MOSトランジスタは、複数形成されるものであるが、図21では、MOSトランジスタTr9〜Tr11をその代表として示した。ロジック回路は、CMOSトランジスタで構成することができる。このため、これら複数のMOSトランジスタTr9〜Tr11としては、nチャネルMOSトランジスタ、あるいはpチャネルMOSトランジスタとして構成することができる。従って、nチャネルMOSトランジスタを形成するときは、p型の半導体ウェル領域108にn型のソース/ドレイン領域が形成される。pチャネルMOSトランジスタを形成するときは、n型の半導体ウェル領域にp型のソース/ドレイン領域が形成される。   Although a plurality of MOS transistors are formed, in FIG. 21, the MOS transistors Tr9 to Tr11 are shown as representatives. The logic circuit can be composed of CMOS transistors. Therefore, the plurality of MOS transistors Tr9 to Tr11 can be configured as n-channel MOS transistors or p-channel MOS transistors. Therefore, when an n-channel MOS transistor is formed, n-type source / drain regions are formed in the p-type semiconductor well region 108. When a p-channel MOS transistor is formed, p-type source / drain regions are formed in an n-type semiconductor well region.

なお、第1の半導体集積回路としては、ロジック回路に代えて、例えば半導体メモリ回路とすることもできる。この場合、後述する第2の半導体集積回路となるロジック回路は半導体メモリ回路の信号処理に供される。   The first semiconductor integrated circuit may be a semiconductor memory circuit, for example, instead of the logic circuit. In this case, a logic circuit serving as a second semiconductor integrated circuit described later is used for signal processing of the semiconductor memory circuit.

また、第2絶縁薄膜43b形成後、第1の実施形態と同様に、第1の半導体基板101の半導体ウェル領域108内の所望の領域を分離する絶縁スペーサ層113を形成する。絶縁スペーサ層113は、第2絶縁薄膜43b形成後、第1の半導体基板101の所望の
位置を裏面側から開口し、絶縁材料を埋め込むことで形成される。この絶縁スペーサ層113は、図20の基板間配線115を囲む領域に形成されるものである。
In addition, after the formation of the second insulating thin film 43b, an insulating spacer layer 113 that separates a desired region in the semiconductor well region 108 of the first semiconductor substrate 101 is formed as in the first embodiment. The insulating spacer layer 113 is formed by opening a desired position of the first semiconductor substrate 101 from the back surface side and embedding an insulating material after the second insulating thin film 43b is formed. The insulating spacer layer 113 is formed in a region surrounding the inter-substrate wiring 115 in FIG.

次いで、第1の半導体基板101上に層間絶縁膜103を介して複数層、本例では3層の銅配線104を積層した第1の多層配線層107を形成する。本実施形態例では、第1の多層配線層107を構成する配線を銅で構成する例としたが、その他の金属材料でメタル配線を構成することもできる。これらの第1の多層配線層107は、第1の実施形態例と同様にして形成することができる。なお、各MOSトランジスタTr9〜Tr11は所要の1層目の銅配線104と接続導体112を介して接続する。また、3層の銅配線104は接続導体112を介して相互に接続する。   Next, a first multilayer wiring layer 107 in which a plurality of layers, in this example, three layers of copper wirings 104 are stacked is formed on the first semiconductor substrate 101 with an interlayer insulating film 103 interposed therebetween. In the present embodiment, the wiring constituting the first multilayer wiring layer 107 is made of copper, but the metal wiring can be made of other metal materials. These first multilayer wiring layers 107 can be formed in the same manner as in the first embodiment. Each MOS transistor Tr9 to Tr11 is connected to a required first-layer copper wiring 104 via a connection conductor 112. Further, the three layers of copper wiring 104 are connected to each other through a connection conductor 112.

一方、図22に示すように、第2の半導体基板(半導体ウェハ)102の各チップ部となる領域に、半製品状態の第2の半導体集積回路、本例ではロジック回路を形成する。すなわち、図20と同様に、シリコンからなる第2の半導体基板102に形成した半導体ウェル領域116の各チップ部となる領域に、複数のMOSトランジスタTr12、Tr13、Tr14を形成する。各MOSトランジスタTr12〜Tr14は、それぞれ1対のソース/ドレイン領域117と、ゲート絶縁膜を介して形成されたゲート電極118とを有して構成される。また、各MOSトランジスタTr12〜Tr14は、素子分離領域127により分離される。   On the other hand, as shown in FIG. 22, a second semiconductor integrated circuit in a semi-finished state, in this example, a logic circuit is formed in a region to be each chip portion of the second semiconductor substrate (semiconductor wafer) 102. That is, similarly to FIG. 20, a plurality of MOS transistors Tr12, Tr13, and Tr14 are formed in the regions to be the chip portions of the semiconductor well region 116 formed in the second semiconductor substrate 102 made of silicon. Each of the MOS transistors Tr12 to Tr14 includes a pair of source / drain regions 117 and a gate electrode 118 formed through a gate insulating film. Further, the MOS transistors Tr12 to Tr14 are separated by an element isolation region 127.

MOSトランジスタは、複数形成されるものであるが、図24では、MOSトランジスタTr12〜Tr14を代表として示した。ロジック回路は、CMOSトランジスタで構成することができる。このため、これら複数のMOSトランジスタとしては、nチャネルMOSトランジスタ、あるいはpチャネルMOSトランジスタとして構成することができる。従って、nチャネルMOSトランジスタを形成するときは、p型半導体ウェル領域にn型ソース/ドレイン領域が形成される。pチャネルMOSトランジスタを形成するときは、n型半導体ウェル領域にp型ソース/ドレイン領域が形成される。   Although a plurality of MOS transistors are formed, in FIG. 24, the MOS transistors Tr12 to Tr14 are shown as representatives. The logic circuit can be composed of CMOS transistors. Therefore, the plurality of MOS transistors can be configured as n-channel MOS transistors or p-channel MOS transistors. Therefore, when an n-channel MOS transistor is formed, n-type source / drain regions are formed in the p-type semiconductor well region. When forming a p-channel MOS transistor, p-type source / drain regions are formed in the n-type semiconductor well region.

次いで、第2の半導体基板102上に層間絶縁膜119を介して複数層、本例では4層のメタル配線を積層した第2の多層配線層124を形成する。本実施形態例では、3層の銅配線120と最上層に形成された1層のアルミ配線121とを形成する例とした。なお、各MOSトランジスタTr12〜Tr14は所要の1層目の銅配線120と接続導体126を介して接続する。また、3層の銅配線120とアルミ配線121とは接続導体126により相互に接続される。さらに、本実施形態例においてもアルミ配線121の上下には、バリアメタル層129、130が成膜されており、アルミ配線121は、下層のバリアメタル層129を介して下層の銅配線120に接続されている。この第2の多層配線層124は、第1の実施形態の多層配線層と同様にして形成することができる。   Next, a second multilayer wiring layer 124 in which a plurality of layers, in this example, four layers of metal wirings are stacked is formed on the second semiconductor substrate 102 with an interlayer insulating film 119 interposed therebetween. In this embodiment, an example in which three layers of copper wiring 120 and one layer of aluminum wiring 121 formed in the uppermost layer is formed. Each MOS transistor Tr12 to Tr14 is connected to a required first-layer copper wiring 120 via a connection conductor 126. Further, the three-layer copper wiring 120 and the aluminum wiring 121 are connected to each other by a connection conductor 126. Furthermore, also in this embodiment, barrier metal layers 129 and 130 are formed above and below the aluminum wiring 121, and the aluminum wiring 121 is connected to the lower copper wiring 120 through the lower barrier metal layer 129. Has been. The second multilayer wiring layer 124 can be formed in the same manner as the multilayer wiring layer of the first embodiment.

そして、第2の多層配線層124上部には、第1の半導体基板101と第2の半導体基板102の貼り合わせの際に反りを軽減するための反り矯正膜123を形成する。反り矯正膜123も、第1の実施形態と同様にして形成することができる。   Then, a warp correction film 123 is formed on the second multilayer wiring layer 124 to reduce the warp when the first semiconductor substrate 101 and the second semiconductor substrate 102 are bonded together. The warp correction film 123 can also be formed in the same manner as in the first embodiment.

次に、図23に示すように、第1の半導体基板101と第2の半導体基板102とを、互いの第1の多層配線層107及び第2の多層配線層124が向かい合うように、貼り合わせる。貼り合わせは、例えば接着剤にて行う。接着剤にて接合する場合には、第1の半導体基板101又は第2の半導体基板102の接合面の一方の側に接着剤層125を形成し、この接着剤層125を介して重ね合わせて両者を接合する。本実施形態例では、接着剤層125を介して第1の半導体基板101と第2の半導体基板102とを貼り合わせる例としたが、この他、プラズマ接合で貼り合わせる例としてもよい。プラズマ接合の場合には、第1の半導体基板101と第2の半導体基板102の接合面に、それぞれプラズマTEOS膜、プラズマSiN膜、SiON膜(ブロック膜)、あるいは、SiC膜などを形成する。この膜が形成された接合面をプラズマ処理して重ね合わせ、その後、アニール処理して両者を接合する。貼り合わせ処理は、配線などに影響を与えない400℃以下の低温プロセスで行うことが好ましい。そして、第1の半導体基板101と第2の半導体基板102とが積層して張り合わされることにより、2つの異種基板からなる積層体140aが形成される。   Next, as shown in FIG. 23, the first semiconductor substrate 101 and the second semiconductor substrate 102 are bonded together so that the first multilayer wiring layer 107 and the second multilayer wiring layer 124 face each other. . The bonding is performed with an adhesive, for example. In the case of bonding with an adhesive, an adhesive layer 125 is formed on one side of the bonding surface of the first semiconductor substrate 101 or the second semiconductor substrate 102, and the adhesive layer 125 is overlapped via the adhesive layer 125. Join them together. In the present embodiment example, the first semiconductor substrate 101 and the second semiconductor substrate 102 are bonded to each other via the adhesive layer 125, but other examples may be bonded by plasma bonding. In the case of plasma bonding, a plasma TEOS film, a plasma SiN film, a SiON film (block film), a SiC film, or the like is formed on the bonding surface between the first semiconductor substrate 101 and the second semiconductor substrate 102, respectively. The joining surface on which this film is formed is overlapped by plasma treatment, and then annealed to join them together. The bonding process is preferably performed by a low-temperature process of 400 ° C. or lower that does not affect the wiring or the like. Then, the first semiconductor substrate 101 and the second semiconductor substrate 102 are stacked and bonded to each other, so that a stacked body 140a including two different substrates is formed.

次に、図24に示すように、一方の第1の半導体基板101を、裏面側から研削、研磨して薄肉化する。第1の半導体基板101の厚さは例えば600μm程度としたとき、膜厚が例えば5〜10μm程度となるように、薄肉化する。   Next, as shown in FIG. 24, one first semiconductor substrate 101 is thinned by grinding and polishing from the back surface side. When the thickness of the first semiconductor substrate 101 is, for example, about 600 μm, the first semiconductor substrate 101 is thinned so that the film thickness is, for example, about 5-10 μm.

次に、図25に示すように、薄肉化したのち、第1の実施形態における図10〜図13と同様の工程にて、絶縁スペーサ層113内に溝部164、貫通接続孔165及び接続孔166を形成する。その後、溝部164、貫通接続孔165及び接続孔166内に絶縁層114を介して基板間配線115を形成する。また、図示を省略するが、必要に応じて、第1の実施形態と同様に遮光領域には、遮光膜を形成する。本実施形態例においても、貫通接続孔165及び接続孔166は、第1の半導体基板101を薄肉化した後に形成するので、アスペクト比が小さくなり、微細孔として形成することができる。また、本実施形態例においても、深さに応じて、開口サイズの異なる貫通接続孔165及び接続孔166を別々に開口することにより、導電材料の埋め込みに最適なアスペクト比で、かつ、レイアウトスペースも大きくならない孔を形成することを可能としている。これにより、深さの深い貫通接続孔165においても、導電材料の埋め込み時におけるボイドの発生を防止することができる。   Next, as shown in FIG. 25, after thinning, the groove 164, the through-connection hole 165, and the connection hole 166 are formed in the insulating spacer layer 113 in the same process as in FIGS. 10 to 13 in the first embodiment. Form. Thereafter, the inter-substrate wiring 115 is formed in the groove 164, the through-connection hole 165 and the connection hole 166 with the insulating layer 114 interposed therebetween. Although illustration is omitted, a light shielding film is formed in the light shielding region as necessary, as in the first embodiment. Also in the present embodiment example, the through-connection hole 165 and the connection hole 166 are formed after the first semiconductor substrate 101 is thinned, so that the aspect ratio becomes small and can be formed as fine holes. Also in the present embodiment example, by separately opening the through connection holes 165 and the connection holes 166 having different opening sizes according to the depth, the aspect ratio is optimum for embedding the conductive material and the layout space is also provided. It is possible to form a hole that does not become large. Thereby, even in the deep through-hole 165, generation of voids when the conductive material is embedded can be prevented.

そして、基板間配線115により、第1の半導体基板101に形成された回路と第2の半導体基板102に形成された回路が電気的に接続される。その後、第1の実施形態と同様にして、基板間配線115上部を含む全面にキャップ膜72を成膜する。   The circuit formed on the first semiconductor substrate 101 and the circuit formed on the second semiconductor substrate 102 are electrically connected by the inter-substrate wiring 115. Thereafter, as in the first embodiment, a cap film 72 is formed on the entire surface including the upper portion of the inter-substrate wiring 115.

次に、所望の領域が開口されたマスク(図示せず)用いて、図26に示すようにエッチングすることにより、第1の半導体基板101を貫通する貫通開口部132を形成し、アルミ配線121を露出させる。これにより、露出されたアルミ配線121からなる電極パッド部142が形成される。
その後、ダイシング加工することにより、各チップ部に分割することで、図20に示す本実施形態例の半導体装置140が完成される。
Next, by using a mask (not shown) in which a desired region is opened, etching is performed as shown in FIG. 26 to form a through opening 132 penetrating the first semiconductor substrate 101, and the aluminum wiring 121. To expose. As a result, an electrode pad portion 142 made of the exposed aluminum wiring 121 is formed.
Thereafter, the semiconductor device 140 according to the present embodiment shown in FIG. 20 is completed by dicing to divide each chip portion.

分割された各チップは、図20に示すように、電極パッド部142に対してボンディングワイヤ131を接続し、ボンディングワイヤ131によって実装基板の外部配線と接続することができる。そして、電極パッド部142に外部配線が電気的に接続されることにより、基板間配線115で接続された第1の半導体基板101及び第2の半導体基板102に形成されたそれぞれの配線間(回路間)も電気的に接続される。   As shown in FIG. 20, each of the divided chips can be connected to an electrode pad 142 with a bonding wire 131, and can be connected to an external wiring of the mounting substrate by the bonding wire 131. Then, the external wiring is electrically connected to the electrode pad portion 142, whereby each wiring (circuit) formed on the first semiconductor substrate 101 and the second semiconductor substrate 102 connected by the inter-substrate wiring 115. Are also electrically connected.

第2の実施形態に係る半導体装置140及びその製造方法によれば、前述と同様に、異なるチップ部にそれぞれ第1の半導体集積回路、第2の半導体集積回路を最適なプロセス技術で形成することができ、高性能の半導体集積回路を提供することができる。また、半製品状態で第1及び第2の半導体ウェハを貼り合わせ、薄肉化し、また第1及び第2の半導体集積回路の電気接続の後、完成品状態としてチップ化することにより、製造コストの低減を図ることができる。   According to the semiconductor device 140 and the manufacturing method thereof according to the second embodiment, the first semiconductor integrated circuit and the second semiconductor integrated circuit are respectively formed on different chip portions by the optimum process technology as described above. And a high-performance semiconductor integrated circuit can be provided. In addition, the first and second semiconductor wafers are bonded and thinned in the semi-finished product state, and after the electrical connection of the first and second semiconductor integrated circuits, the finished product state is formed into a chip, thereby reducing the manufacturing cost. Reduction can be achieved.

その他、第1の実施形態と同様の効果を得ることができる。   In addition, the same effects as those of the first embodiment can be obtained.

上述の第1の実施形態、及び第2の実施形態では、基板間配線は、第1の半導体基板に形成された第1の半導体集積回路と第2の半導体基板に形成された第2の半導体体集積回路とを電気的に接続する配線としてのみ用いる例を示した。しかしながら、これに限定されるものではなく、例えば、基板間配線を用いることで、第1の半導体基板と第2の半導体基板とで別個に形成されていた同電位の配線(例えば、電源配線や接地配線)の一部を、各基板で共通に用いることができる。
以下に、基板間配線を、第1の半導体基板及び第2の半導体基板に共通に用いられる電源配線、及び接地配線として形成する例を説明する。
In the first embodiment and the second embodiment described above, the inter-substrate wiring includes the first semiconductor integrated circuit formed on the first semiconductor substrate and the second semiconductor formed on the second semiconductor substrate. An example of using only as wiring for electrically connecting a body integrated circuit is shown. However, the present invention is not limited to this. For example, by using inter-substrate wiring, wiring of the same potential that is separately formed in the first semiconductor substrate and the second semiconductor substrate (for example, power supply wiring or A part of the ground wiring) can be used in common for each substrate.
Hereinafter, an example in which the inter-substrate wiring is formed as a power supply wiring and a ground wiring that are commonly used for the first semiconductor substrate and the second semiconductor substrate will be described.

〈4.第3の実施形態〉
図27に、本発明の第3の実施形態に係る固体撮像装置の概略構成図を示す。図27において、図4に対応する部分には同一符号を付し、重複説明を省略する。
<4. Third Embodiment>
FIG. 27 shows a schematic configuration diagram of a solid-state imaging apparatus according to the third embodiment of the present invention. In FIG. 27, parts corresponding to those in FIG.

図27は、固体撮像装置の画素領域23と、制御領域24とを含む領域を示したものであり、簡略化のため、トランジスタやフォトダイオードの図示を省略する。   FIG. 27 shows a region including the pixel region 23 and the control region 24 of the solid-state imaging device, and illustration of transistors and photodiodes is omitted for simplification.

図27に示すように、画素領域23では、第1の半導体基板31に形成された画素信号を出力する銅配線40aが、基板間配線68を介して第2の多層配線層55の最上層の配線で形成された信号配線57aに接続されている。この場合には、図3に示す回路構成において、第1の半導体基板31に形成された選択トランジスタのドレインに接続される配線と、信号配線との間に基板間配線が形成されている。そして、信号配線57aより後段の処理は、第2の半導体基板45で構成されたロジック回路25内で行われる。   As shown in FIG. 27, in the pixel region 23, the copper wiring 40 a that outputs the pixel signal formed on the first semiconductor substrate 31 is the uppermost layer of the second multilayer wiring layer 55 through the inter-substrate wiring 68. It is connected to a signal wiring 57a formed by wiring. In this case, in the circuit configuration shown in FIG. 3, the inter-substrate wiring is formed between the wiring connected to the drain of the selection transistor formed in the first semiconductor substrate 31 and the signal wiring. Processing subsequent to the signal wiring 57 a is performed in the logic circuit 25 configured by the second semiconductor substrate 45.

本実施形態例では、第2の多層配線層55の最上層の配線で形成された電源配線57b及び接地配線57cと、第1の多層配線層41の最上層の配線で形成された銅配線40b、40cとが基板間配線68を介して接続されている。これにより、第1の半導体基板31と第2の半導体基板45との間で、電源配線57b、及び接地配線57cが共有されている。   In this embodiment, the power supply wiring 57b and the ground wiring 57c formed by the uppermost wiring of the second multilayer wiring layer 55 and the copper wiring 40b formed by the uppermost wiring of the first multilayer wiring layer 41 are used. , 40 c are connected via inter-substrate wiring 68. As a result, the power supply wiring 57 b and the ground wiring 57 c are shared between the first semiconductor substrate 31 and the second semiconductor substrate 45.

2枚の半導体基板を貼り合わせて基板間配線で接続する3次元デバイスにおいては、基板の貼り合わせ面における段差低減のために、配線層(図27では、第1の多層配線層41及び第2の多層配線層55に相当)を厚く形成することができないという問題がある。このため、従来の3次元デバイスでは、配線間の距離が近くなり、配線間抵抗を下げることができず、2つの半導体基板上に、別々に電源配線や接地配線を形成すると大きな不可抵抗が乗り、素子の肥大化、ないし電源降下によるノイズの原因となる。   In a three-dimensional device in which two semiconductor substrates are bonded and connected by inter-substrate wiring, a wiring layer (in FIG. 27, the first multilayer wiring layer 41 and the second multilayer wiring layer are used to reduce the level difference on the bonding surface of the substrates. The multilayer wiring layer 55) cannot be formed thick. For this reason, in the conventional three-dimensional device, the distance between the wirings becomes short, and the resistance between the wirings cannot be lowered. If power supply wirings and grounding wirings are separately formed on the two semiconductor substrates, a large resistance cannot be obtained. This may cause noise due to enlargement of elements or power supply drop.

本実施形態例の固体撮像装置では、基板間配線68を経由して、電源配線57bや接地配線57cを上下に形成された第1の半導体基板31及び第2の半導体基板45の間で共有化することにより、実効的に低抵抗な配線を形成することができる。また、薄肉化した第1の半導体基板31の裏面側に基板間配線68に接続される裏面配線を形成することにより、素子や異電位配線を跨ぐことも可能である。   In the solid-state imaging device according to the present embodiment, the power supply wiring 57b and the ground wiring 57c are shared between the first semiconductor substrate 31 and the second semiconductor substrate 45 formed above and below via the inter-substrate wiring 68. By doing so, it is possible to effectively form a low-resistance wiring. Further, by forming a back surface wiring connected to the inter-substrate wiring 68 on the back surface side of the thinned first semiconductor substrate 31, it is possible to straddle elements and different potential wirings.

以下に、第1の半導体チップ(以下、上チップ)と第2の半導体チップ(以下、下チップ)が積層された積層チップにおける配線レイアウト、及びその設計方法について説明する。   Hereinafter, a wiring layout in a stacked chip in which a first semiconductor chip (hereinafter referred to as an upper chip) and a second semiconductor chip (hereinafter referred to as a lower chip) are stacked, and a design method thereof will be described.

図28Aに、本実施形態例の固体撮像装置において、電源配線57bが形成される電源供給回路92の一部を裏面配線99で形成した場合の積層チップ90の概略構成図を示す。また、図28Bに、比較例として、電源配線57bが形成される電源供給回路92を全て第2の多層配線層55内に形成した場合の積層チップ91の概略構成図を示す。   FIG. 28A shows a schematic configuration diagram of the multilayer chip 90 when a part of the power supply circuit 92 in which the power supply wiring 57 b is formed is formed by the back surface wiring 99 in the solid-state imaging device of the present embodiment example. FIG. 28B shows a schematic configuration diagram of the multilayer chip 91 when the power supply circuit 92 in which the power supply wiring 57 b is formed is formed in the second multilayer wiring layer 55 as a comparative example.

図28Aに示すように、第1の半導体基板31と第2の半導体基板45との間で、基板間配線68を介してチップ間の電源配線を共有する。そして、電源供給回路92の電源配線に接続される端子の実装基板への接続は、第2の多層配線層55の最上層の電源配線57bを介して行う。また、第1の多層配線層41で形成された電源供給回路92の一部は、レイアウトの重複を最小にできる位置で中断され、基板間配線68を介して裏面配線99で構成されている。すなわち、比較例として示した図28Bの構成における電源供給回路92の一部(破線で囲む領域a)を、本実施形態例では、第1の半導体基板31の裏面側に形成された裏面配線99で構成する。この場合、裏面配線99は、基板間配線68上部に形成される接続配線68aと同様にダマシン法で形成することができる。   As shown in FIG. 28A, the power supply wiring between the chips is shared between the first semiconductor substrate 31 and the second semiconductor substrate 45 via the inter-substrate wiring 68. The terminals connected to the power supply wiring of the power supply circuit 92 are connected to the mounting board through the power supply wiring 57 b on the uppermost layer of the second multilayer wiring layer 55. Further, a part of the power supply circuit 92 formed by the first multilayer wiring layer 41 is interrupted at a position where the overlapping of the layout can be minimized, and is configured by the back surface wiring 99 through the inter-substrate wiring 68. That is, a part of the power supply circuit 92 (region a surrounded by a broken line) in the configuration of FIG. 28B shown as a comparative example is replaced with a back surface wiring 99 formed on the back surface side of the first semiconductor substrate 31 in this embodiment. Consists of. In this case, the back surface wiring 99 can be formed by the damascene method in the same manner as the connection wiring 68 a formed on the inter-substrate wiring 68.

このように、図28Aの例では電源供給回路92の一部を第1の半導体基板31の裏面側に移動し、裏面配線99によって構成することにより、配線を縦に積層することができる。このため、図28Bの構成に比較して、電源供給回路92の面積を縮小することができる。   In this way, in the example of FIG. 28A, a part of the power supply circuit 92 is moved to the back side of the first semiconductor substrate 31 and is constituted by the back side wiring 99, whereby the wirings can be stacked vertically. Therefore, the area of the power supply circuit 92 can be reduced as compared with the configuration of FIG. 28B.

図29Aに、本実施形態例における積層チップ90の、電源配線から電源端子への接続、及び接地配線から接地端子への接続を示したブロック図を示す。また、図29Bに、比較例における積層チップ91における回路部の、電源配線から電源端子への接続、及び接地配線から接地端子への接続を示したブロック図を示す。   FIG. 29A is a block diagram showing the connection from the power supply wiring to the power supply terminal and the connection from the ground wiring to the ground terminal of the multilayer chip 90 in this embodiment. FIG. 29B is a block diagram showing the connection from the power supply wiring to the power supply terminal and the connection from the ground wiring to the ground terminal of the circuit portion in the laminated chip 91 in the comparative example.

図29A,Bでは、上チップと下チップとが積層された積層チップ90、91を上面から見たときの要部の概略構成図であり、上チップに形成された回路部96と下チップに形成された回路部97を模式的に示したものである。   29A and 29B are schematic configuration diagrams of the main part when the laminated chips 90 and 91 in which the upper chip and the lower chip are laminated are viewed from the upper surface. The circuit part 96 and the lower chip formed in the upper chip are shown in FIG. The formed circuit part 97 is typically shown.

比較例では、図29Bに示すように、上チップの回路部96の電源配線40b及び接地配線40cと、下チップの回路部97の電源配線57b及び接地配線57cが、別々に各電源端子95及び接地端子94に接続されている。この場合、上チップ及び下チップの両方において、電源配線40b、57b及び接地配線40c、57cの引き回しが必要となる。   In the comparative example, as shown in FIG. 29B, the power supply wiring 40b and the ground wiring 40c of the circuit unit 96 of the upper chip, and the power supply wiring 57b and the ground wiring 57c of the circuit unit 97 of the lower chip are separately connected to each power supply terminal 95 and It is connected to the ground terminal 94. In this case, it is necessary to route the power supply wirings 40b and 57b and the ground wirings 40c and 57c in both the upper chip and the lower chip.

このように、積層チップの設計において、上下のチップをそれぞれ独立して動作させるためには、電源配線又は接地配線等の入出力端子までの結線、及び入出力部の保護回路(図示せず)はそれぞれのチップ内で完結させなければならない。しかしながら、図29Bに示すような積層チップ91では電源配線や接地配線などの共有電位の配線や、図示しない保護回路を両方のチップに重複して配置する構成はレイアウト効率が悪く、チップコストを上げる要因となる   In this way, in the design of the laminated chip, in order to operate the upper and lower chips independently, the connection to the input / output terminals such as the power supply wiring or the ground wiring, and the protection circuit for the input / output unit (not shown) Must be completed within each chip. However, in the laminated chip 91 as shown in FIG. 29B, the configuration in which the wiring of the shared potential such as the power supply wiring and the ground wiring and the protection circuit (not shown) are overlapped on both the chips is inferior in layout efficiency and increases the chip cost. Cause

これに対し、本実施形態例の構成では、図29Aに示すように、上チップ、及び下チップ内の電源配線40b、57b及び接地配線40c、57cは、それぞれ接続孔66及び貫通接続孔65に形成された基板間配線や裏面配線99を介して接続されている。そして、接地端子94及び電源端子95への接続は、下チップの電源配線57b及び接地配線57cで行われる。このため、上チップでは、電源配線40b及び接地配線40cが基板間配線68に接続された後は、配線の引き回しが必要ない。これにより、図29Bの例に比較して、図29Aに示す破線で囲まれた領域zに余剰スペースができるので、この余剰スペースに新たな回路を形成することもできる。この結果、チップ面積を最大限に利用する最適な配置が実現できる。   On the other hand, in the configuration of this embodiment, as shown in FIG. 29A, the power supply wirings 40b and 57b and the ground wirings 40c and 57c in the upper chip and the lower chip are connected to the connection hole 66 and the through-connection hole 65, respectively. They are connected via the formed inter-substrate wiring and back surface wiring 99. Connection to the ground terminal 94 and the power supply terminal 95 is performed by the power supply wiring 57b and the ground wiring 57c of the lower chip. For this reason, in the upper chip, after the power supply wiring 40b and the ground wiring 40c are connected to the inter-substrate wiring 68, it is not necessary to route the wiring. As a result, as compared with the example of FIG. 29B, a surplus space is formed in the region z surrounded by the broken line shown in FIG. 29A, so that a new circuit can be formed in this surplus space. As a result, it is possible to realize an optimal arrangement that makes maximum use of the chip area.

本実施形態例では、回路の一部を、第1の半導体基板31の裏面側に形成した裏面配線99で構成する例としたが、配線の敷地面積に、余剰のスペースがより多くある基板側に2つのチップ間で共通の回路を形成すればよい。これにより、互いの多層配線層の配線層数やレイアウト面積を抑えることが可能となる。   In the present embodiment example, a part of the circuit is configured by the back surface wiring 99 formed on the back surface side of the first semiconductor substrate 31, but the substrate side where the surplus space is more in the site area of the wiring A common circuit may be formed between the two chips. As a result, the number of wiring layers and the layout area of the multilayer wiring layers can be suppressed.

ところで、本来同じ基板上で電源配線や接地配線等の同電位の配線が形成される場合には、隣接する回路間で共有し、レイアウト面積を抑えることは容易に実現できる。しかしながら、2層のチップを別々の基板に形成する構成では、相互の回路の結線経路が基板間配線によって限定されるため、共通電位の配線を共有することは容易ではない。
以下に、本実施形態例の固体撮像装置の設計を実現するための設計方法について説明する。
By the way, when wiring of the same potential such as power supply wiring and ground wiring is originally formed on the same substrate, it can be easily realized by sharing between adjacent circuits and reducing the layout area. However, in a configuration in which two layers of chips are formed on different substrates, the wiring path of the mutual circuit is limited by the inter-substrate wiring, so that it is not easy to share the common potential wiring.
Hereinafter, a design method for realizing the design of the solid-state imaging device according to the present embodiment will be described.

図30に、本実施形態例の固体撮像装置の設計方法を示し、図31〜図34に、その設計プロセスに沿った上チップ(図31〜図34のA)と下チップ(図31〜図34のB)製造工程図を示す。   FIG. 30 shows a design method of the solid-state imaging device according to the present embodiment. FIGS. 31 to 34 show an upper chip (A in FIGS. 31 to 34) and a lower chip (FIGS. 31 to 34) according to the design process. 34B) shows a production process diagram.

本実施形態例の固体撮像装置では、積層する上チップ22及び下チップ26間を基板間配線で接続するためには、回路や配線とバッティングしない位置に基板間配線68を配置することが重要である。   In the solid-state imaging device according to the present embodiment, in order to connect the upper chip 22 and the lower chip 26 to be stacked by inter-substrate wiring, it is important to arrange the inter-substrate wiring 68 at a position where the circuit and wiring are not batted. is there.

まず、回路面積の総和からチップサイズを決定する(ステップS1)。次に、上チップ22及び下チップ26に入れる回路を分類する(ステップS2)。本実施形態例では、図31A,Bに示すように、上チップ22に、画素領域23と、制御回路96を形成し、下チップ26に、ロジック回路97と入出力端子12を形成する例とする。   First, the chip size is determined from the total circuit area (step S1). Next, the circuits to be placed in the upper chip 22 and the lower chip 26 are classified (step S2). In this embodiment, as shown in FIGS. 31A and 31B, the pixel region 23 and the control circuit 96 are formed in the upper chip 22, and the logic circuit 97 and the input / output terminal 12 are formed in the lower chip 26. To do.

次に、基板間配線のレイアウトを決定する。基板間配線のレイアウトは、上チップ22及び下チップ26との間で多くの信号線が直接接続するような個所(固体撮像装置においては、画素と信号配線との間の接続個所)などのように、カスタム設計(客先の注文による設計)された領域から決定する(ステップS2)。これにより、図32A,Bの領域z1で示される領域にカスタム設計による基板間配線の配置領域が決定される。図32A,Bに示すように、直接接続する回路面(すなわち、カスタム設計における基板間配線の位置)は上チップ22及び下チップ26で同じ位置に来なければならず、これを決定すると回路の大まかな配置が限定される。   Next, the layout of the inter-substrate wiring is determined. The layout of the inter-substrate wiring is such that a large number of signal lines are directly connected between the upper chip 22 and the lower chip 26 (in the solid-state imaging device, a connection position between the pixel and the signal wiring). Then, it is determined from a custom designed area (designed by customer order) (step S2). Thereby, the layout area of the inter-board wiring by the custom design is determined in the area indicated by the area z1 in FIGS. 32A and 32B. As shown in FIGS. 32A and 32B, the circuit surface to be directly connected (that is, the position of the inter-board wiring in the custom design) must be at the same position in the upper chip 22 and the lower chip 26. Rough placement is limited.

次に、上チップ22及び下チップ26に搭載する回路部品の仮の外形サイズを定義し仮レイアウトを確定し、回路が配置されない隙間の領域を確定する。これにより、カスタム設計以外の基板間配線の配置可能領域(図32Aの領域z2)を確定する(ステップS4)。下チップ26に関しては、基板間配線を受ける配線を置くことができれば、その直下にも回路を置くことができる。しかしながら、上チップ22は、基板間配線を配置した場合、その直下と周辺には回路を置けなくなるため、基板間配線を配置する領域は、主に上チップ22の回路配置によって限定される。   Next, a provisional external size of circuit components to be mounted on the upper chip 22 and the lower chip 26 is defined, a provisional layout is determined, and a gap area in which no circuit is arranged is determined. As a result, an area (interval z2 in FIG. 32A) for inter-substrate wiring other than the custom design is determined (step S4). With respect to the lower chip 26, if wiring for receiving wiring between substrates can be placed, a circuit can be placed immediately below the wiring. However, when the inter-substrate wiring is arranged on the upper chip 22, no circuit can be arranged immediately below and around the upper chip 22. Therefore, the area where the inter-substrate wiring is arranged is mainly limited by the circuit arrangement of the upper chip 22.

次に、下チップ26における入出力端子12と各回路の接続結線の配線経路(図32Bの配線88)を通常の回路設計と同様の自動配線により求める(ステップS5)。これにより、図32Bに示すように、下チップ26における入出力端子12と、ロジック回路97が配線88により結線される。   Next, a wiring path (wiring 88 in FIG. 32B) for connection between the input / output terminal 12 and each circuit in the lower chip 26 is obtained by automatic wiring similar to normal circuit design (step S5). Thereby, as shown in FIG. 32B, the input / output terminal 12 and the logic circuit 97 in the lower chip 26 are connected by the wiring 88.

次に、上チップ22及び下チップ26間で結線したい同電位の配線を抽出する(ステップS6)。これにより、図33Aに示すように、上チップ22において、下チップ26の配線88と結線したい配線89がレイアウトされる。次に、図34A,Bに示すように、ステップS4で確定した基板間配線の配置可能領域内において、自動配置により上チップ22の配線89と下チップ26の配線88の間の距離が裏面配線を含んで最短になる位置に貫通接続孔65及び接続孔66の配置位置を決定する。これにより、基板間配線の配置位置を決定する(ステップS7)。すなわち、ここにおいて、裏面配線99の配線経路も決定される。これにより、下チップ26と上チップ22の所望の電極間が基板間配線で接続され、下チップ26に接続される基板間配線と、上チップ22に接続される基板間配線とが裏面配線99によって接続される。   Next, a wiring having the same potential to be connected between the upper chip 22 and the lower chip 26 is extracted (step S6). As a result, as shown in FIG. 33A, in the upper chip 22, the wiring 89 to be connected to the wiring 88 of the lower chip 26 is laid out. Next, as shown in FIGS. 34A and 34B, the distance between the wiring 89 of the upper chip 22 and the wiring 88 of the lower chip 26 is automatically changed to the backside wiring within the inter-substrate wiring arrangement area determined in step S4. The through-hole connection hole 65 and the connection position of the connection hole 66 are determined at the shortest position including Thereby, the arrangement position of the inter-substrate wiring is determined (step S7). That is, here, the wiring path of the back surface wiring 99 is also determined. Thereby, desired electrodes of the lower chip 26 and the upper chip 22 are connected by the inter-substrate wiring, and the inter-substrate wiring connected to the lower chip 26 and the inter-substrate wiring connected to the upper chip 22 are back surface wiring 99. Connected by.

このようにして設計、製造された固体撮像装置は、一般的なフローと同様に、接続検証、物理検証、タイミング検証などを行い、完成される。   The solid-state imaging device designed and manufactured in this way is completed by performing connection verification, physical verification, timing verification, and the like, as in a general flow.

以上のように、本実施形態例の固体撮像装置では、積層されたチップ間を貫通する基板間配線を形成するため、回路や配線とバッティングしない位置に基板間配線を形成する必要があり、従来の設計プロセスには無いプロセスを追加する必要がある。   As described above, in the solid-state imaging device according to the present embodiment, it is necessary to form the inter-substrate wiring at a position where the circuit and the wiring are not batted in order to form the inter-substrate wiring penetrating between the stacked chips. It is necessary to add processes that are not included in the design process.

そして、本実施形態例の固体撮像装置の設計方法によれば、上チップ22及び下チップ26との間で、共通電位の配線を基板間配線で接続して形成することができ、かつ、裏面配線を用いることで、チップ内に形成される回路を簡略化することができる。これにより、チップ面積を有効に利用することが可能となり、また、チップサイズの縮小化が図られる。   Then, according to the design method of the solid-state imaging device of the present embodiment example, the common potential wiring can be formed by connecting the inter-substrate wiring between the upper chip 22 and the lower chip 26, and the back surface. By using the wiring, a circuit formed in the chip can be simplified. As a result, the chip area can be used effectively, and the chip size can be reduced.

なお、本実施形態例では、固体撮像装置を例に説明したが、第2の実施形態の半導体装置の製造においても、本実施形態例の設計方法を適用できる。   In the present embodiment, the solid-state imaging device has been described as an example. However, the design method of the present embodiment can also be applied to the manufacture of the semiconductor device of the second embodiment.

従来の積層チップの半導体装置の設計は、回路が機能ブロックごとに切り分けられ、それぞれが上下のチップに振り分けられていた。一方、本発明の半導体装置では、接続孔及び貫通接続孔のピッチを十分小さく(例えば1μm以下まで)することも可能であるため、基板間配線の配置面積を増大させずに、機能ブロックの一部を別の基板に移動することが可能になる。これにより、配線の配置面積が不足している基板から、余剰面積の多い基板へ回路の一部を移動させたり、回路の一部を共通で用いることができ、全体的に余剰面積が少ない最適なレイアウトが可能となる。   In the conventional semiconductor device design of a laminated chip, a circuit is divided into functional blocks, and each is divided into upper and lower chips. On the other hand, in the semiconductor device of the present invention, the pitch between the connection holes and the through-connection holes can be made sufficiently small (for example, up to 1 μm or less). The part can be moved to another substrate. This makes it possible to move a part of the circuit from a board with insufficient wiring layout area to a board with a lot of surplus area, or to use a part of the circuit in common. Layout is possible.

〈5.第4の実施形態〉
[電子機器の構成例]
上述した本発明の固体撮像装置は、例えばデジタルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話、あるいは撮像機能を備えた他の機器、などの電子機器に適用することができる。
<5. Fourth Embodiment>
[Configuration example of electronic equipment]
The above-described solid-state imaging device of the present invention can be applied to electronic devices such as a camera system such as a digital camera or a video camera, a mobile phone having an imaging function, or another device having an imaging function.

図35に、本発明の第4の実施形態に係る電子機器の概略構成図を示す。図35は、本発明の電子機器として、カメラ200を例としたものである。本実施形態例に係るカメラ200は、静止画像又は動画撮影可能なビデオカメラを例とする。本実施形態例のカメラ200は、固体撮像装置203と、固体撮像装置203のフォトダイオードで構成される光電変換部に入射光を導く光学系201と、シャッタ装置202を有する。さらに、カメラ200は、固体撮像装置203を駆動する駆動回路205と、固体撮像装置203の出力信号を処理する信号処理回路204とを有する。   FIG. 35 shows a schematic configuration diagram of an electronic apparatus according to the fourth embodiment of the present invention. FIG. 35 shows a camera 200 as an example of the electronic apparatus of the present invention. The camera 200 according to the present embodiment is an example of a video camera capable of capturing still images or moving images. The camera 200 according to the present embodiment includes a solid-state imaging device 203, an optical system 201 that guides incident light to a photoelectric conversion unit that includes a photodiode of the solid-state imaging device 203, and a shutter device 202. Furthermore, the camera 200 includes a drive circuit 205 that drives the solid-state imaging device 203 and a signal processing circuit 204 that processes an output signal of the solid-state imaging device 203.

固体撮像装置203は、上述した第1の実施形態における固体撮像装置が適用される。光学系(光学レンズ)201は、被写体からの像光(入射光)を固体撮像装置203の撮像面上に結像させる。これにより、固体撮像装置203内に、一定期間信号電荷が蓄積される。光学系201は、複数の光学レンズから構成された光学レンズ系としてもよい。シャッタ装置202は、固体撮像装置203への光照射期間及び遮光期間を制御する。駆動回路205は、固体撮像装置203の転送動作及びシャッタ装置202のシャッタ動作を制御する駆動信号を供給する。駆動回路205から供給される駆動信号(タイミング信号)により、固体撮像装置203の信号転送を行う。信号処理回路204は、各種の信号処理を行う。信号処理が行われた映像信号は、メモリなどの記憶媒体に記憶され、或いは、モニタに出力される。   As the solid-state imaging device 203, the solid-state imaging device according to the first embodiment described above is applied. The optical system (optical lens) 201 forms image light (incident light) from a subject on the imaging surface of the solid-state imaging device 203. Thereby, signal charges are accumulated in the solid-state imaging device 203 for a certain period. The optical system 201 may be an optical lens system including a plurality of optical lenses. The shutter device 202 controls a light irradiation period and a light shielding period for the solid-state imaging device 203. The drive circuit 205 supplies a drive signal that controls the transfer operation of the solid-state imaging device 203 and the shutter operation of the shutter device 202. Signal transfer of the solid-state imaging device 203 is performed by a drive signal (timing signal) supplied from the drive circuit 205. The signal processing circuit 204 performs various signal processing. The video signal subjected to the signal processing is stored in a storage medium such as a memory or output to a monitor.

第4の実施形態に係るカメラ200などの電子機器によれば、固体撮像装置203において高性能化が図られ、かつ製造コストの低減が図られる。このため、本実施形態では、安価で信頼性の高い電子機器を提供することができる。   According to the electronic apparatus such as the camera 200 according to the fourth embodiment, the solid-state imaging device 203 can be improved in performance and the manufacturing cost can be reduced. For this reason, in this embodiment, an inexpensive and highly reliable electronic device can be provided.

1・・・固体撮像装置、2・・・画素、3・・・画素領域、4・・・垂直駆動回路、5・・・カラム信号処理回路、6・・・水平駆動回路、7・・・出力回路、8・・・制御回路、9・・・垂直信号線、10・・・水平信号線、11・・・転送トランジスタ、12・・・入出力端子、13・・・リセットトランジスタ、14・・・増幅トランジスタ、15・・・選択トランジスタ、16・・・フローティングディフュージョン部、21・・・MOS型固体撮像装置、22・・・第1の半導体チップ部、23・・・画素領域、24・・・制御領域、25・・・ロジック回路、26・・・第2の半導体チップ部、27・・・MOS型固体撮像置、30・・・単位画素、31・・・・第1の半導体基板、31b・・・裏面、32・・・半導体ウェル領域、33・・・ソース/ドレイン領域、34・・・n型半導体領域、35・・・p型半導体領域、36・・・ゲート電極、38・・・素子分離領域、39・・・層間絶縁膜、40・・・銅配線、41・・・第1の多層配線層、42・・・絶縁スペーサ層、43a・・・第1絶縁薄膜、43b・・・第2絶縁薄膜、44・・・接続導体、45・・・第2の半導体基板、46・・・半導体ウェル領域、47・・・ソース/ドレイン領域、48・・・ゲート電極、49・・・層間絶縁膜、50・・・素子分離領域、53・・・銅配線、54・・・接続導体、55・・・第2の多層配線層、56・・・バリアメタル層、57・・・アルミ配線、57a・・・信号配線、57b・・・電源配線、57c・・・接地配線、58・・・バリアメタル層、59・・・反り矯正膜、60・・・接着剤層、61・・・反射防止膜、62・・・絶縁膜、63・・・遮光膜、64・・・溝部、65・・・貫通接続孔、66・・・接続孔、67・・・絶縁層、68・・・基板間配線、68a・・・接続配線、69・・・導波路材料膜、70・・・導波路、71・・・平坦化膜、72・・・キャップ膜、73・・・オンチップカラーフィルタ、74・・・オンチップレンズ、74a・・・オンチップレンズ材料、75・・・レジスト膜、76・・・レジスト膜、77・・・貫通開口部、78・・・電極パッド部、79・・・ボンディングワイヤ、81・・・固体撮像装置、81a・・・積層体、140・・・半導体装置、140a・・・積層体 DESCRIPTION OF SYMBOLS 1 ... Solid-state imaging device, 2 ... Pixel, 3 ... Pixel area, 4 ... Vertical drive circuit, 5 ... Column signal processing circuit, 6 ... Horizontal drive circuit, 7 ... Output circuit 8 ... Control circuit 9 ... Vertical signal line 10 ... Horizontal signal line 11 ... Transfer transistor 12 ... Input / output terminal 13 ... Reset transistor 14 ... Amplifying transistor, 15 ... select transistor, 16 ... floating diffusion part, 21 ... MOS type solid-state imaging device, 22 ... first semiconductor chip part, 23 ... pixel region, 24 ..Control area, 25... Logic circuit, 26... Second semiconductor chip portion, 27... MOS type solid-state imaging device, 30... Unit pixel, 31. , 31b ... back surface, 32 ... semiconductor well 33, source / drain regions, 34 ... n-type semiconductor region, 35 ... p-type semiconductor region, 36 ... gate electrode, 38 ... element isolation region, 39 ... interlayer insulation 40, ... Copper wiring, 41 ... First multilayer wiring layer, 42 ... Insulating spacer layer, 43a ... First insulating thin film, 43b ... Second insulating thin film, 44 ... Connection conductor, 45 ... second semiconductor substrate, 46 ... semiconductor well region, 47 ... source / drain region, 48 ... gate electrode, 49 ... interlayer insulating film, 50 ... element Separation region, 53 ... copper wiring, 54 ... connection conductor, 55 ... second multilayer wiring layer, 56 ... barrier metal layer, 57 ... aluminum wiring, 57a ... signal wiring, 57b: power supply wiring, 57c: ground wiring, 58: barrier metal layer, 5 ... Warp correction film, 60 ... Adhesive layer, 61 ... Antireflection film, 62 ... Insulating film, 63 ... Light shielding film, 64 ... Groove, 65 ... Through-connection hole , 66 ... connection hole, 67 ... insulating layer, 68 ... inter-substrate wiring, 68a ... connection wiring, 69 ... waveguide material film, 70 ... waveguide, 71 ... Planarization film, 72 ... Cap film, 73 ... On-chip color filter, 74 ... On-chip lens, 74a ... On-chip lens material, 75 ... Resist film, 76 ... Resist film , 77... Through opening, 78... Electrode pad portion, 79... Bonding wire, 81... Solid imaging device, 81 a. Laminate

Claims (11)

画素アレイが形成され、光入射面とは反対側に設けられた第1の配線層を備える第1の半導体ウェハと、
第2の配線層が形成され、前記第1の半導体ウェハに貼り合わされた第2の半導体ウェハと、
前記第1の半導体ウェハを貫通して設けられ、前記第2の配線層に達する接続孔と、
前記接続孔内に形成され、前記第1の半導体ウェハと前記第2の半導体ウェハとを電気的に接続する一体となった導電材料からなる基板間配線と、
前記基板間配線を囲む領域に形成された絶縁スペーサ層と、
を備え、
前記第1の半導体ウェハは、フォトダイオードを含み、
前記絶縁スペーサ層は、前記第1の半導体ウェハの前記画素アレイの外の領域に、前記フォトダイオードと同じ深さ位置を少なくとも含んで形成されている
固体撮像装置。
A first semiconductor wafer having a first wiring layer formed on a side opposite to the light incident surface, the pixel array being formed;
A second semiconductor wafer having a second wiring layer formed thereon and bonded to the first semiconductor wafer;
A connection hole provided through the first semiconductor wafer and reaching the second wiring layer;
Inter-substrate wiring made of an integral conductive material formed in the connection hole and electrically connecting the first semiconductor wafer and the second semiconductor wafer;
An insulating spacer layer formed in a region surrounding the inter-substrate wiring;
With
The first semiconductor wafer includes a photodiode;
The solid-state imaging device , wherein the insulating spacer layer is formed in a region outside the pixel array of the first semiconductor wafer so as to include at least the same depth position as the photodiode .
請求項1に記載の固体撮像装置であって、
前記基板間配線は、タングステンまたは銅を含む導電材料からなる固体撮像装置。
The solid-state imaging device according to claim 1,
The inter-substrate wiring is a solid-state imaging device made of a conductive material containing tungsten or copper.
請求項1又は請求項2に記載の固体撮像装置であって、
前記基板間配線は、前記第1の配線層と前記第2の配線層と直接接続されている固体撮像装置。
The solid-state imaging device according to claim 1 or 2,
The inter-substrate wiring is a solid-state imaging device that is directly connected to the first wiring layer and the second wiring layer.
請求項3に記載の固体撮像装置であって、
前記基板間配線が前記第2の配線層と直接接続している部分は、前記第1の配線層と直接接続している部分よりも大きい固体撮像装置。
The solid-state imaging device according to claim 3,
The portion where the inter-substrate wiring is directly connected to the second wiring layer is larger than the portion directly connected to the first wiring layer.
請求項1〜請求項4のいずれか1項に記載の固体撮像装置であって、
前記接続孔の側壁には絶縁材料からなる絶縁層が形成されている固体撮像装置。
The solid-state imaging device according to any one of claims 1 to 4,
A solid-state imaging device in which an insulating layer made of an insulating material is formed on a side wall of the connection hole.
請求項1に記載の固体撮像装置であって、
前記基板間配線により、前記第1の配線層と前記第2の配線層とに共通の電位を有する配線が接続される固体撮像装置。
The solid-state imaging device according to claim 1,
A solid-state imaging device in which wiring having a common potential is connected to the first wiring layer and the second wiring layer by the inter-substrate wiring.
請求項6に記載の固体撮像装置であって、
前記第1の半導体ウェハの、前記第1の配線層が形成される側とは反対側の裏面側に形成され、前記基板間配線に電気的に接続された裏面配線によって前記第1の半導体ウェハに設けられた第1の半導体集積回路と前記第2の半導体ウェハに設けられた第2の半導体集積回路とに共通に用いられる回路の一部が形成されている固体撮像装置。
The solid-state imaging device according to claim 6,
The first semiconductor wafer is formed by a back surface wiring formed on the back surface side of the first semiconductor wafer opposite to the side on which the first wiring layer is formed and electrically connected to the inter-substrate wiring. A solid-state imaging device in which a part of a circuit used in common for the first semiconductor integrated circuit provided on the second semiconductor integrated circuit and the second semiconductor integrated circuit provided on the second semiconductor wafer is formed.
請求項1〜請求項7のいずれか1項に記載の固体撮像装置であって、
前記接続孔は画素領域外に配置されている固体撮像装置。
The solid-state imaging device according to any one of claims 1 to 7,
The connection hole is a solid-state imaging device arranged outside a pixel region.
請求項1〜請求項8のいずれか1項に記載の固体撮像装置であって、
前記第2の半導体ウェハは、信号処理回路または制御回路を含む固体撮像装置。
It is a solid-state imaging device given in any 1 paragraph of Claims 1-8 ,
The second semiconductor wafer is a solid-state imaging device including a signal processing circuit or a control circuit.
請求項1〜請求項9のいずれか1項に記載の固体撮像装置であって、
電源端子と設置端子が、該四角形のチップにおいて対向する角に形成されている固体撮像装置。
The solid-state imaging device according to any one of claims 1 to 9,
A solid-state imaging device in which a power supply terminal and an installation terminal are formed at opposite corners of the rectangular chip.
固体撮像装置が搭載された電子機器であって、
前記固体撮像装置は、請求項1〜請求項10のいずれか1項に記載の固体撮像装置の構成である
電子機器。
An electronic device equipped with a solid-state imaging device,
The said solid-state imaging device is an electronic device which is a structure of the solid-state imaging device of any one of Claims 1-10 .
JP2015190385A 2015-09-28 2015-09-28 Solid-state imaging device and electronic device Active JP6233376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015190385A JP6233376B2 (en) 2015-09-28 2015-09-28 Solid-state imaging device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190385A JP6233376B2 (en) 2015-09-28 2015-09-28 Solid-state imaging device and electronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010070925A Division JP5853351B2 (en) 2010-03-25 2010-03-25 SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND ELECTRONIC DEVICE

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016201912A Division JP6256562B2 (en) 2016-10-13 2016-10-13 Solid-state imaging device and electronic device

Publications (2)

Publication Number Publication Date
JP2016034029A JP2016034029A (en) 2016-03-10
JP6233376B2 true JP6233376B2 (en) 2017-11-22

Family

ID=55452778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190385A Active JP6233376B2 (en) 2015-09-28 2015-09-28 Solid-state imaging device and electronic device

Country Status (1)

Country Link
JP (1) JP6233376B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6779825B2 (en) * 2017-03-30 2020-11-04 キヤノン株式会社 Semiconductor devices and equipment
JP7158846B2 (en) 2017-11-30 2022-10-24 キヤノン株式会社 Semiconductor equipment and equipment
JP7353729B2 (en) 2018-02-09 2023-10-02 キヤノン株式会社 Semiconductor devices and semiconductor device manufacturing methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289623A (en) * 2001-03-28 2002-10-04 Toshiba Corp Semiconductor device and method of manufacturing the same
JP4792821B2 (en) * 2005-06-06 2011-10-12 ソニー株式会社 Solid-state imaging device and manufacturing method thereof
FR2910707B1 (en) * 2006-12-20 2009-06-12 E2V Semiconductors Soc Par Act IMAGE SENSOR WITH HIGH DENSITY INTEGRATION
JP2008235478A (en) * 2007-03-19 2008-10-02 Nikon Corp Imaging device
JP2009124087A (en) * 2007-11-19 2009-06-04 Oki Semiconductor Co Ltd Method of manufacturing semiconductor device
JP2009181976A (en) * 2008-01-29 2009-08-13 Panasonic Corp Solid-state imaging device and imaging apparatus

Also Published As

Publication number Publication date
JP2016034029A (en) 2016-03-10

Similar Documents

Publication Publication Date Title
JP5853351B2 (en) SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, AND ELECTRONIC DEVICE
US10777600B2 (en) Semiconductor device, manufacturing method thereof, and electronic apparatus
KR101942680B1 (en) Semiconductor device and electronic apparatus
JP6256562B2 (en) Solid-state imaging device and electronic device
JP5915636B2 (en) Semiconductor device and manufacturing method thereof
JP6200035B2 (en) Semiconductor device
JP6233376B2 (en) Solid-state imaging device and electronic device
JP2018078305A (en) Solid state image sensor and electronic apparatus
JP7001120B2 (en) Solid-state image sensor and electronic equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170817

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171009

R151 Written notification of patent or utility model registration

Ref document number: 6233376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250