JP6232962B2 - How to build pipe members - Google Patents

How to build pipe members Download PDF

Info

Publication number
JP6232962B2
JP6232962B2 JP2013238624A JP2013238624A JP6232962B2 JP 6232962 B2 JP6232962 B2 JP 6232962B2 JP 2013238624 A JP2013238624 A JP 2013238624A JP 2013238624 A JP2013238624 A JP 2013238624A JP 6232962 B2 JP6232962 B2 JP 6232962B2
Authority
JP
Japan
Prior art keywords
pipe
hole
excavation
surface layer
pipe member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013238624A
Other languages
Japanese (ja)
Other versions
JP2015098966A (en
Inventor
金子 正
正 金子
泰之 毎田
泰之 毎田
憲司 三小田
憲司 三小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2013238624A priority Critical patent/JP6232962B2/en
Publication of JP2015098966A publication Critical patent/JP2015098966A/en
Application granted granted Critical
Publication of JP6232962B2 publication Critical patent/JP6232962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • F24T2010/53Methods for installation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Description

本発明は、地中熱交換器に係る管部材の建て込み方法に関する。   The present invention relates to a method for installing a pipe member according to an underground heat exchanger.

通年の温度変動の小さい地中熱を利用して建物の冷暖房等を行う地中熱利用システムが注目されている。この地中熱利用システムでは、地盤との間で採・放熱を行うべく地中に地中熱交換器が設置される。そして、地中熱交換器は、管部材(例えばチューブ)に水を通すことで、例えば、夏場には地盤に放熱し、冬場には地盤から採熱する。   A geothermal heat utilization system that heats and cools buildings using geothermal heat with small year-round temperature fluctuations is attracting attention. In this geothermal heat utilization system, a geothermal heat exchanger is installed in the ground to collect and radiate heat with the ground. The underground heat exchanger, for example, radiates heat to the ground in summer and collects heat from the ground in winter by passing water through a pipe member (for example, a tube).

この地中熱交換器は、地盤に鉛直に埋設される管部材を有する。そして、この管部材内に熱媒体を流し込むとともに、地中熱と熱交換後に当該熱媒体を取り出す等して、ヒートポンプ等へ送出して利用する(例えば、特許文献1参照)。   This underground heat exchanger has a pipe member embedded vertically in the ground. Then, the heat medium is poured into the pipe member, and the heat medium is taken out after exchanging with the underground heat, and sent to a heat pump or the like (for example, see Patent Document 1).

特開2002−13828号公報Japanese Patent Laid-Open No. 2002-13828

このような地中熱交換器を地中に設置するべく、地盤を鉛直方向に掘削して掘削孔を形成している。この掘削の際に、地盤の表層部は柔らかいので崩壊しやすいという問題がある。また、表層部の崩壊を防止する対策を行うと、後述するように、地中熱交換器の設置の作業工程が増加するという問題がある。   In order to install such an underground heat exchanger in the ground, the ground is excavated in the vertical direction to form an excavation hole. During this excavation, there is a problem that the surface layer of the ground is soft and easily collapses. In addition, when measures are taken to prevent the surface layer from collapsing, there is a problem that the work process for installing the underground heat exchanger increases as will be described later.

本発明はかかる課題に鑑みてなされたもので、その主な目的は、表層部の崩壊を防止しつつ作業工程の低減を図ることにある。   This invention is made | formed in view of this subject, The main objective is to aim at reduction of a work process, preventing collapse of a surface layer part.

かかる目的を達成するために本発明の管部材の建て込み方法は、
地中熱交換器に係る管部材を地盤に形成された掘削孔に建て込む管部材の建て込み方法であって、
前記地盤の表層部に前記掘削孔よりも大きい径の表層孔を形成する表層孔形成工程と、
前記表層孔形成工程にて形成された前記表層孔に、前記表層孔の孔壁を保護する孔壁保護材であって、中空部を有する筒形状の孔壁保護材を設置する孔壁保護材設置工程と、
前記中空部に掘削管を貫入させて、前記掘削管によって所定深度の前記掘削孔を形成する掘削孔形成工程と、
前記掘削孔に前記管部材を建て込む管部材建て込み工程と、
前記掘削管を前記掘削孔から引き抜く掘削管引き抜き工程と、
前記孔壁保護材を前記表層孔に残した状態で、前記孔壁保護材の少なくとも一部が埋まるまで、前記掘削孔に充填材を充填する充填材充填工程と、
を有することを特徴とする。
このような管部材の建て込み方法によれば、孔壁保護材により表層部の崩壊を防止できる。また、孔壁保護材を表層孔から引き抜がないことにより作業工程の低減を図ることが可能である。
In order to achieve such an object, the method for installing the pipe member of the present invention includes:
A pipe member erection method in which a pipe member related to an underground heat exchanger is erected in an excavation hole formed in the ground,
A surface hole forming step of forming a surface layer hole having a diameter larger than that of the excavation hole in the surface layer portion of the ground;
The surface layer holes formed in said surface layer hole forming step, said a hole wall protecting member for protecting the hole wall surface holes, hole wall protection that established the pore walls protective material of tubular shape having a hollow portion Material installation process;
A drilling hole forming step of inserting a drilling pipe into the hollow portion and forming the drilling hole at a predetermined depth by the drilling pipe;
A pipe member erection step of erected the pipe member in the excavation hole;
A drilling pipe extracting step of extracting the drilling pipe from the drilling hole;
A filler filling step of filling the excavation hole with a filler until at least a part of the hole wall protective material is filled with the hole wall protective material left in the surface layer hole;
It is characterized by having.
According to such a pipe member erection method, the surface layer portion can be prevented from collapsing by the hole wall protective material. Moreover, it is possible to reduce the work process by not pulling out the hole wall protective material from the surface layer hole.

かかる管部材の建て込み方法であって、前記孔壁保護材の上端まで前記充填材を充填することが望ましい。
かかる管部材の建て込み方法であって、前記充填材充填工程の後、前記孔壁保護材の上面を覆う蓋部材を設置する蓋部材設置工程をさらに有することが望ましい。
このような管部材の建て込み方法によれば、より確実に養生することが可能である。
In this method of installing the pipe member, it is desirable that the filler is filled up to the upper end of the hole wall protective material.
It is desirable to further include a lid member installation step of installing a lid member that covers the upper surface of the hole wall protective material after the filler filling step.
According to such a pipe member erection method, it is possible to cure more reliably.

かかる管部材の建て込み方法であって、前記孔壁保護材は樹脂製であることが望ましい。
このような管部材の建て込み方法によれば、孔壁保護材を表層孔に残しておくことが可能である。
In this method of building a pipe member, it is preferable that the hole wall protective material is made of resin.
According to such a pipe member erection method, it is possible to leave the hole wall protective material in the surface layer hole.

かかる管部材の建て込み方法であって、前記蓋部材は樹脂製であることが望ましい。
このような管部材の建て込み方法によれば、既製品を利用でき、養生を簡易に行うことが可能である。
In this method of building a pipe member, it is preferable that the lid member is made of resin.
According to such a pipe member erection method, ready-made products can be used and curing can be performed easily.

本発明によれば、表層部の崩壊を防止しつつ作業工程の低減を図ることが可能である。   According to the present invention, it is possible to reduce work processes while preventing the surface layer from collapsing.

本実施形態に係る地中熱交換器21を用いた地中熱利用システム11の説明図である。It is explanatory drawing of the underground heat utilization system 11 using the underground heat exchanger 21 which concerns on this embodiment. 図2Aは、地盤Gの竪孔23を透視して見た地中熱交換器21の概略側面図であり、図2Bは、図2A中のB−B断面図である。2A is a schematic side view of the underground heat exchanger 21 seen through the hole 23 of the ground G, and FIG. 2B is a cross-sectional view taken along line BB in FIG. 2A. 図3A〜図3Eは、比較例における地中熱交換器21の設置工事の施工手順の説明図である。Drawing 3A-Drawing 3E are explanatory views of a construction procedure of installation construction of underground heat exchanger 21 in a comparative example. 掘削の作業工程を示す概略図である。It is the schematic which shows the work process of excavation. 掘削管24の連結構造を説明するための概略拡大縦断面図である。3 is a schematic enlarged longitudinal sectional view for explaining a connection structure of excavation pipes 24. FIG. 図6A〜図6Dは、本実施形態における地中熱交換器21の設置工事の施工手順の説明図である。6A to 6D are explanatory diagrams of the construction procedure of the installation work of the underground heat exchanger 21 in the present embodiment.

===本実施形態===
<<<地中熱交換器について>>>
図1は、本実施形態に係る地中熱交換器21を用いた地中熱利用システム11の説明図である。図2Aは、地盤Gの竪孔23を透視して見た地中熱交換器21の概略側面図であり、図2Bは、図2A中のB−B断面図である。
=== This Embodiment ===
<<< About underground heat exchanger >>>
FIG. 1 is an explanatory diagram of a ground heat utilization system 11 using a ground heat exchanger 21 according to the present embodiment. 2A is a schematic side view of the underground heat exchanger 21 seen through the hole 23 of the ground G, and FIG. 2B is a cross-sectional view taken along line BB in FIG. 2A.

この地中熱利用システム11は、地盤Gとの間で熱交換を行う地中熱交換器21と、地中熱交換器21の熱媒体26からの熱を利用して建物1の暖房のための温水や冷房のための冷水を生成するヒートポンプ15と、循環ポンプ17とを有する。なお、ヒートポンプ15の構成は周知なので、その説明は省略する。   The ground heat utilization system 11 is for heating the building 1 by using heat from the ground heat exchanger 21 that performs heat exchange with the ground G and the heat medium 26 of the ground heat exchanger 21. A heat pump 15 that generates hot water and cold water for cooling, and a circulation pump 17. In addition, since the structure of the heat pump 15 is known, the description is abbreviate | omitted.

図2A及び図2Bに示すように、この地中熱交換器21は、所謂「ボアホール方式」である。すなわち、地盤Gに形成された掘削孔としての竪孔23と、竪孔23に挿入されるU字管30と、竪孔23とU字管30との間の空間SP23に充填される充填材27と、を有している。そして、U字管30の一方の管端開口35aには、ヒートポンプ15から熱媒体26として水又は不凍液等が送り込まれ、当該熱媒体26は、U字管30を流れる間に地盤Gの地中熱により加熱又は冷却され、しかる後に、U字管30の他方の管端開口35bから、循環ポンプ17によりヒートポンプ15へ向けて送られて、ヒートポンプ15にて温水生成や冷水生成に供される。   As shown in FIGS. 2A and 2B, the underground heat exchanger 21 is a so-called “borehole system”. That is, the filling material filled in the space SP23 between the borehole 23 and the U-shaped pipe 30 and the U-shaped pipe 30 inserted into the borehole 23, and the space SP23 between the borehole 23 and the U-shaped pipe 30. 27. Then, water or antifreeze or the like is sent as heat medium 26 from the heat pump 15 to one pipe end opening 35 a of the U-shaped pipe 30, and the heat medium 26 flows into the ground G while flowing through the U-shaped pipe 30. Heated or cooled by heat, and then sent from the other pipe end opening 35 b of the U-shaped pipe 30 toward the heat pump 15 by the circulation pump 17, and used for hot water generation or cold water generation by the heat pump 15.

竪孔23は、地面Gにほぼ垂直に掘削された孔であり、その直径は100〜200mm、深さは30〜150mである。また、竪孔23の上部(地盤Gの表層部)には表層孔23aが形成されている。表層孔23aの直径は竪孔23の直径よりも大きく、深さは1〜5m程度である。また、表層孔23aの側壁(孔壁)には、樹脂製養生管28が設けられている。樹脂製養生管28は、表層孔23aの側壁を保護し、掘削の際の崩壊を防止するものである。樹脂製養生管28の詳細については後述する。   The borehole 23 is a hole excavated substantially perpendicularly to the ground G, and has a diameter of 100 to 200 mm and a depth of 30 to 150 m. Further, a surface layer hole 23 a is formed in the upper portion of the fistula 23 (surface layer portion of the ground G). The diameter of the surface layer hole 23a is larger than the diameter of the fist hole 23, and the depth is about 1 to 5 m. A resin curing tube 28 is provided on the side wall (hole wall) of the surface layer hole 23a. The resin curing tube 28 protects the side wall of the surface layer hole 23a and prevents collapse during excavation. Details of the resin curing tube 28 will be described later.

U字管30は、例えば高密度ポリエチレン等の樹脂製のU字形状の管である。詳しくは、当該U字管30は、熱媒体26の流路の折り返し部分をなすU字継手部31と、U字継手部31に連結される二本の単管35,35とを有し、当該U字継手部31を竪孔23の最深部に位置させつつ、2本の単管35,35の各管端開口35a,35bを、それぞれ竪孔23の外に突出させている。そして、これら管端開口35a,35bのうちの一方(ここでは管端開口35a)は、ヒートポンプ15から送られる熱媒体26の取入口となり、他方(ここでは管端開口35b)は、地盤Gとの間で熱交換した熱媒体26をヒートポンプ15へ送り出す送出口となる。   The U-shaped tube 30 is a U-shaped tube made of resin such as high-density polyethylene. Specifically, the U-shaped tube 30 includes a U-shaped joint portion 31 that forms a folded portion of the flow path of the heat medium 26, and two single tubes 35 and 35 that are connected to the U-shaped joint portion 31. The pipe end openings 35 a and 35 b of the two single pipes 35 and 35 are respectively protruded from the hole 23 while the U-shaped joint part 31 is positioned at the deepest part of the hole 23. One of these pipe end openings 35a and 35b (here, the pipe end opening 35a) serves as an inlet for the heat medium 26 sent from the heat pump 15, and the other (here, the pipe end opening 35b) is connected to the ground G. It becomes a delivery port which sends out the heat medium 26 heat-exchanged between them to the heat pump 15.

なお、図示例では、一つの竪孔23につき、かかるU字管30,30が一対設けられている。つまり、図2Aでは、奥側に隠れて見えないが、先端のU字継手部31,31を重ね合わせた状態で、一対のU字管30,30が竪孔23内に建て込まれており、これにより、図2Bに示すように計4本の単管35,35,35,35が配されている。なお、U字管30(より具体的には各々の単管35)は管部材に相当する。   In the illustrated example, a pair of such U-shaped tubes 30, 30 are provided for each fistula 23. In other words, in FIG. 2A, the pair of U-shaped tubes 30, 30 are built in the fistula 23 with the U-shaped joint portions 31, 31 at the leading ends being overlapped, although they are hidden behind and cannot be seen. Thus, as shown in FIG. 2B, a total of four single tubes 35, 35, 35, 35 are arranged. The U-shaped tube 30 (more specifically, each single tube 35) corresponds to a tube member.

充填材27は、例えば、モルタル、川砂や山砂、珪砂等を基材とし、U字管30と竪孔23との間の空間SP23に密実に充填される。これにより、充填材27を介して、U字管30内の熱媒体26と地盤Gとの間で熱交換が行われる。なお、この熱交換効率を高めるべく、充填材27に対して、1〜20%の容積含有率(=長粒物の総容積/充填材27の総容積)で、炭化ケイ素、アルミナ、及び高炉スラグのうちの少なくとも何れか1種からなる長粒物を混入しても良い。   The filler 27 is made of, for example, mortar, river sand, mountain sand, quartz sand, or the like as a base material, and is densely filled into the space SP23 between the U-shaped tube 30 and the fistula 23. Thereby, heat exchange is performed between the heat medium 26 in the U-shaped tube 30 and the ground G through the filler 27. In order to increase the heat exchange efficiency, silicon carbide, alumina, and blast furnace with a volume content of 1 to 20% with respect to the filler 27 (= total volume of long particles / total volume of the filler 27). You may mix the long grain thing which consists of at least any 1 type of slag.

<<<地中熱交換器の設置工事について>>>
本実施形態について説明する前に、比較例について説明する。
<<<< About the installation work of the underground heat exchanger >>>>
Before describing this embodiment, a comparative example will be described.

<比較例>
図3A〜図3Eは、比較例における地中熱交換器21の設置工事の施工手順の説明図である。
<Comparative example>
Drawing 3A-Drawing 3E are explanatory views of a construction procedure of installation construction of underground heat exchanger 21 in a comparative example.

先ず、図3Aに示すように口元掘削管22にて地盤Gの表層部の掘削を行いつつ、口元掘削管22を表層部に建て込む。なお、口元掘削管22による掘削の方法は、後述する掘削管24を用いたものと同様である。この口元掘削管22は、竪孔23形成の際に地盤表層部の崩壊を防ぐ役割をなすものであり、その長さ(管軸方向の長さ)は、例えば1〜5mの短尺なものである。但し、口元掘削管22の管径(内径)は、その内周側に竪孔23が形成されることから、竪孔23の孔径(直径)よりも若干大きく設定されている。   First, as shown in FIG. 3A, the mouth excavation pipe 22 is built in the surface layer portion while excavating the surface layer portion of the ground G with the mouth excavation pipe 22. The excavation method using the mouth excavation pipe 22 is the same as that using the excavation pipe 24 described later. This mouth excavation pipe 22 plays a role of preventing the ground surface layer from collapsing when the hole 23 is formed, and its length (length in the pipe axis direction) is, for example, as short as 1 to 5 m. is there. However, the diameter (inner diameter) of the mouth excavation pipe 22 is set slightly larger than the diameter (diameter) of the hole 23 because the hole 23 is formed on the inner peripheral side thereof.

次に、図3Bに示すように、掘削管24を用いて口元掘削管22の内側の地盤Gの部分を掘削し、最終的に孔径100〜200mm、深さ30〜150mの竪孔23を形成する。   Next, as shown in FIG. 3B, a portion of the ground G inside the mouth excavation pipe 22 is excavated using the excavation pipe 24 to finally form a hole 23 having a hole diameter of 100 to 200 mm and a depth of 30 to 150 m. To do.

図4は、掘削の作業工程を示す概略図である。ここでは、一部の構成を側面視で示し、それ以外の構成は縦断面視で示している。   FIG. 4 is a schematic diagram illustrating an excavation work process. Here, a part of the configuration is shown in a side view, and the other configuration is shown in a longitudinal sectional view.

竪孔23の掘削は、ボーリングマシン60によってなされる。ボーリングマシン60は、ドリルとしての鋼製掘削管24を管軸周りに回転可能に把持するアーム62を有する。そして、掘削管24の管軸方向を掘削方向たる略鉛直方向に向けながら管端面を地盤Gの掘削面に押し付けて管軸周りに回転させることにより地盤Gに竪孔23を形成する。そして、所定の掘削深さまで達したら、地中の掘削管24の上方に更に掘削管24を継ぎ足して同芯に連結し、当該連結を繰り返して目標の掘削深さまで竪孔23を掘り進めていく。そのため、竪孔23が完成した際には、竪孔23内にはその略全長に亘って掘削管24,24…の連結体が挿入された状態になっている。   The borehole 23 is excavated by a boring machine 60. The boring machine 60 has an arm 62 that grips a steel excavating pipe 24 as a drill so as to be rotatable around a pipe axis. Then, the hole 23 is formed in the ground G by pressing the pipe end surface against the excavation surface of the ground G and rotating it around the pipe axis while directing the pipe axis direction of the excavation pipe 24 in a substantially vertical direction as the excavation direction. When the predetermined excavation depth is reached, the excavation pipe 24 is further added above the underground excavation pipe 24 and connected to the concentric core, and the connection is repeated until the borehole 23 is dug to the target excavation depth. . Therefore, when the borehole 23 is completed, the connecting body of the excavation pipes 24, 24... Is inserted into the borehole 23 over substantially the entire length thereof.

なお、上下の掘削管24,24同士を同芯に突き合わせて連結する連結構造としては、ここでは、ねじ構造が使用されている。   Note that a screw structure is used here as a connecting structure for connecting the upper and lower excavating pipes 24, 24 while concentric with each other.

図5は、掘削管24の連結構造を説明するための概略拡大縦断面図である。図5に示すように、掘削管24の上端部たる上側管端部24euの内周面には、雌ねじ25fが形成されており、他方、その上方に継ぎ足される掘削管24の下端部たる下側管端部24edの外周面には、雄ねじ25mが形成されている。そして、これら雌ねじ25fと雄ねじ25mとが螺合することにより、これら掘削管24,24同士は上下に連結一体化される。   FIG. 5 is a schematic enlarged longitudinal sectional view for explaining the connection structure of the excavation pipe 24. As shown in FIG. 5, an internal thread 25 f is formed on the inner peripheral surface of the upper pipe end 24 eu that is the upper end of the excavation pipe 24, and on the other hand, the lower side that is the lower end of the excavation pipe 24 that is added to the upper side A male screw 25m is formed on the outer peripheral surface of the tube end 24ed. Then, when the female screw 25f and the male screw 25m are screwed together, the excavating pipes 24, 24 are connected and integrated vertically.

また、先頭たる最下端の掘削管24の管端面からは、高圧の削孔水23wが掘削面へ向けて噴射されるようになっており、これにより掘削性が向上されている。なお、この削孔水23wの用途は、掘削に限らない。すなわち、掘削土を泥状にしつつ上方へ浮上させて排土することにも用いられる。よって、掘削終了時には、一般に竪孔23内には、当該使用済みの削孔水が充満している。この掘削水はポンプ(不図示)などによって除去する。   Further, high-pressure drilling water 23w is jetted toward the excavation surface from the end surface of the lowermost excavation tube 24 as the head, thereby improving excavation performance. The use of the drilling water 23w is not limited to excavation. In other words, it is also used for excavating soil by floating upward while making the excavated soil muddy. Therefore, at the end of excavation, the borehole 23 is generally filled with the used drilling water. This drilling water is removed by a pump (not shown).

このように竪孔23を形成した後、図3Cに示すように、竪孔23の掘削管24内にU字管30を建て込む。この際、U字管30の管軸方向(単管35の管軸方向のこと)たる長手方向を、掘削管24の管軸方向たる鉛直方向に沿わせつつ建て込む。そして、U字管30を目標の建て込み深さまで建て込んだら、U字管30を切断する。   After forming the hole 23 in this way, as shown in FIG. 3C, the U-shaped pipe 30 is installed in the excavation pipe 24 of the hole 23. At this time, the U-shaped tube 30 is built with the longitudinal direction, which is the tube axis direction of the U-tube 30 (the tube axis direction of the single tube 35), being aligned with the vertical direction, which is the tube axis direction of the excavating tube 24. Then, after the U-shaped tube 30 has been built to the target depth, the U-shaped tube 30 is cut.

次に、図3Dに示すように、掘削管24(詳しくは掘削管24の連結体)を上方へ引き抜いて竪孔23から取り出し、竪孔23内に充填材27を充填する。その後、図3Eに示すように、口元掘削管22を引き抜きつつ、表層孔23aの内部をセメントモルタル40で埋め戻す。   Next, as shown in FIG. 3D, the excavation pipe 24 (specifically, the connecting body of the excavation pipe 24) is pulled upward and taken out from the borehole 23, and a filling material 27 is filled into the borehole 23. Thereafter, as shown in FIG. 3E, the inside of the surface layer hole 23a is backfilled with cement mortar 40 while the mouth excavation pipe 22 is pulled out.

この比較例の場合、充填材を充填した後に、口元掘削管22を引き抜き、さらに、セメントモルタル40で表層孔23aを埋め戻す必要があるため作業工程が増加してしまう。そこで、以下に示す本実施形態では、作業工程の低減を図っている。   In the case of this comparative example, after filling the filler, it is necessary to draw out the mouth excavation pipe 22 and backfill the surface layer hole 23a with the cement mortar 40, which increases the number of work steps. Therefore, in the present embodiment described below, work processes are reduced.

<本実施形態>
図6A〜図6Dは、本実施形態における地中熱交換器21の設置工事の施工手順の説明図である。
<This embodiment>
6A to 6D are explanatory diagrams of the construction procedure of the installation work of the underground heat exchanger 21 in the present embodiment.

先ず、図6Aに示すように、対象地盤Gに比較例と同様の表層孔23aを形成し(「表層孔形成工程」に相当)、当該表層孔23aに土留め用の塩化ビニル製等の樹脂製養生管28(孔壁保護材に相当)を、管軸方向を鉛直方向に向けつつ圧入する(「孔壁保護材設置工程」に相当)。この樹脂製養生管28は、表層孔23aの側壁(孔壁)を保護し、地盤表層部の崩落を防ぐものであり、中空部を有する円筒形状の部材である。樹脂製養生管28の長さ(管軸方向の長さ)や管径は、比較例の口元掘削管22と同様に設定されている。   First, as shown in FIG. 6A, a surface layer hole 23a similar to the comparative example is formed in the target ground G (corresponding to a “surface layer hole forming step”), and a resin such as vinyl chloride for retaining earth is formed in the surface layer hole 23a. The curing tube 28 (corresponding to the hole wall protective material) is press-fitted while the pipe axis direction is in the vertical direction (corresponding to “hole wall protective material installation step”). This resin curing tube 28 protects the side wall (hole wall) of the surface layer hole 23a and prevents the ground surface layer portion from collapsing, and is a cylindrical member having a hollow portion. The length of the resin curing pipe 28 (length in the pipe axis direction) and the pipe diameter are set in the same manner as the mouth excavation pipe 22 of the comparative example.

次に、図6Bに示すように、樹脂製養生管28の中空部に掘削管24を貫入させ、比較例と同様に掘削管24を管軸周りに回転させて、樹脂製養生管28の内側の地盤Gの部分を掘削する。また、比較例と同様に、所定の掘削深さまで達したら、地中の掘削管24の上方に更に掘削管24を継ぎ足して同芯に連結し、当該連結を繰り返して目標の掘削深さまで竪孔23を掘り進めていく。このようにして、竪孔23を形成する(「掘削孔形成工程」に相当)。   Next, as shown in FIG. 6B, the excavation pipe 24 is inserted into the hollow portion of the resin curing pipe 28, and the excavation pipe 24 is rotated around the pipe axis in the same manner as in the comparative example. Excavate the ground G part. Similarly to the comparative example, when a predetermined excavation depth is reached, the excavation pipe 24 is further connected to the concentric core above the underground excavation pipe 24, and the connection is repeated until the target excavation depth is reached. We will dig 23. In this way, the hole 23 is formed (corresponding to the “digging hole forming step”).

その後、図6Cに示すように、竪孔23の掘削管24内にU字管30を、その管軸方向(単管35の管軸方向のこと)たる長手方向を、掘削管24の管軸方向たる鉛直方向に沿わせつつ建て込む(「管部材建て込み工程」に相当)。U字管30を目標の建て込み深さまで建て込んだら、各U字管30を各リール装置70から分離すべくU字管30(単管35)を切断する。   Thereafter, as shown in FIG. 6C, the U-shaped tube 30 is placed in the excavated pipe 24 of the borehole 23, and the longitudinal direction corresponding to the pipe axis direction (the pipe axis direction of the single pipe 35) is set as the pipe axis of the excavated pipe 24. Build along the vertical direction (corresponding to the “pipe member building process”). After the U-shaped tube 30 is built to the target depth, the U-shaped tube 30 (single tube 35) is cut to separate each U-shaped tube 30 from each reel device 70.

次に、掘削管24(詳しくは掘削管24の連結体)を上方へ引き抜いて竪孔23から取り出す(「掘削管引き抜き工程」に相当)。そして、この掘削管24の引き抜き作業が終わったら、図6Dに示すように竪孔23内に充填材27を入れてU字管30,30を埋める(「充填材充填工程」に相当)。なお、本実施形態(図6D)では、樹脂製養生管28の上端まで充填材27を充填しているが、少なくとも、表層孔23a(言い換えると、樹脂製養生管28)の一部が埋まるまで充填材27を埋めればよい。すなわち、充填材27の上方に空洞があってもよい。   Next, the excavation pipe 24 (specifically, the connecting body of the excavation pipe 24) is pulled upward and taken out from the borehole 23 (corresponding to “excavation pipe extraction process”). Then, after the excavation work of the excavation pipe 24 is completed, as shown in FIG. 6D, the filling material 27 is put into the hole 23 and the U-shaped pipes 30 and 30 are filled (corresponding to “filling material filling process”). In this embodiment (FIG. 6D), the filler 27 is filled up to the upper end of the resin curing tube 28, but at least until a part of the surface layer hole 23a (in other words, the resin curing tube 28) is filled. What is necessary is just to fill the filler 27. That is, there may be a cavity above the filler 27.

最後に、樹脂製養生管28(及び表層孔23a)の上面を覆うように樹脂製養生蓋29を取り付ける(「蓋部材設置工程」に相当)。ここで、樹脂製養生蓋29は、例えば樹脂製養生管28と同様の塩化ビニル製の蓋であり、樹脂製養生管28の上面の形状に応じた形状のものが用いられる。例えば、本実施形態の樹脂製養生管28は円筒形状であるので、樹脂製養生蓋29は円形の蓋である。   Finally, a resin curing lid 29 is attached so as to cover the upper surface of the resin curing tube 28 (and the surface layer hole 23a) (corresponding to a “lid member installation step”). Here, the resin curing lid 29 is, for example, a vinyl chloride lid similar to the resin curing tube 28, and has a shape corresponding to the shape of the upper surface of the resin curing tube 28. For example, since the resin curing tube 28 of this embodiment has a cylindrical shape, the resin curing lid 29 is a circular lid.

なお、設備配管(例えば、図1のヒートポンプ15への配管など)は、後で別途行われる(後工事)。このように樹脂製養生蓋29を取り付けておくことにより、後工事までの間に他の工事などによって単管35が傷つけられることを防止でき、確実に養生することができる。また、樹脂製養生蓋29には既製品を利用でき、簡易に養生することができる。ただし、単管35が傷ついたり汚れたりするおそれがなく、保護する必要のない場合は、樹脂製養生蓋29は取り付けなくてもよい。   In addition, equipment piping (for example, piping to the heat pump 15 of FIG. 1 etc.) is separately performed later (post-construction). By attaching the resin curing lid 29 in this way, it is possible to prevent the single pipe 35 from being damaged by other constructions or the like until the post-construction, and the curing can be surely performed. Further, ready-made products can be used for the resin curing lid 29, and the resin curing lid 29 can be easily cured. However, the resin curing lid 29 may not be attached when there is no possibility that the single tube 35 is damaged or dirty and it is not necessary to protect the single tube 35.

以上、説明したように、本実施形態では、地盤Gの表層部に竪孔23よりも大きい径の表層孔23aを形成し、中空部を有する円筒形状の樹脂製養生管28を表層孔23aに設置して表層孔23aの側壁(孔壁)を保護している。   As described above, in the present embodiment, in the surface layer portion of the ground G, the surface layer hole 23a having a diameter larger than that of the fistula 23 is formed, and the cylindrical resin curing tube 28 having a hollow portion is formed in the surface layer hole 23a. It is installed to protect the side wall (hole wall) of the surface layer hole 23a.

そして、樹脂製養生管28の中空部に掘削管24を貫入させて、掘削管24によって所定深度の竪孔23を形成し、竪孔23にU字管30を建て込んだ後、掘削管24を竪孔23から引き抜いている。その後、樹脂製養生管28を表層孔23aに残した状態で、樹脂製養生管28が埋まるまで、竪孔23に充填材27を充填している。   Then, the excavation pipe 24 is penetrated into the hollow portion of the resin curing pipe 28, the borehole 23 having a predetermined depth is formed by the excavation pipe 24, and the U-shaped pipe 30 is installed in the borehole 23, and then the excavation pipe 24. Is pulled out from the fistula 23. Thereafter, with the resin curing tube 28 left in the surface layer hole 23a, the fistula 23 is filled with the filler 27 until the resin curing tube 28 is filled.

これにより、樹脂製養生管28により表層部の崩壊を防止することができる。また、樹脂製養生管28は表層孔23aから引き抜かずに残しておくため、セメントモルタル40などで表層孔23aを埋め戻す必要がない。よって、比較例と比べて地中熱交換器21の設置工事の作業工程を低減することができる。   Thereby, collapse of the surface layer portion can be prevented by the resin curing tube 28. Further, since the resin curing tube 28 is left without being pulled out from the surface layer hole 23a, it is not necessary to backfill the surface layer hole 23a with cement mortar 40 or the like. Therefore, the work process of the installation work of the underground heat exchanger 21 can be reduced as compared with the comparative example.

===その他の実施の形態===
上記実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることはいうまでもない。特に、以下に述べる実施形態であっても、本発明に含まれるものである。
=== Other Embodiments ===
The above embodiment is for facilitating the understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and it is needless to say that the present invention includes equivalents thereof. In particular, the embodiments described below are also included in the present invention.

<U字管について>
前述の実施形態では、竪孔23にはU字管30が一対(単管35が4本)挿入されているが、これには限られない。例えば、挿入するU字管30が1つ(単管35が2本)であってもよい。
<About U-shaped pipe>
In the above-described embodiment, a pair of U-shaped tubes 30 (four single tubes 35) are inserted into the fistula 23, but the present invention is not limited to this. For example, the number of U-shaped tubes 30 to be inserted may be one (two single tubes 35).

また、管形状は何等U字状に限るものではない。例えば、二重管式の地中熱交換器の場合には、同熱交換器の本体として、外筒と、外筒内に挿入配置される内筒とが使用され、そして、外筒としては、下端部が密閉封止された単管状の管部材が竪孔23に建て込まれることになるが、当該単管状の管部材であっても本発明に係る建て込み方法を適用可能である。なお、この単管状の管部材の一例としては、コルゲート管(corrugated pipe:波形管)が挙げられ、当該管によれば、その外周面及び内周面の螺旋波形形状に基づく表面積の拡大効果により、地盤Gとコルゲート管内の熱媒体との熱交換効率を高めることができる。   The tube shape is not limited to a U shape. For example, in the case of a double pipe type underground heat exchanger, an outer cylinder and an inner cylinder inserted and arranged in the outer cylinder are used as the main body of the heat exchanger, and the outer cylinder is A single tubular tube member whose bottom end is hermetically sealed is built into the fistula 23. However, the erection method according to the present invention can be applied even to the single tubular tube member. In addition, as an example of this single tubular pipe member, a corrugated pipe (corrugated pipe) is cited, and according to the pipe, due to the effect of expanding the surface area based on the helical corrugated shape of the outer peripheral surface and the inner peripheral surface. The heat exchange efficiency between the ground G and the heat medium in the corrugated pipe can be increased.

<掘削管について>
前述の実施形態では、掘削管24,24同士の連結構造としてねじ構造を例示したが、何等これに限るものではなく、これ以外の周知の管継ぎ手構造を用いても良い。また、前述のねじ構造の説明の中では、掘削管24の上側管端部24euに雌ねじ25fを設け、下側管端部24edに雄ねじ25mを設けていたが、この設置位置関係を上下逆さまにしても良い。すなわち、上側管端部24euに雄ねじ25mを設け、下側管端部24edに雌ねじ25fを設けても構わない。
<About drilling pipe>
In the above-described embodiment, the screw structure is exemplified as the connection structure between the excavating pipes 24, 24. However, the present invention is not limited to this, and other known pipe joint structures may be used. In the description of the screw structure described above, the female pipe 25f is provided at the upper pipe end 24eu of the excavating pipe 24, and the male screw 25m is provided at the lower pipe end 24ed. May be. That is, a male screw 25m may be provided at the upper tube end 24eu, and a female screw 25f may be provided at the lower tube end 24ed.

また、前述の実施形態では、掘削管24を管軸周りに回転させて掘削を行っていたがこれには限らない。例えば、振動を与えて掘削するものであってもよい。   In the above-described embodiment, excavation is performed by rotating the excavation pipe 24 around the pipe axis, but the present invention is not limited to this. For example, it may excavate with vibration.

<樹脂製養生管、樹脂製養生蓋について>
前述の実施形態では、樹脂製養生管28及び樹脂製養生蓋29は塩化ビニル製であったが、これには限られず他の樹脂を用いたものであってもよい。また、樹脂以外の材料を用いてもよい。
<About resin curing tube and resin curing lid>
In the above-described embodiment, the resin curing tube 28 and the resin curing lid 29 are made of vinyl chloride. However, the present invention is not limited to this, and another resin may be used. A material other than resin may be used.

1 建物、11 地中熱利用システム、
15 ヒートポンプ、17 循環ポンプ、
21 地中熱交換器、22 口元掘削管、
23 竪孔(掘削孔)、23a 表層孔、
24 掘削管、24ed 下側管端部、24eu 上側管端部、
25m 雄ねじ、25f 雌ねじ、26 熱媒体、
27 充填材、28 樹脂製養生管、29 樹脂製養生蓋
30 U字管、31 U字継手部、35 単管、
35a 管端開口、35b 管端開口、
60 ボーリングマシン、62 アーム、
SP23 空間、G 地盤(地面)
1 building, 11 geothermal heat utilization system,
15 heat pump, 17 circulation pump,
21 underground heat exchanger, 22 mouth excavation pipe,
23 hole (drilling hole), 23a surface layer hole,
24 excavation pipe, 24ed lower pipe end, 24eu upper pipe end,
25m male thread, 25f female thread, 26 heat medium,
27 Filler, 28 Resin Curing Tube, 29 Resin Curing Lid 30 U-shaped Tube, 31 U-shaped Joint, 35 Single Tube,
35a pipe end opening, 35b pipe end opening,
60 boring machine, 62 arms,
SP23 space, G ground (ground)

Claims (5)

地中熱交換器に係る管部材を地盤に形成された掘削孔に建て込む管部材の建て込み方法であって、
前記地盤の表層部に前記掘削孔よりも大きい径の表層孔を形成する表層孔形成工程と、
前記表層孔形成工程にて形成された前記表層孔に、前記表層孔の孔壁を保護する孔壁保護材であって、中空部を有する筒形状の孔壁保護材を設置する孔壁保護材設置工程と、
前記中空部に掘削管を貫入させて、前記掘削管によって所定深度の前記掘削孔を形成する掘削孔形成工程と、
前記掘削孔に前記管部材を建て込む管部材建て込み工程と、
前記掘削管を前記掘削孔から引き抜く掘削管引き抜き工程と、
前記孔壁保護材を前記表層孔に残した状態で、前記孔壁保護材の少なくとも一部が埋まるまで、前記掘削孔に充填材を充填する充填材充填工程と、
を有することを特徴とする管部材の建て込み方法。
A pipe member erection method in which a pipe member related to an underground heat exchanger is erected in an excavation hole formed in the ground,
A surface hole forming step of forming a surface layer hole having a diameter larger than that of the excavation hole in the surface layer portion of the ground;
The surface layer holes formed in said surface layer hole forming step, said a hole wall protecting member for protecting the hole wall surface holes, hole wall protection that established the pore walls protective material of tubular shape having a hollow portion Material installation process;
A drilling hole forming step of inserting a drilling pipe into the hollow portion and forming the drilling hole at a predetermined depth by the drilling pipe;
A pipe member erection step of erected the pipe member in the excavation hole;
A drilling pipe extracting step of extracting the drilling pipe from the drilling hole;
A filler filling step of filling the excavation hole with a filler until at least a part of the hole wall protective material is filled with the hole wall protective material left in the surface layer hole;
A method for installing a pipe member, comprising:
請求項1に記載の管部材の建て込み方法であって、
前記孔壁保護材の上端まで前記充填材を充填する
ことを特徴とする管部材の建て込み方法。
A pipe member embedding method according to claim 1,
The tube member erection method, wherein the filler is filled up to an upper end of the hole wall protective material.
請求項1又は請求項2に記載の管部材の建て込み方法であって、
前記充填材充填工程の後、前記孔壁保護材の上面を覆う蓋部材を設置する蓋部材設置工程をさらに有することを特徴とする管部材の建て込み方法。
A pipe member erection method according to claim 1 or 2,
The tube member erection method further comprising a lid member installation step of installing a lid member that covers an upper surface of the hole wall protective material after the filler filling step.
請求項1乃至請求項3の何れかに記載の管部材の建て込み方法であって、
前記孔壁保護材は樹脂製である、
ことを特徴とする管部材の建て込み方法。
A pipe member erection method according to any one of claims 1 to 3,
The hole wall protective material is made of resin.
A pipe member erection method characterized by the above.
請求項3に記載の管部材の建て込み方法であって、
前記蓋部材は樹脂製である、
ことを特徴とする管部材の建て込み方法。
A pipe member erection method according to claim 3,
The lid member is made of resin.
A pipe member erection method characterized by the above.
JP2013238624A 2013-11-19 2013-11-19 How to build pipe members Active JP6232962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013238624A JP6232962B2 (en) 2013-11-19 2013-11-19 How to build pipe members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013238624A JP6232962B2 (en) 2013-11-19 2013-11-19 How to build pipe members

Publications (2)

Publication Number Publication Date
JP2015098966A JP2015098966A (en) 2015-05-28
JP6232962B2 true JP6232962B2 (en) 2017-11-22

Family

ID=53375691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013238624A Active JP6232962B2 (en) 2013-11-19 2013-11-19 How to build pipe members

Country Status (1)

Country Link
JP (1) JP6232962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085670B2 (en) 2018-09-14 2021-08-10 Geosource Energy Inc. Method and apparatus for installing geothermal heat exchanger

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3611735A (en) * 1968-10-24 1971-10-12 Tech Inc Const Method of making concrete bodies
US4332511A (en) * 1980-04-09 1982-06-01 Bradley Dennis K Cable burying apparatus
JPS61216923A (en) * 1985-03-20 1986-09-26 Shimizu Constr Co Ltd Construction of in-situ concrete pile
US5183100A (en) * 1991-02-14 1993-02-02 Harrell Jr James E System for efficiently exchanging heat or cooling ground water in a deep well
JPH09324422A (en) * 1996-06-04 1997-12-16 Ohbayashi Corp Cast-in-place compound pile and building method therefor
JPH11247186A (en) * 1998-03-02 1999-09-14 Nkk Corp Pile-head concrete removing method and device for steel pipe pile filled with concrete
JP2002013828A (en) * 2000-06-29 2002-01-18 Hitachi Plant Eng & Constr Co Ltd Underground heat exchanger and method for installing the underground heat exchanger
JP2002303088A (en) * 2001-04-06 2002-10-18 Nippon Steel Corp Method of installing heat-exchanger tube for utilizing underground heat
JP2006077388A (en) * 2004-08-12 2006-03-23 Norihiro Watanabe Pile burying method
US7380605B1 (en) * 2005-01-31 2008-06-03 Wolf Clifton E Energy transfer loop apparatus and method of installation
US7597138B1 (en) * 2006-01-25 2009-10-06 American Refining Group, Inc. Ground water heat transfer systems and deployment thereof
JP2009198037A (en) * 2008-02-20 2009-09-03 Jfe Steel Corp Geothermal heat gathering device
CA2639648C (en) * 2008-09-12 2019-12-31 Alain Desmeules System and method for geothermal conduit loop in-ground installation and soil penetrating head therefor
US8047744B2 (en) * 2008-10-24 2011-11-01 Ronald Hall Conduit laying machine
US20110265989A1 (en) * 2008-11-10 2011-11-03 Pemtec Ab System for exchanging energy with a ground
JP5419728B2 (en) * 2010-01-25 2014-02-19 ミサワ環境技術株式会社 U-tube insertion device and insertion method
JP5678637B2 (en) * 2010-12-15 2015-03-04 株式会社大林組 Method of installing pipe member related to underground heat exchanger in excavation hole

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085670B2 (en) 2018-09-14 2021-08-10 Geosource Energy Inc. Method and apparatus for installing geothermal heat exchanger
US11774145B2 (en) 2018-09-14 2023-10-03 Geosource Energy Inc. Method and apparatus for installing geothermal heat exchanger

Also Published As

Publication number Publication date
JP2015098966A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
US5623986A (en) Advanced in-ground/in-water heat exchange unit
JP2012524235A (en) Underground continuous loop heat exchanger, its manufacturing method and heating, cooling or energy storage method
KR20140135598A (en) Underground water circulator of Geohill open type geothermal system and method for constructing the same
JP2004233031A (en) Underground heat exchanger by hollow tubular body embedded by rotating press-fitting method, and highly efficient energy system using the same
JP5621218B2 (en) Underground heat exchanger and filler
JP2002303088A (en) Method of installing heat-exchanger tube for utilizing underground heat
JP2006052588A (en) Pile with underground heat exchanging outer pipe, and method of constructing underground heat exchanger using the pile
JP5363399B2 (en) Construction method of underground heat exchanger
JP5659767B2 (en) Method of installing pipe member related to underground heat exchanger in excavation hole
CN107447749A (en) A kind of heat-exchange system and construction technology based on deep layer pipe laying and energy pile
JP6232962B2 (en) How to build pipe members
CN105927271A (en) Grouting backfilling system and grouting backfilling method for vertical shafts in vertical heat exchangers
JP5712597B2 (en) Method of installing pipe member related to underground heat exchanger in ground excavation hole
JP5659766B2 (en) Method of installing pipe member related to underground heat exchanger in ground excavation hole
KR101795583B1 (en) Heat exchange system for geothermal borehole
JP2014020645A (en) Holding member
JP5678637B2 (en) Method of installing pipe member related to underground heat exchanger in excavation hole
JP5612505B2 (en) Heat collection tube construction method
JP5183703B2 (en) Heat exchange pile and its installation structure
JP6237867B2 (en) Insertion method of underground heat exchanger
CN105698437B (en) A kind of U-joint used for geothermal heat pump, earth source heat pump and earth source heat pump construction method
JP5533620B2 (en) Method of installing U-shaped pipe in ground excavation hole for underground heat exchanger
JP6099889B2 (en) Heat exchanger construction method and heat exchange construction unit
JP4859871B2 (en) Buried pipe for heat exchange
KR101714709B1 (en) Heat exchange system for geothermal borehole and constructing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171009

R150 Certificate of patent or registration of utility model

Ref document number: 6232962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150