JP6224970B2 - Fluid heating device - Google Patents

Fluid heating device Download PDF

Info

Publication number
JP6224970B2
JP6224970B2 JP2013195250A JP2013195250A JP6224970B2 JP 6224970 B2 JP6224970 B2 JP 6224970B2 JP 2013195250 A JP2013195250 A JP 2013195250A JP 2013195250 A JP2013195250 A JP 2013195250A JP 6224970 B2 JP6224970 B2 JP 6224970B2
Authority
JP
Japan
Prior art keywords
flow path
fluid
phase
electrodes
forming body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013195250A
Other languages
Japanese (ja)
Other versions
JP2015017794A (en
Inventor
外村 徹
徹 外村
泰広 藤本
泰広 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP2013195250A priority Critical patent/JP6224970B2/en
Publication of JP2015017794A publication Critical patent/JP2015017794A/en
Application granted granted Critical
Publication of JP6224970B2 publication Critical patent/JP6224970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

本発明は、流体加熱装置に関するものである。   The present invention relates to a fluid heating apparatus.

流体加熱装置としては、特許文献1に示すように、中空導体管を通電加熱して、当該導体管の内部を流れる流体を加熱して加熱流体を発生するものがある。この流体加熱装置では、導体管の両端部に設けた電極から交流電圧が印加されて、導体管の側壁に交流電流が流れることにより、導体管の内部抵抗により発生するジュール熱によって導体管が自己発熱する。この導体管の自己発熱によって、当該導体管を流れる流体が加熱される。   As a fluid heating device, as shown in Patent Document 1, there is a device that energizes and heats a hollow conductor tube and heats a fluid flowing inside the conductor tube to generate a heated fluid. In this fluid heating apparatus, an AC voltage is applied from the electrodes provided at both ends of the conductor tube, and an AC current flows through the side wall of the conductor tube, so that the conductor tube self-acts due to Joule heat generated by the internal resistance of the conductor tube. Fever. The fluid flowing through the conductor tube is heated by the self-heating of the conductor tube.

しかしながら、導体管の両端部に交流電圧を印加するものでは、導体管が有するインダクタンスによって電圧降下が生じ、当該導体管に交流電圧を印加する回路の力率が低下するという問題がある。   However, when the AC voltage is applied to both ends of the conductor tube, there is a problem that a voltage drop occurs due to the inductance of the conductor tube, and the power factor of the circuit that applies the AC voltage to the conductor tube is reduced.

特開2011−86443号公報JP 2011-86443 A

そこで本発明は、上記問題点を一挙に解決するためになされたものであり、内部に流体が流れる流路形成体を通電加熱する流体加熱装置において、回路力率を改善して設備効率を向上させることをその主たる所期課題とするものである。   Accordingly, the present invention has been made to solve the above-mentioned problems all at once, and in a fluid heating apparatus that energizes and heats a flow path forming body through which a fluid flows, the circuit power factor is improved and the equipment efficiency is improved. The main intended task is to make it happen.

すなわち本発明に係る流体加熱装置は、内部に被加熱流体が流れる導電性材料からなる流路形成体を通電加熱して、前記流路を流れる被加熱流体を加熱する流体加熱装置であって、前記流路形成体が、直線状の流路を形成する1又は複数の直線部を有し、前記直線部に、前記流路を流れる流体を噴出する複数の流体噴出口が設けられ、前記直線部における前記流路の流路方向に沿って複数の電極が接続されており、互いに隣り合う前記電極に接続される単相交流電源の極性が異なるように、単相交流電源のU相及びV相が交互に接続されていることを特徴とする。   That is, the fluid heating device according to the present invention is a fluid heating device that heats the heated fluid flowing through the flow path by energizing and heating the flow path forming body made of a conductive material through which the heated fluid flows. The flow path forming body has one or a plurality of straight line portions that form a straight flow path, and the straight line portion is provided with a plurality of fluid jets that eject the fluid that flows through the flow path. A plurality of electrodes are connected along the flow path direction of the flow path in the section, and the U-phase and V of the single-phase AC power supply are different so that the polarities of the single-phase AC power supplies connected to the electrodes adjacent to each other are different. The phases are connected alternately.

このようなものであれば、互いに隣り合う前記電極間に流れる電流の位相が互いに逆向きとなるので、それぞれの電流により発生する磁束が打ち消し合い、前記流路形成体に発生するインピーダンスが低減されて回路力率を改善することができる。したがって、流体加熱装置の設備効率を向上させることができる。また、前記直線部に複数の流体噴出口が設けられているので、加熱された被加熱流体を流路形成体から外部の所定の噴射範囲に直接噴出することができる。   In such a case, the phases of the currents flowing between the electrodes adjacent to each other are opposite to each other, so that the magnetic fluxes generated by the respective currents cancel each other, and the impedance generated in the flow path forming body is reduced. The circuit power factor can be improved. Therefore, the equipment efficiency of the fluid heating device can be improved. In addition, since the plurality of fluid ejection ports are provided in the straight portion, the heated fluid to be heated can be directly ejected from the flow path forming body to a predetermined external ejection range.

前記直線部を前記流路方向に沿って2n等分(nは1以上の整数である。)する位置に、前記電極がそれぞれ接続されていることが望ましい。これならば、各電極間に発生する磁束量が略等しくなり、前記電極間に発生する磁束を効率良く打ち消すことができる。   It is desirable that the electrodes are respectively connected to the position where the straight portion is equally divided into 2n along the flow path direction (n is an integer of 1 or more). In this case, the amount of magnetic flux generated between the electrodes becomes substantially equal, and the magnetic flux generated between the electrodes can be canceled out efficiently.

また本発明に係る流体加熱装置は、内部に被加熱流体が流れる流路が形成された導電性材料からなる流路形成体を通電加熱して、前記流路を流れる被加熱流体を加熱する流体加熱装置であって、前記流路形成体が、それぞれ互いに略平行に配置され、直線状の流路を形成する2n個(nは1以上の整数である。)の直線部と、互いに隣り合う前記直線部の端部を接続して蛇行した1本の流路を形成する2n−1個の折返し部とを有し、前記流路形成体に前記流路を流れる流体を噴出する複数の流体噴出口が設けられ、前記流路形成体において、前記蛇行した流路の両端部に電極が接続されるとともに、前記2n−1個の折返し部の少なくとも1つに電極が接続されており、前記複数の電極が、前記流路方向に沿って互いに隣り合う電極の間の流路を形成する前記直線部が偶数個になるように接続されており、前記流路方向に沿って互いに隣り合う電極に接続される単相交流電源の極性が異なるように、単相交流電源のU相及びV相が交互に接続されていることが望ましい。   Moreover, the fluid heating apparatus according to the present invention is a fluid for heating the fluid to be heated flowing through the flow path by energizing and heating a flow path forming body made of a conductive material in which the flow path through which the fluid to be heated flows is formed. In the heating device, the flow path forming bodies are arranged substantially parallel to each other, and are adjacent to 2n (n is an integer of 1 or more) straight line portions that form a straight flow path. A plurality of fluids having 2n-1 folded portions that form one flow path meandering by connecting end portions of the straight line portions, and ejecting fluid flowing through the flow path to the flow path forming body In the flow path forming body, electrodes are connected to both ends of the meandering flow path, and electrodes are connected to at least one of the 2n-1 folded portions, A plurality of electrodes are arranged between the electrodes adjacent to each other along the flow path direction. The linear portions of the single-phase AC power supply are connected so that the straight line portions forming the path are an even number, and the polarities of the single-phase AC power supplies connected to the electrodes adjacent to each other along the flow path direction are different. It is desirable that the U phase and the V phase are connected alternately.

このようなものであれば、互いに隣り合う前記直線部に流れる電流が互いに逆向きとなるので、それぞれの電流により発生する磁束が打ち消し合い、流路形成体に発生するインピーダンスが低減されて回路力率を改善することができる。したがって、流体加熱装置の設備効率を向上させることができる。また、前記直線部に複数の流体噴出口が設けられているので、加熱された被加熱流体を流路形成体から外部の所定の噴射範囲に直接噴出することができる。   In such a case, since the currents flowing in the linear portions adjacent to each other are opposite to each other, the magnetic fluxes generated by the respective currents cancel each other, and the impedance generated in the flow path forming body is reduced to reduce the circuit force. The rate can be improved. Therefore, the equipment efficiency of the fluid heating device can be improved. In addition, since the plurality of fluid ejection ports are provided in the straight portion, the heated fluid to be heated can be directly ejected from the flow path forming body to a predetermined external ejection range.

前記折り返し部に接続される電極が、前記流路方向に沿って互いに隣り合う電極の間の流路を形成する前記直線部が2個になるように接続されていることが望ましい。
これならば、流路方向に沿って互いに隣接する電極間の直線部が2個ずつであり、各直線部を流れる電流により発生する磁束を確実に打ち消し合うことができる。これにより、流路形成体に発生するインピーダンスの低減効果を一層顕著にし、回路力率の改善効果を向上させることができる。
It is desirable that the electrodes connected to the folded portion are connected so that there are two straight portions forming a flow path between electrodes adjacent to each other along the flow path direction.
In this case, there are two linear portions between the electrodes adjacent to each other along the flow path direction, and the magnetic flux generated by the current flowing through each linear portion can be canceled with certainty. Thereby, the effect of reducing the impedance generated in the flow path forming body can be made more remarkable, and the effect of improving the circuit power factor can be improved.

また本発明に係る流体加熱装置は、内部に被加熱流体が流れる導電性材料からなる流路形成体を通電加熱して、前記流路を流れる被加熱流体を加熱する流体加熱装置であって、前記流路形成体が、直線状の流路を形成する1又は複数の直線部を有し、前記直線部に、前記流路を流れる流体を噴出する複数の流体噴出口が設けられ、前記直線部における前記流路の流路方向に沿って複数の電極が接続されており、連続して並ぶ3個の前記電極に接続される三相交流電源の極性がそれぞれ異なるように、三相交流電源のU相、V相及びW相が交互に接続されていることが望ましい。   The fluid heating device according to the present invention is a fluid heating device that heats the heated fluid flowing through the flow path by energizing and heating the flow path forming body made of a conductive material through which the heated fluid flows. The flow path forming body has one or a plurality of straight line portions that form a straight flow path, and the straight line portion is provided with a plurality of fluid jets that eject the fluid that flows through the flow path. The three-phase AC power supply is connected such that a plurality of electrodes are connected along the flow path direction of the flow path in the section, and the polarities of the three-phase AC power supplies connected to the three electrodes arranged in series are different. It is desirable that the U-phase, V-phase and W-phase are alternately connected.

このようなものであれば、連続して並ぶ3つの電極に接続される三相交流電源の極性がそれぞれ異なるように三相交流電源のU相、V相及びW相が接続されているので、連続して並ぶ3つの電極に流れる電流により発生する磁束が打ち消し合い流路形成体に発生するインピーダンスが低減されて回路力率を改善することができる。したがって、流体加熱装置の設備効率を向上させることができる。また、前記直線部に複数の流体噴出口が設けられているので、定められる所定の噴射範囲に噴出することができる。   If this is the case, the U-phase, V-phase and W-phase of the three-phase AC power supply are connected so that the polarities of the three-phase AC power supply connected to the three electrodes arranged in series are different. The magnetic flux generated by the currents flowing through the three electrodes arranged in series cancels each other out, and the impedance generated in the flow path forming body is reduced, so that the circuit power factor can be improved. Therefore, the equipment efficiency of the fluid heating device can be improved. Moreover, since the several fluid jet nozzle is provided in the said linear part, it can eject to the predetermined injection range defined.

前記直線部を前記流路方向に沿って3n等分(nは1以上の整数である。)する位置に、前記電極がそれぞれ接続されていることが望ましい。これならば、各電極間に発生する磁束量が略等しくなり、前記電極間に発生する磁束を効率良く打ち消すことができる。   It is desirable that the electrodes are respectively connected to positions where the straight portion is equally divided into 3n along the flow path direction (n is an integer of 1 or more). In this case, the amount of magnetic flux generated between the electrodes becomes substantially equal, and the magnetic flux generated between the electrodes can be canceled out efficiently.

また本発明に係る流体加熱装置は、内部に被加熱流体が流れる流路が形成された導電性材料からなる流路形成体を通電加熱して、前記流路を流れる被加熱流体を加熱する流体加熱装置であって、前記流路形成体が、それぞれ互いに略平行に配置され、直線状の流路を形成する3n個(nは1以上の整数である。)の直線部と、互いに隣り合う前記直線部の端部を接続して蛇行した1本の流路を形成する3n−1個の折返し部とを有し、前記流路形成体に前記流路を流れる流体を噴出する複数の流体噴出口が設けられ、前記流路形成体において、前記蛇行した流路の両端部及び前記折返し部に三相交流電源に接続された電極がそれぞれ接続されるとともに、前記流路の流路方向に沿って連続して並ぶ3個の前記電極に接続される三相交流電源の極性がそれぞれ異なるように、三相交流電源のU相、V相及びW相が交互に接続されていることが望ましい。   Moreover, the fluid heating apparatus according to the present invention is a fluid for heating the fluid to be heated flowing through the flow path by energizing and heating a flow path forming body made of a conductive material in which the flow path through which the fluid to be heated flows is formed. In the heating device, the flow path forming bodies are arranged substantially parallel to each other, and are adjacent to 3n (n is an integer of 1 or more) straight line portions that form a straight flow path. A plurality of fluids having 3n-1 folded portions forming one flow path meandering by connecting end portions of the straight portions, and ejecting fluid flowing through the flow path to the flow path forming body In the flow path forming body, electrodes connected to a three-phase AC power source are respectively connected to both ends and the folded portion of the meandering flow path, and in the flow path direction of the flow path. Of a three-phase AC power source connected to the three electrodes arranged continuously along Sex, respectively different, it is desirable to three-phase AC power source of the U-phase, V-phase and W-phase are connected alternately.

このようなものであれば、連続して並ぶ3つの電極に接続される三相交流電源の極性がそれぞれ異なるように三相交流電源のU相、V相及びW相が接続されているので、連続して並ぶ3つの電極に流れる電流により発生する磁束が打ち消し合い流路形成体に発生するインピーダンスが低減されて回路力率を改善することができる。したがって、流体加熱装置の設備効率を向上させることができる。また、前記直線部に複数の流体噴出口が設けられているので、加熱された被加熱流体を流路形成体から外部の所定の噴射範囲に直接噴出することができる。   If this is the case, the U-phase, V-phase and W-phase of the three-phase AC power supply are connected so that the polarities of the three-phase AC power supply connected to the three electrodes arranged in series are different. The magnetic flux generated by the currents flowing through the three electrodes arranged in series cancels each other out, and the impedance generated in the flow path forming body is reduced, so that the circuit power factor can be improved. Therefore, the equipment efficiency of the fluid heating device can be improved. In addition, since the plurality of fluid ejection ports are provided in the straight portion, the heated fluid to be heated can be directly ejected from the flow path forming body to a predetermined external ejection range.

前記流路形成体が、銅よりも高電気抵抗を有する導電性材料からなることが望ましい。これならば、配線又は電極等に銅を用いた場合に、通電加熱する際に前記流路形成体を効率良く加熱することができるので、被加熱流体を効率良く高温の状態にすることができる。   It is desirable that the flow path forming body is made of a conductive material having a higher electric resistance than copper. In this case, when copper is used for the wiring or the electrode, the flow path forming body can be efficiently heated when energized and heated, so that the fluid to be heated can be efficiently brought to a high temperature state. .

前記電極間毎に電力制御装置を設け、前記電極に印加される電力が制御可能に構成されたことが望ましい。これならば、前記電極間毎における前記流路形成体の温度を個別に制御することができ、被加熱流体を効率良く所望の状態にすることができる。   It is desirable that a power control device is provided between the electrodes so that the power applied to the electrodes can be controlled. If it is this, the temperature of the said flow path formation body between every said electrodes can be controlled separately, and a to-be-heated fluid can be efficiently made into a desired state.

前記流体噴出口に流体噴出ノズルが取り付けられたことが望ましい。これならば、前記流体噴出口に流体噴出ノズルを設けることによって、加熱された流体を当該流体噴出ノズルにより定められる所定の噴射範囲に噴出することができる。ここで、前記流体噴出口に設けられる流体噴出ノズルは、用途に応じて選択される。   It is desirable that a fluid ejection nozzle is attached to the fluid ejection port. In this case, by providing a fluid ejection nozzle at the fluid ejection port, the heated fluid can be ejected to a predetermined ejection range determined by the fluid ejection nozzle. Here, the fluid ejection nozzle provided at the fluid ejection port is selected according to the application.

前記流路形成体に流入する前記被加熱流体が、飽和水蒸気又は過熱水蒸気であって、前記流路形成体から流出する流体が過熱水蒸気であることが望ましい。   It is desirable that the fluid to be heated flowing into the flow path forming body is saturated steam or superheated steam, and the fluid flowing out from the flow path forming body is superheated steam.

また、前記流路形成体が、加熱された流体を収容するための収容容器等の収容室、又は、加熱された流体により被処理物を処理するための処理容器等の処理室内に設けられていることが望ましい。これならば、加熱された流体を収容室に収容させることで保温又は加熱することができる。また、処理室内で被処理物を処理することができる。このとき、前記流路形成体に接続される単相交流電源又は三相交流電源が、前記収容室又は前記処理室とは別の空間に設けられていることが望ましい。本発明では、流路形成体が過熱蒸気発生部として機能するため、流路形成体を保温室又は処理室に設け、保温室又は処理室の外部に設けられた単相交流電源又は三相交流電源により電力を供給すれば良く、配管構成を簡略化することができるとともに、熱効率を向上させることができ、省エネにも大きく貢献することができる。また、保温室又は処理室と単相交流電源又は三相交流電源が設置された空間(例えば電源室)とを電気配線で接続すればよく、流体加熱装置の全体構成を簡略化することができるとともに、単相交流電源又は三相交流電源が流路形成体からの熱影響を受けることもない。   Further, the flow path forming body is provided in a storage chamber such as a storage container for storing a heated fluid, or a processing chamber such as a processing container for processing an object to be processed by the heated fluid. It is desirable. If it is this, it can heat-retain or heat by accommodating the heated fluid in a storage chamber. In addition, an object to be processed can be processed in the processing chamber. At this time, it is desirable that a single-phase AC power source or a three-phase AC power source connected to the flow path forming body is provided in a space different from the storage chamber or the processing chamber. In the present invention, since the flow path forming body functions as a superheated steam generation unit, the flow path forming body is provided in the thermal insulation room or the processing room, and the single-phase AC power source or the three-phase alternating current provided outside the thermal storage room or the processing room What is necessary is just to supply electric power with a power supply, and while being able to simplify a piping structure, thermal efficiency can be improved and it can contribute greatly also to energy saving. Moreover, what is necessary is just to connect a thermal storage room or a processing room, and the space (for example, power supply room) in which the single-phase alternating current power supply or the three-phase alternating current power supply was installed, and can simplify the whole structure of a fluid heating apparatus. At the same time, the single-phase AC power source or the three-phase AC power source is not affected by the heat from the flow path forming body.

このように構成した本発明によれば、内部に流体が流れる流路形成体を通電加熱する流体加熱装置において、回路力率を改善して設備効率を向上させることができる。   According to the present invention configured as described above, in the fluid heating apparatus that energizes and heats the flow path forming body through which the fluid flows, the circuit power factor can be improved and the equipment efficiency can be improved.

第1実施形態に係る流体加熱装置の構成を模式的に示す正面図。The front view which shows typically the structure of the fluid heating apparatus which concerns on 1st Embodiment. 第1実施形態に係る変形例の構成を模式的に示す底面図。The bottom view which shows typically the structure of the modification which concerns on 1st Embodiment. 第2実施形態に係る流体加熱装置の構成を模式的に示す正面図。The front view which shows typically the structure of the fluid heating apparatus which concerns on 2nd Embodiment. 第2実施形態に係る変形例の構成を模式的に示す底面図。The bottom view which shows typically the structure of the modification which concerns on 2nd Embodiment. 第3実施形態に係る流体加熱装置の構成を模式的に示す底面図。The bottom view which shows typically the structure of the fluid heating apparatus which concerns on 3rd Embodiment. 第4実施形態に係る流体加熱装置の構成を模式的に示す底面図。The bottom view which shows typically the structure of the fluid heating apparatus which concerns on 4th Embodiment.

<第1実施形態>
以下に本発明に係る流体加熱装置の第1実施形態について図面を参照して説明する。
<First Embodiment>
A fluid heating device according to a first embodiment of the present invention will be described below with reference to the drawings.

本実施形態に係る流体加熱装置100は、内部に被加熱流体が流れる流路Rが形成された導電性材料からなる流路形成体2に交流電圧を印加して直接通電し、流路形成体2の内部抵抗により発生するジュール熱によって流路形成体2を加熱することにより、前記流路Rを流れる被加熱流体を加熱するものである。   The fluid heating apparatus 100 according to this embodiment applies an AC voltage to the flow path forming body 2 made of a conductive material, in which a flow path R in which a fluid to be heated flows is formed, and directly energizes the flow path forming body. The fluid to be heated flowing in the flow path R is heated by heating the flow path forming body 2 with Joule heat generated by the internal resistance of 2.

本実施形態の流路形成体2は、図1に示すように、概略円筒直管状のパイプから形成されている。これにより、流路Rは、直線状をなす1本の流路となる。また、流路形成体2は、銅よりも高電気抵抗を有する導電性材料からなり、例えばステンレスやチタン等で形成されていれば良い。なお、流路形成体2の流路一端部2a側の一端開口である第1流通口P1には、フランジ部21が形成されており、外部配管との接続が可能となるように構成されている。同様に、流路形成体2の流路他端部2b側の他端開口である第2流通口P2には、フランジ部21が形成されており、外部配管との接続が可能となるように構成されている。   As shown in FIG. 1, the flow path forming body 2 of the present embodiment is formed from a substantially cylindrical straight pipe. Thereby, the flow path R becomes a linear flow path. The flow path forming body 2 is made of a conductive material having a higher electrical resistance than copper, and may be formed of, for example, stainless steel or titanium. In addition, the flange part 21 is formed in the 1st distribution port P1 which is one end opening by the side of the flow-path end part 2a of the flow-path formation body 2, and it is comprised so that a connection with external piping is possible. Yes. Similarly, a flange portion 21 is formed at the second flow port P2 which is the other end opening on the flow channel other end portion 2b side of the flow channel forming body 2, so that it can be connected to an external pipe. It is configured.

そして、流路形成体2には、流路形成体2における流路Rの流路方向に沿って略4等分する位置に、電極3が5個接続されている。この5個の電極3のうちの2個は、流路一端部2a及び流路他端部2bに接続されている。これらの電極3は、単相交流電源の出力端子に接続されており、互いに隣り合う電極3に接続される単相交流電源の極性が異なるように、単相交流電源のU相及びV相が交互に接続されている。具体的には、最も流路一端部2a側にある電極3から順に、U相、V相、U相、V相、U相となるように接続されている。なお、電極3に接続される単相交流電源のU相及びV相の順序は図1に示すものに限られず、U相とV相とが逆になったものでも良い。   Then, five electrodes 3 are connected to the flow path forming body 2 at positions substantially equally divided into 4 along the flow path direction of the flow path R in the flow path forming body 2. Two of the five electrodes 3 are connected to the channel one end 2a and the channel other end 2b. These electrodes 3 are connected to the output terminals of the single-phase AC power supply, and the U-phase and V-phase of the single-phase AC power supply are different so that the polarities of the single-phase AC power supplies connected to the adjacent electrodes 3 are different. Connected alternately. Specifically, they are connected so as to be in the U phase, V phase, U phase, V phase, and U phase in order from the electrode 3 that is closest to the flow channel one end 2a side. Note that the order of the U phase and V phase of the single-phase AC power source connected to the electrode 3 is not limited to that shown in FIG. 1, and the U phase and V phase may be reversed.

ここで、電極3の数は、5個に限定されず、流路形成体2における流路Rの流路方向に沿って2n等分(nは1以上の整数である。)する位置に接続されていれば良い。例えば本実施形態のように、流路一端部2a及び流路他端部2bにそれぞれ電極3が接続されている場合には、電極3が2n+1個接続されているものであれば良い。   Here, the number of the electrodes 3 is not limited to five, and is connected to a position that is equally divided by 2n (n is an integer of 1 or more) along the flow path direction of the flow path R in the flow path forming body 2. It only has to be done. For example, when the electrodes 3 are connected to the flow path one end 2a and the flow path other end 2b as in the present embodiment, it is sufficient if 2n + 1 electrodes 3 are connected.

また、流路形成体2の途中(一端部2a及び他端部2bの間)の外側周面には、複数の流体噴出口22が設けられている。この流体噴出口22は、流路形成体2の外側周面における流路方向に直交する一方向側(図1における下方)を向くように、各電極3の間において同じ個数ずつ配置されている。本実施形態において流体噴出口22は、各電極3の間にそれぞれ4つずつ配置されている。さらに、本実施形態の各流体噴出口22には、流体噴出ノズル24が取り付けられている。なお、流体噴出口22は流路形成体2の外側周面において周方向全体に形成されるものであっても良い。また、本実施形態の流体噴出口22は、流路形成体2の外側周面において流路一端部2aから流路他端部2bに亘って長手方向の略全体に形成されているが、長手方向の一部、例えば流路形成体2の長手方向中央部から他端部2bに形成しても良い。このように構成された流路形成体2は、加熱された流体を収容するための収容室、又は加熱された流体により被処理物を処理するための処理室内に設けられる。そして、この流路形成体2に接続される単相交流電源が、前記収容室又は前記処理室とは別の空間(例えば電源室)に設けられる。   A plurality of fluid jets 22 are provided on the outer peripheral surface in the middle of the flow path forming body 2 (between the one end 2a and the other end 2b). The same number of fluid ejection ports 22 are arranged between the electrodes 3 so as to face one direction side (downward in FIG. 1) orthogonal to the flow path direction on the outer peripheral surface of the flow path forming body 2. . In the present embodiment, four fluid ejection ports 22 are arranged between each electrode 3. Furthermore, a fluid ejection nozzle 24 is attached to each fluid ejection port 22 of the present embodiment. Note that the fluid ejection port 22 may be formed on the entire outer circumferential surface of the flow path forming body 2 in the circumferential direction. Further, the fluid ejection port 22 of the present embodiment is formed on the outer peripheral surface of the flow path forming body 2 from the flow path one end 2a to the flow path other end 2b in substantially the entire longitudinal direction. You may form in a part of direction, for example, the other end part 2b from the longitudinal direction center part of the flow-path formation body 2. FIG. The flow path forming body 2 configured as described above is provided in a storage chamber for storing a heated fluid or a processing chamber for processing an object to be processed by the heated fluid. And the single phase alternating current power supply connected to this flow path formation body 2 is provided in the space (for example, power supply chamber) different from the said storage chamber or the said process chamber.

ここで、流体加熱装置100における被加熱流体の流れを説明する。被加熱流体は、流路Rに連通する流路形成体2の第1流通口P1から流入し、流路形成体2内部の流路Rを加熱されながら流れ、流路Rに連通する流路形成体2の第2流通口P2に至る。加熱された流体の一部は、この第1流通口P1から第2流通口P2に至るまでの間に、流体噴出口22及び流体噴出ノズル24を通って流体加熱装置100の外部に噴出される。また、第1流通口P1又は第2流通口P2の一方を閉塞し、第1流通口P1又は第2流通口P2の他方から被加熱流体を流入させる構成にして、加熱された流体の全部を流体噴出口22及び流体噴出ノズル24から外部に噴出させるようにしても良い。さらに、第1流通口P1及び第2流通口P2の両方から被加熱流体を流入させる構成にして、加熱された流体の全部を流体噴出口22及び流体噴出ノズル24から外部に噴出させるようにしても良い。なお、被加熱流体の一例としては、流路形成体2に流入する被加熱流体が、飽和水蒸気又は過熱水蒸気であって、流路形成体2から流出する加熱された流体が過熱水蒸気であることが考えられる。ただし、被加熱流体は、特定の流体に限られることはなく、流体加熱装置100の用途に合わせて適宜選択されるものであれば良い。   Here, the flow of the fluid to be heated in the fluid heating apparatus 100 will be described. The heated fluid flows from the first flow port P1 of the flow path forming body 2 communicating with the flow path R, flows while being heated in the flow path R inside the flow path forming body 2, and communicates with the flow path R. It reaches the second flow port P2 of the formed body 2. Part of the heated fluid is ejected to the outside of the fluid heating device 100 through the fluid ejection port 22 and the fluid ejection nozzle 24 during the period from the first circulation port P1 to the second circulation port P2. . Further, one of the first circulation port P1 and the second circulation port P2 is closed, and the heated fluid is introduced from the other of the first circulation port P1 or the second circulation port P2, and all of the heated fluid is supplied. You may make it eject from the fluid ejection port 22 and the fluid ejection nozzle 24 outside. Further, the heated fluid is introduced from both the first circulation port P1 and the second circulation port P2, and all of the heated fluid is ejected from the fluid ejection port 22 and the fluid ejection nozzle 24 to the outside. Also good. As an example of the fluid to be heated, the fluid to be heated that flows into the flow path forming body 2 is saturated steam or superheated steam, and the heated fluid that flows out from the flow path forming body 2 is superheated steam. Can be considered. However, the fluid to be heated is not limited to a specific fluid, and any fluid may be selected as appropriate according to the application of the fluid heating apparatus 100.

このように構成した流体加熱装置100において、単相交流電源から単相交流電圧を各電極3を介して流路形成体2に印加すると、互いに隣り合う電極3間に流れる電流の位相が互いに逆向きとなるので、それぞれの電流により発生する磁束が打ち消し合い、流路形成体2に発生するインピーダンスが低減されて回路力率を改善することができる。したがって、被加熱流体を効率良く加熱することができ、流体加熱装置100の設備効率を向上させることができる。   In the fluid heating apparatus 100 configured as described above, when a single-phase AC voltage is applied from the single-phase AC power source to the flow path forming body 2 via the electrodes 3, the phases of the currents flowing between the adjacent electrodes 3 are opposite to each other. Therefore, the magnetic fluxes generated by the respective currents cancel each other out, the impedance generated in the flow path forming body 2 is reduced, and the circuit power factor can be improved. Therefore, the fluid to be heated can be efficiently heated, and the equipment efficiency of the fluid heating apparatus 100 can be improved.

なお、本実施形態の流体加熱装置100は、流路形成体2が1つの直線部25のみにより形成される構成に限られず、直線部25を複数有するものであっても良い。具体的には、図2に示すように、外側周面に複数の流体噴出口22が設けられた直線部25を例えば3つ有するものであっても良い。具体的に3つの直線部25は、流路他端部2b側において導電性を有する接続部26により接続されており、直線部25及び接続部26により流路形成体2が構成されている。つまり、この流体加熱装置100の配管構成は、流路一端部2a側に3つの第1流通口P1を有し、流路他端部2b側に1つの第2流通口P2を有する。この接続部26は、被加熱流体が流路一端部2aから流路他端部2bに向かって流れる場合には3つの流路を1つの流路に合流させ、被加熱流体が流路他端部2bから流路一端部2aに向かって流れる場合には1つの流路を3つの流路に分流させるものである。   In addition, the fluid heating apparatus 100 of this embodiment is not restricted to the structure in which the flow-path formation body 2 is formed only by the one linear part 25, You may have multiple linear parts 25. FIG. Specifically, as shown in FIG. 2, for example, three linear portions 25 having a plurality of fluid ejection ports 22 provided on the outer peripheral surface may be provided. Specifically, the three straight portions 25 are connected by a connecting portion 26 having conductivity on the flow channel other end portion 2 b side, and the flow path forming body 2 is configured by the straight portion 25 and the connecting portion 26. In other words, the piping configuration of the fluid heating device 100 has three first circulation ports P1 on the flow channel one end 2a side and one second circulation port P2 on the flow channel other end 2b side. When the fluid to be heated flows from one end 2a of the flow channel toward the other end 2b of the flow channel, the connection portion 26 joins the three flow channels into one flow channel, and the fluid to be heated is connected to the other end of the flow channel. In the case of flowing from the portion 2b toward the flow path one end 2a, one flow path is divided into three flow paths.

このように直線部25を複数有する場合であっても、流路形成体2における流路一端部2aから流路他端部2bの間を流路Rの流路方向に沿って2n等分する位置に電極3が配置されていることが望ましい。例えば図2の流体加熱装置100の場合、各直線部25は同一平面上において略平行に配置されている。また、電極3は直線部25の配列方向に沿って(図2における下方から)見たときに、流路Rの流路方向に沿って略4等分する位置に接続されている。さらに、直線部25に接続された複数の電極3は、隣り合う直線部25に接続された電極3と流路Rの流路方向に沿ってそれぞれ略同じ位置に接続されている。なお、直線部25は3つに限られず、2つでも良いし、4つ以上であっても良い。また、各直線部25が、例えば放射状に配置されている等、略平行に配置されていないものであっても良い。   Thus, even when there are a plurality of straight portions 25, the distance between the flow path one end 2a and the flow path other end 2b in the flow path forming body 2 is equally divided into 2n along the flow path direction of the flow path R. It is desirable that the electrode 3 is disposed at the position. For example, in the case of the fluid heating apparatus 100 of FIG. 2, each linear part 25 is arrange | positioned substantially parallel on the same plane. Further, the electrode 3 is connected to a position that is divided into approximately four equal parts along the flow path direction of the flow path R when viewed along the arrangement direction of the linear portions 25 (from the lower side in FIG. 2). Furthermore, the plurality of electrodes 3 connected to the straight line portion 25 are connected to substantially the same position along the flow path direction of the flow path R and the electrode 3 connected to the adjacent straight line portion 25. Note that the number of straight portions 25 is not limited to three, and may be two, or four or more. Moreover, each linear part 25 may be what is not arrange | positioned substantially parallel, for example, is arrange | positioned radially.

<第2実施形態>
以下に本発明に係る流体加熱装置の第2実施形態について図面を参照して説明する。なお、第1実施形態と同じ構成には同じ符号を付すこととする。
Second Embodiment
A fluid heating device according to a second embodiment of the present invention will be described below with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to the same structure as 1st Embodiment.

本実施形態に係る流体加熱装置100は、電極3の配置を変更するとともに、電極3に接続される電源を、単相交流電源から三相交流電源に変更したものである。なお、流体加熱装置100の配管構成は第1実施形態と同様である。   In the fluid heating apparatus 100 according to the present embodiment, the arrangement of the electrodes 3 is changed, and the power source connected to the electrodes 3 is changed from a single-phase AC power source to a three-phase AC power source. The piping configuration of the fluid heating device 100 is the same as that of the first embodiment.

本実施形態に係る流体加熱装置100は、図3に示すように、流路形成体2における流路Rの流路方向に沿って略6等分する位置に、電極3が7個接続されている。この7個の電極3のうちの2個は、流路一端部2a及び流路他端部2bに接続されている。この電極3は、三相交流電源の出力端子に接続されており、連続して並ぶ3個の電極3に接続される三相交流電源の極性がそれぞれ異なるように、三相交流電源のU相、V相及びW相が交互に接続されている。具体的には、最も流路一端部2a側にある電極3から順に、U相、V相、W相、U相、V相、W相、U相となるように接続されている。なお、電極3に接続される三相交流電源のU相、V相及びW相の順序は図4のものに限られず、連続して並ぶ3個の電極3に接続される三相交流電源の極性がそれぞれ異なるように、流路形成体2に接続されていれば良い。   As shown in FIG. 3, the fluid heating apparatus 100 according to the present embodiment has seven electrodes 3 connected to a position that is approximately divided into six along the flow path direction of the flow path R in the flow path forming body 2. Yes. Two of the seven electrodes 3 are connected to the channel one end 2a and the channel other end 2b. This electrode 3 is connected to the output terminal of the three-phase AC power source, and the U-phase of the three-phase AC power source is different so that the polarities of the three-phase AC power source connected to the three electrodes 3 arranged in series are different. , V phase and W phase are alternately connected. Specifically, the electrodes 3 are connected in order from the electrode 3 closest to the flow path one end 2a so as to be in the U phase, V phase, W phase, U phase, V phase, W phase, and U phase. Note that the order of the U-phase, V-phase, and W-phase of the three-phase AC power source connected to the electrode 3 is not limited to that shown in FIG. 4, and the three-phase AC power source connected to the three electrodes 3 arranged in series. What is necessary is just to be connected to the flow-path formation body 2 so that polarity may differ, respectively.

ここで、電極3の数は、7個に限定されず、流路形成体2における流路Rの流路方向に沿って3n等分(nは1以上の整数である。)する位置に接続されていれば良い。
例えば本実施形態のように、流路一端部2a及び流路他端部2bにそれぞれ電極3が接続されている場合には、3n+1個接続されているものであれば良い。
Here, the number of the electrodes 3 is not limited to seven, and is connected to a position that is equally divided by 3n (n is an integer of 1 or more) along the flow path direction of the flow path R in the flow path forming body 2. It only has to be done.
For example, when the electrodes 3 are respectively connected to the flow path one end 2a and the flow path other end 2b as in this embodiment, it is sufficient if 3n + 1 pieces are connected.

また、流路形成体2の途中(一端部2a及び他端部2bの間)の外側周面には、複数の流体噴出口22が設けられている。本実施形態の流体噴出口22は、流路形成体2の外側周面における流路方向に直交する一方向側(図3における下方)を向くように、各電極3の間にそれぞれ4つずつ配置されている。さらに、本実施形態の各流体噴出口22には、流体噴出口22の開口方向に沿って延びる流体噴出ノズル24が取り付けられている。なお、流体噴出口22は流路形成体2の外側周面において周方向全体に形成されるものであっても良い。また、本実施形態の流体噴出口22は、流路形成体2の外側周面において流路一端部2aから流路他端部2bに亘って長手方向の略全体に形成されているが、長手方向の一部、例えば流路形成体2の長手方向中央部から他端部2bに形成しても良い。さらに、流体噴出口22の数は本実施形態のものに限られず、流体加熱装置100の用途に合わせて適当な数の流体噴出口22を配置したものであれば良い。このように構成された流路形成体2は、加熱された流体を収容するための収容室、又は加熱された流体により被処理物を処理するための処理室内に挿入して設けられる。そして、この流路形成体2に接続される三相交流電源が、前記収容室又は前記処理室とは別の空間(例えば電源室)に設けられる。   A plurality of fluid jets 22 are provided on the outer peripheral surface in the middle of the flow path forming body 2 (between the one end 2a and the other end 2b). In the present embodiment, four fluid ejection ports 22 are provided between each electrode 3 so as to face one direction side (downward in FIG. 3) orthogonal to the channel direction on the outer peripheral surface of the channel forming body 2. Has been placed. Furthermore, a fluid ejection nozzle 24 extending along the opening direction of the fluid ejection port 22 is attached to each fluid ejection port 22 of the present embodiment. Note that the fluid ejection port 22 may be formed on the entire outer circumferential surface of the flow path forming body 2 in the circumferential direction. Further, the fluid ejection port 22 of the present embodiment is formed on the outer peripheral surface of the flow path forming body 2 from the flow path one end 2a to the flow path other end 2b in substantially the entire longitudinal direction. You may form in a part of direction, for example, the other end part 2b from the longitudinal direction center part of the flow-path formation body 2. FIG. Furthermore, the number of the fluid ejection ports 22 is not limited to that of the present embodiment, and any number of fluid ejection ports 22 may be used as long as the fluid heating device 100 is used. The flow path forming body 2 configured as described above is provided by being inserted into a storage chamber for storing a heated fluid or a processing chamber for processing an object to be processed by the heated fluid. And the three-phase alternating current power supply connected to this flow-path formation body 2 is provided in the space (for example, power supply chamber) different from the said storage chamber or the said process chamber.

この流体加熱装置100における被加熱流体の流れは、前記第1実施形態と同様である。また、また、第1流通口P1又は第2流通口P2の一方を閉塞し、第1流通口P1又は第2流通口P2の他方から被加熱流体を流入させる構成にして、加熱された流体の全部を流体噴出口22及び流体噴出ノズル24から外部に噴出させるようにしても良い。さらに、第1流通口P1及び第2流通口P2の両方から被加熱流体を流入させる構成にして、加熱された流体の全部を流体噴出口22及び流体噴出ノズル24から外部に噴出させるようにしても良い。   The flow of the fluid to be heated in the fluid heating apparatus 100 is the same as that in the first embodiment. Also, one of the first circulation port P1 and the second circulation port P2 is closed, and the heated fluid is introduced from the other of the first circulation port P1 and the second circulation port P2, so that the heated fluid All of them may be ejected from the fluid ejection port 22 and the fluid ejection nozzle 24 to the outside. Further, the heated fluid is introduced from both the first circulation port P1 and the second circulation port P2, and all of the heated fluid is ejected from the fluid ejection port 22 and the fluid ejection nozzle 24 to the outside. Also good.

このように構成した流体加熱装置100において、三相交流電源から三相交流電圧を各電極3を介して流路形成体2に印加すると、連続して並ぶ3個の電極3間に流れる電流の位相がそれぞれ互いに120°異なるので、それぞれの電流により発生する磁束が打ち消し合い、流路形成体2に発生するインピーダンスが低減されて回路力率を改善することができる。したがって、被加熱流体を効率良く加熱することができ、流体加熱装置100の設備効率を向上させることができる。   In the fluid heating apparatus 100 configured as described above, when a three-phase AC voltage is applied from the three-phase AC power source to the flow path forming body 2 via each electrode 3, the current flowing between the three electrodes 3 arranged in succession Since the phases are different from each other by 120 °, the magnetic fluxes generated by the respective currents cancel each other, the impedance generated in the flow path forming body 2 is reduced, and the circuit power factor can be improved. Therefore, the fluid to be heated can be efficiently heated, and the equipment efficiency of the fluid heating apparatus 100 can be improved.

なお、本実施形態の流体加熱装置100は、流路形成体2が1つの直線部25のみにより形成される構成に限られず、直線部25を複数有するものであっても良い。具体的には、図4に示すように、外側周面に複数の流体噴出口22が設けられた直線部25を例えば3つ有するものであっても良い。なお、この形態における流体加熱装置100の配管構成は、図2に示すものと同様であり、図2の流体加熱装置100と同一又は対応する構成には同じ符号を付している。このように直線部25を複数有する場合であっても、流路形成体2における流路一端部2aから流路他端部2bの間を流路Rの流路方向に沿って3n等分する位置に電極3が配置されていることが望ましい。例えば図4の流体加熱装置100の場合、各直線部25が同一平面上において略平行に配置され、各直線部25の配列方向に沿って(図4における下方から)見たときに、流路Rの流路方向に沿って略6等分する位置に、電極3が接続されている。   In addition, the fluid heating apparatus 100 of this embodiment is not restricted to the structure in which the flow-path formation body 2 is formed only by the one linear part 25, You may have multiple linear parts 25. FIG. Specifically, as shown in FIG. 4, for example, three linear portions 25 having a plurality of fluid ejection ports 22 provided on the outer peripheral surface may be provided. In addition, the piping configuration of the fluid heating device 100 in this embodiment is the same as that shown in FIG. 2, and the same or corresponding components as those of the fluid heating device 100 in FIG. Even in the case where there are a plurality of straight portions 25 as described above, the distance between the flow path one end 2a and the flow path other end 2b in the flow path forming body 2 is equally divided into 3n along the flow path direction of the flow path R. It is desirable that the electrode 3 is disposed at the position. For example, in the case of the fluid heating apparatus 100 of FIG. 4, the straight portions 25 are arranged substantially in parallel on the same plane, and when viewed along the arrangement direction of the straight portions 25 (from the lower side in FIG. 4) The electrode 3 is connected to a position that is divided into approximately six equal parts along the R flow path direction.

<第3実施形態>
以下に本発明に係る流体加熱装置の第3実施形態について図面を参照して説明する。
<Third Embodiment>
A fluid heating device according to a third embodiment of the present invention will be described below with reference to the drawings.

本実施形態に係る流体加熱装置100は、図5に示すように、内部に被加熱流体が流れる流路Rが形成された導電性材料からなる流路形成体2に交流電圧を印加して直接通電し、流路形成体2の内部抵抗により発生するジュール熱によって流路形成体2を加熱することにより、前記流路Rを流れる被加熱流体を加熱するものである。   As shown in FIG. 5, the fluid heating apparatus 100 according to the present embodiment directly applies an alternating voltage to a flow path forming body 2 made of a conductive material in which a flow path R through which a fluid to be heated flows is formed. The heated fluid flowing through the flow path R is heated by energizing and heating the flow path forming body 2 by Joule heat generated by the internal resistance of the flow path forming body 2.

本実施形態の流路形成体2は、互いに略平行に配置された直線状の流路を形成する6つの直線部25と、互いに隣り合う直線部25の端部を接続して蛇行した1本の流路Rを形成する5つの折返し部27とを有する。ここで、本実施形態の6つの直線部25は、同一平面上においてそれぞれ互いに略平行になるように等間隔に配置され、略同じ長さである。また、折返し部27は、コの字状又はU字状に構成されるとともに、各直線部25の一方の端部と他方の端部がそれぞれ異なる直線部25と接続する。なお、流路形成体2の流路一端部2aに構成される第1流通口P1には、フランジ部21が形成されており、外部配管との接続が可能となるように構成されている。同様に、流路形成体2の流路他端部2bに構成される第2流通口P2には、フランジ部21が形成されており、外部配管との接続が可能となるように構成されている。   The flow path forming body 2 according to the present embodiment is one which meanders by connecting six straight portions 25 forming straight flow passages arranged substantially parallel to each other and the ends of the straight portions 25 adjacent to each other. And five folded portions 27 forming the flow path R. Here, the six straight portions 25 of the present embodiment are arranged at equal intervals so as to be substantially parallel to each other on the same plane, and have substantially the same length. In addition, the folded portion 27 is configured in a U shape or a U shape, and one end portion and the other end portion of each linear portion 25 are connected to different linear portions 25. In addition, the flange part 21 is formed in the 1st distribution port P1 comprised in the flow path one end part 2a of the flow path formation body 2, and it is comprised so that a connection with external piping is attained. Similarly, a flange portion 21 is formed in the second flow port P2 configured in the flow channel other end portion 2b of the flow channel forming body 2, and is configured to be connectable to an external pipe. Yes.

そして、図5に示すように、流路形成体2には、流路一端部2a、流路他端部2b及び一部の折返し部27に電極3が接続されている。この電極3は、流路Rの流路方向に沿って互いに隣り合う電極3の間の流路Rを形成する直線部25が偶数個、本実施形態においては2つになるように接続されている。したがって、本実施形態においては、流路一端部2aと、流路他端部2bと、平面視において流路一端部2a及び流路他端部2b側にある2つの折返し部27との4箇所に電極3が接続されている。   As shown in FIG. 5, the electrode 3 is connected to the flow path forming body 2 at one end part 2 a of the flow path, the other end part 2 b of the flow path, and a part of the folded part 27. The electrodes 3 are connected so that there are an even number, in the present embodiment, two linear portions 25 forming the flow path R between the electrodes 3 adjacent to each other along the flow path direction of the flow path R. Yes. Therefore, in this embodiment, four places of the flow path one end 2a, the flow path other end 2b, and the two folded portions 27 on the flow path one end 2a and the flow path other end 2b side in a plan view. The electrode 3 is connected to the.

また、電極3は、単相交流電源の出力端子に接続されており、互いに隣り合う電極3に接続される単相交流電源の極性が異なるように、単相交流電源のU相及びV相が交互に接続されている。具体的には、最も流路一端部2a側にある電極3から順に、V相、U相、V相、U相となるように接続されている。なお、電極3に接続される単相交流電源のU相及びV相の順序は図5に示すものに限られず、U相とV相とが逆になったものでも良い。   The electrode 3 is connected to the output terminal of the single-phase AC power supply, and the U-phase and V-phase of the single-phase AC power supply are different so that the polarities of the single-phase AC power supplies connected to the adjacent electrodes 3 are different. Connected alternately. Specifically, they are connected so as to be in the V phase, U phase, V phase, and U phase in order from the electrode 3 that is closest to the flow channel one end 2a side. Note that the order of the U phase and V phase of the single-phase AC power source connected to the electrode 3 is not limited to that shown in FIG. 5, and the U phase and V phase may be reversed.

また、流路形成体2の途中(一端部2a及び他端部2bの間)の外側周面には、複数の流体噴出口22が設けられている。本実施形態の流体噴出口22は、流路形成体2の外側周面における流路方向に直交する一方向側(図5における下方)を向くように、各直線部25にそれぞれ4つずつ配置されている。さらに、本実施形態の各流体噴出口22には、流体噴出ノズル24が取り付けられている。なお、流体噴出口22は流路形成体2の外側周面において周方向全体に形成されるものであっても良い。また、本実施形態の流体噴出口22は、流路形成体2の外側周面において流路一端部2aから流路他端部2bに亘って長手方向の略全体に形成されているが、長手方向の一部、例えば流路形成体2の長手方向中央部から他端部2bに形成しても良い。   A plurality of fluid jets 22 are provided on the outer peripheral surface in the middle of the flow path forming body 2 (between the one end 2a and the other end 2b). Four fluid outlets 22 of the present embodiment are arranged in each of the linear portions 25 so as to face one direction side (downward in FIG. 5) orthogonal to the flow path direction on the outer peripheral surface of the flow path forming body 2. Has been. Furthermore, a fluid ejection nozzle 24 is attached to each fluid ejection port 22 of the present embodiment. Note that the fluid ejection port 22 may be formed on the entire outer circumferential surface of the flow path forming body 2 in the circumferential direction. Further, the fluid ejection port 22 of the present embodiment is formed on the outer peripheral surface of the flow path forming body 2 from the flow path one end 2a to the flow path other end 2b in substantially the entire longitudinal direction. You may form in a part of direction, for example, the other end part 2b from the longitudinal direction center part of the flow-path formation body 2. FIG.

ここで、本実施形態の流体加熱装置100は、第1流通口P1又は第2流通口P2の一方を閉塞し、第1流通口P1又は第2流通口P2の他方から被加熱流体を流入させる構成にして、加熱された流体の全部を流体噴出口22及び流体噴出ノズル24から外部に噴出させるようにしても良い。また、第1流通口P1及び第2流通口P2の両方から被加熱流体を流入させる構成にして、加熱された流体の全部を流体噴出口22及び流体噴出ノズル24から外部に噴出させるようにしても良い。さらに、図5に示すように、1又は複数の折返し部27に、流路Rに被加熱流体を流入させるための中間配管部28が接続されている場合には、第1流通口P1及び第2流通口P2の両方を閉塞し、中間配管部28から被加熱流体を入竜させる構成にして、加熱された流体の全部を流体噴出口22及び流体噴出ノズル24から外部に噴出させるようにしても良い。なお、前述した中間配管部28には、逆止弁又は流量調整弁を設けることが考えられる。   Here, the fluid heating apparatus 100 of the present embodiment closes one of the first circulation port P1 or the second circulation port P2, and allows the fluid to be heated to flow from the other of the first circulation port P1 or the second circulation port P2. In the configuration, all of the heated fluid may be ejected from the fluid ejection port 22 and the fluid ejection nozzle 24 to the outside. In addition, the heated fluid is introduced from both the first circulation port P1 and the second circulation port P2, and all of the heated fluid is ejected from the fluid ejection port 22 and the fluid ejection nozzle 24 to the outside. Also good. Furthermore, as shown in FIG. 5, when the intermediate piping part 28 for making the to-be-heated fluid flow in into the flow path R is connected to the 1 or several folding | turning part 27, 1st distribution port P1 and 1st The two flow ports P2 are both closed, and the heated fluid is introduced from the intermediate pipe portion 28 so that all of the heated fluid is ejected from the fluid ejection port 22 and the fluid ejection nozzle 24 to the outside. Also good. In addition, it is possible to provide a check valve or a flow rate adjustment valve in the intermediate pipe portion 28 described above.

このように構成した流体加熱装置100において、単相交流電源から単相交流電圧を各電極3を介して流路形成体2に印加すると、互いに隣り合う直線部25間に流れる電流の位相が互いに逆向きとなるので、それぞれの電流により発生する磁束が打ち消し合い、流路形成体2に発生するインピーダンスが低減されて回路力率を改善することができる。したがって、被加熱流体を効率良く加熱することができ、流体加熱装置100の設備効率を向上させることができる。   In the fluid heating apparatus 100 configured as described above, when a single-phase AC voltage is applied from the single-phase AC power source to the flow path forming body 2 through the electrodes 3, the phases of the currents flowing between the adjacent linear portions 25 are mutually different. Since the directions are opposite, the magnetic fluxes generated by the respective currents cancel each other out, the impedance generated in the flow path forming body 2 is reduced, and the circuit power factor can be improved. Therefore, the fluid to be heated can be efficiently heated, and the equipment efficiency of the fluid heating apparatus 100 can be improved.

<第4実施形態>
以下に本発明に係る流体加熱装置の第4実施形態について図面を参照して説明する。なお、第3実施形態と同じ構成には同じ符号を付すこととする。
<Fourth embodiment>
A fluid heating device according to a fourth embodiment of the present invention will be described below with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to the same structure as 3rd Embodiment.

本実施形態に係る流体加熱装置100は、電極3の配置を変更するとともに、電極3に接続される電源を、単相交流電源から三相交流電源に変更したものである。なお、流体加熱装置100の配管構成は第3実施形態と同様である。   In the fluid heating apparatus 100 according to the present embodiment, the arrangement of the electrodes 3 is changed, and the power source connected to the electrodes 3 is changed from a single-phase AC power source to a three-phase AC power source. The piping configuration of the fluid heating device 100 is the same as that in the third embodiment.

本実施形態に係る流体加熱装置100は、図6に示すように、流路形成体2に、流路一端部2a、流路他端部2b及び全部の折返し部27に電極3が接続されている。なお、必ずしも全部の折返し部27に電極3が接続されていなくても良く、一部の折返し部27に電極3が接続されているものでも良い。   As shown in FIG. 6, in the fluid heating apparatus 100 according to the present embodiment, the electrode 3 is connected to the flow path forming body 2, the flow path one end 2 a, the flow path other end 2 b, and all the folded portions 27. Yes. Note that the electrodes 3 do not necessarily have to be connected to all the folded portions 27, and the electrodes 3 may be connected to some folded portions 27.

また、各電極3は、三相交流電源の出力端子に接続されており、連続して並ぶ3個の電極3に接続される三相交流電源の極性がそれぞれ異なるように、三相交流電源のU相、V相及びW相が交互に接続されている。具体的には、最も流路一端部2a側にある電極3から順に、U相、W相、V相、U相、W相、V相、U相となるように接続されている。なお、電極3に接続される三相交流電源のU相、V相及びW相の順序は図6のものに限られず、連続して並ぶ3個の電極3に接続される三相交流電源の極性がそれぞれ異なるように、流路形成体2に接続されていれば良い。   Each electrode 3 is connected to the output terminal of the three-phase AC power source, and the polarity of the three-phase AC power source connected to the three electrodes 3 arranged in succession is different. U-phase, V-phase and W-phase are connected alternately. Specifically, they are connected so as to be in the U phase, W phase, V phase, U phase, W phase, V phase, and U phase in order from the electrode 3 that is closest to the flow channel one end 2a side. Note that the order of the U-phase, V-phase, and W-phase of the three-phase AC power source connected to the electrode 3 is not limited to that shown in FIG. 6, and the three-phase AC power source connected to the three electrodes 3 arranged in series. What is necessary is just to be connected to the flow-path formation body 2 so that polarity may differ, respectively.

また、流路形成体2の途中(一端部2a及び他端部2bの間)の外側周面には、複数の流体噴出口22が設けられている。本実施形態の流体噴出口22は、流路形成体2の外側周面における流路方向に直交する一方向側(図6における下方)を向くように、各直線部25にそれぞれ5つずつ配置されている。さらに、本実施形態の各流体噴出口22には、流体噴出口22の開口方向に沿って延びる流体噴出ノズル24が取り付けられている。なお、流体噴出口22は流路形成体2の外側周面において周方向全体に形成されるものであっても良い。また、本実施形態の流体噴出口22は、流路形成体2の外側周面において流路一端部2aから流路他端部2bに亘って長手方向の略全体に形成されているが、長手方向の一部、例えば流路形成体2の長手方向中央部から他端部2bに形成しても良い。   A plurality of fluid jets 22 are provided on the outer peripheral surface in the middle of the flow path forming body 2 (between the one end 2a and the other end 2b). Five fluid jets 22 according to the present embodiment are arranged in each of the linear portions 25 so as to face one direction side (downward in FIG. 6) orthogonal to the channel direction on the outer peripheral surface of the channel forming body 2. Has been. Furthermore, a fluid ejection nozzle 24 extending along the opening direction of the fluid ejection port 22 is attached to each fluid ejection port 22 of the present embodiment. Note that the fluid ejection port 22 may be formed on the entire outer circumferential surface of the flow path forming body 2 in the circumferential direction. Further, the fluid ejection port 22 of the present embodiment is formed on the outer peripheral surface of the flow path forming body 2 from the flow path one end 2a to the flow path other end 2b in substantially the entire longitudinal direction. You may form in a part of direction, for example, the other end part 2b from the longitudinal direction center part of the flow-path formation body 2. FIG.

ここで、本実施形態の流体加熱装置100は、第2流通口P2を閉塞して、被加熱流体を流路形成体2の第1流通口P1から流入させ、加熱された流体を流体噴出口22から噴出させるものであっても良いし、被加熱流体を流路形成体2の第1流通口P1及び第2流通口P2の両方から流入させ、加熱された流体を流体噴出口22から噴出させるものであっても良い。また、図6に示すように、1又は複数の折返し部27に被加熱流体をさらに流入させるためのフランジ部28を備える場合には、第1流通口P1及び第2流通口P2の両方を閉塞して、加熱された流体を流体噴出口22から噴出させるものであっても良い。   Here, the fluid heating apparatus 100 of the present embodiment closes the second circulation port P2, allows the fluid to be heated to flow from the first circulation port P1 of the flow path forming body 2, and causes the heated fluid to flow out of the fluid jet port. The fluid to be heated is allowed to flow from both the first flow port P1 and the second flow port P2 of the flow path forming body 2, and the heated fluid is discharged from the fluid jet port 22. It may be made to do. Moreover, as shown in FIG. 6, when the flange part 28 for making a to-be-heated fluid flow further into the 1 or several folding | turning part 27 is provided, both the 1st circulation port P1 and the 2nd circulation port P2 are obstruct | occluded. Then, the heated fluid may be ejected from the fluid ejection port 22.

なお、前述したフランジ部28は、逆止弁が設けられているものや、流量調整弁が設けられているものなどが望ましい。   The flange 28 described above is preferably provided with a check valve or provided with a flow rate adjustment valve.

このように構成した流体加熱装置100において、三相交流電源5から三相交流電圧を各電極3を介して流路形成体2に印加すると、連続して並ぶ3つの直線部25の間に流れる電流の位相がそれぞれ互いに120°異なるので、それぞれの電流により発生する磁束が打ち消し合い、流路形成体2に発生するインピーダンスが低減されて回路力率を改善することができる。したがって、被加熱流体を効率良く加熱することができ、流体加熱装置100の設備効率を向上させることができる。   In the fluid heating apparatus 100 configured as described above, when a three-phase AC voltage is applied from the three-phase AC power source 5 to the flow path forming body 2 via each electrode 3, the fluid flows between the three linear portions 25 that are continuously arranged. Since the phases of the currents are different from each other by 120 °, the magnetic fluxes generated by the respective currents cancel each other, the impedance generated in the flow path forming body 2 is reduced, and the circuit power factor can be improved. Therefore, the fluid to be heated can be efficiently heated, and the equipment efficiency of the fluid heating apparatus 100 can be improved.

なお、本発明は前記実施形態に限られるものではない。例えば、各電極3間毎に電力制御装置を設け、電極3に印加される電力が制御可能に構成されているものであっても良い。これならば、電極3間毎における流路形成体2の温度を個別に制御することができ、効率良く被加熱流体を所望の状態にすることができる。   The present invention is not limited to the above embodiment. For example, a power control device may be provided between the electrodes 3 so that the power applied to the electrodes 3 can be controlled. In this case, the temperature of the flow path forming body 2 between the electrodes 3 can be individually controlled, and the heated fluid can be efficiently brought into a desired state.

また、流体噴出口22に流体噴出ノズル24を取り付けずに、流体噴出口22から加熱された流体を直接噴出させるものであっても良い。この場合、流体噴出口22の形状は、略円形のものであっても良いし、細長いスリット状のもの等であっても良い。このように流体噴出口22の形状又は流路形成体2における配置場所、若しくは流体噴出ノズル24の有無等については、流体加熱装置100の用途に合わせて適宜選択されるものであれば良い。   Moreover, the fluid heated from the fluid jet port 22 may be directly jetted without attaching the fluid jet nozzle 24 to the fluid jet port 22. In this case, the shape of the fluid ejection port 22 may be a substantially circular shape or may be an elongated slit shape. As described above, the shape of the fluid ejection port 22, the arrangement location in the flow path forming body 2, the presence / absence of the fluid ejection nozzle 24, and the like may be appropriately selected according to the application of the fluid heating device 100.

さらに、2つの流路形成体2を、それらの流路Rが連通するとともに、2つの流路形成体2に設けられた電極3が内側に位置するようにフランジ部21により接続してユニット化し、流体加熱装置100を構成しても良い。   Further, the two flow path forming bodies 2 are unitized by connecting them with the flange portion 21 so that the flow paths R communicate with each other and the electrodes 3 provided on the two flow path forming bodies 2 are located inside. Alternatively, the fluid heating device 100 may be configured.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・流体加熱装置
2 ・・・流路形成体
22 ・・・流体噴出口
24 ・・・流体噴出ノズル
25 ・・・直線部
26 ・・・折返し部
R ・・・流路
3 ・・・電極
DESCRIPTION OF SYMBOLS 100 ... Fluid heating apparatus 2 ... Flow path formation body 22 ... Fluid ejection port 24 ... Fluid ejection nozzle 25 ... Linear part 26 ... Folding part R ... Channel 3 ... ·electrode

Claims (13)

内部に被加熱流体が流れる導電性材料からなる流路形成体を通電加熱して、前記流路を流れる被加熱流体を加熱する流体加熱装置であって、
前記流路形成体が、直線状の流路を形成する1又は複数の直線部を有し、
前記直線部に、前記流路を流れる流体を噴出する複数の流体噴出口が設けられ、
前記直線部における前記流路の流路方向に沿って複数の電極が接続されており、
互いに隣り合う前記電極に接続される単相交流電源の極性が異なるように、単相交流電源のU相及びV相が交互に接続されており、
前記直線部において互いに隣接する電極それぞれの間に前記流体噴出口が設けられている流体加熱装置。
A fluid heating device that heats a heated fluid flowing through the flow path by energizing and heating a flow path forming body made of a conductive material through which the heated fluid flows,
The flow path forming body has one or a plurality of straight portions forming a straight flow path,
A plurality of fluid ejection ports for ejecting fluid flowing through the flow path are provided in the straight portion,
A plurality of electrodes are connected along the flow path direction of the flow path in the linear portion,
The U-phase and V-phase of the single-phase AC power supply are alternately connected so that the polarities of the single-phase AC power supplies connected to the electrodes adjacent to each other are different .
The fluid heating apparatus in which the fluid ejection port is provided between electrodes adjacent to each other in the linear portion .
前記直線部を前記流路方向に沿って2n等分(nは1以上の整数である。)する位置に、前記電極がそれぞれ接続されている請求項1記載の流体加熱装置。   The fluid heating apparatus according to claim 1, wherein the electrodes are respectively connected to positions that divide the linear portion into 2n equal parts (n is an integer of 1 or more) along the flow path direction. 内部に被加熱流体が流れる流路が形成された導電性材料からなる流路形成体を通電加熱して、前記流路を流れる被加熱流体を加熱する流体加熱装置であって、
前記流路形成体が、それぞれ互いに略平行に配置され、直線状の流路を形成する2n個(nは1以上の整数である。)の直線部と、互いに隣り合う前記直線部の端部を接続して蛇行した1本の流路を形成する2n−1個の折返し部とを有し、
前記直線部に前記流路を流れる流体を噴出する複数の流体噴出口が設けられ、
前記流路形成体において、前記蛇行した流路の両端部に電極が接続されるとともに、
前記2n−1個の折返し部の少なくとも1つに電極が接続されており、
前記複数の電極が、前記流路方向に沿って互いに隣り合う電極の間の流路を形成する前記直線部が偶数個になるように接続されており、
前記流路方向に沿って互いに隣り合う電極に接続される単相交流電源の極性が異なるように、単相交流電源のU相及びV相が交互に接続されている流体加熱装置。
A fluid heating device that heats a heated fluid flowing through the flow path by energizing and heating a flow path forming body made of a conductive material in which a flow path through which the heated fluid flows is formed,
The flow path forming bodies are arranged substantially in parallel with each other, and 2n (n is an integer of 1 or more) straight line portions forming a straight flow path, and end portions of the straight line portions adjacent to each other. And 2n-1 folded portions forming one flow path meandering by connecting,
A plurality of fluid ejection ports for ejecting the fluid flowing through the flow path are provided in the linear portion,
In the flow path forming body, electrodes are connected to both ends of the meandering flow path,
An electrode is connected to at least one of the 2n-1 folded portions,
The plurality of electrodes are connected so that the number of the linear portions forming a flow path between electrodes adjacent to each other along the flow path direction is an even number.
The fluid heating apparatus in which the U-phase and the V-phase of the single-phase AC power supply are alternately connected so that the polarities of the single-phase AC power supplies connected to the electrodes adjacent to each other along the flow path direction are different.
前記折り返し部に接続される電極が、前記流路方向に沿って互いに隣り合う電極の間の流路を形成する前記直線部が2個になるように接続されている請求項3記載の流体加熱装置。   The fluid heating according to claim 3, wherein the electrodes connected to the folded portion are connected so that there are two straight portions forming a flow path between electrodes adjacent to each other along the flow path direction. apparatus. 内部に被加熱流体が流れる導電性材料からなる流路形成体を通電加熱して、前記流路を流れる被加熱流体を加熱する流体加熱装置であって、
前記流路形成体が、直線状の流路を形成する1又は複数の直線部を有し、
前記直線部に、前記流路を流れる流体を噴出する複数の流体噴出口が設けられ、
前記直線部における前記流路の流路方向に沿って複数の電極が接続されており、
連続して並ぶ3個の前記電極に接続される三相交流電源の極性がそれぞれ異なるように、三相交流電源のU相、V相及びW相が交互に接続されており、
前記直線部において互いに隣接する電極それぞれの間に前記流体噴出口が設けられている流体加熱装置。
A fluid heating device that heats a heated fluid flowing through the flow path by energizing and heating a flow path forming body made of a conductive material through which the heated fluid flows,
The flow path forming body has one or a plurality of straight portions forming a straight flow path,
A plurality of fluid ejection ports for ejecting fluid flowing through the flow path are provided in the straight portion,
A plurality of electrodes are connected along the flow path direction of the flow path in the linear portion,
The U-phase, V-phase and W-phase of the three-phase AC power supply are alternately connected so that the polarities of the three-phase AC power supply connected to the three electrodes arranged in succession are different .
The fluid heating apparatus in which the fluid ejection port is provided between electrodes adjacent to each other in the linear portion .
前記直線部を前記流路方向に沿って3n等分(nは1以上の整数である。)する位置に、前記電極がそれぞれ接続されている請求項5記載の流体加熱装置。   The fluid heating device according to claim 5, wherein the electrodes are respectively connected to positions where the straight portion is equally divided into 3n along the flow path direction (n is an integer of 1 or more). 内部に被加熱流体が流れる流路が形成された導電性材料からなる流路形成体を通電加熱して、前記流路を流れる被加熱流体を加熱する流体加熱装置であって、
前記流路形成体が、それぞれ互いに略平行に配置され、直線状の流路を形成する3n個(nは1以上の整数である。)の直線部と、互いに隣り合う前記直線部の端部を接続して蛇行した1本の流路を形成する3n−1個の折返し部とを有し、
前記流路形成体に前記流路を流れる流体を噴出する複数の流体噴出口が設けられ、
前記流路形成体において、前記蛇行した流路の両端部及び前記折返し部に三相交流電源に接続された電極がそれぞれ接続されるとともに、
前記流路の流路方向に沿って連続して並ぶ3個の前記電極に接続される三相交流電源の極性がそれぞれ異なるように、三相交流電源のU相、V相及びW相が交互に接続されている流体加熱装置。
A fluid heating device that heats a heated fluid flowing through the flow path by energizing and heating a flow path forming body made of a conductive material in which a flow path through which the heated fluid flows is formed,
The flow path forming bodies are arranged substantially parallel to each other, and 3n (n is an integer of 1 or more) straight line portions that form a straight flow path, and end portions of the straight line portions adjacent to each other. And 3n-1 folded portions forming one flow path meandering by connecting,
A plurality of fluid jets for ejecting the fluid flowing through the channel are provided in the channel forming body,
In the flow channel forming body, electrodes connected to a three-phase AC power source are connected to both ends of the meandering flow channel and the folded portion, respectively.
The U-phase, V-phase, and W-phase of the three-phase AC power supply alternate so that the polarities of the three-phase AC power supply connected to the three electrodes arranged continuously along the flow path direction of the flow path are different. Fluid heating device connected to.
前記流路形成体が、銅よりも高電気抵抗を有する請求項1乃至7の何れかに記載の流体加熱装置。   The fluid heating device according to claim 1, wherein the flow path forming body has a higher electrical resistance than copper. 前記電極間毎に電力制御装置を設け、前記電極に印加される電力が制御可能に構成された請求項1乃至8の何れかに記載の流体加熱装置。   The fluid heating device according to any one of claims 1 to 8, wherein a power control device is provided between the electrodes, and the power applied to the electrodes can be controlled. 前記流路形成体が、加熱された流体を収容するための収容室、又は加熱された流体により被処理物を処理するための処理室内に設けられている請求項1乃至9の何れかに記載の流体加熱装置。   The said flow path formation body is provided in the storage chamber for accommodating the heated fluid, or the processing chamber for processing a to-be-processed object by the heated fluid. Fluid heating device. 前記導体管に接続される単相交流電源又は三相交流電源が、前記収容室又は前記処理室とは別の空間に設けられている請求項10記載の流体加熱装置。   The fluid heating apparatus according to claim 10, wherein a single-phase AC power source or a three-phase AC power source connected to the conductor tube is provided in a space different from the storage chamber or the processing chamber. 前記流体噴出口に流体噴出ノズルが取り付けられた請求項1乃至11の何れかに記載の流体加熱装置。   The fluid heating apparatus according to claim 1, wherein a fluid ejection nozzle is attached to the fluid ejection port. 前記流路形成体に流入する前記被加熱流体が、飽和水蒸気又は過熱水蒸気であって、前記流路形成体から流出する流体が過熱水蒸気である請求項1乃至12の何れかに記載の流体加熱装置。   The fluid heating according to any one of claims 1 to 12, wherein the heated fluid flowing into the flow path forming body is saturated steam or superheated steam, and the fluid flowing out from the flow path forming body is superheated steam. apparatus.
JP2013195250A 2013-06-14 2013-09-20 Fluid heating device Active JP6224970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013195250A JP6224970B2 (en) 2013-06-14 2013-09-20 Fluid heating device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013125385 2013-06-14
JP2013125385 2013-06-14
JP2013195250A JP6224970B2 (en) 2013-06-14 2013-09-20 Fluid heating device

Publications (2)

Publication Number Publication Date
JP2015017794A JP2015017794A (en) 2015-01-29
JP6224970B2 true JP6224970B2 (en) 2017-11-01

Family

ID=52438939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195250A Active JP6224970B2 (en) 2013-06-14 2013-09-20 Fluid heating device

Country Status (1)

Country Link
JP (1) JP6224970B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825942A (en) * 1971-08-09 1973-04-04
US4034203A (en) * 1974-08-19 1977-07-05 Cooper Jerry D Steam generator apparatus
JPS57144840A (en) * 1981-03-04 1982-09-07 Chisso Eng Kk Direct energization fluid heating pipe device
JPS5892000A (en) * 1981-11-27 1983-06-01 Shin Kobe Electric Mach Co Ltd Direct heating method of pipeline
JPS61268368A (en) * 1985-05-23 1986-11-27 Chiyoda Chem Eng & Constr Co Ltd Electric heating type water sprinkling pipe apparatus
JPH05317843A (en) * 1992-05-19 1993-12-03 Shinko Pantec Co Ltd Ultra-pure water heater and ultra-pure water heating method
DE19542488A1 (en) * 1995-05-15 1997-05-22 Hainsberger Metallwerk Gmbh Method and device for hot gas welding of plastic films
JP2003052538A (en) * 2001-08-08 2003-02-25 Arusu:Kk Superheater and food heater using the same
ES2343169T3 (en) * 2001-08-13 2010-07-26 Microheat Technologies Pty Ltd. FAST HEATING SYSTEM AND PROCEDURE FOR A FLUID.
JP4332469B2 (en) * 2004-05-24 2009-09-16 株式会社ミヤデン Heated steam generator
SE528880C2 (en) * 2005-07-04 2007-03-06 Tetra Laval Holdings & Finance Method and apparatus for supplying a gas or gas mixture
JP2008253202A (en) * 2007-04-05 2008-10-23 Ryoso:Kk Method and apparatus for heat-treating food product

Also Published As

Publication number Publication date
JP2015017794A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
KR102162932B1 (en) Fluid heating apparatus
CN107255362B (en) Fluid heating device
JP5106628B2 (en) Induction heating device, hot air generator using the same, and hand dryer
KR20200029988A (en) Superheated Steam Generator
JP6224970B2 (en) Fluid heating device
JP6224971B2 (en) Fluid heating device
JP5947048B2 (en) Fluid heating device
CN107852783B (en) Inductor and inductor device
JP6259407B2 (en) Superheated steam generator
JP6466641B2 (en) Fluid heating device
JP6162473B2 (en) Fluid heating device
CN103634950A (en) Fluid heating apparatus
JP6043608B2 (en) Fluid heating device
JP6341614B2 (en) Fluid heating device
JP2019116986A (en) Superheated steam furnace
JP3202235U (en) Fluid heater
JP6514233B2 (en) High power small electric resistor
JP6243373B2 (en) Peeling device
JP2014192040A (en) Electric heating device
TW201339518A (en) Fluid heating apparatus
ITTO980650A1 (en) INTEGRAL ELECTRIC HEATING DEVICE FOR GASES AND DIELECTRIC LIQUIDS FOR INDUSTRIAL USES.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171006

R150 Certificate of patent or registration of utility model

Ref document number: 6224970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250