JP6220732B2 - Control device for motor cooling device - Google Patents

Control device for motor cooling device Download PDF

Info

Publication number
JP6220732B2
JP6220732B2 JP2014114409A JP2014114409A JP6220732B2 JP 6220732 B2 JP6220732 B2 JP 6220732B2 JP 2014114409 A JP2014114409 A JP 2014114409A JP 2014114409 A JP2014114409 A JP 2014114409A JP 6220732 B2 JP6220732 B2 JP 6220732B2
Authority
JP
Japan
Prior art keywords
cooling
air
electric motor
temperature
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014114409A
Other languages
Japanese (ja)
Other versions
JP2015228775A (en
Inventor
和浩 大久保
和浩 大久保
修造 池田
修造 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2014114409A priority Critical patent/JP6220732B2/en
Publication of JP2015228775A publication Critical patent/JP2015228775A/en
Application granted granted Critical
Publication of JP6220732B2 publication Critical patent/JP6220732B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Description

本発明は、送風機により電動機を強制通風冷却する冷却装置用制御装置の改良に関するものである。   The present invention relates to an improvement of a control device for a cooling device that forcibly cools an electric motor with a blower.

工場など周辺環境の悪いところに設置された電動機を効率的に冷却するために、電動機内に冷却風を送り、電動機から排出された冷却風を熱交換式の空気冷却器で冷却して送風機を通して再度、電動機の冷却風とする循環式冷却装置が広く産業用に使われている。   In order to efficiently cool an electric motor installed in a poor environment such as a factory, cooling air is sent into the electric motor, and the cooling air discharged from the electric motor is cooled by a heat exchange type air cooler and passed through a blower. Again, a circulating cooling device for cooling the motor is widely used for industrial purposes.

電動機の負荷に応じて銅損が変化することから、電動機の状況に応じて必要な冷却風量は異なる。一方、送風機の消費電力は送風量の概ね3乗に比例するため、電動機負荷に応じて冷却風量を適切に抑えることは大きな省エネルギー効果を得られる。   Since the copper loss changes according to the load of the electric motor, the required amount of cooling air varies depending on the state of the electric motor. On the other hand, since the power consumption of the blower is approximately proportional to the third power of the blown amount, appropriately suppressing the cooling air amount according to the motor load can provide a great energy saving effect.

このため、電動機の負荷電流などから発生熱量を推定し冷却風の送風機を駆動する電動機の速度を制御する装置が考案され広く用いられている(例えば、特許文献1参照。)。   For this reason, a device for estimating the amount of generated heat from the load current of the electric motor and controlling the speed of the electric motor that drives the blower of cooling air has been devised and used widely (for example, see Patent Document 1).

特開2003−284289号公報JP 2003-284289 A

しかしながら、熱交換式の空気冷却器の一次側冷却水路への水垢の付着など伝熱面の汚れは熱交換器の効率を著しく低下させる要因となるため、定期的な清掃メンテナンスが必要となる。従来は、伝熱面の汚れを運転中に定量的に測定することが難しいためメンテナンス間隔を合理的に決定できず、設備稼働率とメンテナンスコストの最適化が図られていなかった。   However, dirt on the heat transfer surface, such as adhesion of water scale to the primary side cooling water channel of the heat exchange type air cooler, causes a significant decrease in the efficiency of the heat exchanger, and therefore requires regular cleaning maintenance. Conventionally, since it is difficult to quantitatively measure the contamination of the heat transfer surface during operation, the maintenance interval cannot be rationally determined, and the equipment operation rate and the maintenance cost have not been optimized.

また、省エネルギーのために冷却風量を最適化している制御装置においては、空気冷却装置の効率低下は、結局冷却風の温度上昇をもたらすため冷却風量を増すことになり、本来の目的である送風機用電動機の省エネルギーに反する結果となっている。   In addition, in a control device that optimizes the cooling air volume for energy saving, a decrease in the efficiency of the air cooling device will eventually increase the temperature of the cooling air, increasing the cooling air volume, which is the original purpose for the blower. This is contrary to the energy saving of the electric motor.

そこで、本発明は上記のような課題を解決するためになされたものであり、流路の汚損程度を推定可能であり、省エネルギー効果を発揮することのできる電動機の冷却装置用制御装置を提供する。   Accordingly, the present invention has been made to solve the above-described problems, and provides a control device for a cooling device for an electric motor that can estimate the degree of fouling of a flow path and can exhibit an energy saving effect. .

本発明の一態様によれば、送風機により冷却風を送風して電動機を強制冷却する熱交換式空気冷却方式の冷却装置熱交換式空気冷却器を制御する電動機の冷却装置用制御装置であって、前記電動機の負荷電流と前記冷却風の温度と前記冷却風の送風量と前記電動機の温度上昇値との関係に関する実機又は実機モデルによる測定データに基づいて、前記電動機の温度が所定値を超えないように送風すべき前記冷却風の風量を求め、前記送風機の回転数を制御することにより前記冷却風の風量を制御する風量制御装置と、前記熱交換式空気冷却方式の冷却装置の一次側冷却水温と二次側冷却風温度の関係から前記熱交換式空気冷却方式の冷却装置内の一次側冷却水系統への水垢付着による効率低下を推定する推定部を備えたことを特徴とする電動機の冷却装置用制御装置が提供される。 According to one aspect of the present invention, there is provided a control device for a cooling device of an electric motor that controls a heat exchange type air cooler that cools a motor by forcing cooling air by using a blower. The temperature of the electric motor exceeds a predetermined value based on measurement data based on an actual machine or an actual machine model regarding the relationship between the load current of the electric motor, the temperature of the cooling air, the air flow rate of the cooling air, and the temperature rise value of the electric motor. The air volume control device that controls the air volume of the cooling air by obtaining the air volume of the cooling air to be blown so as to control the rotation speed of the blower, and the primary side of the cooling device of the heat exchange type air cooling system electric to the relationship between the coolant temperature and the secondary side cooling air temperature, comprising the estimation unit for estimating the efficiency reduction due to water stain from adhering to the primary cooling water system in the cooling apparatus of the heat exchanger type air cooling method Cooling device control device is provided.

本発明によれば、流路の汚損程度を推定可能であり、省エネルギー効果を発揮することのできる電動機の冷却装置用制御装置を実現することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to implement | achieve the pollution degree of a flow path, and it becomes possible to implement | achieve the control apparatus for motor cooling devices which can exhibit an energy saving effect.

本発明の実施形態に係る電動機の冷却装置用制御装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the control apparatus for cooling devices of the electric motor which concerns on embodiment of this invention. 第2の実施形態に係る電動機の冷却装置用制御装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the control apparatus for cooling devices of the electric motor which concerns on 2nd Embodiment. 第3の実施形態に係る電動機の冷却装置用制御装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the control apparatus for cooling devices of the electric motor which concerns on 3rd Embodiment.

以下、本発明の実施形態について、図面を参照して説明する。尚、各図において同一箇所については同一の符号を付す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected about the same location.

(第1の実施形態)
図1は、本発明の実施形態に係る電動機の冷却装置用制御装置の全体構成を示す概略図である。
(First embodiment)
FIG. 1 is a schematic diagram showing an overall configuration of a motor cooling device control apparatus according to an embodiment of the present invention.

図1に示すように、電動機の冷却装置用制御装置100は、冷却対象の電動機1に冷却風排出管2を介して、熱交換式空気冷却器3が接続している。熱交換式空気冷却器3の一端側には、送風機4が接続している。送風機4は、冷却風吹入管5を介して電動機1に接続している。冷却風吹入管5には、冷却風温度検出器9が配設されている。送風機4は、送風機用電動機13で駆動される。送風機用電動機13は、可変速駆動装置12を介して回転速度指令を出力する送風機用電動機制御装置11によって駆動制御される。また、冷却風温度検出器9の出力は、送風機用電動機制御装置11に取り込まれている。   As shown in FIG. 1, in a cooling device control device 100 for an electric motor, a heat exchange type air cooler 3 is connected to an electric motor 1 to be cooled via a cooling air discharge pipe 2. A blower 4 is connected to one end side of the heat exchange type air cooler 3. The blower 4 is connected to the electric motor 1 through the cooling air blowing pipe 5. A cooling air temperature detector 9 is disposed in the cooling air blowing pipe 5. The blower 4 is driven by a blower motor 13. The blower motor 13 is driven and controlled by a blower motor control device 11 that outputs a rotational speed command via the variable speed drive device 12. The output of the cooling air temperature detector 9 is taken into the blower motor controller 11.

電動機1と送風機用電動機制御装置11は、それぞれ負荷電流検出器10で負荷電流が検出されている。   The load current is detected by the load current detector 10 in each of the motor 1 and the blower motor control device 11.

熱交換式空気冷却器3の他端側には、冷却水取入管6と冷却水吐出管8が接続している。冷却水取入管6には、冷却水温度検出器7が配設されている。冷却水温度検出器7の出力は、空気冷却器効率推定器14に取り込まれている。さらに、空気冷却器効率推定器14の出力は、送風機用電動機制御装置11に取り込まれている。   A cooling water intake pipe 6 and a cooling water discharge pipe 8 are connected to the other end side of the heat exchange type air cooler 3. A cooling water temperature detector 7 is disposed in the cooling water intake pipe 6. The output of the coolant temperature detector 7 is taken into the air cooler efficiency estimator 14. Further, the output of the air cooler efficiency estimator 14 is taken into the blower motor controller 11.

以上のように構成された電動機の冷却装置用制御装置100において、空気冷却器効率推定器14は、冷却風温度検出器9と冷却対象の電動機1の負荷電流検出器10から最適な冷却風量を計算する。   In the motor cooling device control apparatus 100 configured as described above, the air cooler efficiency estimator 14 obtains the optimum cooling air volume from the cooling air temperature detector 9 and the load current detector 10 of the electric motor 1 to be cooled. calculate.

さらに、送風機用電動機制御装置11は、基準とする冷却風基準温度と冷却風温度検出器9で検出する実際の冷却風温度と、熱交換式空気冷却器3の一次側冷却水取入管6に設けられた冷却水温度検出器7から得られた冷却水温度の関係から、熱交換式空気冷却器3の効率、すなわち一次側冷却水路の伝熱面の汚れの程度を推定することができる。   Further, the blower motor controller 11 supplies the reference cooling air reference temperature, the actual cooling air temperature detected by the cooling air temperature detector 9, and the primary side cooling water intake pipe 6 of the heat exchange type air cooler 3. From the relationship of the cooling water temperature obtained from the provided cooling water temperature detector 7, the efficiency of the heat exchange type air cooler 3, that is, the degree of contamination on the heat transfer surface of the primary side cooling water channel can be estimated.

<推定原理>
以下に、本実施形態における推定原理について詳述する。
<Estimation principle>
Hereinafter, the estimation principle in the present embodiment will be described in detail.

熱交換器の伝熱量をQとすると、全伝熱面の熱通過率が一定とおくと以下の式が成り立つことが広く知られている。

Figure 0006220732
Assuming that the heat transfer amount of the heat exchanger is Q, it is widely known that the following equation holds when the heat transfer rate of all heat transfer surfaces is constant.
Figure 0006220732

ここで、
K:熱通過率
F:伝熱面積
t1:冷却対象の電動機から熱交換器に戻ってくる冷却排気温度
t1’:熱交換器に入っていく一次側冷却水の温度
t2:熱交換器から送り出す冷却風温度
t2’:熱交換器から出ていく一次側冷却排水の温度
とする。
here,
K: Heat transfer rate F: Heat transfer area
t 1 : Cooling exhaust temperature returning to the heat exchanger from the motor to be cooled
t 1 ': The temperature of the primary cooling water entering the heat exchanger
t 2 : Cooling air temperature sent out from the heat exchanger
t 2 ': The temperature of the primary side cooling water discharged from the heat exchanger.

一方、熱交換器の熱通過率Kは、一次側冷却媒体と伝熱面の間の熱伝達係数をα、二次側冷却媒体と伝熱面の間の熱伝達係数をα’、伝熱面自体の熱伝導度をλ、伝熱面の肉厚をδとおくと、以下の式で表すことが出来る。

Figure 0006220732
On the other hand, the heat transfer coefficient K of the heat exchanger is such that the heat transfer coefficient between the primary side cooling medium and the heat transfer surface is α, the heat transfer coefficient between the secondary side cooling medium and the heat transfer surface is α ′, If the thermal conductivity of the surface itself is λ and the thickness of the heat transfer surface is δ, it can be expressed by the following equation.
Figure 0006220732

したがって、熱交換式空気冷却器の一次側冷却水路の伝熱面が汚れることにより熱伝達係数αが小さくなり、熱交換器の熱通過率Kも低下し、伝熱量Qが小さくなり、結果として電動機、熱交換式の空気冷却器、送風機からなる循環冷却風系統内の冷却風温度は上昇し、上記伝熱量の式および電動機や送風機、風管等からの放熱も増えてバランスする。   Therefore, the heat transfer coefficient α is reduced due to the heat transfer surface of the primary side cooling water channel of the heat exchange type air cooler becoming dirty, the heat passing rate K of the heat exchanger is also reduced, and the heat transfer amount Q is reduced. The cooling air temperature in the circulating cooling air system composed of the electric motor, the heat exchange type air cooler, and the blower rises, and the heat transfer type and the heat radiation from the electric motor, the blower, and the wind pipe increase and balance.

ここで、送風機用電動機制御装置11は、冷却対象の電動機1の負荷電流検出器10から電動機1で発生する熱量を予測している。その結果、冷却風温度検出器9で測定したt2により、空気の比熱、循環系統の容積から決まる熱容量から冷却排気温度t1を計算することが出来る。   Here, the blower motor controller 11 predicts the amount of heat generated in the motor 1 from the load current detector 10 of the motor 1 to be cooled. As a result, the cooling exhaust gas temperature t1 can be calculated from the specific heat of the air and the heat capacity determined from the volume of the circulation system by t2 measured by the cooling air temperature detector 9.

また、水の比熱が大きいことから、一般に熱交換式空気冷却器の一次側の冷却水温上昇は比較的小さく、一次側の冷却水温度自体が支配的であることから、冷却水温度検出器7で測定したt1’が判れば概ねt2’も同様と見なすことが出来る。 Further, since the specific heat of water is large, generally the rise in the cooling water temperature on the primary side of the heat exchange type air cooler is relatively small, and the cooling water temperature itself on the primary side is dominant, so that the cooling water temperature detector 7 If t 1 ′ measured in step 1 is known, t 2 ′ can be regarded as the same.

したがって、これらの情報から伝熱量Qの式、熱通過率Kの式を逆算することにより、熱交換式空気冷却器の一次側冷却水路の熱伝達係数αを求め、伝熱面の汚れの程度と初期設計値からの変化からメンテナンスの必要な時期を決めることが出来る。伝熱面の汚れが初期設定値から所定値を超えて変化した場合、メンテナンスのためのアラームを発するのが好適である。   Therefore, the heat transfer coefficient α of the primary side cooling water channel of the heat exchange type air cooler is obtained by reversely calculating the formula of the heat transfer amount Q and the formula of the heat transfer rate K from these information, and the degree of contamination of the heat transfer surface And the time required for maintenance can be determined from the change from the initial design value. When the contamination of the heat transfer surface changes from the initial setting value exceeding a predetermined value, it is preferable to issue an alarm for maintenance.

なお、ここでは、冷却排気温度t1を計算で求めていたが、直接または間接的にt1を測定しても同様の効果を得ることが出来る。 Here, the cooling exhaust gas temperature t 1 is obtained by calculation, but the same effect can be obtained by measuring t 1 directly or indirectly.

また、ここでは、冷却排水温度t2’を冷却水温度t1’と同等とみなしたが、直接または間接的にt2’を測定しても同様の効果を得ることが出来る。 Here, the cooling drainage temperature t 2 ′ is regarded as equivalent to the cooling water temperature t 1 ′, but the same effect can be obtained even if t 2 ′ is measured directly or indirectly.

また、一次側冷却水の温度がほぼ一定とみなせるならば、冷却水温度検出器7を省略して定数を用いても同様の効果を得ることが出来る。   Further, if the temperature of the primary side cooling water can be regarded as substantially constant, the same effect can be obtained even if the cooling water temperature detector 7 is omitted and a constant is used.

(第2の実施形態)
次に、第2の実施形態について説明する。第2の実施形態は、熱交換式空気冷却器の一次側冷却媒体を水の代わりに空気に置き換えたものである。
(Second Embodiment)
Next, a second embodiment will be described. In the second embodiment, the primary side cooling medium of the heat exchange type air cooler is replaced with air instead of water.

図2は、第2の実施形態に係る電動機の冷却装置用制御装置の全体構成を示す概略図である。   FIG. 2 is a schematic diagram showing the overall configuration of the motor cooling device control device according to the second embodiment.

図2に示すように、第2の実施形態に係る電動機の冷却装置用制御装置110は、冷却対象の電動機1に冷却風排出管2を介して、熱交換式空気冷却器3が接続している。熱交換式空気冷却器3の一端側には、送風機4が接続している。送風機4は、冷却風吹入管5を介して電動機1に接続している。冷却風吹入管5には、冷却風温度検出器9が配設されている。送風機4は、送風機用電動機13で駆動される。送風機用電動機13は、可変速駆動装置12を介して回転速度指令を出力する送風機用電動機制御装置11によって駆動制御される。また、冷却風温度検出器9の出力は、送風機用電動機制御装置11に取り込まれている。   As shown in FIG. 2, the motor cooling device controller 110 according to the second embodiment includes a heat exchange type air cooler 3 connected to a motor 1 to be cooled via a cooling air discharge pipe 2. Yes. A blower 4 is connected to one end side of the heat exchange type air cooler 3. The blower 4 is connected to the electric motor 1 through the cooling air blowing pipe 5. A cooling air temperature detector 9 is disposed in the cooling air blowing pipe 5. The blower 4 is driven by a blower motor 13. The blower motor 13 is driven and controlled by a blower motor control device 11 that outputs a rotational speed command via the variable speed drive device 12. The output of the cooling air temperature detector 9 is taken into the blower motor controller 11.

電動機1と送風機用電動機制御装置11は、それぞれ負荷電流検出器10で負荷電流が検出されている。   The load current is detected by the load current detector 10 in each of the motor 1 and the blower motor control device 11.

熱交換式空気冷却器3の他端側には、一次側気温検出器7aが接続している。一次側気温検出器7aの出力は、空気冷却器効率推定器14に取り込まれている。さらに、空気冷却器効率推定器14の出力は、送風機用電動機制御装置11に取り込まれている。   A primary air temperature detector 7 a is connected to the other end of the heat exchange type air cooler 3. The output of the primary air temperature detector 7 a is taken into the air cooler efficiency estimator 14. Further, the output of the air cooler efficiency estimator 14 is taken into the blower motor controller 11.

以上のように構成された電動機の冷却装置用制御装置110において、空気冷却器効率推定器14は、冷却風温度検出器9と冷却対象の電動機1の負荷電流検出器10から最適な冷却風量を計算する。   In the motor cooling device control apparatus 110 configured as described above, the air cooler efficiency estimator 14 obtains the optimum cooling air volume from the cooling air temperature detector 9 and the load current detector 10 of the electric motor 1 to be cooled. calculate.

さらに、送風機用電動機制御装置11は、基準とする冷却風基準温度と冷却風温度検出器9で検出する実際の冷却風温度と、熱交換式空気冷却器3の一端側に設けられた一次側気温検出器7aから得られた温度の関係から、熱交換式空気冷却器3の効率、すなわち一次側冷却水路の伝熱面の汚れの程度を推定することができる。   Further, the blower motor controller 11 includes a reference cooling air reference temperature, an actual cooling air temperature detected by the cooling air temperature detector 9, and a primary side provided on one end side of the heat exchange type air cooler 3. From the temperature relationship obtained from the air temperature detector 7a, the efficiency of the heat exchange type air cooler 3, that is, the degree of contamination of the heat transfer surface of the primary cooling water channel can be estimated.

周辺環境の悪いところに設置された電動機を効率的に冷却するためのシステムであるため、一次側冷却媒体を空気とした場合は、特に熱交換器の一次側冷却風路の汚損は激しいと考えられる。第2の実施形態によれば、熱交換器式空気冷却器の一次側媒体を空気とした場合であっても、伝熱面の汚れの程度を推定することができる。   This system is designed to efficiently cool an electric motor installed in a poor environment. Therefore, when the primary cooling medium is air, the primary cooling air passage of the heat exchanger is particularly seriously fouled. It is done. According to the second embodiment, even when the primary medium of the heat exchanger air cooler is air, the degree of contamination on the heat transfer surface can be estimated.

(第3の実施形態)
次に、第3の実施形態について説明する。第3の実施形態は、冷却風の温度測定を熱交換器式空気冷却器の出側ではなく入側で行うものである。
(Third embodiment)
Next, a third embodiment will be described. In the third embodiment, the temperature of the cooling air is measured not on the outlet side of the heat exchanger type air cooler but on the inlet side.

図3は、第3の実施形態に係る電動機の冷却装置用制御装置の全体構成を示す概略図である。   FIG. 3 is a schematic diagram illustrating the overall configuration of the motor cooling device control device according to the third embodiment.

図3に示すように、電動機の冷却装置用制御装置120は、冷却対象の電動機1に冷却風排出管2を介して、熱交換式空気冷却器3が接続している。熱交換式空気冷却器3の一端側には、送風機4が接続している。送風機4は、冷却風吹入管5を介して電動機1に接続している。冷却風排出管2には、冷却排気温度検出器9aが配設されている。送風機4は、送風機用電動機13で駆動される。送風機用電動機13は、可変速駆動装置12を介して回転速度指令を出力する送風機用電動機制御装置11によって駆動制御される。また、冷却排気温度検出器9aの出力は、送風機用電動機制御装置11に取り込まれている。   As shown in FIG. 3, in the motor cooling device control device 120, a heat exchange type air cooler 3 is connected to a motor 1 to be cooled via a cooling air discharge pipe 2. A blower 4 is connected to one end side of the heat exchange type air cooler 3. The blower 4 is connected to the electric motor 1 through the cooling air blowing pipe 5. A cooling exhaust temperature detector 9 a is disposed in the cooling air discharge pipe 2. The blower 4 is driven by a blower motor 13. The blower motor 13 is driven and controlled by a blower motor control device 11 that outputs a rotational speed command via the variable speed drive device 12. The output of the cooling exhaust gas temperature detector 9a is taken into the blower motor controller 11.

電動機1と送風機用電動機制御装置11は、それぞれ負荷電流検出器10で負荷電流が検出されている。   The load current is detected by the load current detector 10 in each of the motor 1 and the blower motor control device 11.

熱交換式空気冷却器3の他端側には、冷却水取入管6と冷却水吐出管8が接続している。冷却水取入管6には、冷却水温度検出器7が配設されている。冷却水温度検出器7の出力は、空気冷却器効率推定器14に取り込まれている。さらに、空気冷却器効率推定器14の出力は、送風機用電動機制御装置11に取り込まれている。   A cooling water intake pipe 6 and a cooling water discharge pipe 8 are connected to the other end side of the heat exchange type air cooler 3. A cooling water temperature detector 7 is disposed in the cooling water intake pipe 6. The output of the coolant temperature detector 7 is taken into the air cooler efficiency estimator 14. Further, the output of the air cooler efficiency estimator 14 is taken into the blower motor controller 11.

以上のように構成された電動機の冷却装置用制御装置120において、空気冷却器効率推定器14は、冷却排気温度検出器9aと冷却対象の電動機1の負荷電流検出器10から最適な冷却風量を計算する。   In the motor cooling device control device 120 configured as described above, the air cooler efficiency estimator 14 obtains the optimum cooling air flow rate from the cooling exhaust gas temperature detector 9a and the load current detector 10 of the electric motor 1 to be cooled. calculate.

さらに、送風機用電動機制御装置11は、基準とする冷却風基準温度と冷却排気温度検出器9aで検出する実際の冷却風温度と、熱交換式空気冷却器3の一次側冷却水取入管6に設けられた冷却水温度検出器7から得られた冷却水温度の関係から、熱交換式空気冷却器3の効率、すなわち一次側冷却水路の伝熱面の汚れの程度を推定することができる。   Furthermore, the blower motor controller 11 supplies the reference cooling air reference temperature and the actual cooling air temperature detected by the cooling exhaust gas temperature detector 9 a to the primary side cooling water intake pipe 6 of the heat exchange type air cooler 3. From the relationship of the cooling water temperature obtained from the provided cooling water temperature detector 7, the efficiency of the heat exchange type air cooler 3, that is, the degree of contamination of the heat transfer surface of the primary cooling water channel can be estimated.

第3の実施形態によれば、冷却風の温度測定を熱交換器式空気冷却器の入側で行うことにより、伝熱面の汚れの程度を推定することができる。   According to the third embodiment, the degree of contamination of the heat transfer surface can be estimated by measuring the temperature of the cooling air at the inlet side of the heat exchanger type air cooler.

本発明の実施形態によれば、流路の汚損程度を推定可能であり、省エネルギー効果を発揮することのできる電動機の冷却装置用制御装置を実現することが可能となる。   According to the embodiment of the present invention, it is possible to realize a control device for a cooling device for an electric motor that can estimate the degree of fouling of a flow path and can exhibit an energy saving effect.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

100,110,120・・・冷却装置用制御装置
1・・・電動機
2・・・冷却風排出菅
3・・・熱交換式空気冷却器
4・・・送風機
5・・・冷却風吹入管
6・・・冷却水取入管
7・・・冷却水温度検出器
7a・・・一次側気温検出器
8・・・冷却水吐出管
9・・・冷却風温度検出器
9a・・・冷却排気温度検出器
10・・・負荷電流検出器
11・・・送風機用電動機制御装置
12・・・可変速駆動装置
13・・・送風機用電動機
14・・・空気冷却器効率推定器
100, 110, 120 ... Cooling device control device 1 ... Electric motor 2 ... Cooling air discharge rod 3 ... Heat exchange type air cooler 4 ... Blower 5 ... Cooling air blow-in pipe 6 ..Cooling water intake pipe 7 ... cooling water temperature detector 7a ... primary air temperature detector 8 ... cooling water discharge pipe 9 ... cooling air temperature detector 9a ... cooling exhaust temperature detector DESCRIPTION OF SYMBOLS 10 ... Load current detector 11 ... Blower motor controller 12 ... Variable speed drive device 13 ... Blower motor 14 ... Air cooler efficiency estimator

Claims (2)

送風機により冷却風を送風して電動機を強制冷却する熱交換式空気冷却方式の冷却装置熱交換式空気冷却器を制御する電動機の冷却装置用制御装置であって、
前記電動機の負荷電流と前記冷却風の温度と前記冷却風の送風量と前記電動機の温度上昇値との関係に関する実機又は実機モデルによる測定データに基づいて、前記電動機の温度が所定値を超えないように送風すべき前記冷却風の風量を求め、前記送風機の回転数を制御することにより前記冷却風の風量を制御する風量制御装置と、
前記熱交換式空気冷却方式の冷却装置の一次側冷却水温と二次側冷却風温度の関係から前記熱交換式空気冷却方式の冷却装置内の一次側冷却水系統への水垢付着による効率低下を推定する推定部を備えたことを特徴とする電動機の冷却装置用制御装置。
A heat exchange type air cooling method cooling device for forcibly cooling an electric motor by blowing cooling air from a blower, a motor cooling device control device for controlling a heat exchange type air cooler,
The temperature of the electric motor does not exceed a predetermined value based on measurement data based on an actual machine or an actual machine model relating to the relationship between the load current of the electric motor, the temperature of the cooling air, the air flow rate of the cooling air, and the temperature rise value of the electric motor. An air volume control device for determining the air volume of the cooling air to be blown and controlling the air volume of the cooling air by controlling the rotational speed of the blower;
The efficiency loss due to water stain from adhering to the primary cooling water system in the cooling apparatus of the heat exchanger type air cooling method from the primary side relationship of the cooling water temperature and the secondary side cooling air temperature of the cooling apparatus of the heat exchanger type air cooling method A control device for a cooling device for an electric motor, comprising an estimation unit for estimation.
送風機により冷却風を送風して電動機を強制冷却する熱交換式空気冷却方式の冷却装置を制御する電動機の冷却装置用制御装置であって、
前記電動機の負荷電流と前記冷却風の温度と前記冷却風の送風量と前記電動機の温度上昇値との関係に関する実機又は実機モデルによる測定データに基づいて、前記電動機の温度が所定値を超えないように送風すべき前記冷却風の風量を求め、前記送風機の回転数を制御することにより前記冷却風の風量を制御する風量制御装置と、
前記熱交換式空気冷却方式の冷却装置の一次側冷却風温度と二次側冷却風温度の関係から前記熱交換式空気冷却方式の冷却装置内の一次側冷却風路への塵埃付着による効率低下を推定する推定部を備えたことを特徴とする電動機の冷却装置用制御装置。
A control device for a cooling device of an electric motor that controls a cooling device of a heat exchange type air cooling method for forcibly cooling an electric motor by blowing cooling air with a blower,
The temperature of the electric motor does not exceed a predetermined value based on measurement data based on an actual machine or an actual machine model relating to the relationship between the load current of the electric motor, the temperature of the cooling air, the air flow rate of the cooling air, and the temperature rise value of the electric motor. An air volume control device for determining the air volume of the cooling air to be blown and controlling the air volume of the cooling air by controlling the rotational speed of the blower;
Efficiency reduction due to adhesion of dust to the primary side cooling air passage in the cooling apparatus of the heat exchanger type air cooling method from the primary side relationship of the cooling air temperature and the secondary cooling air temperature of the cooling apparatus of the heat exchanger type air cooling method A control device for a cooling device for an electric motor, comprising an estimation unit for estimating
JP2014114409A 2014-06-02 2014-06-02 Control device for motor cooling device Active JP6220732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014114409A JP6220732B2 (en) 2014-06-02 2014-06-02 Control device for motor cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014114409A JP6220732B2 (en) 2014-06-02 2014-06-02 Control device for motor cooling device

Publications (2)

Publication Number Publication Date
JP2015228775A JP2015228775A (en) 2015-12-17
JP6220732B2 true JP6220732B2 (en) 2017-10-25

Family

ID=54885939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014114409A Active JP6220732B2 (en) 2014-06-02 2014-06-02 Control device for motor cooling device

Country Status (1)

Country Link
JP (1) JP6220732B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4892811A (en) * 1972-03-10 1973-12-01
JPS56146966A (en) * 1980-04-15 1981-11-14 Mitsubishi Heavy Ind Ltd Operation monitoring of suction refrigerating machine
JPS5915800A (en) * 1982-07-19 1984-01-26 Kurita Water Ind Ltd Fouling preventing apparatus
JPS59141458U (en) * 1983-03-10 1984-09-21 株式会社東芝 Totally enclosed rotating electric machine
KR890001890B1 (en) * 1984-03-23 1989-05-30 더 뱁콕 앤드 윌콕스 컴퍼니 Heat exchanger performance monita
JPH0419329A (en) * 1990-05-11 1992-01-23 Komatsu Ltd Device for detecting deterioration of radiator performance and its judgement
JP2003284289A (en) * 2002-03-20 2003-10-03 Mitsubishi Electric Corp Controller for cooling device for rotary electric machine
JP5020347B2 (en) * 2010-03-29 2012-09-05 中国電力株式会社 Heat exchanger performance management apparatus and method

Also Published As

Publication number Publication date
JP2015228775A (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP6352038B2 (en) Indoor unit for air conditioner, air conditioner equipped with the same, and method for detecting contamination of heat exchanger
FI120758B (en) Determination of component life
US20150103490A1 (en) Oil cooling device for server and method for driving same
JP5877856B2 (en) Numerical control device with heat dissipation characteristic estimation unit
JP4505436B2 (en) Energy-saving operation method for cooling tower group and cooling tower group used therefor
JP5572442B2 (en) Liquid-cooled power storage system
KR102149272B1 (en) Center cooling system and controlling method for the same
FI2577205T3 (en) Cooling system comprising thermosyphon cooler and cooling tower and method for operating such cooling system
WO2008126428A1 (en) Air conditioning system controller
JP6367900B2 (en) Laser equipment
JP2015226407A (en) Abnormality detection system for cooler
JP4858001B2 (en) Rotating electric machine and power generation system
JP6220732B2 (en) Control device for motor cooling device
JP2017175844A (en) Coolant temperature estimation device and rotary electric machine temperature estimation device
JP5820232B2 (en) Surface temperature estimation device, surface temperature estimation method, and dew condensation determination device
KR101965848B1 (en) Variable control heat exchange heat pump system using water source
JPWO2020208726A1 (en) Power converter
EP3217776B1 (en) Traction box of a railway vehicle with cooling system, method for its implementation and railway vehicle therefor
JP5977622B2 (en) Temperature set value control device and temperature set value control method
US20140216710A1 (en) Method For Operating A Liquid-To-Air Heat Exchanger Device
KR20110100098A (en) Apparatus for controllign an air cooling type chiller and method the same
JP2017114179A5 (en)
JP5873155B1 (en) Monitoring system, monitoring apparatus and monitoring method
JP2006325347A (en) System and method for controlling airflow in motor-cooling means
ES2837145T3 (en) Procedure and device for monitoring a heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R150 Certificate of patent or registration of utility model

Ref document number: 6220732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250