JP6219751B2 - Unshaped refractories for tundish lining - Google Patents

Unshaped refractories for tundish lining Download PDF

Info

Publication number
JP6219751B2
JP6219751B2 JP2014040737A JP2014040737A JP6219751B2 JP 6219751 B2 JP6219751 B2 JP 6219751B2 JP 2014040737 A JP2014040737 A JP 2014040737A JP 2014040737 A JP2014040737 A JP 2014040737A JP 6219751 B2 JP6219751 B2 JP 6219751B2
Authority
JP
Japan
Prior art keywords
mass
raw material
alumina
magnesia
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014040737A
Other languages
Japanese (ja)
Other versions
JP2015166290A (en
Inventor
博喜 内山
博喜 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2014040737A priority Critical patent/JP6219751B2/en
Publication of JP2015166290A publication Critical patent/JP2015166290A/en
Application granted granted Critical
Publication of JP6219751B2 publication Critical patent/JP6219751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

本発明は、タンディッシュ内張り用不定形耐火物に関する。   The present invention relates to an irregular refractory for tundish lining.

従来、タンディッシュ内張り用不定形耐火物としてアルミナ−マグネシア質の不定形耐火物が知られている。例えば、特許文献1に、「アルミナ80〜91重量%、マグネシア4〜14重量%、ヒュームシリカ3〜7重量%、アルミナセメント2〜6重量%を含む配合組成を100重量%とし、かつ重量比でヒュームシリカ/アルミナセメントが0.75以上の組成を持つアルミナ−マグネシア質タンディシュ内張り用不定形耐火物。」(請求項1)が開示されており、これにより、アルミナ−マグネシア質の座屈破壊や亀裂拡大の防止が図られている。   Conventionally, an amorphous refractory of alumina-magnesia is known as an amorphous refractory for tundish lining. For example, Patent Document 1 discloses that a blending composition containing “alumina 80 to 91% by weight, magnesia 4 to 14% by weight, fume silica 3 to 7% by weight, alumina cement 2 to 6% by weight is 100% by weight, and An amorphous refractory for an alumina-magnesia tundish lining having a composition of fume silica / alumina cement of 0.75 or more "is disclosed, whereby the alumina-magnesia buckling failure is disclosed. And prevention of crack expansion.

ところで、通常、タンディッシュにおいては、溶鋼汚染防止と内張り用不定形耐火物の保護のために、内張り用不定形耐火物にコーティング材が被覆される。コーティング材は、損耗等によって残厚が少なくなると解体して新規に施工される。この解体作業は衝撃を伴うため、その解体時に亀裂剥離を生じてしまう。   By the way, in a tundish, a coating material is usually coated on the amorphous refractory for the lining in order to prevent molten steel contamination and protect the refractory for the lining. When the remaining thickness decreases due to wear or the like, the coating material is disassembled and newly applied. Since this dismantling operation involves an impact, crack peeling occurs during the dismantling.

しかし、特許文献1に開示されているような従来のアルミナ−マグネシア質では、前述の解体時の亀裂剥離に対しては耐用性が不十分であった。   However, the conventional alumina-magnesia disclosed in Patent Document 1 has insufficient durability against the above-described crack peeling during dismantling.

特開平11−100280号公報Japanese Patent Application Laid-Open No. 11-100280

本発明が解決しようとする課題は、アルミナ−マグネシア質のタンディッシュ内張り用不定形耐火物において、解体時の亀裂剥離を抑制し、耐用性を向上させることにある。   The problem to be solved by the present invention is to suppress crack peeling during dismantling and improve durability in an amorphous refractory for an alumina-magnesia tundish lining.

前記課題の解決にあたり本発明者らは、タンディッシュ内張り用不定形耐火物の解体時の亀裂剥離を抑制するには、その高強度化が必要であり、更にタンディッシュ内張り用不定形耐火物としての耐用性を向上させるためには、従来レベルの耐スラグ浸潤性及び耐スポーリング性を維持しつつ高強度化を図るべきと考えた。そして、このためにはアルミナ−マグネシア質中の、粒径75μm未満のマグネシア原料の含有量、及びシリカ超微粉/前記アルミナセメントの含有量比を制御することが重要であることを知見した。   In order to solve the above-mentioned problems, the present inventors need to increase the strength in order to suppress crack peeling at the time of dismantling of the unshaped refractory for tundish lining, and as an unshaped refractory for tundish lining. In order to improve the durability of the steel, it was thought that the strength should be increased while maintaining the conventional levels of slag infiltration resistance and spalling resistance. For this purpose, it has been found that it is important to control the content of magnesia raw material having a particle size of less than 75 μm and the content ratio of ultrafine silica powder / alumina cement in the alumina-magnesia.

すなわち、本発明の一観点によれば、アルミナ原料、マグネシア原料、シリカ超微粉及びアルミナセメントを含む不定形耐火物であって、前記アルミナ原料、マグネシア原料、シリカ超微粉及びアルミナセメントの合量100質量%中に前記アルミナ原料を70質量%以上92質量%以下、前記マグネシア原料を0.5質量%以上12質量%以下、前記アルミナセメントを3.5質量%以上12質量%以下含有し、前記マグネシア原料は粒径75μm未満の微粉マグネシア原料を含み、前記合量100質量%中における前記シリカ超微粉/前記アルミナセメントの含有量比が0.4以上1.2以下であり、かつ、前記合量100質量%中に前記微粉マグネシア原料を0.5質量%以上6.9質量%以下含有するタンディッシュ内張り用不定形耐火物が提供される。 That is, according to one aspect of the present invention, an amorphous refractory containing an alumina raw material, a magnesia raw material, silica ultrafine powder, and alumina cement, the combined amount of the alumina raw material, magnesia raw material, silica ultrafine powder, and alumina cement is 100. 70% by mass or more and 92% by mass or less of the alumina raw material in 0.5% by mass, 0.5% by mass or more and 12% by mass or less of the magnesia raw material , 3.5% by mass or more and 12% by mass or less of the alumina cement , The magnesia raw material includes a fine magnesia raw material having a particle diameter of less than 75 μm, and the content ratio of the silica ultrafine powder / the alumina cement in the total amount of 100% by mass is 0.4 to 1.2, and An irregular shape for tundish lining containing 0.5% to 6.9% by mass of the fine magnesia raw material in an amount of 100% by mass Fire object is provided.

本発明によれば、アルミナ−マグネシア質のタンディッシュ内張り用不定形耐火物において、解体時の亀裂剥離を抑制し、耐用性を向上させることができる。   According to the present invention, in an amorphous refractory for alumina-magnesia tundish lining, crack peeling during dismantling can be suppressed and durability can be improved.

本発明のタンディッシュ内張り用不定形耐火物は、アルミナ原料、マグネシア原料、シリカ超微粉及びアルミナセメントを含み、適量の施工水を添加して施工される。   The amorphous refractory for tundish lining of the present invention contains an alumina raw material, a magnesia raw material, silica ultrafine powder, and alumina cement, and is constructed by adding an appropriate amount of construction water.

アルミナ原料、マグネシア原料、シリカ超微粉及びアルミナセメントとしては、一般的な不定形耐火物用の原材料を使用できる。例えばアルミナ原料としては、電融あるいは焼結によって製造され粒度調整された原料と、仮焼アルミナと呼ばれているバイヤー法で製造された原料を使用する。電融あるいは焼結によって製造され粒度調整されたアルミナ原料は、Al含有量が90質量%以上、好ましくは99質量%以上のものを使用する。マグネシア原料としては、電融あるいは焼結によって製造され粒度調整された原料を使用する。乾燥時にマグネシア原料が消化して体積膨張による亀裂が発生しないように、耐消化性が高いマグネシア原料を使用することが好ましい。シリカ超微粉としては、シリカヒューム、ヒュームドシリカ、マイクロシリカ、蒸発シリカ、あるいは、シリカダスト等と呼ばれる粒径が1μm以下の非晶質のSiO質原料を使用する。 As the alumina raw material, magnesia raw material, ultrafine silica powder, and alumina cement, general raw materials for amorphous refractories can be used. For example, as an alumina raw material, a raw material manufactured by electromelting or sintering and whose particle size is adjusted, and a raw material manufactured by a Bayer method called calcined alumina are used. The alumina raw material produced by electromelting or sintering and adjusted in particle size has an Al 2 O 3 content of 90% by mass or more, preferably 99% by mass or more. As the magnesia raw material, a raw material which is manufactured by electromelting or sintering and whose particle size is adjusted is used. It is preferable to use a magnesia raw material having high digestion resistance so that the magnesia raw material is digested during drying and cracks due to volume expansion do not occur. As the ultrafine silica powder, an amorphous SiO 2 raw material having a particle size of 1 μm or less called silica fume, fumed silica, micro silica, evaporated silica, silica dust or the like is used.

本発明のタンディッシュ内張り用不定形耐火物はアルミナ−マグネシア質であり、アルミナ原料、マグネシア原料、シリカ超微粉及びアルミナセメントの合量100質量%中にアルミナ原料を70質量%以上92質量%以下、マグネシア原料を0.5質量%以上12質量%以下含有する。   The amorphous refractory for tundish lining of the present invention is alumina-magnesia, and the alumina raw material is 70% by mass or more and 92% by mass or less in the total amount of 100% by mass of the alumina raw material, magnesia raw material, silica ultrafine powder and alumina cement. The magnesia raw material is contained in an amount of 0.5 mass% to 12 mass%.

本発明においてマグネシア原料としては、少なくとも一部に粒径75μm以下の微粉マグネシア原料を含むものを使用する。この微粉マグネシア原料の前記合量中の含有量は、0.5質量%以上6.9質量%以下とする。微粉マグネシア原料の含有量が0.5質量%未満では十分な強度が得られず解体時の亀裂剥離を抑制できかねるし、耐スラグ浸潤性も低下する。一方、微粉マグネシア原料の含有量が6.9質量%を超えると、耐スラグ浸潤性は得られるものの実使用時に焼結が進行しすぎて耐スポーリング性が低下する。微粉マグネシア原料の含有量は2質量%以上4.9質量%以下であることが好ましい。   In the present invention, as the magnesia raw material, at least a part containing a fine magnesia raw material having a particle size of 75 μm or less is used. Content in the said total amount of this fine powder magnesia raw material shall be 0.5 mass% or more and 6.9 mass% or less. If the content of the fine powdered magnesia raw material is less than 0.5% by mass, sufficient strength cannot be obtained, and crack peeling at the time of dismantling cannot be suppressed, and slag infiltration resistance is also lowered. On the other hand, if the content of the finely powdered magnesia raw material exceeds 6.9% by mass, although slag infiltration resistance is obtained, sintering proceeds too much during actual use, and the spalling resistance decreases. The content of the fine magnesia raw material is preferably 2% by mass or more and 4.9% by mass or less.

また、本発明において前記合量100質量%中におけるシリカ超微粉/アルミナセメントの含有量比は0.4以上1.2以下とする。この含有量比が0.4未満では十分な強度が得られず解体時の亀裂剥離を抑制できなく、耐スラグ浸潤性も低下する。一方、前記含有量比が1.2を超えると、強度は向上し耐スラグ浸潤性も得られるものの実使用時に焼結が進行しすぎて耐スポーリング性が低下する。前記含有量比は0.7以上0.9以下であることが好ましい。   In the present invention, the content ratio of silica ultrafine powder / alumina cement in the total amount of 100% by mass is 0.4 or more and 1.2 or less. If the content ratio is less than 0.4, sufficient strength cannot be obtained, crack peeling during dismantling cannot be suppressed, and slag infiltration resistance also decreases. On the other hand, when the content ratio exceeds 1.2, although the strength is improved and the slag infiltration resistance is obtained, the sintering progresses too much during actual use and the spalling resistance is lowered. The content ratio is preferably 0.7 or more and 0.9 or less.

本発明において耐スポーリング性を向上させるには、粒径8mm以上の大粗粒を添加することが好ましい。大粗粒は亀裂の進展を抑制するからである。この大粗粒の添加量は、前記合量100質量%に対して外掛けで5質量%以上35質量%以下であることが好ましい。大粗粒の材質としては、電融アルミナ、焼結アルミナ等が挙げられる。   In order to improve the spalling resistance in the present invention, it is preferable to add large coarse particles having a particle size of 8 mm or more. This is because large coarse grains suppress the progress of cracks. The addition amount of the large coarse particles is preferably 5% by mass or more and 35% by mass or less based on the total amount of 100% by mass. Examples of the material of large coarse particles include electrofused alumina and sintered alumina.

このほか、本発明のタンディッシュ内張り用不定形耐火物には、トリポリリン酸ソーダ、テトラポリリン酸ソーダ、ヘキサメタリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ウルトラポリリン酸ソーダ、ポリカルボン酸、スルホン酸等の分散剤、ホウ酸、ホウ酸アンモニウム、シュウ酸、炭酸ソーダ、炭酸リチウム等の硬化調整剤等を適宜添加できる。その他にも、通常の不定形耐火物で使用されている有機繊維、Al粉末、メタルファイバー等、減水剤、AE剤、消泡剤、流動性調整剤、マグネシアの消化防止剤、爆裂防止剤等を適宜添加することができる。   In addition, the amorphous refractory for tundish lining of the present invention includes dispersants such as sodium tripolyphosphate, sodium tetrapolyphosphate, sodium hexametaphosphate, sodium acid hexametaphosphate, sodium ultrapolyphosphate, polycarboxylic acid, and sulfonic acid. Further, a curing regulator such as boric acid, ammonium borate, oxalic acid, sodium carbonate, lithium carbonate and the like can be appropriately added. In addition, organic fiber, Al powder, metal fiber, etc. used in ordinary amorphous refractories, water reducing agent, AE agent, antifoaming agent, fluidity modifier, magnesia digestion inhibitor, explosion prevention agent, etc. Can be added as appropriate.

表1に示す配合物に所定量の水を加えて混練し、型枠内に流し込んで乾燥させることで、試験片を作製した。なお、アルミナ原料としては電融アルミナ、焼結アルミナ、仮焼アルミナ、マグネシア原料としては、電融マグネシア、焼結マグネシア、シリカ超微粉としてはシリカヒュームを使用した。また、分散剤としてはトリポリリン酸ソーダ、大粗粒としては電融アルミナを使用した。分散剤及び大粗粒は、アルミナ原料、マグネシア原料、シリカ超微粉及びアルミナセメントの合量100質量%に対して外掛けで添加した。   A test piece was prepared by adding a predetermined amount of water to the formulation shown in Table 1, kneading, pouring into a mold and drying. In addition, as the alumina material, electrofused alumina, sintered alumina, calcined alumina, as magnesia material, electrofused magnesia, sintered magnesia, and silica fume as silica ultrafine powder were used. Further, sodium tripolyphosphate was used as the dispersant, and fused alumina was used as the large coarse particles. The dispersant and the large coarse particles were added as an outer coating with respect to a total amount of 100% by mass of the alumina raw material, the magnesia raw material, the ultrafine silica powder, and the alumina cement.

得られた各例の試験片について、強度、耐スラグ浸潤性及び耐スポーリング性の評価を行った。   About the obtained test piece of each example, strength, slag infiltration resistance, and spalling resistance were evaluated.

強度は冷間曲げ強さにより評価した。具体的には、試験片を1500℃で3時間焼成後の曲げ強さと、1000℃で3時間焼成後の曲げ強さとを測定した。曲げ強さの測定は、JIS R 1601に準じて行った。なお、評価は、稼働面側の強度を重視し1500℃焼成後の曲げ強さで判断した。   The strength was evaluated by cold bending strength. Specifically, the bending strength after firing the test piece at 1500 ° C. for 3 hours and the bending strength after firing at 1000 ° C. for 3 hours were measured. The bending strength was measured according to JIS R 1601. The evaluation was made based on the bending strength after firing at 1500 ° C. with emphasis on the strength on the working surface side.

耐スラグ浸潤性は回転侵食浸潤量により評価した。具体的には、転炉スラグと鋼を1:1に混合した粉末を侵食剤として、1600℃の回転侵食試験により試験片の浸潤量を測定し、実施例1の浸潤量を100として指数化した。この指数値が小さいほど、耐スラグ浸潤性が優れていることを示す。   Slag infiltration resistance was evaluated by the amount of rotational erosion infiltration. Specifically, the powder in which converter slag and steel were mixed at a ratio of 1: 1 was used as an erodant, and the amount of infiltration of the test piece was measured by a rotational erosion test at 1600 ° C., and the infiltration amount in Example 1 was indexed as 100. did. It shows that slag infiltration resistance is excellent, so that this index value is small.

耐スポーリング性は、試験片を1200℃で3時間焼成した後、1200℃の電気炉にて30分強制加熱及び強制空冷を繰り返し、大亀裂が発生した回数により評価した。大亀裂の判断については、試験片の亀裂の幅をJIS B 7524による隙間ゲージにより確認し、亀裂の幅が0.5mm以上の場合を大亀裂とした。   The spalling resistance was evaluated based on the number of times large cracks were generated by firing the test piece at 1200 ° C. for 3 hours and then repeating forced heating and forced air cooling in an electric furnace at 1200 ° C. for 30 minutes. Regarding the determination of a large crack, the width of the crack of the test piece was confirmed by a gap gauge according to JIS B 7524, and a case where the width of the crack was 0.5 mm or more was determined as a large crack.

また、前記各評価において、以下の基準で◎、○、△、×の4段階評価を行った。◎、○、△、×の順で、評価結果が悪いことを示す。
・強度(1500℃冷間曲げ強さ(MPa))
◎:40以上、○:39〜35、△:34〜30、×:29以下
・耐スラグ浸潤性(回転侵食浸潤量(指数値))
◎:100以下、○:101〜105、△:106〜109、×:110以上
・耐スポーリング性(大亀裂発生回数)
◎:16以上、○:15〜13、△:12〜10、×:9以下
Further, in each of the evaluations, a four-step evaluation of ◎, ○, Δ, and × was performed according to the following criteria. It shows that the evaluation result is bad in the order of ×, ○, Δ, ×.
・ Strength (1500 ° C cold bending strength (MPa))
◎: 40 or more, ○: 39 to 35, Δ: 34 to 30, X: 29 or less, slag infiltration resistance (rotational erosion infiltration amount (index value))
A: 100 or less, B: 101-105, B: 106-109, X: 110 or more. Spalling resistance (number of large cracks)
A: 16 or more, O: 15-13, Δ: 12-10, x: 9 or less

総合評価は、前記いずれかの評価において、最も評価結果の悪いものに合わせた。例えば、いずれかの評価結果において、△が最も悪い場合、総合評価は△、×が最も悪い場合、総合評価は×とし、総合評価が△以上を合格とした。   The overall evaluation was adjusted to the worst evaluation result in any of the above evaluations. For example, in any of the evaluation results, when Δ is the worst, the overall evaluation is Δ, and when X is the worst, the overall evaluation is ×, and the overall evaluation is a pass of Δ or more.

実施例1〜15はいずれも本発明の範囲内であり、総合評価は△以上で、高強度化が図れるとともに、耐スラグ浸潤性及び耐スポーリング性も良好であった。特に強度(冷間曲げ強さ)については、前記特許文献1の表1に記載の実施例では1000℃で3時間焼成後の曲げ強さが最大でも21MPaであるのに対し、本発明の実施例では1000℃で3時間焼成後の曲げ強さは最低でも23MPa(1500℃で3時間焼成後の曲げ強さは最低でも33MPa)であり、強度向上が図られていることがわかる。本発明者らの実験では、冷間曲げ強さが高くなると、本発明が課題とする解体時の亀裂剥離を抑制できることが確認されており、本発明によれば、解体時の亀裂剥離を抑制できると言える。また、耐スラグ浸潤性及び耐スポーリング性については、少なくとも従来レベル以上であり、強度向上による耐用性の向上効果がいかんなく発揮される。   Each of Examples 1 to 15 was within the scope of the present invention, and the overall evaluation was Δ or more, and the strength could be increased, and slag infiltration resistance and spalling resistance were also good. In particular, regarding the strength (cold bending strength), in the examples described in Table 1 of Patent Document 1, the bending strength after firing at 1000 ° C. for 3 hours is 21 MPa at the maximum, while the present invention was carried out. In the example, the bending strength after firing at 1000 ° C. for 3 hours is at least 23 MPa (the bending strength after firing at 1500 ° C. for 3 hours is at least 33 MPa), indicating that the strength has been improved. In the experiments by the present inventors, it has been confirmed that when the cold bending strength is increased, crack peeling at the time of dismantling, which is the subject of the present invention, can be suppressed. According to the present invention, crack peeling at the time of dismantling is suppressed. I can say that. Further, the slag resistance and spalling resistance are at least the conventional level, and the effect of improving the durability due to the improvement in strength is exhibited.

なかでも実施例1、2、7、12は総合評価が◎であり、特に優れている。このことから、粒径75μm未満の微粉マグネシア原料の含有量は2質量%以上4.9質量%以下、シリカ超微粉/アルミナセメントの含有量比は0.7以上0.9以下であることが好ましいと言える。   Among them, Examples 1, 2, 7, and 12 are particularly excellent because the overall evaluation is “◎”. From this, the content of the fine magnesia raw material having a particle size of less than 75 μm is 2% by mass or more and 4.9% by mass or less, and the content ratio of silica ultrafine powder / alumina cement is 0.7 or more and 0.9 or less. It can be said that it is preferable.

また、実施例14と実施例15とを対比すると、大粗粒を添加した実施例14の方が耐スポーリング性に優れている。このことから、大粗粒の添加は耐スポーリング性の向上に有効であると言える。   Moreover, when Example 14 and Example 15 are contrasted, Example 14 to which large coarse particles are added is superior in spalling resistance. From this, it can be said that the addition of large coarse particles is effective in improving the spalling resistance.

Figure 0006219751
Figure 0006219751

一方、比較例1は、微粉マグネシア原料の含有量が多すぎる例である。焼結が進行しすぎて、耐スポーリング性が低下した。比較例2は、微粉マグネシア原料の含有量が多すぎるとともに、マグネシア原料全体の含有量も多すぎる例である。比較例1に比べ更に耐スポーリング性が低下した。   On the other hand, Comparative Example 1 is an example in which the content of the fine magnesia raw material is too much. Sintering progressed too much and the spalling resistance decreased. Comparative Example 2 is an example in which the content of the fine magnesia raw material is too large and the content of the entire magnesia raw material is too large. Compared to Comparative Example 1, the spalling resistance was further reduced.

比較例3は、微粉マグネシア原料の含有量が少なすぎる例である。耐スラグ浸潤性が低下した。比較例4は、微粉マグネシア原料の含有量が少なすぎるとともに、マグネシア原料全体の含有量も少なすぎる例である。比較例3に比べ更に耐スラグ浸潤性が低下するとともに強度も低下した。   Comparative Example 3 is an example in which the content of the fine magnesia raw material is too small. Slag infiltration resistance decreased. Comparative Example 4 is an example in which the content of the fine magnesia material is too small and the content of the entire magnesia material is too small. Compared with Comparative Example 3, the slag infiltration resistance further decreased and the strength also decreased.

比較例5は、シリカ超微粉/アルミナセメントの含有量比が小さすぎる例である。耐スラグ浸潤性が低下し、十分な強度も得られなかった。   In Comparative Example 5, the content ratio of ultrafine silica powder / alumina cement is too small. Slag infiltration resistance decreased and sufficient strength could not be obtained.

比較例6は、シリカ超微粉/アルミナセメントの含有量比が大きすぎる例である。焼結が進行しすぎて、耐スポーリング性が低下した。   In Comparative Example 6, the content ratio of ultrafine silica powder / alumina cement is too large. Sintering progressed too much and the spalling resistance decreased.

最後に、実施例1と比較例4の不定形耐火物を、実際のタンディッシュ内張り用不定形耐火物として適用したところ、実施例1については解体時の亀裂剥離はほとんど見られず、耐用性の向上が確認された。一方、比較例4については解体時の亀裂剥離が顕著に見られた。   Finally, when the amorphous refractories of Example 1 and Comparative Example 4 were applied as actual undulated refractories for tundish lining, crack peeling at the time of dismantling was hardly seen in Example 1, and the durability Improvement was confirmed. On the other hand, in Comparative Example 4, crack peeling during dismantling was noticeable.

Claims (4)

アルミナ原料、マグネシア原料、シリカ超微粉及びアルミナセメントを含む不定形耐火物であって、
前記アルミナ原料、マグネシア原料、シリカ超微粉及びアルミナセメントの合量100質量%中に前記アルミナ原料を70質量%以上92質量%以下、前記マグネシア原料を0.5質量%以上12質量%以下、前記アルミナセメントを3.5質量%以上12質量%以下含有し、
前記マグネシア原料は粒径75μm未満の微粉マグネシア原料を含み、
前記合量100質量%中における前記シリカ超微粉/前記アルミナセメントの含有量比が0.4以上1.2以下であり、かつ、前記合量100質量%中に前記微粉マグネシア原料を0.5質量%以上6.9質量%以下含有するタンディッシュ内張り用不定形耐火物。
An amorphous refractory containing alumina raw material, magnesia raw material, silica ultrafine powder and alumina cement,
70 mass% or more and 92 mass% or less of the said alumina raw material in 0.5 mass% or more and 12 mass% or less of the said magnesia raw material in 100 mass% of total amounts of the said alumina raw material, magnesia raw material, a silica ultrafine powder, and an alumina cement , Containing 3.5% by mass or more and 12% by mass or less of alumina cement ,
The magnesia raw material includes a fine magnesia raw material having a particle size of less than 75 μm,
The content ratio of the silica ultrafine powder / the alumina cement in the total amount of 100% by mass is 0.4 or more and 1.2 or less, and 0.5% of the fine magnesia raw material is added in the total amount of 100% by mass. An amorphous refractory for tundish lining, containing at least mass% and at most 6.9 mass%.
前記合量100質量%中に前記微粉マグネシア原料を2質量%以上4.9質量%以下含有する請求項1に記載のタンディッシュ内張り用不定形耐火物。   The amorphous refractory for tundish lining according to claim 1, wherein the fine magnesia raw material is contained in an amount of 100% by mass of 2% by mass to 4.9% by mass. 前記合量100質量%中における前記シリカ超微粉/前記アルミナセメントの含有量比が0.7以上0.9以下である請求項1又は2に記載のタンディッシュ内張り用不定形耐火物。   The amorphous refractory for tundish lining according to claim 1 or 2, wherein a content ratio of the silica ultrafine powder / the alumina cement in the total amount of 100 mass% is 0.7 or more and 0.9 or less. 前記合量100質量%に対して、粒径8mm以上の大粗粒を外掛けで5質量%以上35質量%以下添加した請求項1から3のいずれかに記載のタンディッシュ内張り用不定形耐火物。   The irregular-shaped refractory for tundish lining according to any one of claims 1 to 3, wherein large coarse particles having a particle diameter of 8 mm or more are added to the total amount of 100 mass% as an outer shell in an amount of 5 mass% to 35 mass%. object.
JP2014040737A 2014-03-03 2014-03-03 Unshaped refractories for tundish lining Active JP6219751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014040737A JP6219751B2 (en) 2014-03-03 2014-03-03 Unshaped refractories for tundish lining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014040737A JP6219751B2 (en) 2014-03-03 2014-03-03 Unshaped refractories for tundish lining

Publications (2)

Publication Number Publication Date
JP2015166290A JP2015166290A (en) 2015-09-24
JP6219751B2 true JP6219751B2 (en) 2017-10-25

Family

ID=54257389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014040737A Active JP6219751B2 (en) 2014-03-03 2014-03-03 Unshaped refractories for tundish lining

Country Status (1)

Country Link
JP (1) JP6219751B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6951951B2 (en) * 2017-11-30 2021-10-20 黒崎播磨株式会社 Amorphous refractory for tundish lining
CN115010468B (en) * 2021-07-12 2023-08-08 张家港市恒乐阳方高温材料有限公司 Environment-friendly tundish dry material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769400B2 (en) * 1991-11-29 1998-06-25 日新製鋼株式会社 Irregular refractories for hot metal parts
JP2960631B2 (en) * 1993-07-09 1999-10-12 昭和鉱業株式会社 Irregular refractories for lining molten metal containers
JPH07330450A (en) * 1994-05-31 1995-12-19 Taiko Rozai Kk Flow-in refractory material
JP2920726B2 (en) * 1994-06-08 1999-07-19 大光炉材株式会社 Cast refractories
JP2874831B2 (en) * 1994-06-20 1999-03-24 ハリマセラミック株式会社 Refractory for pouring
JPH11100280A (en) * 1997-09-29 1999-04-13 Harima Ceramic Co Ltd Monolitihic refractory for tundish lining

Also Published As

Publication number Publication date
JP2015166290A (en) 2015-09-24

Similar Documents

Publication Publication Date Title
US9821371B2 (en) Refractory material and casting nozzle
WO2008056655A1 (en) Durable sleeve bricks
JP2017007901A (en) Spinel-magnesia-carbonaceous brick
JP4796170B2 (en) Chromium castable refractories and precast blocks using the same
JP6259643B2 (en) High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them
JP6179534B2 (en) Unshaped refractories for blast furnace glazing
JP6219751B2 (en) Unshaped refractories for tundish lining
JP6353284B2 (en) Magnesia carbon brick
JP2010235342A (en) Monolithic refractory for blast furnace iron spout
JP7041523B2 (en) Magnesia Alumina Carbon Brick
JP6219729B2 (en) Magnesia carbon brick
JP2004131310A (en) Castable refractory for lining tundish
JP6959809B2 (en) Amorphous refractory for pouring work
JP5995315B2 (en) Irregular refractory
KR101100269B1 (en) General castable for turn-dish using wasted refractory
JP2015193509A (en) Magnesia-spinel-zirconia brick
JP2015189640A (en) Alumina-silicon carbide-carbonaceous brick
JP7032084B2 (en) Amorphous refractory
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JP2018052752A (en) Monolithic refractory for use in extending work of blast furnace trough and its construction method
JP6219764B2 (en) Lined casting material
JP2021109783A (en) Castable refractory
JP4576367B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace using the same for lining
WO2015132848A1 (en) Castable refractory
JP5341135B2 (en) Alumina-magnesia casting material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170928

R150 Certificate of patent or registration of utility model

Ref document number: 6219751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250