JP6217754B2 - Fuel cell electrode catalyst, method for producing the same, and membrane electrode assembly using the fuel cell electrode catalyst - Google Patents

Fuel cell electrode catalyst, method for producing the same, and membrane electrode assembly using the fuel cell electrode catalyst Download PDF

Info

Publication number
JP6217754B2
JP6217754B2 JP2015538724A JP2015538724A JP6217754B2 JP 6217754 B2 JP6217754 B2 JP 6217754B2 JP 2015538724 A JP2015538724 A JP 2015538724A JP 2015538724 A JP2015538724 A JP 2015538724A JP 6217754 B2 JP6217754 B2 JP 6217754B2
Authority
JP
Japan
Prior art keywords
catalyst
nitrogen
fuel cell
containing carbon
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015538724A
Other languages
Japanese (ja)
Other versions
JPWO2015045083A1 (en
Inventor
大剛 小野寺
大剛 小野寺
水上 貴彰
貴彰 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2015045083A1 publication Critical patent/JPWO2015045083A1/en
Application granted granted Critical
Publication of JP6217754B2 publication Critical patent/JP6217754B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は燃料電池用電極触媒、その製造方法、および燃料電池用電極触媒を用いた膜電極接合体に関する。 The present invention relates to an electrode catalyst for a fuel cell, a method for producing the same, and a membrane electrode assembly using the electrode catalyst for a fuel cell .

現在、脱石油化に向け、燃料電池を始め、リチウムイオン電池、バイオ燃料、太陽電池などの研究開発が活発に行われている。イオン伝導性の固体高分子電解質膜を使用する燃料電池には、メタノールをアノード極燃料とする直接メタノール型燃料電池(Direct Methanol Fuel Cell:DMFC)と、水素ガスをアノード極燃料とする固体高分子型燃料電池(Polymer Electrolyte Fuel Cell:PEFC)とがある。   Currently, research and development of fuel cells, lithium-ion batteries, biofuels, solar cells, etc., are actively conducted toward de-oiling. Fuel cells that use ion-conductive solid polymer electrolyte membranes include direct methanol fuel cells (DMFC) that use methanol as the anode fuel, and solid polymers that use hydrogen gas as the anode fuel. There is a type of fuel cell (Polymer Electrolyte Fuel Cell: PEFC).

DMFCおよびPEFCは、比較的低温作動が可能で、発電システムも簡便で小型化が可能なことから、施設の非常用電源や、軍事、業務用の携帯機器の非常電源、ノートパソコンや携帯音楽プレーヤー、携帯電話などの充電器として期待が持たれている。   DMFC and PEFC can operate at relatively low temperatures, and the power generation system is simple and can be downsized. Therefore, emergency power supplies for facilities, emergency power supplies for military and commercial mobile devices, laptop computers and portable music players Expected as a charger for mobile phones.

DMFCでは燃料にメタノール、また、PEFCでは水素を燃料に使用し、アノード触媒層/プロトン導電膜/カソード触媒層から構成される膜電極接合体を導電性のガス拡散層で挟み、アノード極およびカソード極に設けた集電板により外部回路と繋いだ電池システムである。DMFCのアノード触媒層側に液体燃料であるメタノールを供給すると、下記式(1)に示す化学反応により、メタノールが酸化されて二酸化炭素(CO2)に変化し、プロトン(H+)と電子(e-)とが発生する。
CH3OH + H2O → CO2 + 6H+ + 6e- (1)
In DMFC, methanol is used as fuel, and in PEFC, hydrogen is used as fuel. A membrane electrode assembly composed of an anode catalyst layer / proton conductive film / cathode catalyst layer is sandwiched between conductive gas diffusion layers, and the anode and cathode This is a battery system connected to an external circuit by a current collecting plate provided on the electrode. When methanol, which is a liquid fuel, is supplied to the anode catalyst layer side of the DMFC, the methanol is oxidized and converted into carbon dioxide (CO 2 ) by a chemical reaction represented by the following formula (1), and protons (H + ) and electrons ( e -) and is generated.
CH 3 OH + H 2 O → CO 2 + 6H + + 6e - (1)

この反応によって発生したプロトンと電子とは、カソード触媒層に供給される酸素ガスと下記式(2)の反応により、水(H2O)を生成する。
2 + 4H+ + 4e- → 2H2O (2)
Protons and electrons generated by this reaction generate water (H 2 O) by the reaction of the oxygen gas supplied to the cathode catalyst layer and the following formula (2).
O 2 + 4H + + 4e → 2H 2 O (2)

従って、電池全体として下記式(3)の反応が進行し、この際に発生する電子を外部回路で取り出して、電気エネルギーを得ることができる。
CH3OH + 3/2O2 → CO2 + 2H2O (3)
Therefore, the reaction of the following formula (3) proceeds as a whole battery, and electrons generated at this time can be taken out by an external circuit to obtain electric energy.
CH 3 OH + 3/2 O 2 → CO 2 + 2H 2 O (3)

また、現在、実用触媒としてDMFCおよびPEFCの電極には、白金系触媒が使用されているが、レアメタルであり、かつ非常に高価であることから、白金使用量を削減することが必須の課題となっている。   Currently, platinum-based catalysts are used as DMFC and PEFC electrodes as practical catalysts. However, since they are rare metals and very expensive, it is essential to reduce the amount of platinum used. It has become.

こうしたことから、燃料電池のコスト削減には、白金を用いない安価な触媒の開発が求められている。これに対して、窒素をドープしたカーボンは高い酸素還元活性を有することが知られており、白金代替触媒として注目されている。例えば、特許文献1には、カーボン材料に含窒素有機化合物を共有結合させた含窒素有機基置換カーボン材料を少なくとも一種含む有機材料を焼成して含窒素カーボンアロイを形成して触媒とすることが開示されている。   For these reasons, development of an inexpensive catalyst that does not use platinum is required to reduce the cost of fuel cells. On the other hand, carbon doped with nitrogen is known to have high oxygen reduction activity, and has attracted attention as a platinum substitute catalyst. For example, in Patent Document 1, an organic material containing at least one nitrogen-containing organic group-substituted carbon material obtained by covalently bonding a nitrogen-containing organic compound to a carbon material is baked to form a nitrogen-containing carbon alloy as a catalyst. It is disclosed.

特開2011−195351号公報JP 2011-195351 A

しかしながら、従来の窒素含有カーボン触媒の酸素還元活性は、白金触媒に比べて依然として低く、更なる酸素還元活性の向上が望まれている。   However, the oxygen reduction activity of the conventional nitrogen-containing carbon catalyst is still lower than that of the platinum catalyst, and further improvement of the oxygen reduction activity is desired.

本発明はこのような事情に鑑みてなされたものであり、その目的は、高価な白金を用いず、酸素還元活性に優れた燃料電池用電極触媒を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a fuel cell electrode catalyst excellent in oxygen reduction activity without using expensive platinum.

本発明の燃料電池用電極触媒は、導電性を有する担体と、前記担体の表面に形成された窒素含有カーボン触媒とを備え、前記窒素含有カーボン触媒中の炭素に対する水素の比率(水素/炭素)が、2.8×10-6よりも大きく1.2×10-5よりも小さいことを特徴とする。The fuel cell electrode catalyst of the present invention comprises a conductive carrier and a nitrogen-containing carbon catalyst formed on the surface of the carrier, and a ratio of hydrogen to carbon (hydrogen / carbon) in the nitrogen-containing carbon catalyst. Is larger than 2.8 × 10 −6 and smaller than 1.2 × 10 −5 .

本発明により、高い酸素還元活性を有する燃料電池用電極触媒を提供することができる。   According to the present invention, a fuel cell electrode catalyst having high oxygen reduction activity can be provided.

本実施形態の燃料電池用電極触媒の構成を示す模式図。The schematic diagram which shows the structure of the electrode catalyst for fuel cells of this embodiment. 膜電極接合体の構成を示す模式図。The schematic diagram which shows the structure of a membrane electrode assembly. 窒素含有炭素触媒中の炭素に対する水素の比率と酸素還元活性の関係を示す図。The figure which shows the relationship between the ratio of hydrogen with respect to the carbon in a nitrogen-containing carbon catalyst, and oxygen reduction activity.

以下、本発明の燃料電池用電極触媒の実施形態を説明する。上述の通り、窒素を炭素材料にドープさせることにより酸素還元活性を有する非白金系の燃料電池用電極触媒を得ることができる。しかしながら、従来の窒素含有カーボン触媒の酸素還元活性は白金触媒に比べて著しく低いため、所望の性能を得ることができない。   Hereinafter, embodiments of the electrode catalyst for a fuel cell of the present invention will be described. As described above, a non-platinum fuel cell electrode catalyst having oxygen reduction activity can be obtained by doping a carbon material with nitrogen. However, since the oxygen reduction activity of the conventional nitrogen-containing carbon catalyst is significantly lower than that of the platinum catalyst, the desired performance cannot be obtained.

これに対して、本発明者らが鋭意検討した結果、窒素含有カーボン触媒中の炭素に対する水素の比率が、2.8×10−6よりも大きく1.2×10−5よりも小さいことにより高い酸素還元活性を有する窒素含有触媒を提供することができる。 On the other hand, as a result of intensive studies by the present inventors, the ratio of hydrogen to carbon in the nitrogen-containing carbon catalyst is larger than 2.8 × 10 −6 and smaller than 1.2 × 10 −5. A nitrogen-containing catalyst having high oxygen reduction activity can be provided.

窒素含有カーボン触媒は、炭素がSP2混成軌道により化学結合し、2次元に広がった六角網面構造を持つ炭素の集合体が存在し、この六角網面構造が弱い相互作用により積層され、構造がある程度乱れた乱層構造のグラファイト構造を有している。この六角網面構造の水素終端されたエッジが酸素還元反応の活性点と考えられており、このエッジ近傍に窒素原子が導入されることにより、高い酸素還元活性を示すとされている。   The nitrogen-containing carbon catalyst has a structure in which carbon is chemically bonded by SP2 hybrid orbital, and there is an aggregate of carbon having a hexagonal network structure spread in two dimensions, and this hexagonal network structure is laminated by weak interaction. It has a turbulent graphite structure that is somewhat disturbed. The hydrogen-terminated edge of this hexagonal network structure is considered as the active point of the oxygen reduction reaction, and it is said that high oxygen reduction activity is exhibited by introducing nitrogen atoms in the vicinity of this edge.

本発明の窒素含有カーボン触媒中の炭素に対する水素の比率の算出は、昇温脱離ガス分析(TDS)によって測定された窒素含有カーボン触媒の水素終端されたエッジからの水素の脱離量と、さらに後述するX線光電子分光(XPS)によって評価した炭素含有量を用い、水素脱離量と炭素含有量の比から求められる。 The calculation of the ratio of hydrogen to carbon in the nitrogen-containing carbon catalyst of the present invention is the desorption amount of hydrogen from the hydrogen-terminated edge of the nitrogen-containing carbon catalyst measured by temperature-programmed desorption gas analysis (TDS), Furthermore, the carbon content evaluated by X-ray photoelectron spectroscopy (XPS), which will be described later, is used to determine the ratio of the hydrogen desorption amount and the carbon content.

窒素含有カーボン触媒に含まれる炭素、酸素および窒素含有量は、X線光電子分光(XPS)によって評価することができ、特に窒素含有量は窒素の1s軌道の結合エネルギー範囲が398.5±1.0eVから401±1.0eVで測定されたピークの強度から求められる。   The carbon, oxygen, and nitrogen contents contained in the nitrogen-containing carbon catalyst can be evaluated by X-ray photoelectron spectroscopy (XPS). In particular, the nitrogen content has a binding energy range of 39 s ± 1. It is obtained from the intensity of the peak measured from 0 eV to 401 ± 1.0 eV.

本実施形態に係る窒素含有カーボン触媒は、触媒材料の前駆体となる樹脂、窒素源、および、鉄を含む金属塩を焼成、炭素化し、その後、還元雰囲気下、400℃未満で熱処理を施し、窒素含有カーボンの活性点と考えられるエッジを水素終端することによって製造することができる。窒素含有カーボン触媒は単体では、凝集によって活性サイトが埋没して高い酸素還元活性が得られない場合があるため、導電性を有する担体の表面に窒素含有カーボン触媒を担持して比表面積を増加させることが好ましい。これによって、有効な活性サイトが増加し酸素還元活性を向上できる。この場合、触媒材料の前駆体となる樹脂、窒素源、および、鉄を含む金属塩に更に担体を混合して焼成・炭素化することにより、担体の表面に窒素含有カーボン触媒を担持された構造の触媒を形成できる。なお、上記手法により得られた焼成物から鉄を除去することが好ましい。この鉄を除去することにより、炭素化物に活性サイトが形成され、酸素還元活性が向上する。鉄の除去方法は特に制限はなく、例えば、塩酸、硫酸、硝酸などの酸性溶液で洗浄する方法などが挙げられる。なお、完全に鉄を除去する必要はなく、触媒中に一部鉄が残っていてもよい。   The nitrogen-containing carbon catalyst according to this embodiment is obtained by calcining and carbonizing a resin, a nitrogen source, and a metal salt containing iron, which are precursors of the catalyst material, and then performing a heat treatment at less than 400 ° C. in a reducing atmosphere. It can be produced by hydrogen-termination of an edge considered to be an active point of nitrogen-containing carbon. Since the nitrogen-containing carbon catalyst alone may bury the active site due to aggregation and high oxygen reduction activity may not be obtained, the nitrogen-containing carbon catalyst is supported on the surface of the conductive support to increase the specific surface area. It is preferable. As a result, effective active sites are increased and oxygen reduction activity can be improved. In this case, a structure in which a nitrogen-containing carbon catalyst is supported on the surface of a support by further mixing the support with a metal salt containing a resin, a nitrogen source, and iron as a catalyst material precursor, followed by calcination and carbonization The catalyst can be formed. In addition, it is preferable to remove iron from the baked product obtained by the above method. By removing this iron, active sites are formed in the carbonized product, and the oxygen reduction activity is improved. The method for removing iron is not particularly limited, and examples thereof include a method of washing with an acidic solution such as hydrochloric acid, sulfuric acid, and nitric acid. Note that it is not necessary to completely remove iron, and some iron may remain in the catalyst.

触媒材料の前駆体となる樹脂としては、例えば、担体や金属塩などと均一に混合しやすいことから、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ポリイミド樹脂、尿素樹脂、アルキド樹脂、アクリル樹脂などが好ましく、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。これらの樹脂に限定されるものではなく、担体や金属塩と均一に混合できるものであれば触媒材料の前駆体として使用できる。   As the precursor of the catalyst material, for example, a phenol resin, an epoxy resin, a melamine resin, a polyimide resin, a urea resin, an alkyd resin, an acrylic resin, or the like is preferable because it can be easily mixed uniformly with a carrier or a metal salt. Only one of these may be used, or two or more may be used in combination. It is not limited to these resins, but can be used as a precursor of a catalyst material as long as it can be uniformly mixed with a carrier or a metal salt.

窒素源は、グラファイト構造中に窒素を導入するためのものであり、例えば、フェナントロリン錯体、フタロシアニン錯体、ポルフィリン錯体、アセトニトリル、エチレンジアミン、トリメチルアミン、ピリジン、メラミンなどが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。   The nitrogen source is for introducing nitrogen into the graphite structure, and examples thereof include phenanthroline complex, phthalocyanine complex, porphyrin complex, acetonitrile, ethylenediamine, trimethylamine, pyridine, and melamine, and only one of them is used. Or two or more of them may be used in combination.

鉄を含む金属塩は六角網面構造のエッジや欠陥を形成するために添加され、例えば、酢酸鉄、クエン酸鉄、塩化鉄、硝酸鉄、硫酸鉄、クエン酸鉄アンモニウム、ピロリン酸鉄、アクリル酸鉄、水酸化鉄、りん酸鉄、過塩素酸鉄、硫酸アンモニウム鉄、グルコン酸鉄、鉄アセチルアセトネート、鉄フタロシアニン、蓚酸鉄、蓚酸アンモニウム鉄等を用いることができる。鉄を含む金属塩の窒素含有カーボン触媒中の全重量あたりの割合は、0.1重量%から10.0重量%であることが好ましく、1.0重量%から5.0重量%であることがより好ましい。この範囲にすることで、より高い酸素還元活性を有する窒素含有カーボン触媒を得ることができる。   Metal salts containing iron are added to form hexagonal network edges and defects, such as iron acetate, iron citrate, iron chloride, iron nitrate, iron sulfate, ammonium iron citrate, iron pyrophosphate, acrylic Acid iron, iron hydroxide, iron phosphate, iron perchlorate, iron iron sulfate, iron gluconate, iron acetylacetonate, iron phthalocyanine, iron oxalate, iron iron oxalate and the like can be used. The ratio of the metal salt containing iron to the total weight in the nitrogen-containing carbon catalyst is preferably 0.1 wt% to 10.0 wt%, and 1.0 wt% to 5.0 wt%. Is more preferable. By setting it in this range, a nitrogen-containing carbon catalyst having higher oxygen reduction activity can be obtained.

導電性を有する担体としては、例えば、カーボンブラック、アセチレンブラック、カーボンナノチューブなどが好適であり、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。担体の比表面積は、燃料電池用触媒全体の比表面積を大きくして、その活性を良好に高める観点から、200m2/g以上であることが好ましく、250m2/g以上であることがより好ましい。また、燃料電池用触媒全体の比表面積を制限して、その活性を良好に高める観点から、担体の比表面積は、1200m2/g以下であることが好ましく、800m2/g以下であることがより好ましい。As the conductive carrier, for example, carbon black, acetylene black, carbon nanotube and the like are suitable, and only one of them may be used, or two or more may be used in combination. The specific surface area of the support is preferably 200 m 2 / g or more, more preferably 250 m 2 / g or more, from the viewpoint of increasing the specific surface area of the entire fuel cell catalyst and improving its activity satisfactorily. . Further, from the viewpoint of favorably enhancing the activity by limiting the specific surface area of the entire fuel cell catalyst, the specific surface area of the support is preferably 1200 m 2 / g or less, and preferably 800 m 2 / g or less. More preferred.

前駆体となる樹脂、窒素源、金属塩は溶剤に溶解または分散させて混合され、焼成される。このような溶剤には、例えば、メタノール、エタノール、イソプロパノールなどのアルコール類、アセトンなどのケトン類、キシレン、トルエンなどの芳香族炭化水素類、ジメチルエーテル、ジエチルエーテルなどのエーテル類、ジメチルホルムアミドなどのアミド類などを使用することができる。   The precursor resin, nitrogen source, and metal salt are dissolved or dispersed in a solvent, mixed, and baked. Examples of such solvents include alcohols such as methanol, ethanol and isopropanol, ketones such as acetone, aromatic hydrocarbons such as xylene and toluene, ethers such as dimethyl ether and diethyl ether, and amides such as dimethylformamide. Can be used.

前述の窒素含有カーボン触媒前駆体の焼成、炭素化時の焼成雰囲気は、アルゴンガス、窒素ガス、アンモニアガスのうち、1種のみを用いてもよく、2種以上を併用して混合してもよい。   As the firing atmosphere of the above-mentioned nitrogen-containing carbon catalyst precursor and carbonization, only one kind of argon gas, nitrogen gas, and ammonia gas may be used, or two or more kinds may be used in combination. Good.

炭素化後の還元処理のガス雰囲気としては、水素ガスが好ましく、アルゴンガス、窒素ガス、アンモニアガスと混合しても良く、水素ガスに混合するガスとしては、これらのうちの1種のみを用いてもよく、2種以上を併用して混合してもよい。その際の水素の混合割合としては50%以下が望ましい。さらに、還元処理の処理温度は、エッジに結合しているフェノール基、カルボキシル基、キノン基などを脱離させ水素終端させることが目的であるため高いことが望ましいが、400℃以上であるとエッジ近傍に導入されている窒素が脱離することで窒素含有量が低下し、酸素還元活性が低下してしまうことから、400℃よりも低いことが望ましい。   The gas atmosphere for the reduction treatment after carbonization is preferably hydrogen gas, and may be mixed with argon gas, nitrogen gas, or ammonia gas, and only one of these is used as the gas mixed with hydrogen gas. Alternatively, two or more kinds may be used in combination. In this case, the mixing ratio of hydrogen is preferably 50% or less. Furthermore, the treatment temperature of the reduction treatment is desirably high because the purpose is to remove the phenol group, carboxyl group, quinone group, and the like bonded to the edge and terminate the hydrogen, but when the temperature is 400 ° C. or higher, the edge Since the nitrogen content is reduced by desorption of nitrogen introduced in the vicinity and the oxygen reduction activity is reduced, the temperature is preferably lower than 400 ° C.

窒素含有カーボン触媒に含まれる窒素量は、できるだけ多いことが望ましいが、カーボン中に含まれる窒素の含有率が、20at.%を超えると、カーボンの導電性を担うSP2構造に乱れが生じ、導電性が低いSP3構造に変化してしまう。この導電性の低下によって、窒素ドープカーボン触媒の酸素還元活性が低下してしまうことから、窒素の含有率は、20at.%以下が望ましい。   Although it is desirable that the amount of nitrogen contained in the nitrogen-containing carbon catalyst is as large as possible, the content of nitrogen contained in the carbon is 20 at. If it exceeds%, the SP2 structure responsible for the carbon conductivity will be disturbed, and the SP3 structure will have a low conductivity. This decrease in conductivity reduces the oxygen reduction activity of the nitrogen-doped carbon catalyst, so the nitrogen content is 20 at. % Or less is desirable.

上記手法により形成される窒素含有カーボン触媒の水素脱離量および窒素の含有量は、樹脂、窒素源の材料の種類や混合比率、焼成条件によって調整することができる。   The amount of hydrogen desorbed and the nitrogen content of the nitrogen-containing carbon catalyst formed by the above method can be adjusted according to the type and mixing ratio of the resin and nitrogen source materials and the firing conditions.

本実施形態の燃料電池用電極触媒の構成を示す模式図を図1に示す。上記手法により形成された燃料電池用電極触媒は、担体11の表面を覆うように窒素含有カーボン触媒12の層が担持された構造を有する。窒素含有カーボン触媒12の担持の形態としては、個々の担体11の表面を覆うよう担持される形態のほか、図1に示したように複数の担体11が凝集した凝集体の表面を窒素含有カーボン触媒12で覆った形態でもよい。また、担体11の表面が窒素含有カーボン触媒12で全て覆われている必要はなく、担体11の一部の表面が露出していてもよい。   A schematic diagram showing the configuration of the fuel cell electrode catalyst of the present embodiment is shown in FIG. The fuel cell electrode catalyst formed by the above method has a structure in which a layer of a nitrogen-containing carbon catalyst 12 is supported so as to cover the surface of the support 11. As a form of supporting the nitrogen-containing carbon catalyst 12, in addition to a form of supporting the surface of each carrier 11, the surface of the aggregate in which a plurality of carriers 11 are aggregated as shown in FIG. The form covered with the catalyst 12 may be sufficient. Further, it is not necessary that the surface of the carrier 11 is entirely covered with the nitrogen-containing carbon catalyst 12, and a part of the surface of the carrier 11 may be exposed.

図2に固体高分子形燃料電池用の膜電極接合体の模式図を示す。膜電極接合体は、イオン伝導性を有する固体高分子電解質膜21の一方の表面に形成されたアノード電極22と、他方の表面に形成されたカソード電極23で構成される。このような膜電極接合体のカソード電極の触媒材料として、本実施形態の燃料電池用電極触媒が適用される。   FIG. 2 shows a schematic diagram of a membrane electrode assembly for a polymer electrolyte fuel cell. The membrane electrode assembly is composed of an anode electrode 22 formed on one surface of a solid polymer electrolyte membrane 21 having ion conductivity and a cathode electrode 23 formed on the other surface. As the catalyst material for the cathode electrode of such a membrane electrode assembly, the fuel cell electrode catalyst of the present embodiment is applied.

一方、アノード電極の触媒には公知の触媒を用いることができ、白金,金,パラジウム,イリジウム,ロジウム,ルテニウム,鉄,コバルト,ニッケル等から選ばれる1種以上を用いることができる。触媒コストを低減する観点からは、酸化活性に優れたパラジウムと酸化ルテニウムを複合した触媒を用いることが好ましい。   On the other hand, a known catalyst can be used as the catalyst for the anode electrode, and one or more selected from platinum, gold, palladium, iridium, rhodium, ruthenium, iron, cobalt, nickel and the like can be used. From the viewpoint of reducing the catalyst cost, it is preferable to use a catalyst in which palladium and ruthenium oxide having excellent oxidation activity are combined.

このように、カソード電極に本実施形態の窒素含有カーボン触媒を用い、アノード電極にパラジウムと酸化ルテニウムを複合した触媒を用いることにより、高価な白金を用いることなく低コストで性能に優れた膜電極接合体とすることができる。   Thus, by using the nitrogen-containing carbon catalyst of the present embodiment for the cathode electrode and using a catalyst in which palladium and ruthenium oxide are combined for the anode electrode, the membrane electrode is excellent in performance at low cost without using expensive platinum. It can be set as a joined body.

本実施形態の膜電極接合体は、水素を燃料とする固体子分子型燃料電池(PEFC)、メタノールを燃料とする直接メタノール型燃料電池(DMFC)に採用することができ、燃料電池の構成や構造は限定されるものではなく公知の燃料電池に適用することができる。   The membrane electrode assembly of the present embodiment can be used for a solid molecular fuel cell (PEFC) using hydrogen as a fuel, and a direct methanol fuel cell (DMFC) using methanol as a fuel. The structure is not limited and can be applied to a known fuel cell.

以下に本発明の好適な実施の形態ついて詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
(実施例1)
エタノール中に炭素系触媒前駆体であるフェノール樹脂:0.5gを分散させた溶液に、酢酸鉄:0.002モルを添加した。次に、窒素源として1,10フェナントロリンを0.006モル添加し攪拌した。この混合溶液を減圧乾燥し、担体であるカーボンブラック(ライオン社製ケッチェンブラック:EC300J):2.0gを加え、乳鉢中で均一に混合した。この混合物を均一に石英ボートに入れ、管状電気炉へ投入した。この管状電気炉内にアルゴンガスを100 ml/min.の速度で流入させ、不活性雰囲気にした状態で、800 ℃まで昇温し、800℃で1時間保持した後、冷却した。次に、2段目の焼成として得られた焼成物をアルゴンガスに3%水素ガスを混合した混合ガスを100 ml/min.の速度で流入させ、還元雰囲気にした状態で、100 ℃まで昇温し、100℃で1時間保持した後、冷却した。得られた次に得られた焼成物を3mol/l濃度の塩酸水溶液中で煮沸することで余分な金属成分を除去した後、ろ過、洗浄、乾燥して、窒素含有カーボン触媒を得た。
(実施例2)
2段目の焼成温度を200℃に変更したこと以外は実施例1と同様の方法で窒素含有カーボン触媒を得た。
(実施例3)
2段目の焼成温度を300℃に変更したこと以外は実施例1と同様の方法で窒素含有カーボン触媒を得た。
(比較例1)
2段目の焼成を実施しなかったこと以外は実施例1と同様の方法で窒素含有カーボン触媒を得た。
(比較例2)
2段目の焼成温度を400℃に変更したこと以外は実施例1と同様の方法で窒素含有カーボン触媒を得た。
(比較例3)
2段目の焼成温度を500℃に変更したこと以外は実施例1と同様の方法で窒素含有カーボン触媒を得た。
Hereinafter, preferred embodiments of the present invention will be described in detail. However, the following examples do not limit the present invention.
Example 1
0.002 mol of iron acetate was added to a solution in which 0.5 g of a phenolic resin as a carbon-based catalyst precursor was dispersed in ethanol. Next, 0.006 mol of 1,10 phenanthroline was added as a nitrogen source and stirred. This mixed solution was dried under reduced pressure, and carbon black (Ketjen Black: EC300J, manufactured by Lion Corporation): 2.0 g as a carrier was added and mixed uniformly in a mortar. This mixture was uniformly placed in a quartz boat and put into a tubular electric furnace. Argon gas was introduced into the tubular electric furnace at 100 ml / min. In an inactive atmosphere, the temperature was raised to 800 ° C., kept at 800 ° C. for 1 hour, and then cooled. Next, the fired product obtained as the second stage firing was mixed with a mixed gas obtained by mixing 3% hydrogen gas with argon gas at 100 ml / min. In a reducing atmosphere, the temperature was raised to 100 ° C., kept at 100 ° C. for 1 hour, and then cooled. The obtained fired product was boiled in a 3 mol / l hydrochloric acid aqueous solution to remove excess metal components, and then filtered, washed and dried to obtain a nitrogen-containing carbon catalyst.
(Example 2)
A nitrogen-containing carbon catalyst was obtained in the same manner as in Example 1 except that the second stage baking temperature was changed to 200 ° C.
(Example 3)
A nitrogen-containing carbon catalyst was obtained in the same manner as in Example 1 except that the second stage baking temperature was changed to 300 ° C.
(Comparative Example 1)
A nitrogen-containing carbon catalyst was obtained in the same manner as in Example 1 except that the second-stage calcination was not performed.
(Comparative Example 2)
A nitrogen-containing carbon catalyst was obtained in the same manner as in Example 1 except that the second stage baking temperature was changed to 400 ° C.
(Comparative Example 3)
A nitrogen-containing carbon catalyst was obtained in the same manner as in Example 1 except that the second stage baking temperature was changed to 500 ° C.

実施例1〜3および比較例1〜3で得られた窒素含有カーボン触媒について標準的な3電極セルを組み、それらの酸素還元活性を回転ディスク電極法により評価した。   Standard three-electrode cells were assembled for the nitrogen-containing carbon catalysts obtained in Examples 1 to 3 and Comparative Examples 1 to 3, and their oxygen reduction activity was evaluated by the rotating disk electrode method.

まず、純水中に分散させた窒素含有カーボン触媒をマイクロピペットで20μl取り、これを回転ディスク用グラッシーカーボン電極上に塗布、乾燥した後、この上にイオン伝導性ポリマー分散液を5μl塗布し乾燥したものを作用極とした。また、対極には白金線、参照極には、可逆水素電極(RHE)電極を使用し、3電極セルを構成した。   First, 20 μl of a nitrogen-containing carbon catalyst dispersed in pure water is taken with a micropipette, applied to a glassy carbon electrode for a rotating disk, dried, then coated with 5 μl of an ion conductive polymer dispersion and dried. This was used as the working electrode. Also, a platinum wire was used as the counter electrode, and a reversible hydrogen electrode (RHE) electrode was used as the reference electrode, thereby constituting a three-electrode cell.

各窒素含有カーボン触媒の酸素還元活性を評価するため、上記の3電極セルを窒素飽和下の0.5mmol/l硫酸水溶液中で0Vから1.2Vの電位サイクルを10サイクル行い、触媒表面を洗浄した。次に、作用極を電極回転数1600rpmで回転させつつ、0Vから1.1Vの電位サイクルを1サイクル行い、バックグランド電流を測定した。その後、飽和ガスを窒素から酸素に変え、酸素を飽和させた状態で、作用極を電極回転数1600rpmで回転させつつ、0Vから1.1Vの電位サイクルを1サイクル行い、窒素含有カーボン触媒の酸素還元電流を測定した。測定した酸素還元電流からバックグランド電流を除し、0.7 V時の電流値を比較することで、酸素還元活性を評価した。   In order to evaluate the oxygen reduction activity of each nitrogen-containing carbon catalyst, the above three-electrode cell was subjected to 10 potential cycles of 0 V to 1.2 V in a 0.5 mmol / l sulfuric acid aqueous solution under nitrogen saturation to clean the catalyst surface. did. Next, while rotating the working electrode at an electrode rotation speed of 1600 rpm, a potential cycle from 0 V to 1.1 V was performed for one cycle, and the background current was measured. Thereafter, in a state where the saturated gas is changed from nitrogen to oxygen and the oxygen is saturated, the potential electrode from 0 V to 1.1 V is rotated once while the working electrode is rotated at an electrode rotation speed of 1600 rpm, and the oxygen of the nitrogen-containing carbon catalyst is obtained. The reduction current was measured. The oxygen reduction activity was evaluated by dividing the background current from the measured oxygen reduction current and comparing the current value at 0.7 V.

また、最も酸素還元活性が高かった実施例2の酸素還元電流値を1.0とし、実施例および比較例の酸素還元活性を比較ならびに評価した。   Further, the oxygen reduction current value of Example 2 having the highest oxygen reduction activity was set to 1.0, and the oxygen reduction activities of Examples and Comparative Examples were compared and evaluated.

また、水素の定量に用いた昇温脱離ガス分析(TDS)の測定条件は、加熱前ステージ温度 50℃、昇温速度 10℃/min、加熱温度1250℃2h保持、加熱開始時圧力 2.0×10-7Pa検出器:四重極質量分析計、検出器印加電圧1000V、ステージ材質:SiC皿とした。Moreover, the measurement conditions of the temperature-programmed desorption gas analysis (TDS) used for the determination of hydrogen are the stage temperature before heating of 50 ° C., the temperature rising rate of 10 ° C./min, the heating temperature of 1250 ° C. for 2 hours, and the pressure at the start of heating. 0 × 10 −7 Pa detector: quadrupole mass spectrometer, detector applied voltage 1000 V, stage material: SiC pan.

また、窒素含有カーボン触媒中の炭素、酸素および窒素の含有量の測定は、X線光電子分光(XPS)を用いて評価した。XPSの測定は、X線源:モノクロAl(管電圧1.3kV,管電流1.3mA)、レンズ条件:HYBRID(分析面積:600×1000μm口)、分解能:Pass energy:40、走査速度:20eV/min(0.1eVステップ)、スペクトル校正:炭素1sピークで校正の条件で行った。   Moreover, the measurement of the content of carbon, oxygen and nitrogen in the nitrogen-containing carbon catalyst was evaluated using X-ray photoelectron spectroscopy (XPS). The measurement of XPS is performed using X-ray source: Monochrome Al (tube voltage 1.3 kV, tube current 1.3 mA), lens condition: HYBRID (analysis area: 600 × 1000 μm mouth), resolution: Pass energy: 40, scanning speed: 20 eV. / Min (0.1 eV step), spectrum calibration: performed under calibration conditions with a carbon 1s peak.

図3に窒素含有カーボン触媒の酸素還元活性と窒素含有カーボン触媒中の炭素に対する水素の比率の関係、また、表1に各窒素含有カーボン触媒の酸素還元活性値、窒素含有カーボン触媒中の炭素に対する水素の比率、炭素、酸素、窒素それぞれの含有量、昇温脱離ガス分析による水素脱離量を示す。なお、酸素還元活性の値は最も活性が高かった実施例2を1.0として相対値で示している。 FIG. 3 shows the relationship between the oxygen reduction activity of the nitrogen-containing carbon catalyst and the ratio of hydrogen to carbon in the nitrogen-containing carbon catalyst , and Table 1 shows the oxygen reduction activity value of each nitrogen-containing carbon catalyst and the carbon in the nitrogen-containing carbon catalyst . The ratio of hydrogen, the contents of carbon, oxygen, and nitrogen, and the amount of hydrogen desorption by temperature programmed desorption gas analysis are shown. In addition, the value of the oxygen reduction activity is shown as a relative value, assuming that Example 2 having the highest activity is 1.0.

Figure 0006217754
Figure 0006217754

ここで、窒素含有カーボン触媒の酸素還元活性の相対値が0.2よりも低いと、電極触媒として用いたときに稼動させる電池電圧で所望の電流値が取れないため、電圧が低下してしまう。所望の電流値を得るためには電極に使用する触媒量を増やす必要が生じるが、触媒量を増やすと電極厚みが増大することで抵抗が高くなり、白金触媒を用いた電池と同等の出力性能を得ることができない。したがって、窒素含有カーボン触媒の酸素還元活性の相対値は、0.2以上であることが望ましく、窒素ドープカーボン触媒の酸素還元活性の相対値が0.2以上であることで、従来の窒素ドープカーボン触媒では得られない白金触媒を用いた電池に近い出力性能を実現することが可能となる。   Here, if the relative value of the oxygen reduction activity of the nitrogen-containing carbon catalyst is lower than 0.2, a desired current value cannot be obtained with the battery voltage operated when the electrode is used as an electrode catalyst, so that the voltage decreases. . In order to obtain the desired current value, it is necessary to increase the amount of catalyst used for the electrode. However, increasing the amount of catalyst increases resistance by increasing the electrode thickness, and output performance equivalent to a battery using a platinum catalyst. Can't get. Therefore, the relative value of the oxygen reduction activity of the nitrogen-containing carbon catalyst is preferably 0.2 or more, and the relative value of the oxygen reduction activity of the nitrogen-doped carbon catalyst is 0.2 or more. An output performance close to that of a battery using a platinum catalyst that cannot be obtained with a carbon catalyst can be realized.

図3および表1に示すように、炭素化後に還元処理を施すことにより形成され、窒素含有カーボン触媒中の炭素に対する水素の比率が、2.8×10−6よりも大きく1.2×10−5よりも小さい範囲にある実施例1〜3の窒素含有カーボン触媒の酸素還元活性は、いずれも0.64以上と高い酸素還元活性を示している。 As shown in FIG. 3 and Table 1, it is formed by performing a reduction treatment after carbonization, and the ratio of hydrogen to carbon in the nitrogen-containing carbon catalyst is larger than 2.8 × 10 −6 and 1.2 × 10 6. The oxygen-reducing activities of the nitrogen-containing carbon catalysts of Examples 1 to 3 in a range smaller than −5 all show a high oxygen-reducing activity of 0.64 or more.

一方で、還元処理を施していない窒素含有カーボン触媒中の炭素に対する水素の比率が、2.8×10−6の比較例1および水素の炭素に対する比率が1.2×10−5以上の比較例2および3の窒素含有カーボン触媒の酸素還元活性は、いずれも0.17以下と低く所望の性能を示さない。 On the other hand, the ratio of hydrogen to carbon in the nitrogen-containing carbon catalyst not subjected to the reduction treatment is 2.8 × 10 −6 of Comparative Example 1 and the ratio of hydrogen to carbon is 1.2 × 10 −5 or more. The oxygen-reducing activities of the nitrogen-containing carbon catalysts of Examples 2 and 3 are both as low as 0.17 or less and do not exhibit the desired performance.

このように炭素化後に還元処理を施していない炭素に対する水素の比率が、2.8×10-6よりも小さい窒素含有触媒では、炭素に対する水素の比率が小さく酸素還元反応の活性点が少ないことで高い酸素還元活性が得られないと考えられる。また一方で、炭素に対する水素の比率が1.2×10-5以上になると水素終端されたエッジ量としては多いと考えることができるが、逆に還元処理によってエッジ近傍の窒素が減少することで高い酸素還元活性を示す活性点が失活し、高い酸素還元活性を得られないと考えられる。これに対して、炭素に対する水素の比率が、2.8×10-6よりも大きく1.2×10-5よりも小さい範囲にある窒素含有カーボン触媒は適切に還元処理を行うことで、窒素含有量を保持したまま水素終端されたエッジを増加させることができるため、高い酸素還元活性を実現できると考えられる。窒素含有カーボン触媒中の炭素に対する水素の比率としては、4.0×10-6〜1.0×10-5の範囲とすることがより好ましい。Thus, in a nitrogen-containing catalyst in which the ratio of hydrogen to carbon that has not been subjected to reduction treatment after carbonization is less than 2.8 × 10 −6 , the ratio of hydrogen to carbon is small and there are few active sites for the oxygen reduction reaction. It is considered that high oxygen reduction activity cannot be obtained. On the other hand, when the ratio of hydrogen to carbon is 1.2 × 10 −5 or more, it can be considered that the amount of edge terminated with hydrogen is large, but conversely, the reduction treatment reduces nitrogen near the edge. It is considered that an active site showing high oxygen reduction activity is deactivated and high oxygen reduction activity cannot be obtained. In contrast, a nitrogen-containing carbon catalyst in which the ratio of hydrogen to carbon is in a range larger than 2.8 × 10 −6 and smaller than 1.2 × 10 −5 can be reduced by appropriately performing a reduction treatment. Since the hydrogen-terminated edge can be increased while maintaining the content, it is considered that high oxygen reduction activity can be realized. The ratio of hydrogen to carbon in the nitrogen-containing carbon catalyst is more preferably in the range of 4.0 × 10 −6 to 1.0 × 10 −5 .

これらの結果から、触媒材料の前駆体となる樹脂、窒素源、および、鉄を含む金属塩を焼成、炭素化し、さらにその後、還元処理を施し、窒素含有カーボン触媒中の炭素に対する水素の比率を2.8×10-6よりも大きく1.2×10-5よりも小さくすることで、窒素含有カーボン触媒の酸素還元活性を向上できることがわかる。From these results, the resin, the nitrogen source, and the metal salt containing iron, which are precursors of the catalyst material, are calcined and carbonized, and then subjected to a reduction treatment to determine the ratio of hydrogen to carbon in the nitrogen-containing carbon catalyst. It turns out that the oxygen reduction activity of a nitrogen-containing carbon catalyst can be improved by making it larger than 2.8 * 10 < -6 > and smaller than 1.2 * 10 < -5 >.

11 担体
12 窒素含有カーボン触媒
21 固体高分子電解質膜
22 アノード電極
23 カソード電極
11 Support 12 Nitrogen-Containing Carbon Catalyst 21 Solid Polymer Electrolyte Membrane 22 Anode Electrode 23 Cathode Electrode

Claims (5)

導電性を有する担体と、前記担体の表面に形成された窒素含有カーボン触媒とを備えた燃料電池用カソード電極触媒において、
前記窒素含有カーボン触媒中の炭素に対する水素の比率が、2.8×10−6よりも大きく1.2×10−5よりも小さいことを特徴とする燃料電池用カソード電極触媒。
In a cathode electrode catalyst for a fuel cell comprising a carrier having conductivity and a nitrogen-containing carbon catalyst formed on the surface of the carrier,
A cathode electrode catalyst for a fuel cell, wherein a ratio of hydrogen to carbon in the nitrogen-containing carbon catalyst is larger than 2.8 × 10 −6 and smaller than 1.2 × 10 −5 .
導電性を有する担体と、触媒材料の前駆体となる樹脂、窒素源、および、鉄を含む金属塩と、を混合し、焼成、炭素化し、さらにその後、還元処理を行う、請求項1に記載の燃料電池用カソード電極触媒の製造方法。 A carrier having a conductive, resin serving as a precursor of the catalyst material, a nitrogen source, and a metal salt containing iron, were mixed, calcined, carbonized, further Thereafter, the reduction treatment, according to claim 1 Of manufacturing a cathode electrode catalyst for a fuel cell. 請求項2において、前記還元処理の処理温度が400℃未満であることを特徴とする燃料電池用カソード電極触媒の製造方法。   The method for producing a cathode electrode catalyst for a fuel cell according to claim 2, wherein a treatment temperature of the reduction treatment is less than 400 ° C. 固体高分子電解質膜の一方の表面にアノード電極が形成され、他方の面にカソード電極が形成された膜電極接合体において、
前記カソード電極の触媒は、導電性を有する担体の表面に形成された窒素含有カーボン触媒であり、
前記窒素含有カーボン触媒中の炭素に対する水素の比率が、2.8×10−6よりも大きく1.2×10−5よりも小さいことを特徴とする膜電極接合体。
In a membrane electrode assembly in which an anode electrode is formed on one surface of a solid polymer electrolyte membrane and a cathode electrode is formed on the other surface,
The cathode electrode catalyst is a nitrogen-containing carbon catalyst formed on the surface of a conductive carrier,
The membrane electrode assembly, wherein a ratio of hydrogen to carbon in the nitrogen-containing carbon catalyst is larger than 2.8 × 10 −6 and smaller than 1.2 × 10 −5 .
請求項4において、前記アノード電極の触媒がパラジウムと酸化ルテニウムを含むことを特徴とする膜電極接合体。   5. The membrane electrode assembly according to claim 4, wherein the catalyst for the anode electrode contains palladium and ruthenium oxide.
JP2015538724A 2013-09-27 2013-09-27 Fuel cell electrode catalyst, method for producing the same, and membrane electrode assembly using the fuel cell electrode catalyst Expired - Fee Related JP6217754B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076183 WO2015045083A1 (en) 2013-09-27 2013-09-27 Fuel cell electrode catalyst and membrane electrode assembly using same

Publications (2)

Publication Number Publication Date
JPWO2015045083A1 JPWO2015045083A1 (en) 2017-03-02
JP6217754B2 true JP6217754B2 (en) 2017-10-25

Family

ID=52742287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015538724A Expired - Fee Related JP6217754B2 (en) 2013-09-27 2013-09-27 Fuel cell electrode catalyst, method for producing the same, and membrane electrode assembly using the fuel cell electrode catalyst

Country Status (2)

Country Link
JP (1) JP6217754B2 (en)
WO (1) WO2015045083A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203133A (en) * 2015-04-28 2016-12-08 ダイハツ工業株式会社 Oxygen reduction catalyst
JP2019081667A (en) * 2017-10-30 2019-05-30 旭化成株式会社 Nitrogen-containing carbon material, production method thereof, and fuel cell electrode using the same
WO2023218790A1 (en) * 2022-05-13 2023-11-16 デンカ株式会社 Catalyst carrier for fuel cells, catalyst for fuel cells, electrode catalyst layer, and fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557564B2 (en) * 2010-03-17 2014-07-23 富士フイルム株式会社 Nitrogen-containing carbon alloy and carbon catalyst using the same
EP2658018B1 (en) * 2010-12-22 2020-06-24 Showa Denko K.K. Production process for electrode catalyst for fuel cell and uses thereof

Also Published As

Publication number Publication date
JPWO2015045083A1 (en) 2017-03-02
WO2015045083A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
US8993164B2 (en) Support for catalyst supporting, carrier with supported catalyst, electrode, and battery
JP5481646B2 (en) Carbon catalyst, fuel cell, power storage device
JP5557564B2 (en) Nitrogen-containing carbon alloy and carbon catalyst using the same
JP5562499B1 (en) Method for producing oxygen reduction catalyst
JP5982553B2 (en) Fuel cell electrode catalyst and membrane electrode assembly using the same
JP2007207662A (en) Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the catalyst
JP2013151392A (en) Composite carbon material and method for manufacturing the same, and electrode catalyst and method for manufacturing the same
JP2017208204A (en) Battery electrode, composition for battery electrode catalyst layer, and battery
WO2014192728A1 (en) Catalyst particles, loaded catalyst particles, and use of same
JP2008290062A (en) Catalytic carrier, catalyst, method for manufacturing the catalytic carrier and method for manufacturing the catalyst
Zhang et al. MOF-derived CoFe alloy nanoparticles encapsulated within N, O Co-doped multilayer graphitized shells as an efficient bifunctional catalyst for zinc--air batteries
JP6217754B2 (en) Fuel cell electrode catalyst, method for producing the same, and membrane electrode assembly using the fuel cell electrode catalyst
JP5732667B2 (en) Method for producing carbon catalyst
JP5706595B1 (en) Oxygen reduction catalyst, its use and production method thereof
WO2015159582A1 (en) Method for producing catalyst for fuel cells
JP5757884B2 (en) Method for producing electrode catalyst for fuel cell and use thereof
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP2012099296A (en) Catalyst for fuel batteries, method of manufacturing the same, film-electrode assembly, and fuel battery
JP2017050098A (en) Electrode catalyst for fuel cell, fuel cell, and manufacturing method for electrode catalyst
JP2020035720A (en) Oxidation catalyst for fuel cell, manufacturing method thereof, and fuel cell
JP2009001845A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
WO2013129023A1 (en) Electrode catalyst for fuel cell, membrane electrode assembly, and fuel cell system
JP2009001846A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
US20140295326A1 (en) Nitrogen-doped tungsten carbide structure and method of preparing the same
JP2017050099A (en) Electrode catalyst for fuel cell, fuel cell, and manufacturing method for electrode catalyst

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R151 Written notification of patent or utility model registration

Ref document number: 6217754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees