JP6216934B2 - Method for forming metal nanoparticles - Google Patents

Method for forming metal nanoparticles Download PDF

Info

Publication number
JP6216934B2
JP6216934B2 JP2013065030A JP2013065030A JP6216934B2 JP 6216934 B2 JP6216934 B2 JP 6216934B2 JP 2013065030 A JP2013065030 A JP 2013065030A JP 2013065030 A JP2013065030 A JP 2013065030A JP 6216934 B2 JP6216934 B2 JP 6216934B2
Authority
JP
Japan
Prior art keywords
metal nanoparticles
polymer
metal
substrate
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013065030A
Other languages
Japanese (ja)
Other versions
JP2014189821A (en
Inventor
俊郎 酒井
俊郎 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2013065030A priority Critical patent/JP6216934B2/en
Publication of JP2014189821A publication Critical patent/JP2014189821A/en
Application granted granted Critical
Publication of JP6216934B2 publication Critical patent/JP6216934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属ナノ粒子の形成方法に関する。 The present invention relates to a method for forming metal nanoparticles .

ナノメーターサイズの金属粒子(金属ナノ粒子)は、バルクには見られないユニークな物理的性質、例えば、光学・磁気・電気・触媒特性などを発現するため、近年、大変注目を集めている。この金属ナノ粒子のユニークな物理的特性は、粒子のサイズや形状に依存する。さらに、このような金属ナノ粒子のユニークな特性を触媒分野、エレクトロニクス分野などへ応用するためには、金属ナノ粒子の異種材料との複合化する技術が必要となる。金属ナノ粒子の基材上への集積化技術は、燃料電池用触媒、環境浄化用触媒、エレクトロニクス材料などの製造に重要な技術である。基材上に集積された金属ナノ粒子のサイズ・形状・粒子間距離・凝集形態・配置・配列などは、材料の性能に大きく影響する。そのため、金属ナノ粒子の基材表面への集積技術は、材料性能を制御・向上させるためには必要不可欠な技術である。   Nanometer-sized metal particles (metal nanoparticles) have attracted much attention in recent years because they exhibit unique physical properties that are not found in the bulk, such as optical, magnetic, electrical, and catalytic properties. The unique physical properties of the metal nanoparticles depend on the size and shape of the particles. Furthermore, in order to apply such unique characteristics of metal nanoparticles to the fields of catalysts, electronics, etc., a technology for combining metal nanoparticles with different materials is required. The technology for integrating metal nanoparticles on a substrate is an important technology for the manufacture of fuel cell catalysts, environmental purification catalysts, electronic materials and the like. The size, shape, interparticle distance, aggregated form, arrangement, arrangement, etc. of the metal nanoparticles accumulated on the substrate greatly affect the performance of the material. Therefore, the technology for collecting metal nanoparticles on the substrate surface is an indispensable technology for controlling and improving the material performance.

表面化学修飾基を有する金属ナノ粒子を、溝が形成された基板上に表面化学修飾基をもって固定化させて金属ナノ粒子を配列させる金属ナノ粒子の形成方法が特許文献1に開示されている。   Patent Document 1 discloses a method for forming metal nanoparticles in which metal nanoparticles having a surface chemical modification group are immobilized on a substrate on which grooves are formed with the surface chemical modification group to arrange the metal nanoparticles.

特開2008‐210587号公報JP 2008-210587 A

特許文献1の金属ナノ粒子形成方法によれば、基板上に金属粒子を固定化させる場所を決め、さらに金属粒子が入り込む溝を形成する必要がある。また、金属粒子を含んだ構造体を形成するためには、金属粒子を含む液体を塗布して液体を蒸発乾燥し、濃縮するという工程が含まれ、効率的ではないという課題がある。他にも、金属粒子が担持される基材の形状を限定し、平板状以外の形状では担持させることが難しい。   According to the metal nanoparticle formation method of Patent Document 1, it is necessary to determine a place where the metal particles are immobilized on the substrate and to further form a groove into which the metal particles enter. In addition, in order to form a structure including metal particles, a process of applying a liquid including metal particles, evaporating and drying the liquid, and concentrating the liquid is included, and there is a problem that it is not efficient. In addition, the shape of the base material on which the metal particles are supported is limited, and it is difficult to support in a shape other than a flat shape.

本発明は上記課題を解決すべくなされたものであり、その目的とするところは、ポリマーを含む水溶液中に金属ナノ粒子を還元析出させ、作業工程を簡素化してコストの低減が図れる金属ナノ粒子の形成方法を提供することにある。 The present invention has been made to solve the above problems, it is an object of metal nanoparticles and metal nanoparticles in an aqueous solution containing the polymer precipitated by reduction, the cost can be reduced by simplifying the working process It is in providing the formation method .

上記の目的を達成するため、本発明は次の構成を備える。すなわち、本発明に係る金属ナノ粒子の形成方法は、ポリオキシエチレンポリオキシプロピレングリコールであり、構造式がHO[CH CH O] 13 [(CH )CHCH O] 30 [CH CH O] 13 Hであるポリマーを含む水溶液中に、金属塩を投入する工程と、前記水溶液中に基材を浸漬する工程と、前記水溶液の温度を80℃〜180℃の範囲にする工程とを含み、前記水溶液中に浸漬された前記基材の表面に金属ナノ粒子を還元析出させ、該金属ナノ粒子を前記基材の表面上に担持させることを特徴とする。この構成によれば、ポリマー水溶液中で金属ナノ粒子を容易に還元析出させることができ、作業工程を簡素化できる。
In order to achieve the above object, the present invention comprises the following arrangement. That is, the method for forming metal nanoparticles according to the present invention is polyoxyethylene polyoxypropylene glycol , and the structural formula is HO [CH 2 CH 2 O] 13 [(CH 3 ) CHCH 2 O] 30 [CH 2 CH 2 O] a step of introducing a metal salt into an aqueous solution containing a polymer of 13 H, a step of immersing a substrate in the aqueous solution, and a step of bringing the temperature of the aqueous solution to a range of 80 ° C to 180 ° C. The metal nanoparticles are reduced and deposited on the surface of the base material immersed in the aqueous solution, and the metal nanoparticles are supported on the surface of the base material. According to this configuration, the metal nanoparticles can be easily reduced and precipitated in the polymer aqueous solution, and the work process can be simplified.

前記ポリマーの自己組織化能およびイオン還元能により、前記金属ナノ粒子を還元析出させることが好ましい。これによれば、ポリマーの自己組織化能により基材の表面にポリマーが凝集して自己組織化膜を形成し、還元剤を用いなくてもポリマーのイオン還元能により金属ナノ粒子が析出される。 The self-organizing ability and ion reducing capacity of the polymer, it is preferred to reduction precipitation of the metal nanoparticles. According to this, the polymer aggregates on the surface of the substrate by the self-organizing ability of the polymer to form a self-assembled film, and the metal nanoparticles are deposited by the ion reducing ability of the polymer without using a reducing agent. .

また、本発明において、前記金属ナノ粒子が、金ナノ粒子である。In the present invention, the metal nanoparticles are gold nanoparticles.

析出した前記金属ナノ粒子をさらに焼成することが好ましい。これによれば、ポリマーを焼失させた焼失物を様々な分野に応用することができる。 Preferably further calcining the precipitated the metal nanoparticles. According to this, the burned-out product obtained by burning out the polymer can be applied to various fields.

前記水溶液中に基材を浸漬し、該基材の表面に金属ナノ粒子を還元析出させ、該金属ナノ粒子を前記基材の表面上に担持させることが好ましい。これによれば、どのような基材形状でも水溶液中で容易に基板の表面上に金属を担持させることができ、金属ナノ粒子を担持させた基材を触媒として利用することができる。   It is preferable to immerse the base material in the aqueous solution, to reduce and deposit metal nanoparticles on the surface of the base material, and to support the metal nanoparticles on the surface of the base material. According to this, a metal can be easily supported on the surface of a substrate in an aqueous solution in any substrate shape, and the substrate on which metal nanoparticles are supported can be used as a catalyst.

前記基材が、シリカ粒子であることが好ましい。これによれば、微細なシリカ粒子の表面にも金属ナノ粒子を析出させることができる。   The substrate is preferably silica particles. According to this, metal nanoparticles can be deposited on the surface of fine silica particles.

前記基材の表面形状が、曲率を有する面であることが好ましい。これによれば、平面状の基材だけではなく、凹凸面や曲面を有する基材の表面でも金属ナノ粒子を形成することができる。   The surface shape of the substrate is preferably a surface having a curvature. According to this, metal nanoparticles can be formed not only on a flat substrate but also on the surface of a substrate having an uneven surface or a curved surface.

本発明によれば、ポリマーを含む水溶液中に金属ナノ粒子を還元析出させると共に、基材の表面上に金属ナノ粒子を良好に担持させることができ、触媒、電子材料、センサー、医療用材料に応用可能な材料を提供できる。また、希少金属を回収する際の材料を提供できる。 According to the present invention, metal nanoparticles can be reduced and deposited in an aqueous solution containing a polymer, and the metal nanoparticles can be favorably supported on the surface of a substrate, and can be used in catalysts, electronic materials, sensors, and medical materials. Applicable materials can be provided. Moreover, the material at the time of collect | recovering rare metals can be provided.

(a)は、Pluronic F88を用いて40℃の条件で作製した金属ナノ粒子材料のTEM写真である。(b)は、図1(a)のさらに高倍率のTEM写真である。(A) is a TEM photograph of a metal nanoparticle material produced using Pluronic F88 at 40 ° C. (B) is a higher magnification TEM photograph of FIG. (a)は、Pluronic F88を用いて80℃の条件で作製した金属ナノ粒子材料のTEM写真である。(b)は、図2(a)のさらに高倍率のTEM写真である。(A) is a TEM photograph of a metal nanoparticle material produced using Pluronic F88 at 80 ° C. FIG. 2B is a higher magnification TEM photograph of FIG. (a)は、Pluronic L64を用いて40℃の条件で作製した金属ナノ粒子材料のTEM写真である。(b)は、図3(a)のさらに高倍率のTEM写真である。(A) is a TEM photograph of a metal nanoparticle material produced using Pluronic L64 at 40 ° C. (B) is a higher magnification TEM photograph of FIG. (a)は、Pluronic L64を用いて80℃の条件で作製した金属ナノ粒子材料のTEM写真である。(b)は、図4(a)のさらに高倍率のTEM写真である。(A) is a TEM photograph of a metal nanoparticle material produced using Pluronic L64 at 80 ° C. FIG. 4B is a higher magnification TEM photograph of FIG. (a)は、Pluronic L64を用いて80℃の条件で作製した他の金属ナノ粒子材料のTEM写真である。(b)は、図5(a)のさらに高倍率のTEM写真である。(A) is a TEM photograph of another metal nanoparticle material produced under conditions of 80 ° C. using Pluronic L64. (B) is a higher magnification TEM photograph of FIG. 5 (a). (a)は、Pluronic 25R4を用いて40℃の条件で作製した金属ナノ粒子材料のTEM写真である。(b)は、図6(a)のさらに高倍率のTEM写真である。(A) is a TEM photograph of a metal nanoparticle material produced using Pluronic 25R4 at 40 ° C. FIG. 6B is a higher magnification TEM photograph of FIG. (a)は、Pluronic 25R4を用いて80℃の条件で作製した金属ナノ粒子材料のTEM写真である。(b)は、図7(a)のさらに高倍率のTEM写真である。(A) is a TEM photograph of a metal nanoparticle material produced using Pluronic 25R4 at 80 ° C. FIG. 7B is a higher magnification TEM photograph of FIG. (a)は、PEG 3400を用いて40℃の条件で作製した金属ナノ粒子材料のTEM写真である。(b)は、図8(a)のさらに高倍率のTEM写真である。(A) is a TEM photograph of a metal nanoparticle material produced using PEG 3400 at 40 ° C. FIG. 8B is a higher magnification TEM photograph of FIG. (a)は、PEG 3400を用いて80℃の条件で作製した金属ナノ粒子材料のTEM写真である。(b)は、図9(a)のさらに高倍率のTEM写真である。(A) is a TEM photograph of a metal nanoparticle material produced using PEG 3400 at 80 ° C. FIG. 9B is a higher magnification TEM photograph of FIG. (a)は、JEFFAMINE ED−2003を用いて40℃の条件で作製した金属ナノ粒子材料のTEM写真である。(b)は、図10(a)のさらに高倍率のTEM写真である。(A) is the TEM photograph of the metal nanoparticle material produced on condition of 40 degreeC using JEFFAMINE ED-2003. (B) is a higher magnification TEM photograph of FIG. (a)は、JEFFAMINE ED−2003を用いて80℃の条件で作製した金属ナノ粒子材料のTEM写真である。(b)は、図11(a)のさらに高倍率のTEM写真である。(A) is the TEM photograph of the metal nanoparticle material produced on condition of 80 degreeC using JEFFAMINE ED-2003. FIG. 11B is a higher magnification TEM photograph of FIG.

以下本発明の実施の形態を詳細に説明する。
本実施形態に係る金属ナノ粒子の形成方法は、エチレンオキシドをモノマー単位として含むポリマーの水溶液中に、金属塩を投入して、金属ナノ粒子を還元析出させる方法である。このため、ポリマー水溶液中にある金属の錯イオンが還元されて金属ナノ粒子が生成し、大気中で行う場合と異なってポリマー溶液、界面活性剤を乾燥させて濃縮する工程がなく、作業工程を簡素化できる。
Hereinafter, embodiments of the present invention will be described in detail.
The method for forming metal nanoparticles according to the present embodiment is a method in which a metal salt is introduced into an aqueous solution of a polymer containing ethylene oxide as a monomer unit to reduce and precipitate the metal nanoparticles. For this reason, the metal complex ions in the polymer aqueous solution are reduced to produce metal nanoparticles, and unlike the case in the air, there is no process of drying and concentrating the polymer solution and surfactant, and the work process is reduced. It can be simplified.

上記エチレンオキシドをモノマー単位として含むポリマーとは、モノマーが重合して[−(CO)−]を構造の単位として含むポリマーのことである。エチレンオキシドをモノマー単位として有するポリマーとしてはどのような重合体でもよく、1種類のモノマーの重合体、または2種類以上のモノマーの共重合体でもよい。エチレンオキシドをモノマー単位として有するポリマーとして、エチレングリコールのみが重合したポリエチレングリコール、ポリエチレンオキシドが挙げられる。このとき、親水性ポリマーからなるポリマーを用いてもよい。これらのポリマーを用いることで、金属ナノ粒子をポリマー水溶液中で還元生成することができる。 The polymer containing ethylene oxide as a monomer unit refers to a polymer in which a monomer is polymerized to contain [— (C 2 H 4 O) —] as a structural unit. The polymer having ethylene oxide as a monomer unit may be any polymer, and may be a polymer of one type of monomer or a copolymer of two or more types of monomers. Examples of the polymer having ethylene oxide as a monomer unit include polyethylene glycol and polyethylene oxide in which only ethylene glycol is polymerized. At this time, a polymer made of a hydrophilic polymer may be used. By using these polymers, metal nanoparticles can be reduced and produced in an aqueous polymer solution.

上記ポリマーとしては、自己組織化能およびイオン還元能を有することが好ましい。自己組織化能を有するポリマーは、水溶液中では球状、キュービック状、ヘキサゴナル状、ラメラ状などの自己組織体を形成する。このとき、自己組織体はポリマー水溶液中に浮遊している。さらに、イオン還元能を有するポリマーは、自己組織体の付近にある錯イオンや自己組織体に付着した錯イオンを還元して、金属ナノ粒子を析出させる。ポリマーが自己組織化能およびイオン還元能を有することにより、還元剤を加えなくても金属ナノ粒子を還元析出させることができる。このため、ポリマー水溶液中において、ポリマーの自己組織化膜内で金属ナノ粒子が自己形成され、金属ナノ粒子が集積して形成される。   The polymer preferably has a self-organizing ability and an ion reducing ability. A polymer having a self-organizing ability forms a self-organized body such as a sphere, cubic, hexagonal, or lamellar in an aqueous solution. At this time, the self-organized body floats in the polymer aqueous solution. Further, the polymer having ion reducing ability reduces the complex ions in the vicinity of the self-organized body and the complex ions attached to the self-organized body, thereby depositing metal nanoparticles. Since the polymer has a self-organizing ability and an ion reducing ability, the metal nanoparticles can be reduced and deposited without adding a reducing agent. For this reason, in the polymer aqueous solution, the metal nanoparticles are self-formed in the polymer self-assembled film, and the metal nanoparticles are accumulated.

また、ポリマーが、プロピレンオキシドをモノマー単位として含むコポリマーであることが好ましい。プロピレンオキシドをモノマー単位として含むコポリマーとは、[−((CH)CHCHO)−]を構造の単位として含むコポリマーのことである。さらに、ポリマーが、エチレンオキシドおよびプロピレンオキシドをモノマー単位として含む、コポリマーであることが好ましい。エチレンオキシドおよびプロピレンオキシドをモノマー単位として有するコポリマーとしては、モノマーの配列は限定されないが、好ましくはブロックコポリマーであり、ポリエチレンオキシド(PEO)−ポリプロピレンオキシド(PPO)ブロックコポリマーを用いることが好ましい。この場合、重合度は特に限定されない。エチレンオキシドおよびプロピレンオキシドを含むコポリマーを用いることで、金属ナノ粒子を基材の表面に形成させて、金属ナノ粒子の量を制御することができる。 The polymer is preferably a copolymer containing propylene oxide as a monomer unit. The copolymer containing propylene oxide as a monomer unit is a copolymer containing [— ((CH 3 ) CHCH 2 O) —] as a structural unit. Furthermore, the polymer is preferably a copolymer containing ethylene oxide and propylene oxide as monomer units. As a copolymer having ethylene oxide and propylene oxide as monomer units, the arrangement of the monomers is not limited, but is preferably a block copolymer, and a polyethylene oxide (PEO) -polypropylene oxide (PPO) block copolymer is preferably used. In this case, the degree of polymerization is not particularly limited. By using a copolymer containing ethylene oxide and propylene oxide, metal nanoparticles can be formed on the surface of the substrate, and the amount of metal nanoparticles can be controlled.

さらに、ポリマーを含む水溶液中に基材を浸漬しておけば、ポリマー溶液を静置するだけで自己組織体は基材の表面にも付着し、イオン還元能を有するポリマーによって錯イオンが還元されて、基材表面に金属ナノ粒子が析出される。これにより、還元剤を加えなくても基材の表面に金属ナノ粒子が還元析出される。   Furthermore, if the substrate is immersed in an aqueous solution containing the polymer, the self-organized body adheres to the surface of the substrate simply by allowing the polymer solution to stand, and the complex ions are reduced by the polymer having ion reducing ability. Thus, metal nanoparticles are deposited on the surface of the substrate. Thereby, metal nanoparticles are reduced and deposited on the surface of the substrate without adding a reducing agent.

また、基材の形状は特に限定されず、平面、曲面でもよく、凹凸を有する表面形状でもよい。特に、基材の表面形状が、曲率を有する面であれば、微細な粒子状であってもよく、チューブ状であればチューブの内側および外側にも金属ナノ粒子を析出できる。金属ナノ粒子が基材表面に析出した金属ナノ粒子材料は、ポリマー水溶液中から基材と共に回収すればよく、微細な粒子やマイクロサイズの基材であっても金属ナノ粒子が析出した状態で得られる。 Further, the shape of the base material is not particularly limited, and may be a flat surface, a curved surface, or a surface shape having irregularities. In particular, if the surface shape of the substrate is a surface having a curvature, it may be fine particles, and if it is tube-like, metal nanoparticles can be deposited on the inside and outside of the tube. The metal nanoparticle material on which the metal nanoparticles are deposited on the substrate surface may be recovered together with the substrate from the polymer aqueous solution, and even if it is a fine particle or a micro-sized substrate , the metal nanoparticles are obtained in the deposited state. It is done.

また、基材の表面に形成された金属ナノ粒子は、基材の表面上に担持させることができる。基材の表面に金属ナノ粒子が担持された金属ナノ粒子材料は、触媒分野に応用することが可能であり、その他にもエレクトロニクス分野(微細配線・インクジェット配線・導電性トナー)、電池分野(燃料電池)にも応用できる。さらに、センサーや医療用材料分野(造影剤、疾患部のイメージング)にも応用できる。またこの場合、基材の表面に金属ナノ粒子を還元析出させ、基材と共に焼成させてから、これらの応用分野に適用してもよい。本実施形態の金属ナノ粒子の形成方法を用いて金属を基材の表面に形成したり、担持させたりすれば、水溶液中の金属を回収することもできる。   In addition, the metal nanoparticles formed on the surface of the substrate can be supported on the surface of the substrate. Metal nanoparticle materials with metal nanoparticles supported on the surface of the substrate can be applied to the catalyst field. In addition, electronics field (fine wiring, inkjet wiring, conductive toner), battery field (fuel) Battery). Furthermore, it can be applied to the field of sensors and medical materials (imaging agents, imaging of diseased areas). In this case, the metal nanoparticles may be reduced and deposited on the surface of the base material and fired together with the base material, and then applied to these application fields. If the metal is formed or supported on the surface of the substrate using the method for forming metal nanoparticles of the present embodiment, the metal in the aqueous solution can also be recovered.

本発明において使用する基材としては、ポリマーが吸着できるものであれば特に限定されなく、無機材料、金属材料、樹脂などの有機材料に金属ナノ粒子を形成させることができる。また、基材の表面の形状は前述のように、特に限定されない。また、表面処理を行って、ポリマーが付着しやすいようにした基材を用いてもよい。特に無機材料、金属材料では、基材へのポリマーの付着量に影響するため、表面に有機物がない基材であることが好ましい。無機材料としては、シリカ粒子やチタニア粒子に金属ナノ粒子を形成すれば、触媒分野へ応用ができる。   The substrate used in the present invention is not particularly limited as long as it can adsorb a polymer, and metal nanoparticles can be formed on an organic material such as an inorganic material, a metal material, or a resin. Moreover, the shape of the surface of a base material is not specifically limited as mentioned above. Moreover, you may use the base material which surface-treated and made the polymer adhere easily. In particular, in the case of inorganic materials and metal materials, since the amount of the polymer attached to the base material is affected, it is preferable that the base material has no organic substance on the surface. As an inorganic material, if metal nanoparticles are formed on silica particles or titania particles, it can be applied to the catalyst field.

本実施形態で形成される金属ナノ粒子の金属の種類は特に限定されないが、ポリマー水溶液中で錯イオンを形成する金属であり、金、銀などが挙げられる。このとき金属塩をポリマー水溶液中に入れればよく、塩化金酸を用いることで、水溶液中では塩化金酸イオン[AuClとなり、金ナノ粒子をポリマー水溶液中で形成して基材の表面に金ナノ粒子を形成、担持できる。また、金属塩が強い酸化作用をもつことでポリマー付近に金属の錯イオンがあると、ポリマーを酸化させて自身は還元され、金属が析出されやすくなる。また、ポリマーが金属イオン還元能を有していれば、金属塩の酸化力との効果によって錯イオンを還元して、より基材表面に金属ナノ粒子が析出されやすい。 Although the kind of metal of the metal nanoparticle formed in this embodiment is not specifically limited, It is a metal which forms a complex ion in polymer aqueous solution, Gold, silver, etc. are mentioned. At this time, the metal salt may be placed in the polymer aqueous solution. By using chloroauric acid, the chloroauric acid ion [AuCl 4 ] is formed in the aqueous solution, and gold nanoparticles are formed in the polymer aqueous solution to form the surface of the substrate. Can form and support gold nanoparticles. Further, since the metal salt has a strong oxidizing action, if there is a metal complex ion in the vicinity of the polymer, the polymer is oxidized and itself is reduced, and the metal is likely to be deposited. Moreover, if the polymer has a metal ion reducing ability, the complex ions are reduced by the effect of the oxidizing power of the metal salt, and the metal nanoparticles are more easily deposited on the substrate surface.

本実施形態の金属ナノ粒子の形成方法によれば、平面基板上だけではなく曲率を有する面上への金属ナノ粒子のパターニングが可能である。パターニング方法として、用いるポリマーの種類、ポリマー水溶液の温度と濃度、また錯イオンとポリマーとを含む水溶液中に基材を浸漬させている時間を変える。これらの条件を制御すると、基材表面へのポリマーの付着量を変えることができ、その結果、金属ナノ粒子のパターニングが可能となる。さらに、形成される金属ナノ粒子の大きさも変えることができ、ポリマー水溶液中で所望の大きさの金属ナノ粒子を形成することができる。   According to the method for forming metal nanoparticles of the present embodiment, it is possible to pattern metal nanoparticles not only on a flat substrate but also on a curved surface. As a patterning method, the kind of polymer to be used, the temperature and concentration of the aqueous polymer solution, and the time during which the substrate is immersed in the aqueous solution containing the complex ions and the polymer are changed. By controlling these conditions, the amount of polymer attached to the surface of the substrate can be changed, and as a result, patterning of metal nanoparticles becomes possible. Furthermore, the size of the metal nanoparticles to be formed can be changed, and metal nanoparticles having a desired size can be formed in an aqueous polymer solution.

用いるポリマーは、ポリエチレングリコール、ポリオキシエチレンポリオキシプロピレングリコール(PEO−PPOブロックコポリマー)、ポリオキシアルキレンアミン等が挙げられ、種類を変えることでパターニングすることができる。また、ポリオキシエチレンポリオキシプロピレングリコールにおける、エチレンオキシドおよびプロピレンオキシドの重合度を変えても金属ナノ粒子をパターニングすることができる。   Examples of the polymer to be used include polyethylene glycol, polyoxyethylene polyoxypropylene glycol (PEO-PPO block copolymer), polyoxyalkyleneamine, and the like, and patterning can be performed by changing the type. Further, the metal nanoparticles can be patterned by changing the polymerization degree of ethylene oxide and propylene oxide in polyoxyethylene polyoxypropylene glycol.

金属ナノ粒子を形成するには、容器中へ材料を入れる順番は限定されないが、容器にポリマー水溶液を入れ、次に基材および金属塩を入れればよい。この金属の錯イオンと基材とポリマーとを含む水溶液の温度を制御しながら静置すれば、基材に金属が形成される。金属ナノ粒子をパターニングするには、温度の他に静置時間を変えればよく、さらに金属錯イオンの種類を変えてパターニングする場合でも、ポリマー水溶液の温度、静置時間を変えればよい。   In order to form the metal nanoparticles, the order of putting the materials into the container is not limited, but the polymer aqueous solution may be put into the container, and then the substrate and the metal salt may be put. If the solution is allowed to stand while controlling the temperature of the aqueous solution containing the complex ions of the metal, the substrate and the polymer, a metal is formed on the substrate. In order to pattern the metal nanoparticles, the standing time may be changed in addition to the temperature, and even when the patterning is performed by changing the type of metal complex ions, the temperature of the polymer aqueous solution and the standing time may be changed.

ポリマー水溶液の温度は好ましくは、4℃〜180℃の範囲で制御されるのが好ましい。静置中のポリマー水溶液の温度は一定であっても、変化させてもよい。また、ポリマー水溶液の温度がより高温であると生成した自己組織体同士が凝集しやすく、基材の表面に付着しやすくなる。これにより高温であると金属ナノ粒子が生成されやすく、基材の表面に金属ナノ粒子が形成されやすいので好ましい。   The temperature of the aqueous polymer solution is preferably controlled in the range of 4 ° C to 180 ° C. The temperature of the aqueous polymer solution during standing may be constant or may be changed. Further, when the temperature of the polymer aqueous solution is higher, the generated self-organized bodies are easily aggregated and are easily attached to the surface of the substrate. Accordingly, it is preferable that the temperature is high because metal nanoparticles are easily generated and metal nanoparticles are easily formed on the surface of the substrate.

以下、実施例により本発明の一例を説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter will be described an example of the present invention through examples, the present invention is not to be Ru limited to these examples.

用いたポリマーの分子量および構造式を表1に示す。ポリオキシエチレンポリオキシプロピレングリコール(商品名:Pluronic(登録商標)、BASF corp.製)、ポリエチレングリコール(PEG、Sigma Aldrich製)、ポリオキシアルキレンアミン(商品名:JEFFAMINE(登録商標)、HUNTSMAN corp.製)を用い、それぞれのポリマーを水に溶かした。ポリマー水溶液を5mMに調製し、ポリマー水溶液を24時間撹拌した。シリカ粒子(平均粒子径250nm)を水に分散させたシリカ分散液(15μL)と、20mMの塩化金酸水溶液(HAuCl・4HO(20μL))とを撹拌後のポリマー水溶液(2mL)に入れた。このシリカ粒子を含んだポリマー水溶液を25、40、80℃のいずれかの温度で、24時間静置した。 Table 1 shows the molecular weight and structural formula of the polymer used. Polyoxyethylene polyoxypropylene glycol (trade name: Pluronic (registered trademark), manufactured by BASF Corp.), polyethylene glycol (PEG, manufactured by Sigma Aldrich), polyoxyalkyleneamine (trade names: JEFFAMINE (registered trademark), HUNTSMAN corp. Each polymer was dissolved in water. The aqueous polymer solution was adjusted to 5 mM, and the aqueous polymer solution was stirred for 24 hours. A silica dispersion (15 μL) in which silica particles (average particle size 250 nm) are dispersed in water and a 20 mM aqueous solution of chloroauric acid (HAuCl 4 .4H 2 O (20 μL)) are added to a polymer aqueous solution (2 mL) after stirring. I put it in. The aqueous polymer solution containing the silica particles was allowed to stand at a temperature of 25, 40, or 80 ° C. for 24 hours.

表1に示したポリマーの内、表2に示すポリマーに番号を付け、実施例に基づいて各ポリマー水溶液で金ナノ粒子が還元析出され、赤色物が見られたか否かという結果を表3に示す。番号1〜5のポリマーを用い、実施例に基づいて作製した金属ナノ粒子材料を実施例1〜実施例5とする。   Of the polymers shown in Table 1, the polymers shown in Table 2 are numbered, and the results of whether or not the gold nanoparticles were reduced and precipitated in each polymer aqueous solution based on the examples were shown in Table 3. Show. The metal nanoparticle material produced based on the Example using the polymers of Nos. 1 to 5 is referred to as Example 1 to Example 5.

実施例1の25℃、40℃、80℃の条件では、ポリマー水溶液中内に金ナノ粒子が生成したことに由来する赤色物が見られ、容器内で赤色物が分散していたことから金ナノ粒子の生成が確認された。実施例2では、25℃、40℃、80℃で、実施例3および4では40℃、80℃で、実施例3では80℃で同様に、容器内で赤色物が沈殿または分散していたことから金ナノ粒子が形成された。また、後述するように、目視ではポリマー溶液中に赤色物の確認はできなくてもTEM観察によって金ナノ粒子の析出が確認できた。これは、金ナノ粒子の析出量が少ないため、ポリマー溶液内の色の変化があまり見られないものと考えられる。   Under the conditions of 25 ° C., 40 ° C., and 80 ° C. in Example 1, a red product derived from the formation of gold nanoparticles was observed in the polymer aqueous solution, and the red product was dispersed in the container. Formation of nanoparticles was confirmed. In Example 2, red matter was precipitated or dispersed in the container at 25 ° C., 40 ° C. and 80 ° C., in Examples 3 and 4 at 40 ° C. and 80 ° C., and in Example 3 at 80 ° C. As a result, gold nanoparticles were formed. Further, as will be described later, even when a red substance could not be confirmed in the polymer solution by visual observation, precipitation of gold nanoparticles could be confirmed by TEM observation. This is probably because the amount of gold nanoparticles deposited is small, so that the color change in the polymer solution is hardly observed.

図1〜図11に、実施例1〜5で作製した金属ナノ粒子材料のTEM写真を示し、それぞれポリマー水溶液の温度が40℃、または80℃の条件で作製したものを示す。表4に、40℃および80℃のポリマー水溶液中で金ナノ粒子を作成し、作製された金ナノ粒子がシリカ粒子上に担持されたか否かという結果を示す。図1〜図11において、約250nmの球状物がシリカ粒子であり、シリカ粒子の表面付近に黒色に見えているものが金ナノ粒子である。   1 to 11 show TEM photographs of the metal nanoparticle materials prepared in Examples 1 to 5, which are respectively prepared under conditions where the temperature of the polymer aqueous solution is 40 ° C or 80 ° C. Table 4 shows the results of whether gold nanoparticles were prepared in polymer aqueous solutions at 40 ° C. and 80 ° C., and whether the produced gold nanoparticles were supported on silica particles. In FIG. 1 to FIG. 11, spherical particles of about 250 nm are silica particles, and those that appear black near the surface of the silica particles are gold nanoparticles.

図1に、Pluronic F88を用いて、40℃の条件で作製した金属ナノ粒子材料、図2に、80℃の条件で作製した金属ナノ粒子材料のTEM写真を示す。図1のPluronic F88を用いた40℃の条件では、約30nm径の金ナノ粒子が形成され、金ナノ粒子はシリカ粒子上に担持されていなかった。図2のPluronic F88を用いた80℃の条件では、約10nm径の金ナノ粒子が形成され、金ナノ粒子はシリカ粒子上に担持されていなかった。   FIG. 1 shows a TEM photograph of a metal nanoparticle material produced under conditions of 40 ° C. using Pluronic F88, and FIG. 2 shows a metal nanoparticle material produced under conditions of 80 ° C. Under the condition of 40 ° C. using Pluronic F88 in FIG. 1, gold nanoparticles having a diameter of about 30 nm were formed, and the gold nanoparticles were not supported on the silica particles. Under the condition of 80 ° C. using Pluronic F88 in FIG. 2, gold nanoparticles having a diameter of about 10 nm were formed, and the gold nanoparticles were not supported on the silica particles.

図3に、Pluronic L64を用いて、40℃の条件で作製した金属ナノ粒子材料、図4および図5に、80℃の条件で作製した金属ナノ粒子材料のTEM写真を示す。図3のPluronic L64を用いた40℃の条件では、約3〜20nm径の金ナノ粒子が形成され、金ナノ粒子はシリカ粒子上に担持されていなかった。図4および図5のPluronic L64を用いた80℃の条件では、約3nm径の金ナノ粒子が形成され、金ナノ粒子がシリカ粒子上に島状又または均一に担持されていた。   FIG. 3 shows a TEM photograph of a metal nanoparticle material produced under conditions of 40 ° C. using Pluronic L64, and FIGS. 4 and 5 show a metal nanoparticle material produced under conditions of 80 ° C. Under the condition of 40 ° C. using Pluronic L64 of FIG. 3, gold nanoparticles having a diameter of about 3 to 20 nm were formed, and the gold nanoparticles were not supported on the silica particles. Under the conditions of 80 ° C. using Pluronic L64 of FIGS. 4 and 5, gold nanoparticles having a diameter of about 3 nm were formed, and the gold nanoparticles were supported on the silica particles in an island shape or uniformly.

図6に、Pluronic 25R4を用いて、40℃の条件で作製した金属ナノ粒子材料、図7に、80℃の条件で作製した金属ナノ粒子材料のTEM写真を示す。図6のPluronic 25R4を用いた40℃の条件では、約50nm径の金ナノ粒子が形成され、金ナノ粒子はシリカ粒子上に担持されていなかった。図7のPluronic 25R4を用いた80℃の条件では、約50nm径の金ナノ粒子が形成され、金ナノ粒子はシリカ粒子上に担持されていなかった。   FIG. 6 shows a TEM photograph of a metal nanoparticle material produced under conditions of 40 ° C. using Pluronic 25R4, and FIG. 7 shows a metal nanoparticle material produced under conditions of 80 ° C. Under the condition of 40 ° C. using Pluronic 25R4 of FIG. 6, gold nanoparticles having a diameter of about 50 nm were formed, and the gold nanoparticles were not supported on the silica particles. Under the conditions of 80 ° C. using Pluronic 25R4 in FIG. 7, gold nanoparticles having a diameter of about 50 nm were formed, and the gold nanoparticles were not supported on the silica particles.

図8に、PEG 3400を用いて、40℃の条件で作製した金属ナノ粒子材料、図9に、80℃の条件で作製した金属ナノ粒子材料のTEM写真を示す。図8のPEG 3400を用いた40℃の条件では、約50nm径の金ナノ粒子が形成され、金ナノ粒子はシリカ粒子上に凝集して担持されていた。図9のPEG 3400を用いた80℃の条件では、約3nm径の金ナノ粒子が形成され、金ナノ粒子はシリカ粒子上に担持されていた。また、80℃で作製した方は、シリカ粒子の表面に均一な膜状に金ナノ粒子が担持されたシリカ粒子が確認された。   FIG. 8 shows a TEM photograph of a metal nanoparticle material produced under conditions of 40 ° C. using PEG 3400, and FIG. 9 shows a metal nanoparticle material produced under conditions of 80 ° C. Under the condition of 40 ° C. using PEG 3400 of FIG. 8, gold nanoparticles having a diameter of about 50 nm were formed, and the gold nanoparticles were aggregated and supported on the silica particles. Under the condition of 80 ° C. using PEG 3400 of FIG. 9, gold nanoparticles having a diameter of about 3 nm were formed, and the gold nanoparticles were supported on the silica particles. Moreover, the silica particles in which the gold nanoparticles were supported in a uniform film shape on the surface of the silica particles were confirmed for those prepared at 80 ° C.

図10に、JEFFAMINE ED−2003を用いて、40℃の条件で作製した金属ナノ粒子材料、図11に、80℃の条件で作製した金属ナノ粒子材料のTEM写真を示す。図10のJEFFAMINE ED−2003を用いた40℃の条件では、約20nm径の金ナノ粒子が形成され、金ナノ粒子はシリカ粒子上に担持されていなかった。図11のJEFFAMINE ED−2003を用いた80℃の条件では、約20nm径の金ナノ粒子が形成され、金ナノ粒子はシリカ粒子上に担持されていなかった。   FIG. 10 shows a TEM photograph of a metal nanoparticle material produced under conditions of 40 ° C. using JEFFAMINE ED-2003, and FIG. 11 shows a metal nanoparticle material produced under conditions of 80 ° C. Under the conditions of 40 ° C. using JEFFAMINE ED-2003 of FIG. 10, gold nanoparticles having a diameter of about 20 nm were formed, and the gold nanoparticles were not supported on the silica particles. Under the condition of 80 ° C. using JEFFAMINE ED-2003 in FIG. 11, gold nanoparticles having a diameter of about 20 nm were formed, and the gold nanoparticles were not supported on the silica particles.

ポリマー水溶液の温度を変えることで、ポリマーの自己組織化膜の形成されやすさを変えることができ、高温ほど自己組織化膜が形成されやすい。このため、高温ほど金属ナノ粒子が基材表面上に集積されて、金属ナノ粒子の形成量および形成される場所を変えることができる。ポリマーの種類およびポリマー水溶液の温度を制御することで、基材の表面に担持される金属ナノ粒子の形成量および形成される場所を制御することが可能であり、基材の形状を限定されず、球状粒子にも金属ナノ粒子を担持させることができる。さらには、パターニングも可能となる。 By changing the temperature of the polymer aqueous solution, it is possible to change the ease of formation of the polymer self-assembled film, and the higher the temperature, the easier the self-assembled film is formed. For this reason, the higher the temperature, the more the metal nanoparticles are accumulated on the substrate surface, and the amount of metal nanoparticles formed and the place where they are formed can be changed. By controlling the type of polymer and the temperature of the polymer aqueous solution, it is possible to control the amount of metal nanoparticles supported on the surface of the substrate and the place where it is formed, and the shape of the substrate is not limited. In addition, metal nanoparticles can be supported on spherical particles. Furthermore, patterning is also possible.

Claims (6)

ポリオキシエチレンポリオキシプロピレングリコールであり、構造式がHO[CH CH O] 13 [(CH )CHCH O] 30 [CH CH O] 13 Hであるポリマーを含む水溶液中に、金属塩を投入する工程と、
前記水溶液中に基材を浸漬する工程と、
前記水溶液の温度を80℃〜180℃の範囲にする工程とを含み、
前記水溶液中に浸漬された前記基材の表面に金属ナノ粒子を還元析出させ、該金属ナノ粒子を前記基材の表面上に担持させることを特徴とする金属ナノ粒子の形成方法。
In an aqueous solution comprising a polymer that is polyoxyethylene polyoxypropylene glycol and the structural formula is HO [CH 2 CH 2 O] 13 [(CH 3 ) CHCH 2 O] 30 [CH 2 CH 2 O] 13 H , Adding a metal salt;
Immersing the substrate in the aqueous solution;
Including the step of bringing the temperature of the aqueous solution to a range of 80 ° C to 180 ° C
A method of forming metal nanoparticles, wherein metal nanoparticles are reduced and deposited on the surface of the substrate immersed in the aqueous solution, and the metal nanoparticles are supported on the surface of the substrate.
前記ポリマーの自己組織化能およびイオン還元能により、前記金属ナノ粒子を還元析出させることを特徴とする請求項1に記載の金属ナノ粒子の形成方法。 The method for forming metal nanoparticles according to claim 1, wherein the metal nanoparticles are reduced and deposited by the self-organization ability and ion reduction ability of the polymer . 前記金属ナノ粒子が、金ナノ粒子であることを特徴とする請求項1または請求項2に記載の金属ナノ粒子の形成方法。   The method for forming metal nanoparticles according to claim 1, wherein the metal nanoparticles are gold nanoparticles. 析出した前記金属ナノ粒子をさらに焼成することを特徴とする請求項1から請求項3のいずれか一項に記載の金属ナノ粒子の形成方法。   The method for forming metal nanoparticles according to any one of claims 1 to 3, wherein the deposited metal nanoparticles are further fired. 前記基材が、シリカ粒子であることを特徴とする請求項1から請求項4のいずれか一項に記載の金属ナノ粒子の形成方法。   The said base material is a silica particle, The formation method of the metal nanoparticle as described in any one of Claims 1-4 characterized by the above-mentioned. 前記基材の表面形状が、曲率を有する面であることを特徴とする請求項1から請求項5のいずれか一項に記載の金属ナノ粒子の形成方法。   The method for forming metal nanoparticles according to any one of claims 1 to 5, wherein the surface shape of the substrate is a surface having a curvature.
JP2013065030A 2013-03-26 2013-03-26 Method for forming metal nanoparticles Active JP6216934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013065030A JP6216934B2 (en) 2013-03-26 2013-03-26 Method for forming metal nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013065030A JP6216934B2 (en) 2013-03-26 2013-03-26 Method for forming metal nanoparticles

Publications (2)

Publication Number Publication Date
JP2014189821A JP2014189821A (en) 2014-10-06
JP6216934B2 true JP6216934B2 (en) 2017-10-25

Family

ID=51836396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013065030A Active JP6216934B2 (en) 2013-03-26 2013-03-26 Method for forming metal nanoparticles

Country Status (1)

Country Link
JP (1) JP6216934B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518156B2 (en) * 2015-01-23 2016-12-13 Xerox Corporation Methods of preparing metal nanodendrimer structures
CA3096814A1 (en) * 2017-05-12 2018-11-15 Inhibit Coatings Limited Composite resins containing silver nanoparticles
US11116793B2 (en) * 2017-11-13 2021-09-14 National University Corporation Hokkaido University Modified metal nanoparticle comprising cyclic polyether and pharmaceutical composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718094B2 (en) * 2004-06-18 2010-05-18 The Research Foundation Of State University Of New York Preparation of metallic nanoparticles
JP4849317B2 (en) * 2006-03-24 2012-01-11 住友電気工業株式会社 Method for producing metal fine particles
JP2009057594A (en) * 2007-08-31 2009-03-19 Shinko Kagaku Kogyosho:Kk Method for manufacturing fine metal particle
JP2009057311A (en) * 2007-08-31 2009-03-19 Nof Corp Metal salt-reducing agent, method for producing metal fine particles, method for producing metal fine particle-liposome composite, and material for medical care

Also Published As

Publication number Publication date
JP2014189821A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
Allioux et al. Applications of liquid metals in nanotechnology
Chapel et al. Versatile electrostatic assembly of nanoparticles and polyelectrolytes: Coating, clustering and layer-by-layer processes
Zhang et al. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview
Luo et al. Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters
Lei et al. Tuning of the morphology of core− shell− corona micelles in water. I. Transition from sphere to cylinder
Kumar et al. Recent advancement in functional core-shell nanoparticles of polymers: synthesis, physical properties, and applications in medical biotechnology
Zhao et al. Orientation of charged clay nanotubes in evaporating droplet meniscus
Kalaycı et al. Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic comb-type graft copolymers
Nguyen et al. A green method for in situ synthesis of poly (vinyl alcohol)/chitosan hydrogel thin films with entrapped silver nanoparticles
You et al. Ultrafast hydrothermal synthesis of high quality magnetic core phenol–formaldehyde shell composite microspheres using the microwave method
Luan et al. Synthesis techniques, properties and applications of polymer nanocomposites
TWI518190B (en) Core - shell type nano - particles and its manufacturing method
US9957363B2 (en) Method for forming metal nanowire or metal nanomesh
WO2012138302A1 (en) Multilayer film comprising metal nanoparticles and a graphene-based material and method of preparation thereof
Doh et al. Enhanced adsorption of aqueous copper (II) ions using dedoped poly-N-phenylglycine nanofibers
JPWO2012026033A1 (en) Low temperature sinterable silver nanoparticle composition and electronic article formed using the composition
Liu et al. Hollow nanostructured polyaniline: preparation, properties and applications
CN104854020A (en) Method for manufacturing silver nanowires using copolymer capping agents
Panigrahi et al. Ultrasound assisted synthesis of a polyaniline hollow microsphere/Ag core/shell structure for sensing and catalytic applications
KR20100051612A (en) Process for producing nanostructure composite covered structure, nanostructure composite covered structure, and reactor using the nanostructure composite covered structure
JP6216934B2 (en) Method for forming metal nanoparticles
Müllner et al. 7.2 A Facile Polymer Templating Route Toward High Aspect Ratio Crystalline Titania Nanostructures
Hao et al. Controllable fabrication and characterization of biocompatible core-shell particles and hollow capsules as drug carrier
TW200924878A (en) Method of reducing metallic ion using nano silicate platelet and steadily dispersing nano metallic particle and the product
Zhang et al. Necklace‐Like Nanostructures: From Fabrication, Properties to Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170824

R150 Certificate of patent or registration of utility model

Ref document number: 6216934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250